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Radiation can drive the electrons in a material out of thermal equilibrium with the nuclei, pro-
ducing hot, transient electronic states that modify the interatomic potential energy surface. We
present a rigorous formulation of two-temperature molecular dynamics that can accommodate these
electronic effects in the form of electronic-temperature-dependent force fields. Such a force field is
presented for silicon which has been constructed to reproduce the ab initio-derived thermodynamics
of the diamond phase for electronic temperatures up to 2.5 eV, as well as the structural dynamics
observed experimentally under nonequilibrium conditions in the femtosecond regime. This includes
nonthermal melting on a sub-picosecond timescale to a liquid-like state for electronic temperatures
above ∼ 1 eV. The methods presented in this paper lay a rigorous foundation for the large-scale
atomistic modelling of electronically-driven structural dynamics with potential applications span-
ning the entire domain of radiation damage.

I. INTRODUCTION

When the electrons in a material are driven slowly rel-
ative to the electron-phonon coupling timescale, the elec-
trons and nuclei will remain in thermal equilibrium with
each other, with much of the energy supplied to the elec-
trons translating into atomic motion. On the other hand,
when electrons are driven more rapidly than they can
couple with the phonons, the electrons and nuclei may be
driven transiently from equilibrium, producing hot elec-
trons and cool nuclei. Hot electronic states give rise to
modified interatomic potential energy surfaces which can
induce rapid phase transitions. This is referred to as a
nonthermal process because it occurs before the electrons
and nuclei have thermalized with each other.

Nonthermal phase transitions have been observed in
multiple semiconducting and dielectric materials: Si [1–
6], Ge [7, 8], GaAs [9], InSb [10], Ge2Sb2Te5 [11], and
C [12]. Band gap materials are particularly amenable
to nonthermal processes because their band gaps inhibit
electronic relaxation. Moreover, their atomic interactions
in the ground state are determined by highly localised va-
lence electrons whose excitation across the Fermi surface
can dramatically alter the potential energy surface.

Silicon is a widely studied material in the context of
strongly-driven phase transitions, both experimentally
[1–6] and theoretically [13–29], where it is found to melt
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on a sub-picosecond timescale at high excitations. Most
theoretical studies of nonthermal melting in silicon have
employed ab initio simulation methods. However, the
cost of these techniques make them unsuitable for study-
ing large length or time scale processes such as abla-
tion and spallation. It is within this domain of large-
scale atomistic modelling of radiation damage that two-
temperature molecular dynamics (2T-MD) has prevailed
as the method of choice [30].

The idea of 2T-MD is to decompose the system into
two subsystems: the nuclear coordinates, and a contin-
uous scalar field representing the electronic temperature
Te throughout space. The nuclear coordinates are inte-
grated over time using Newton’s second law of motion,
while the Te field evolves according to a heat equation.
The two subsystems are coupled with a thermostat that
serves to thermalize them, emulating the nonadiabatic
electron-phonon coupling mechanism.

Intrinsic to 2T-MD is the assumption that the elec-
trons are always thermalized, such that a temperature is
always defined. However, it is unclear how valid this ap-
proximation is. Initially, when an irradiation event takes
place, the electrons will consist of thermalized low-energy
electrons and a small number of high-energy electrons. In
metals, the electrons thermalize to adopt a Fermi-Dirac
distribution within ∼ 10−100 fs [31], but in semiconduc-
tors thermalization can take an order of magnitude longer
[3]. The electrons may, therefore, be out of quasiequilib-
rium during the nonthermal melting phase, in which case
it would be dubious to assign an electronic temperature.

Previous theoretical studies provide limited insight
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into the significance of the electronic distribution. Most
ab initio studies of nonthermal melting in silicon have
been built on two assumptions: thermalized electrons,
and the Born-Oppenheimer approximation which ex-
cludes nonadiabatic effects such as electron-phonon cou-
pling, e.g. [16–22]. These studies do predict bond soften-
ing at high excitations but they predict melting to occur
at higher excitations than expected based on experiment.
More recent methods [13, 14] have avoided these two as-
sumptions and, consequently, predicted melting at lower
excitations. However, it is unclear to what extent this is
attributable to the more realistic electronic distributions
versus the nonadiabatic effects. Despite this uncertainty,
we proceed with the assumption that the electrons in-
stanteously thermalize, and find that the resulting model
behaves in good agreement with experiment and ab initio
simulation.

To capture the effects of electronic excitations on
atomic interactions, it is necessary for the interatomic
potentials to vary as a function of Te. Deploying Te-
dependent force fields has been attempted for just four
materials that we are aware of: Si [32–34], W [35, 36],
Au [37], and Mo [38]. However, each one of these studies
has a significant flaw.

Firstly, there is confusion regarding whether the inter-
atomic potentials should be optimized to reproduce the
energy or the free energy at finite temperatures. In the Si
force field, the potential was fitted to the energy, while
the other three were all fitted to the free energy. The
source of confusion is that these studies have involved op-
timizing the interatomic potentials to fit data produced
by finite-temperature density functional theory (DFT).
Finite-temperature DFT ostensibly minimizes the atomic
structure with respect to the free energy, specifically the
grand canonical potential, which might lead one to as-
sume the free energy should be reproduced. However,
to simplify the force evaluations at the implementation
level, DFT codes evaluate forces in the adiabatic limit.
Minimizing the free energy in the adiabatic limit is equiv-
alent to minimizing the energy under isothermal condi-
tions [39, 40], and so it is the energy that should be repro-
duced by the interatomic potential, not the free energy.

Secondly, none of these studies deploy the Te-
dependent potentials in a way that conserves energy.
Changes in the temperature give rise to changes in the
potential energy, but no effort has been made to account
for where this energy goes to or comes from. This concern
has been raised before [41] without solution. In this paper
we present the solution for correctly conserving energy
in 2T-MD with Te-dependent potentials. The solution is
deceptively simple: rather than use a heat capacity pre-
computed for a particular phase, the heat capacity must
be re-evaluated for each nuclear configuration, which can
be done straightforwardly using the interatomic poten-
tials themselves. However, expressing the heat capacity
in terms of the interatomic potential places an implicit
constraint on the potential which, in general, may not
be satisfied for all configurations. To counter this, we

introduce a potential energy correction to the Hamilto-
nian that is designed specifically to maintain a physically
realistic heat capacity.

This new energy-conserving scheme is applied to sili-
con for which a new Te-dependent potential is introduced.
We do not use the existing Si potential of Shokeen et
al. [32–34] because their potential is parameterized by
high-degree polynomials which leads to rapid oscillations
in the energy and, consequently, negative heat capacities
for the crystalline phases. Futhermore, their potential
gives rise to nonthermal melting at much higher energies
than predicted experimentally, which our own analysis
suggests is because their parameter optimization was un-
derdetermined. In constructing a new potential, our ob-
jective was to accurately reproduce the thermodynamics
of the diamond phase of silicon for a range of electronic
temperatures, as well as capture the structural evolution
of nonequilibrium silicon insofar as it is determined ex-
perimentally.

II. THEORY

This section presents a rigorous formulation of 2T-MD
with Te-dependent potentials, revealing how the energy
of the system should be conserved. It is shown that some
potentials may not be suitable for the energy-conserving
scheme, for which a general-purpose many-body energy
correction is introduced.

For simplicity, this paper only considers a collection
of identical atoms with a uniform electronic temper-
ature. However, the methods described may be ex-
tended straightforwardly to multi-component materials
with a spatially inhomogeneous electronic subsystem in
the same way as existing 2T-MD formalisms.

A. Two-temperature molecular dynamics

In our two-temperature molecular dynamics formal-
ism, the Hamiltonian for the entire system is assumed
to take the form

H =
∑
i

1

2
mv2i + U({Ri}, Te) +He(Te), (1)

where m is the atomic mass, vi are the atomic veloci-
ties, U({Ri}, Te) is a Te-dependent interatomic potential,
{Ri} are the nuclear degrees of freedom, and He is the
Hamiltonian for the electronic subsystem. We need not
specify the functional form of He but assume its state to
be solely determined by the electronic temperature Te.

By parameterizing the electronic state with just a
temperature, we have implicitly deployed the Born-
Oppenheimer approximation and assumed instantaneous
thermalization of the electrons in response to nuclear mo-
tion, which gives rise to an adiabatic potential energy sur-
face. Since electron-phonon coupling is a perturbative
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correction to this adiabatic approximation, it does not
naturally arise from the Hamiltonian. Instead, electron-
phonon coupling may be incorporated via the Langevin
equation of motion, which treats the nuclei as experienc-
ing fluctuation forces from the electronic thermal reser-
voir,

m
dvi
dt

= − ∂U

∂Ri
− γvi + fi, (2)

where γ is a damping parameter and fi is a delta-
correlated stochastic force that satisfies the conditions
〈fi〉 = 0 and 〈fiα(t)fjβ(t′)〉 = µδijδαβδ(t− t′). It follows
from the fluctuation-dissipation theorem [42–44] that,
when the electrons and nuclei are in thermal equilibrium
with each other, µ = 2γkBTe, where kB is Boltzmann’s
constant. As with previous work [45, 46], we make the
assumption that this relation holds true even out of equi-
librium. The damping parameter γ may then be chosen
such that the electronic and nuclear temperatures con-
verge on a desired timescale after being driven from equi-
librium.

It follows from the Hamiltonian in Eq. (1) that the
time-derivative for the total energy of the system will be

dE

dt
=
∑
i

vi · (−γvi + fi) +

(
∂U

∂Te
+
dEe
dTe

)
dTe
dt

, (3)

where Ee is the energy of the electronic subsystem, and
we have substituted Eq. (2). The rate at which the energy
of the system changes will equal the rate at which energy
is dumped into the system by an external heat source Q,
and so Eq. (3) begets the heat equation

Ce
dTe
dt

= −
∑
i

vi · (−γvi + fi) +Q, (4)

where the first term on the right-hand side is to be inter-
preted as the electron-phonon coupling power, and the
electronic heat capacity is

Ce =
dEe
dTe

+
∂U

∂Te
. (5)

The heat source Q only measures the power of the ab-
sorbed energy over time. It is indifferent to the nature
of the source, whether laser or swift heavy ion, and to
the mechanism of absorption. Note that, to model a spa-
tially inhomogeneous electronic subsystem with thermal
conductivity κ, a diffusion flux ∇·κ∇Te should be added
to Eq. (4).

At this stage, Eqs. (1), (2), (4), and (5) provide a
Te-dependent 2T-MD formalism that conserves energy.
Where it differs from previous applications of 2T-MD,
which fail to conserve energy, is that the heat capac-
ity Ce has an explicit ∂U/∂Te component, making it a
function of both Te and the nuclear configuration {Ri},
rather than a function of Te alone.

As is common practice, we replace the electron-phonon
coupling power in Eq. (4) with its ensemble average,

which can be derived by applying the Furutsu-Novikov
theorem to the term containing the stochastic force [47–
49], resulting in〈

−
∑
i

vi · (−γvi + fi)

〉
=

3γkBN

m
(Tn − Te), (6)

where Tn is the nuclear temperature and N the num-
ber of atoms. Phillips et al. [50] have cautioned against
this substitution since it introduces energy drift into the
system. However, for the large system sizes used in the
present work, we found the drift to be indistinguishable
from that produced by the symplectic integrator. More-
over, using the ensemble average has the advantage that
the heat equation (4) may be numerically integrated more
efficiently with use of Suzuki-Trotter decomposition [51].

Some previous efforts [26, 27, 41, 52] to model silicon
with a two-temperature model have been based on the
framework of van Driel [23] which parameterizes the sys-
tem with the carrier density, in addition to the usual
electronic and nuclear temperatures. The carrier den-
sity evolves according to a separate differential equation
that captures carrier generation, diffusion, and recombi-
nation. This approach has the advantage that the elec-
tronic heat capacity may be expressed as a function of
the carrier density, and the optical properties of the ma-
terial are more straightforwardly accounted for by using
the carrier density to attenuate the radiation intensity as
it passes through the material. However, as previously
noted [30], explicitly including a term for the carrier den-
sity is superfluous since the carrier density has a one-to-
one relationship with the electronic temperature under
(quasi)equilibrium conditions. It follows that any func-
tion of the carrier density may instead be written as a
function of electronic temperature. Moreover, expressing
the electronic heat capacity as a function of the carrier
density fails to give rise to a configuration-dependence,
and so such a model is ill-suited to modelling phase tran-
sitions. In any case, we do not model radiation attenua-
tion in this work and so do not require an explicit carrier
density.

B. On-the-fly energy correction

One of the challenges with deploying the energy-
conserving formalism described above is that it is nec-
essary for the heat capacity Ce to always be positive, as
one would expect on purely physical grounds. Even more
strictly, the heat capacity should not be able to become
arbitrarily close to zero for any configuration or electronic
temperature. It is therefore necessary for the heat capac-
ity to have a finite lower bound ε(Te) that holds for all
nuclear configurations. This gives rise to the following
constraint on the potential U :

min
{Ri}

∂U

∂Te
({Ri}, Te) ≥ ε(Te)−

dEe
dTe

(Te). (7)
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In general, a Te-dependent potential will not sat-
isfy this constraint and so it must be explicitly im-
posed. Typically, this will not be possible through
careful parameterization alone, but will instead demand
changes to the functional form of the potential. To
illustrate the need for such an intervention, consider
a simple Te-dependent pairwise potential of the form
U =

∑
i<j A(Te)φR(rij)− B(Te)φA(rij), where φR (φA)

are repulsive (attractive) functions of the atomic sepa-
rations rij . The Te-dependence of A and B might rea-
sonably exhibit, for some Te, the property dA/dTe = 0
and dB/dTe > 0. In this case, given an arbitrary number
of atoms packed arbitrarily densely, one could make the
per-atom value of ∂U/∂Te arbitrarily negative, and thus
no minimum for ∂U/∂Te would even exist. But this is
not just a hypothetical problem that arises for extreme
configurations. Rather, the derivative ∂U/∂Te may be-
come too negative for entirely plausible configurations,
as will be shown to be the case for the silicon potential
introduced later in this paper.

To understand why this problem should arise at all,
note that interatomic potential functional forms, and
their parameterizations, are generally constructed to re-
produce the potential energy surface of materials near
to crystalline phases. It is not surprising then that they
should behave unphysically for, say, certain highly-dense
amorphous configurations with highly excited electrons.

In the absence of more accurate many-body poten-
tials, we resolve the issue by introducing a general many-
body energy correction W ({Ri}, Te) that is added to the
Hamiltonian of Eq. (1). The correction is general in the
sense that it is evaluated numerically on-the-fly at each
integration time-step and works for any potential U . The
correction takes the form

W ({Ri}, Te) =

∫ Te

0

w(Ce({Ri}, T ′e), ε(T ′e)) dT ′e, (8)

where w is specifically constructed to satisfy

Ce + w(Ce, ε) ≥ ε. (9)

This correction leads to the heat capacity Ce in the
heat equation (4) being replaced with Ce + w which is
now guaranteed to be not less than ε, per Eq. (9). It also
gives rise to auxiliary atomic forces which depend on the
forces from the interatomic potential U ,

− ∂W
∂Rk

= − ∂w

∂Ce

∂U

∂Rk
+

∫ Te

0

∂2w

∂T ′e∂Ce

∂U

∂Rk
dT ′e. (10)

The derivation is provided in Appendix A where it has
been assumed that ∂U/∂Te(Te = 0) ≡ 0.

The precise functional form of w is of little significance,
but it should be twice-differentiable and satisfy

w(Ce ≤ 0, ε) = ε− Ce, (11)

w(Ce ≥ fε, ε) = 0, (12)

−1 ≤ ∂w

∂Ce
(0 < Ce < fε, ε) ≤ 0, (13)

for some constant f in the interval

1 < f ≤ min
Te

1

ε(Te)

dEe
dTe

(Te). (14)

The value of f determines how hard or soft the energy
correction is as Ce approaches the lower bound. In the
limit f → 1+, the corrective energy becomes hard, giving
rise to infinitely large forces. It is bounded from above
to ensure that W = 0 for the isolated system. A suitable
expression for w is provided in Appendix A which has an
f value of 2.

The action of the auxiliary forces in Eq. (10) may
be understood as follows: For a given configuration,
if Te changes such that Ce becomes too close to ε, or
even smaller than ε, then the forces −∂U(Te)/∂Rk are
smoothly switched off and replaced with an average of
forces that would act at lower electronic temperatures in
regions where Ce is above ε. Essentially, the energy land-
scape is perturbed towards its form at lower electronic
temperatures where the potential is better behaved.

To summarize, any Te-dependent potential U may be
safely deployed in an energy-conserving two-temperature
molecular dynamics scheme without further modifica-
tion, so long as the energy correction W described above
is incorporated. And while it is true that this correction
is ad hoc with the purpose of producing more physically
realistic heat capacities, its use can be further justified
with a few observations: Firstly, the heat capacity will
only become too small if the potential energy U decreases
too rapidly. The correction therefore gives rise to more
physically realistic potential energies U + W than pro-
duced by U alone. Secondly, the correction will typically
only be activated under highly nonequilibrium conditions
for which the true structure and dynamics are seldom
known. Thirdly, interatomic potentials are themselves
approximations, and so introducing an approximate cor-
rection is not antithetical to the molecular mechanics en-
terprise. Finally, the alternative approaches to satisfying
Eq. (7) appear to be highly non-trivial, although future
research may reveal better solutions.

It is worth lingering briefly on the implementation de-
tails for this energy correction since it effectively requires
that, at each integration time-step, the energy U and all
of the atomic forces −∂U/∂Rk are known at all electronic
temperatures ranging from 0 K up to the prevailing tem-
perature Te. At first glance, one might expect this to
incur a tremendous computational burden, but there ex-
ist optimizations; in particular, the energy and atomic
forces do need to be evaluated over a discrete set of elec-
tronic temperatures, but this can be done with little ad-
ditional cost if evaluated concurrently such that the Te-
independent parts of the force field are not re-evaluated
for each temperature. The energies and forces may then
be obtained over a continuous temperature range through
cubic spline interpolation. In our particular code imple-
mentation, a small energy drift still exists due to numer-
ical errors, but was found to be on the order of 0.1% of
the energy dumped into the system by the external heat
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source.

III. Te-DEPENDENT SILICON FORCE FIELD

In this section, a new Te-dependent force field for sil-
icon is presented. It is described in enough detail to be
understood, but the complete functional form and pa-
rameterization is provided in Appendix B.

The MOD [53] version of the Tersoff potential [54] for
silicon is well-established and known [55, 56] to reason-
ably reproduce the experimental cohesive energy, crys-
talline and liquid heat capacities, elasticity properties,
latent heat of melting, and melting temperature of the
diamond phase, as well as ab initio defect energies. Its
functional form is

U =
1

2

∑
i 6=j

fc(rij)(Ae
−λ1rij − bijBe−λ2rij ), (15)

where rij is the ij atomic distance and fc is a cutoff func-
tion which smoothly switches off interactions between the
cutoff radii R1 and R2. There is also a bond order bij
which makes U a many-body potential and takes the form

bij = (1 + ζηij)
−δ, (16)

ζij =
∑
k 6=i,j

fc(rik)g(θijk)eα(rij−rik)
β

, (17)

where θijk is the angle between the ij and ik bonds,
and the angle-dependence g(θijk) serves to emulate di-
rectional bonding. All other terms are parameters.

In this work, the same functional form for the ground
state (Te = 0) is adopted. To introduce a Te-dependence
into the potential, the parameters A and B are assumed
to vary with Te and will thus need to be optimized over
a range of different electronic temperatures, while all of
the other parameters are held constant. However, while
scaling A and B will reproduce the energy in the crys-
tal phase, it alone will not reduce the activation barri-
ers between the diamond and amorphous phases, and so
a further modification is required to induce nonthermal
melting.

Observe that the electronic structure in the ground
state of the diamond silicon phase consists of sp3 hy-
bridized orbitals which are responsible for the tetrahedral
bond geometry. When the electrons become excited, this
bond directionality will diminish, thus destabilizing the
crystal structure and inducing the phase transition. To
incorporate the softening of the bond directions into the
potential, the bond-angle dependence g(θ) in Eq. (17) is
substituted with the function

g(θijk)← g(θijk)− Λ(g(θijk)− g0, λ(Te)), (18)

where g0 = g(cos−1(−1/3)) is the value of g for tetra-
hedral geometry, and the Λ function is constructed such
that Λ(|∆g| � λ, λ) = sgn(∆g)λ and Λ(|∆g| � λ, λ) =
∆g, with a smooth variation between these two bounds.

The purpose of this modification is to shift g(θ) closer
to the constant g0 by an amount no greater than λ(Te),
and to do so in a differentiable manner. To clarify, Fig-
ure 1(d) shows a plot of g(θ)− Λ(g(θ)− g0, λ) for λ = 0
(in which case Λ = 0), 0.2, and 0.4. The consequence is
that, as λ increases from 0 to its finite value at higher
electronic temperatures, the angle dependence within the
potential flattens out in the region where g(θ) = g0. This
amounts to a softening of the directionality of the bond-
ing which helps to destabilize the diamond structure and
induce rapid nonthermal melting.

A. Parameter fitting

Following Shokeen et al. [33], the ground state param-
eters are chosen to match those of the MOD potential,
except the cutoff radii are increased to R1 = 3.1 and
R2 = 3.4 Å and the α parameter is adjusted to a value
of 1.90 to improve the melting temperature.

As described in the previous section, the Te-dependent
parameters in our potential are A(Te), B(Te), and λ(Te).
In addition to these, the Langevin damping constant γ
and the lower bound on the heat capacity ε(Te) are also
required. In the diamond phase, where the bonds ex-
hibit perfect tetrahedral geometry, λ is designed to have
no effect on the potential. The parameters A and B may
therefore be optimized for the diamond phase indepen-
dently of λ.

To this end, ab initio methods were used to com-
pute the potential Uab for the diamond phase over the
range 0 ≤ Te ≤ 2.5 eV in increments of 0.05 eV. This
involved two steps: Firstly, for each Te, the energy
Eab({Ri}, Te) was computed for atomic volumes ranging
from 12 to 43 Å3. And secondly, for the same tempera-
ture range, the energy of the isolated system, E0

ab(Te),
where the atoms are effectively separated to infinity,
was computed. The ab initio potential may then be
computed as Uab({Ri}, Te) = Eab({Ri}, Te) − E0

ab(Te),
while the energy of the electronic subsystem is Ee(Te) =
E0

ab(Te)−E0
ab(0). This necessarily fulfils the requirement

that when the system is isolated at Te = 0, both Uab and
Ee will equal zero.

Recall that the potential U has already been chosen
for the ground state. It would be unlikely for this U
to perfectly align with the ab initio potential Uab at
Te = 0. The parameters A and B are therefore instead
fitted such that U({Ri}, Te) reproduces Uab({Ri}, Te) +
U({Ri}, 0) − Uab({Ri}, 0). This way our ground state
potential is preserved while the Te-dependence obtained
from the ab initio calculations is reproduced.

The ab initio calculations were performed using the
Vienna Ab initio Simulation Package (VASP) [57–60].
The diamond crystal was represented with two atoms
per unit cell, with four valence electrons per atom. The
plane wave cutoff energy was 400 eV with 21 × 21 × 21
k-points used for the crystal phase. The isolated sys-
tem was modelled with a single atom in a 9 × 9 × 9 Å
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FIG. 1: (a) The dependence of the A and B force field
parameters on electronic temperature Te. (b) The

interatomic potential U for a range of atomic volumes
in the diamond phase, and for Te = 0, 1.5, and 2 eV.
The lines are the 2T-MD interatomic potential while

the circles are the ab initio calculations. (c) The
evolution of the nuclear temperature Tn in response to a
low-fluence excitation at t = 0. The line is the 2T-MD
calculation, the circles are experimental data points [1].
(d) The modified angle-dependence for λ = 0, 0.2, 0.4,
corresponding to a weakening of bond directionality.
The inset shows the dependence of λ on electronic

temperature.

box and only the Γ-point sampled. An electronic tem-
perature is introduced by treating the electronic states
as distributed according to the Fermi-Dirac distribution
[61]. We used the M06-L [62] exchange-correlation func-
tional which produces a band gap of 1.12 eV [63] in good
agreement with the experimental band gap of 1.11 eV
[64]. By contrast, the GGA-PBE [65] functional pro-
duces a band gap of 0.75 eV, while the hybrid functional
is an order of magnitude slower to execute than M06-L.

The resulting Te-dependence of A and B is shown in
Figure 1(a). At low Te, both parameters are constant,
with a steady increase in B as the temperature increases,
followed by a rapid increase in both A and B at high tem-
peratures. The result is a potential energy surface that
deepens with increasing electronic temperature, with a
minor reduction in the equilibrium atomic volume, as
shown in Figure 1(b). The deepening of the potential is
presumably a result of the electrons becoming less local-
ized, leading to the positively-charged nuclei being ex-
posed to a greater negative charge.

Before optimizing the λ function, it is necessary to
obtain the Langevin damping parameter γ which char-
acterizes the electron-phonon coupling rate. For this we
turn to the experimental data of Harb et al. [1, 2] who

measured the structural response of silicon nanofilms to
ultrafast photoexcitations. The relevant details of their
experiment along with our approach to modelling it can
be found in Appendix C. In one particular experiment,
the nuclear temperature was recorded with femtosecond
resolution following a laser irradiation event with an ab-
sorbed fluence of Φ = 5.6 mJ/cm2. This fluence is be-
low the damage threshold and excites the lattice ther-
mally, and so the parameter λ may be fixed to zero at
this stage. The damping parameter γ could then be opti-
mized such that the nuclear temperature evolves over the
same timescale as seen experimentally. Excellent agree-
ment was achieved with a value of γ = 1 g/mol/ps, as
shown in Figure 1(c).

The next parameter to optimize is the function λ(Te),
which is responsible for inducing rapid nonthermal melt-
ing. There is currently not enough information available
to optimize λ for each individual temperature. Instead,
it is constructed somewhat arbitrarily to satisfy certain
constraints. In the ground state λ is necessarily 0, but
to establish its value in excited states we return to the
experimental data of Harb et al. (cf. Appendix C). Ex-
perimentally, a damage threshold was observed at an ab-
sorbed fluence of Φ = 6 mJ/cm2, below which the Bragg
peaks decay in accordance with the Debye-Waller factor.
One might therefore predict that the shape of the po-
tential begins to change around the damage threshold.
Based on the value of γ previously obtained, the dam-
age threshold in our model was found to correspond to a
peak electronic temperature of 0.45 eV. It is at this tem-
perature, therefore, that λ will begin to increase from
0. Another data point is that above an absorbed flu-
ence of approximately Φ = 30 mJ/cm2 the crystal melts
nonthermally in under a picosecond. In our model it is
found that λ ≥ 0.2 is sufficient to induce rapid melting,
and that the reported fluence corresponds to a peak elec-
tronic temperature of 1 eV. In summary, the parameter
λ should satisfy λ(Te ≤ 0.45 eV) = 0 and pass through
λ(1 eV) = 0.2. With use of a polynomial, a smooth curve
satisfying these conditions was constructed, and it can be
seen in the inset of Figure 1(d).

The final function to be optimized is ε(Te) which im-
poses a lower bound on the electronic heat capacities.
Based on the shape of the w function that we employed,
ε must satisfy the constraint ε(Te) ≤ 1

2
dEe
dTe

(Te), per

Eq. (14). It should also be small enough that Ce ≥ 2ε
(and thus W = 0 per Eq. (12)) for the diamond crystal
structures for which U was optimized, since U was tacitly
optimized under the assumption that W = 0. To sat-
isfy these constraints and estimate a lower bound on the
heat capacity, the minimum value for Ce was computed
for each temperature from the ab initio data ∂Eab/∂Te
over the range of atomic volumes sampled, and the re-
sults were halved. It was found that ε(Te) = 1

7
dEe
dTe

(Te)
provided a reasonable estimate while satisfying the con-
straints specified.
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FIG. 2: (a) Several normalized Bragg peaks decaying in
response to a low-fluence laser pulse at t = 0. The lines

are predicted from 2T-MD while the circles are
experimental measurements [1]. From top to bottom,
the peaks are: (111), (220), (311), (331), (531), (620).

(b) The normalized response of the (220) Bragg peak to
a high-fluence laser pulse that nonthermally melts the

crystal. The ab initio data (dashed line) was taken from
[13] and the experimental data (circles) from [2].

IV. DISCUSSION

Having presented a new Te-dependent force field for
silicon (Section III), and a formalism for conserving en-
ergy (Section II), this section answers the following ques-
tions: How does the predicted structural evolution of ir-
radiated silicon compare to experiment? How does the
system evolve during a phase transition? How is energy
conserved and how do the results compare to analogous
simulations that fail to conserve energy? And what effect
does the on-the-fly energy correction have on the dynam-
ics of the system?

The structural evolution of silicon in response to elec-
tronic excitation displays two distinct domains: ther-
mal agitation at low excitations, and rapid melting at
high excitations that sufficiently modify the potential en-
ergy surface. In the experiments of Harb et al. (cf. Ap-
pendix C) the Bragg peak response was measured for
silicon nanofilms irradiated with an ultrafast laser pulse
across both the low and high fluence domains. Fig-
ure 2(a) shows the evolution of several normalized Bragg
peaks for a low absorbed fluence of Φ = 5.6 mJ/cm2,
as predicted by our model (lines) along with the corre-
sponding experimental measurements (circles). There is
generally very good agreement.

The experiments also determined that above a fluence
of approximately 30 mJ/cm2, the crystal structure melts
rapidly. Our force field was constructed specifically to
satisfy this condition, and the evolution of the (220)
peak at a fluence of 65 mJ/cm2 is shown (solid line) in
Figure 2(b) along with the experimental measurements
(circle). Also shown is the (220) peak decay computed
with real-time time-dependent density functional theory
by Lian et al. [13] for the same level of excitation. The
peak rapidly decays within a picosecond in all cases, al-

FIG. 3: The evolution of the centrosymmetry order
parameter in response to an ultrafast laser pulse at
t = 0 for a range of absorbed fluences for simulations

that (a) conserve energy, and (b) do not conserve
energy. A larger value corresponds to more order

(centrosymmetry), but note the inverted axis.

though the simulations both predict a quicker collapse of
the structure than the experimental data would imply.
However, in the experiment, the optical pump and the
probe have overlapping distributions such that the probe
is really measuring the average decay over a range of flu-
ences, with the reported fluence being the average. This
could explain the observed discrepancy between exper-
iment and simulation, and would be supported by ear-
lier experiments that found the crystal structure to melt
within only 150 fs [5].

To see how the system evolves over time for a broad
range of fluences, simulations of the ultrafast irradia-
tion of nanofilms (as described in Appendix C) were per-
formed for absorbed fluences 0 ≤ Φ ≤ 60 mJ/cm2 and
over a time interval −1 ≤ t ≤ 10 ps, where the excita-
tion event occurs at t = 0. The degree of order in the
atomic structure over this (Φ, t)-space can be quantified
with the centrosymmetry order parameter [26] as shown

FIG. 4: The root-mean-square deviation of the atomic
positions in response to a laser pulse at t = 0 with the

absorbed fluence labelled.
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FIG. 5: (a)-(d) The time evolution of the four Hamiltonian components in response to an ultrafast laser pulse at
t = 0 for a range of absorbed fluences Φ, as well as the (e) electronic temperature and (f) nuclear temperature. (g)

and (h) are the same as (e) and (f), respectively, but for simulations that do not conserve energy.

in Figure 3(a). When modelling phase transitions with
a femtosecond temporal resolution, it is not practical to
define a hard threshold that demarcates the crystalline
phase from the melt. Nevertheless, a qualitative change
in the order parameter can be seen to occur in the vicin-
ity of ∼ 30 mJ/cm2, indicative of a phase transition, as
expected. Further information about the melting pro-
cess can be gleaned from the root-mean-square deviation
(RMSD) of the atomic positions over time, shown in Fig-
ure 4. For the fluences that do not give rise to nonther-
mal melting (Φ < 30 mJ/cm2), the RMSD is confined
to approximately 0.35 Å of deviation, which is the same
bound estimated from nonadiabatic ab initio simulation
[13]. The nonlinearity of the RMSD in the initial ∼ 150
fs after the excitation indicates that a small activation
barrier to melting remains, in general agreement with
Refs [2, 13]. The steady and rapid rise of the RMSD
after the structure has melted is indicative of a liquid-
like phase rather than an amorphous solid, as previously
established to be true [2, 13, 14].

Having deployed an energy-conserving 2T-MD scheme,
it is insightful to see how the individual components of
the Hamiltonian evolve in response to an electronic exci-
tation. Figure 5 shows this for (a) the electronic energy
Ee, (b) the nuclear kinetic energy, (c) the interatomic
potential energy U , and (d) the on-the-fly correction W .
Also shown is (e) the electronic temperature Te and (f)
the nuclear temperature Tn. The initial excitation pro-
duces a jump in the electronic energy Ee and tempera-

ture Te, as well as a drop in the potential energy U due
to its Te-dependence. This excitation is attenuated by
the electron-phonon coupling which leads to an increase
in the nuclear kinetic energy. As previously described,
for the fluence range Φ & 30 mJ/cm2, the change in the
potential energy surface leads to the formation of a disor-
dered liquid-like phase. This disordering of the configu-
ration results in a significant decline in the heat capacity
Ce, as evidenced by the more rapid decline in Ee than
Te. This means that, while the electronic temperature re-
mains high, the energy content stored in the electrons has
greatly diminished due to the disordering of the atomic
structure. The electronic energy is therefore depleted
much more rapidly by its exchange with the phonons,
leading to a rapid drop in Te at high fluences and an
equilibration with the nuclei within several picoseconds.
Note that an initial increase of the fluence across the
∼ 30 mJ/cm2 threshold causes a decrease in the nuclear
temperature by up to 400 K. This non-monotonicity of
Tn with respect to Φ is a result of the structure melting
to form a higher-energy configuration which necessarily
leads to a decline in the nuclear velocities. The energy
component W will be discussed further below.

It is interesting to compare the evolution of the elec-
tronic and nuclear temperatures in our model to those
produced using the same method as previous papers
which fail to conserve energy. This non-conserving ap-
proach involves precomputing the heat capacity Ce(Te)
for a zero-temperature crystal phase, in our case the di-
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amond phase, and also neglects the W correction. The
resulting temperature evolution is shown in Figures 5(g)
and (h) and should be compared with the respective plots
in Figures 5(e) and (f) for which the energy is correctly
conserved. Since the heat capacity is not a function of
the configuration in the non-conserving approach, it is
unperturbed by the phase transition, displaying a steady
increase in Te with increasing fluence, and a correspond-
ingly large increase in the nuclear temperature. Even af-
ter 10 ps the two subsystems have yet to equilibrate, and
yet the nuclear temperature has reached twice its value in
the conserved system. Taking care to correctly conserve
the energy, therefore, has significant consequence for the
evolution of the system.

In Section IIB, a many-body energy correction W was
introduced to the Hamiltonian to compensate for the fact
that certain configurations produce, at certain electronic
temperatures, heat capacities Ce that are unphysically
small or even negative. This correction is indeed acti-
vated for our potential, as shown in Figure 5(d). Specif-
ically, it is activated when the structure is highly dis-
ordered and the electronic temperature sufficiently el-
evated. The magnitude of W is visibly small, on the
order of one-tenth of the energy dumped into the sys-
tem by the laser, but it nevertheless has some observable
dynamical effects. Figure 3 shows the evolution of the
centrosymmetry order parameter for (a) when energy is
conserved and the on-the-fly energy correction enabled,
and (b) when the energy is not conserved and the cor-
rection disabled. In the latter case, the order param-
eter initially spikes as the large Te flattens the poten-
tial energy surface, permitting the exploration of highly
non-centrosymmetric configurations. As the electronic
temperature begins to drop, the atomic forces are par-
tially restored, driving the configuration back towards
increased centrosymmetry. Thereafter, the nuclei heat
up through electron-phonon coupling, providing enough
energy for the structure to access regions of greater disor-
der (less centrosymmetry). This initial spike is not seen
when the on-the-fly correction is enabled, because W in-
creases the energy cost of such highly disordered (highly
non-centrosymmetric) structures, making them inacces-
sible at the prevailing nuclear temperatures.

The activation of W for these highly non-
centrosymmetric structures indicates that the potential
energy U declines too rapidly with respect to Te for those
particular structures. The fact that the functional form
and parameterization of our interatomic potential should
exhibit an unphysical drop in U for these particular
structures is not obvious a priori, and demonstrates the
expediency of an on-the-fly correction.

V. CONCLUSIONS

When radiation is delivered on a femtosecond
timescale, it can drive the electrons and nuclei out of
equilibrium, producing hot electrons and cool nuclei. The

hot electrons modify the potential energy surface and can
induce rapid phase transitions. Such electronic effects
can be incorporated into two-temperature molecular sim-
ulation with the use of electronic-temperature-dependent
force fields. However, previous attempts to deploy such
force fields have failed to conserve energy.

In this paper, a rigorous formulation for two-
temperature molecular dynamics with electronic-
temperature-dependent force fields has been presented,
revealing that the interatomic potential energy forms
a component of the electronic heat capacity, and that
evaluating the heat capacity as a function of the atomic
configuration leads to conserved energy. It transpires,
however, that an energy-conserving scheme imposes a
constraint on the interatomic potential which, in general,
may not be satisfied. To resolve this, we advocate for
the use of an on-the-fly correction to the Hamiltonian
that introduces an energy penalty where necessary so as
to retain a physical electronic heat capacity.

Within this energy-conserving framework, a new semi-
empirical force field has been derived for silicon. The
force field was optimized to reproduce ab initio data in
the diamond phase, and to melt to form a liquid-like
phase at the same excitation observed experimentally.
The melting is induced by relaxing the directionality of
the bonding, allowing the centrosymmetry of the struc-
ture to collapse.

The new force field will enable, for the first time, the
accurate simulation of nonthermal processes in strongly-
driven silicon systems on large length and time scales.
More generally, the new formalism developed in this pa-
per lays a foundation for the study of ultrafast dynamics
in response to extreme irradiation conditions over large
length and time scales.
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Appendix A: On-the-fly energy correction:
functional form and force derivation

In this work, the Hamiltonian contains a many-body
energy correction W which is expressed in terms of its
Te-derivative w. As described in Section II B, the precise
functional form of w is of little significance, but it must
be twice-differentiable and satisfy the conditions set out
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in Eqs. (11)-(13). In this work we employ the following function:

w(Ce, ε > 0) =


ε− Ce Ce ≤ 0

ε− 9
8
ε
π sin

(
π
2
Ce
ε

)
+ 1

8
ε
3π sin

(
3π
2
Ce
ε

)
− 1

2Ce 0 < Ce < 2ε

0 Ce ≥ 2ε

, (A1)

which has a corresponding f value of 2. The auxiliary forces that arise from the energy correc-
tion W are given in Eq. (10). Here we provide a deriva-
tion that follows on from Eq. (8):

− ∂W
∂Rk

({Ri}, Te) = −
∫ Te

0

∂w

∂Rk
(Ce({Ri}, T ′e), ε(T ′e)) dT ′e (A2)

= −
∫ Te

0

∂w

∂Ce
(Ce({Ri}, T ′e), ε(T ′e))

∂2U

∂Rk∂T ′e
({Ri}, T ′e) dT ′e (A3)

= − ∂w

∂Ce
(Ce({Ri}, Te), ε(Te))

∂U

∂Rk
({Ri}, Te)

+
∂w

∂Ce
(Ce({Ri}, 0), ε(0))

∂U

∂Rk
({Ri}, 0) (A4)

+

∫ Te

0

∂2w

∂T ′e∂Ce
(Ce({Ri}, T ′e), ε(T ′e))

∂U

∂Rk
({Ri}, T ′e) dT ′e

where partial integration has been applied to Eq. (A3) to
obtain Eq. (A4). If we assume ∂U/∂Te(Te = 0) ≡ 0 then
Ce({Ri}, 0) = dEe/dTe(0) which is greater than or equal
to fε(0) per Eq. (14). It then follows from Eq. (12) and
the differentiability of w that ∂w/∂Ce(Te = 0) ≡ 0 and
thus the second term in Eq. (A4) is zero, giving rise to
the expression for the auxiliary forces given in Eq. (10).

Appendix B: Te-dependent silicon force field in full

Here we assemble the Te-dependent silicon force field
presented in this paper, including all of the functions and
parameters, except for the functions A(Te), B(Te), and
λ(Te), which are provided as tabulations in the Supple-
mental Material[66].

The equations that collectively define the Te-
dependent interatomic potential U are as follows:
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U({Ri}, Te) =
1

2

∑
i6=j

fc(rij)(A(Te)e
−λ1rij − bij({Ri}, Te)B(Te)e

−λ2rij ), (B1)

bij({Ri}, Te) = (1 + ζij({Ri}, Te)η)−δ, (B2)

ζij({Ri}, Te) =
∑
k 6=i,j

fc(rik) [g(θijk)− Λ(g(θijk)− g0, λ(Te))] e
α(rij−rik)β , (B3)

g0 = g(cos−1(−1/3)), (B4)

g(θ) = c1 +
c2(h− cos θ)2

c3 + (h− cos θ)2

(
1 + c4e

−c5(h−cos θ)2
)
, (B5)

Λ(x, y ≥ 0) = sgn(x)


|x| |x| ≤ y/

√
2√

y2 − (y
√

2− |x|)2 y/
√

2 < |x| < y
√

2

y |x| ≥ y
√

2

, (B6)

fc(r) =


1 r ≤ R1

1
2 + 9

16 cos
(
π r−R1

R2−R1

)
− 1

16 cos
(

3π r−R1

R2−R1

)
R1 < r < R2

0 r ≥ R2

. (B7)

A general description of this force field can be found
in Section III. The value of each parameter is provided
in Table I, where the values were taken from [53] except
for R1, R2, and α which were taken from [33].

Also required to apply our 2T-MD model is the
Langevin damping parameter γ = 1 g/mol/ps, which
determines the electron-phonon coupling rate; a lower
bound on the electronic heat capacity for which we use
ε(Te) = 1

7
dEe
dTe

(Te); and the following function for the elec-

tronic energy Ee(Te) was obtained by fitting to the ab
initio data:

Ee(Te) = (10−3)Te+(1.05125)T 2
e +(0.0770416)T 4

e (B8)

where Te is assumed to be in units of eV, and Ee has
units of eV/atom.

Appendix C: Simulation of laser-irradiated nanofilms

The simulations in this paper are intended to re-
produce the system studied experimentally by Harb et
al. [1, 2] which involved 50 nm thick Si nanofilms irradi-
ated with a single ultrafast optical pulse. The pulse had
a spot size of 230 µm and a temporal full width at half
maximum (FWHM) of 150 fs.

We model this setup using two-temperature molecular
dynamics, the theoretical details of which are presented
in Section IIA. Our simulation cell consists of a 50×50×
92 silicon lattice composed of 1, 840, 000 atoms, with a
lattice parameter of 5.431 Å. The cell is periodic only in
the xy-plane so as to represent a 50 nm thick nanofilm
that extends infinitely laterally. The nuclei and electrons
are equilibrated at 300 K, after which the configuration
is integrated in the microcanonical ensemble.

Parameter Value

λ1 (Å−1) 3.2300135
λ2 (Å−1) 1.3457970

η 1
δ 0.53298909
α 1.9
β 1
c1 0.20173476
c2 730418.72
c3 1000000
c4 1
c5 26
h −0.365

R1 (Å) 3.1
R2 (Å) 3.4

TABLE I: The force field parameters employed in this
work, taken from Refs [33, 53]. The parameters A, B
and λ are provided as Te-dependent tabulations in the

Supplemental Material[66].

The laser pulse is delivered with a Gaussian tempo-
ral profile and is assumed to excite the crystal uniformly.
This is justified by the following observations: The exper-
imental probe observes a smaller spot size than the pulse,
and on the picosecond timescale, there will be negligible
lateral thermal diffusion over the ∼ 102 µm length scale.
Regarding the deposition as a function of depth, pre-
vious modelling [26] of silicon nanofilm irradiation that
accounts for the temperature-dependence of the optical
properties indicates a near-uniform excitation within the
first 50 nm. In our model, the energy is delivered to
the electrons via the heat source Q in the electronic heat
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equation (4),

Q(t) =
Φ

tph

√
4 log 2

π
exp(−4 log 2(t− t0)2/t2p), (C1)

where Φ is the absorbed fluence, h is the thickness of
the nanofilm, t0 is the time at which the pulse is at a
maximum, and tp is the FWHM.

The method, including the Te-dependent force field,
has been implemented into an in-house LAMMPS [67]
package which is available upon request.
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