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Abstract

Data envelopment analysis is a linear programming-based operations research technique for per-

formance measurement of decision-making units. In this paper, we investigate data envelopment

analysis from a multi-objective point of view to compute both the efficient extreme points and

efficient facets of the technology set simultaneously. We introduce a dual multi-objective linear

programming formulation of data envelopment analysis in terms of input and output prices and

propose a procedure based on objective space algorithms for multi-objective linear programmes

to compute the efficient frontier. We show that using our algorithm, the efficient extreme points

and facets of the technology set can be computed without solving any optimisation problems. We

conduct computational experiments to demonstrate that the algorithm can compute the efficient

frontier within seconds to a few minutes of computation time for real world data envelopment

analysis instances. For large scale artificial data sets our algorithm is faster than computing the

efficiency scores of all decision making units via linear programming.

Keywords: Data envelopment analysis, efficient frontier, linear programming, multi-objective

optimisation, duality, objective space algorithm

1. Introduction

Data envelopment analysis (DEA), which assesses the efficiency of a group of comparable

decision-making units (DMUs) with common inputs and outputs was originally introduced by

Charnes et al. (1978) for a constant returns to scale technology. Banker et al. (1984) extended

the Charnes et al. formulation to assess the efficiency of a DMU for the variable returns to scale

case. Other formulations are possible, see Cooper et al. (2007) for more details on DEA models

and their extensions. These DEA models require the solution of a linear programme (LP) for each
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DMU to determine its efficiency score.

Dulá (2002) provides an overview of computational aspects of DEA, including preprocessing,

standard procedures and enhancements. He shows that the number of DMUs, the number of inputs

and outputs as well as the proportion of efficient DMUs are the determinants of the computational

effort to run DEA on a data set. The number and size of LPs that have to be solved clearly

grow as the number of DMUs, inputs, and outputs grow. The proportion of efficient DMUs also

affects computation time in enhanced implementations of the standard approach (Dulá 2002).

This has been confirmed by Dulá (2008), who presents a comprehensive computational study

involving DEA problems with up to 100,000 DMUs. Dulá (2008) explores the impact of different

LP algorithms including interior point methods as well as acceleration techniques and DEA-specific

enhancements. Dulá (2011) presents a two-phase algorithm for DEA, which first identifies the

extreme efficient DMUs and then scores the remaining ones. The algorithm is tested on large data

sets, similar to those used in Dulá (2008). Furthermore, Bougnol et al. (2012) propose the use of

interior point algorithms specifically to obtain non-zero multiplier weights.

In this paper, we are interested in the computation of the efficient frontier of the DEA technol-

ogy set, introducing an algorithm to compute both the extreme points and efficient facets. Because

the DEA technology set is a polyhedron, it can be described internally by means of its extreme

points and extreme rays, or externally, by means of its facets. Switching from one description to

the other is a problem studied in computational geometry. It is combinatorial in nature, hence

algorithms to solve it have exponential running time in the worst case. Nevertheless, the com-

putation of the efficient facets of a technology set is of interest in DEA. This is because, given

the facets of the technology set, the computation of many other quantities of interest is straight-

forward and possible in closed form, see e.g. Olesen and Petersen (2003). Moreover, in research

investigating the existence of well defined efficiency measures based on closest projections to the

efficient frontier, Aparicio and Pastor (2013, 2014) work with efficient facets to provide answers.

Several strategies to obtain facets of the technology set associated with efficient DMUs have

been proposed. Yu, Wei, Brockett and Zhou (1996) present an enumerative tree search algorithm

that identifies those subsets of DMUs, which are on the same facet. The algorithm solves LPs

related to subsets of DMUs to check whether the subsets define efficient facets. Olesen and Petersen

(2003) propose two methods. In the first one, they first identify the extreme efficient DMUs by

solving LPs. Then mixed integer LPs are solved for identification of all facets containing each of

those DMUs. The second approach is convex hull generation. Briec and Leleu (2003) also use

convex hull algorithms. Jahanshahloo et al. (2005) present an approach that repeatedly solves a

0-1 programme to find the efficient facets of the technology set. Jahanshahloo et al. (2007) offer an

enumerative method that first finds all efficient DMUs then identifies those that share the same

facet and finally constructs that facet. Davtalab-Olyaie et al. (2014) first identify the extreme
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efficient DMUs and then perform a procedure that requires the repeated solution of mixed integer

programmes to identify the efficient facets. Jahanshahloo et al. (2010) propose an algorithm that

finds weakly efficient facets of the technology set. In the same vein, Davtalab-Olyaie et al. (2015)

propose an algorithm to find weakly efficient facets. While all of these papers present numerical

examples, no detailed numerical studies are presented in any of them. We also note that all of these

approaches first compute efficient DMUs and then explore either subsets of them or solve mixed

integer linear programmes to identify sets of DMUs that define efficient facets of the technology

set.

Our approach for identifying efficient facets of the technology set is to consider DEA from the

point of view of multi-objective optimisation, in particular multi-objective linear programming

(MOLP). Relationships between DEA and MOLP have been explored in the past. Stewart (1996)

demonstrates a link between ratio efficiency in DEA and a distance measure in input-output space

based on a linear value function. Joro et al. (1998) show that structurally the DEA formulation

to identify efficient DMUs is quite similar to MOLP models based on the reference point or the

reference direction approach to generate efficient solutions. Yun et al. (2001) combine generalised

DEA and genetic algorithms for (approximately) generating efficient frontiers in multi-objective

optimisation problems, while Yougbaré and Teghem (2007) establish relationships between the

notions of DEA efficiency and Pareto optimal solutions in multi-objective optimisation problems.

Most relevant for our research is the work of Charnes et al. (1985), Yu, Wei and Brockett (1996)

and Hosseinzadeh Lotfi et al. (2008), who propose a formulation of DEA as an MOLP, which we

adopt.

An MOLP is an optimisation problem with multiple, conflicting, linear objectives, linear con-

straints, and continuous variables. The area of MOLP has attracted the attention of researchers

since the 1960s, and readers are referred to Ehrgott (2005) and Steuer (1985) for introductions to

multi-objective optimisation in general and MOLP in particular. These works refer to extensions

of the simplex method for solving MOLPs. For this paper, however, a more recent category of

algorithms is of interest. They work in objective space (the space of objective function vectors)

of the MOLP, rather than in the space of feasible solutions, as simplex algorithms do. The outer

approximation algorithm of Benson (1998) is one of these algorithms which finds all (weakly)

nondominated extreme points and facets of the feasible set in the objective space of the MOLP.

In this paper, we will adapt a dual version of that algorithm originally described in Ehrgott et al.

(2012) and further developed by Hamel et al. (2014).

Based on the MOLP formulation of Yu, Wei and Brockett (1996), we derive a novel dual

MOLP formulation of DEA in the input-output price space. We propose a specialised variant

of the dual outer approximation algorithm for DEA problems. This algorithm finds all efficient

extreme points and all hyperplanes defining the efficient frontier of the technology set. In other
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words, our algorithm computes simultaneously both an inner (by means of extreme points) as well

as an outer (by means of facets) description of the technology set. We show that the algorithm does

not require to solve any LPs (or mixed integer programmes as is commonly done by researchers

aiming to describe the efficient frontier of the technology set, as discussed above). Its running

time is therefore mainly affected by the number and percentage of efficient DMUs. This feature

distinguishes it from existing algorithms used to compute the facets of the technology set. In

particular, our algorithm can determine the efficient facets of the technology set for many real-

world DEA instances in reasonable time and is very fast on randomly generated data sets with

few inputs and outputs but many DMUs in which the proportion of efficient DMUs is small.

The paper is organised as follows. In Section 2 for the convenience of the reader, we provide

the relevant background on DEA. Section 3 introduces a novel dual MOLP formulation of DEA.

In Section 4 we derive our algorithm for solving the MOLP formulation of DEA and prove our

main result about the algorithm, namely that it does not require the solution of any optimisation

problems. Throughout this section we use a numerical example to demonstrate the steps of

the algorithm. In Section 5, we present computational results comparing the time required by

the standard DEA approach of solving one LP per DMU, Benson’s algorithm to compute the

efficient frontier and our new algorithm using publicly available real-world data as well as large-

scale artificial data. Our results demonstrate rather strikingly that the new algorithm is very fast

except for large scale artifificial data with a large number of efficient DMUs.

2. Preliminaries

Throughout the paper, we use the following notation for the componentwise order of vectors

in Rp. Let η1,η2 ∈ Rd for some d > 1. Then

η1 5 η2 if and only if η1
k 5 η2

k for k = 1, . . . , d,

η1 ≤ η2 if and only if η1
k 5 η2

k for k = 1, . . . , d and η1 6= η2,

η1 < η2 if and only if η1
k < η2

k for k = 1, . . . , d.

The nonnegative orthant of Rd is denoted Rd=.

2.1. Data Envelopment Analysis

In this section, we present some basic concepts in DEA that are used throughout this article.

For a more complete discussion, readers can refer to Cooper et al. (2007) and Cook and Seiford

(2009).

We assume that there are n DMUs. Each DMU j, j ∈ {1, . . . , n}, is associated with a vector

(xj ,yj), where xj = (xj1, . . . , x
j
m) = 0 is a vector of m observed inputs and yj = (yj1, . . . , y

j
s) = 0
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is a vector of s observed outputs. Let

Γ := {(x1,y1), . . . , (xn,yn)}

be the set of input-output vectors of all DMUs.

Banker et al. (1984) define the variable returns to scale (VRS) technology set as

TΛ =

(x,y) ∈ Rm × Rs : x =
n∑
j=1

λjx
j ,y 5

n∑
j=1

λjy
j ,λ ∈ Λ

 ,

where Λ := {λ ∈ Rn= :
∑n
j=1 λj = 1}. The efficiency score, θ∗o , of decision making unit ‘o’ operating

under VRS can be evaluated by the input oriented envelopment form of the BCC model of DEA,

introduced by Banker et al. (1984), as follows:

θ∗o = min
λ,θ

θ, (1)

s.t.
n∑
j=1

λjx
j
i 5 θxoi for i = 1, . . . ,m,

n∑
j=1

λjy
j
r = yor for r = 1, . . . , s,

λ ∈ Λ.

Model (2), the dual to model (1), is known as the input oriented multiplier form of the VRS

model of DEA.

θ∗o = max
ν,µ,µ0

s∑
r=1

µry
o
r + µ0, (2)

s.t. −
m∑
i=1

νix
j
i +

s∑
r=1

µry
j
r + µ0 5 0 for j = 1, . . . , n,

m∑
i=1

νix
o
i = 1,

ν,µ = 0,

In (2), µ0 is the unconstrained dual variable to the equality constraint
∑n
j=1 λj = 1 of the

condition λ ∈ Λ in (1). In a similar fashion, output oriented envelopment and multiplier forms of

the BCC model of DEA can be formulated.

DMU o is called weakly DEA efficient if θ∗o is equal to 1. It is called DEA efficient if and only

if θ∗o = 1 and all constraints are binding at all optimal solutions of problem (1). A DMU that is

not weakly DEA efficient is called DEA inefficient. We also introduce formally the definition of

Pareto-Koopmans efficiency (or full efficiency) from the DEA literature, see Cooper et al. (2007).

Definition 1 (Pareto-Koopmans Efficiency). A DMU o is Pareto-Koopmans efficient if and

only if there is no input-output vector (x,y) ∈ TΛ such that x 5 xo and y = yo and (x,y) 6=

(xo,yo).
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It is well known that Pareto-Koopmans efficiency is equivalent to DEA efficiency, for more

information and details see Cooper et al. (2007). With this equivalence, a link between DEA and

MOLP can be established, as we shall see in Section 2.2 below Remark 1. In this paper, we apply

the concepts of DEA efficiency and Pareto-Koopmans efficiency to all input-output vectors in TΛ

that either correspond to an existing DMU or to any convex combination of the existing DMUs.

The input-output vectors (xj ,yj) of (weakly) DEA efficient DMUs are located on the boundary

of TΛ, whereas the input-output vectors of DEA inefficient DMUs are interior points of TΛ. The

set of all efficient input-output vectors of TΛ is called the efficient frontier of the technology

set. Moreover, since by definition TΛ is convex and any input-output vector in TΛ that does not

correspond to an existing DMU is constructed as a convex combination of some existing DMUs,

it is clear that the (Pareto-Koopmans) efficient vertices of TΛ are the input-output vectors of

existing DMUs. Since this observation will be fundamental for our algorithm in Section 4 below,

we explicitly state it as Remark 1.

Remark 1. It follows from the definition of TΛ that every efficient vertex of TΛ is the input-output

vector (xj ,yj) of an efficient DMU.

2.2. DEA and MOLP

By Definition 1, a DMU is efficient if and only if, within TΛ it is not possible to increase any

of its outputs without increasing some of its inputs (or decreasing some other output), or vice

versa, if it is not possible to decrease any of its inputs without decreasing some of its outputs (or

increasing some other input). In fact, it is possible to formulate DEA simultaneously for all DMUs

as an MOLP, as shown by Yu, Wei and Brockett (1996) and Hosseinzadeh Lotfi et al. (2008), who

draw on the additive DEA model of Charnes et al. (1985) to identify Pareto-Koopmans efficient

points in DEA. The goal of this MOLP is to identify input-output vectors that minimise the input

component x while maximising the output component y, such that (x,y) ∈ TΛ. Hence the MOLP

formulation of a variable returns to scale DEA model is

min
x,y,λ

(x1, . . . , xm,−y1, . . . ,−ys)>, (3)

s.t. −
n∑
j=1

λjx
j + x = 0,

n∑
j=1

λjy
j − y = 0,

n∑
j=1

λj = 1,

λ = 0.

Using Ir×r to denote the identity matrix of size r × r and 0r×c respectively 1r×c to denote

matrices with all zero respectively one entries of size r× c, we define matrices X = [x1, . . . ,xn] ∈
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Rm×n and Y = [y1, . . . ,yn] ∈ Rs×n for vectors (xj ,yj) ∈ Γ and construct matrices C, A and

vector b as in (4), i.e.,

C =

Im×m 0m×s 0m×n

0s×m −Is×s 0s×n

 , A =



Im×m 0m×s −X

0s×m −Is×s Y

01×m 01×s 11×n

01×m 01×s −11×n

0n×m 0n×s In×n


, and b =


0(m+s)×1

1

−1

0n×1

 . (4)

Denoting ξ = (x>,y>,λ>)> and defining p = m+ s and q = m+ s+ n+ 2, this choice of C,

A, and b allows problem (3) to be expressed as a standard MOLP (5):

min{Cξ : ξ ∈ X}. (5)

Here, the set of feasible solutions of problem (5) is a is the polyhedron X := {ξ :∈ Rq, Aξ = b}.

Specifically, C and A are p × (m + s + n) and q × (m + s + n) matrices, respectively, and b is a

vector in Rq. The image of the feasible set X under the objective function mapping C is denoted

by Y := {η = Cξ : ξ ∈ X}, a polyhedron in Rp.

Definition 2. 1. A feasible solution ξ̂ ∈ X is called (weakly) efficient if there is no other

feasible solution ξ ∈ X such that Cξ(<) ≤ Cξ̂. (XwE)XE denotes the set of all (weakly)

efficient solutions.

2. A point η̂ ∈ Y is called (weakly) nondominated if there is some ξ ∈ X(w)E such that η̂ = Cξ.

Thus, the (weakly) nondominated set Y(w)N is the image of the (weakly) efficient set X(w)E.

The goal of MOLP (5) is to find all (weakly) nondominated points of Y and for each η ∈ Y(w)N

one ξ ∈ X(w)E such that Cξ = η. There are several methods in the MOLP literature that compute

nondominated points and efficient solutions of an MOLP problem, see Wiecek et al. (2016) and

references therein. Benson’s outer approximation algorithm (Benson 1998) is a procedure that

finds all (weakly) nondominated points of the feasible set Y in the objective space of an MOLP.

The most recent version of that algorithm is described in Hamel et al. (2014) and can obviously

be applied to the MOLP formulation of DEA in (3).

By Theorem 1, each (weakly) nondominated point of the outcome set Y = CX of problem (3)

corresponds to a (weakly) DEA efficient input-output vector in TΛ.

Theorem 1 (Yu, Wei and Brockett (1996)). Each (weakly) efficient solution of (3) corre-

sponds to a (weakly) DEA efficient input-output vector and vice versa.

7



3. The Dual DEA Problem

In this section, we derive a new dual MOLP formulation of DEA and then show the relationship

between the primal and the dual MOLP. Furthermore, we derive an algorithm to compute the

efficient frontier of Tλ.

Henceforth we refer to (5) as the primal problem. According to the geometric duality theory

developed by Heyde and Löhne (2008), there is an associated dual problem, which consists in the

maximisation of a linear function over the dual feasible set

U := {(π,ω) ∈ Rq × Rp : A>π = C>ω, e>ω = 1, (π,ω) = 0}.

The linear objective function of the dual problem is defined by matrix

D :=

0p−1×q Ip−1×p−1 0p−1×1

b> 01×q−1 0

 ,
which maps U to V := DU ⊆ Rp, a polyhedron in Rp. Formally, the dual problem can now be

stated as
K

max{D(π,ω) : (π,ω) ∈ U}, (6)

where we have to define the meaning of the maximisation operator
K

max through the specification

of a (partial) order on Rp.

We recall that (partial) orders can be defined by means of cones (see Ehrgott (2005)). The

partial order “5” is defined by the cone Rp= := {η ∈ Rp : ηk = 0, k = 1, . . . , p}, which is the

nonnegative orthant of Rp by the definition η1 5 η2 if and only if η2 − η1 ∈ Rp=. The order we

use in the dual problem (6) is defined by the cone

K := {ϑ ∈ Rp : ϑ1 = ϑ2 = . . . = ϑp−1 = 0, ϑp = 0}.

Hence, ϑ1 =K (>K) ϑ2 if and only if ϑ1
k = ϑ2

k for k = 1, . . . , p−1 and ϑ1
p = (>) ϑ2

p. Hence, vectors

ϑ1 and ϑ2 can only be compared if their first p − 1 components coincide and the comparison is

decided on the pth component.

Based on the order defined by K, we now have a definition for K-nondominated points in the

dual objective space Rp.

Definition 3. A point ϑ̂ ∈ V is K-nondominated if there is no other ϑ ∈ V such that ϑ >K ϑ̂.

Any (π,ω) ∈ U such that D(π,ω) is K-nondominated is called a K-efficient solution of the dual

MOLP (6). The sets of K-nondominated points of V and K-efficient solutions of U are denoted

as VN and UE, respectively.
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In analogy to solving MOLP (5), solving the dual MOLP (6) means finding the set VN and for

each ϑ ∈ VN a K-efficient solution (π,ω) ∈ U .

We now define the extended primal and dual objective sets as P = Y + Rp= and D = V − K

which are polyhedral sets in Rp. As pointed out in Ehrgott et al. (2012), PN = YN and VN = DN .

Both P and D have dimension p and therefore contain interior points. Moreover PwN and DN
are equal to the boundaries of P and D, respectively. It also holds that all vertices of P are

nondominated and all vertices of D are K-nondominated. P and D are therefore easier to work

with than Y and V. We also assume that P is Rp-bounded from below, i.e., that there exists some

η0 ∈ Rp such that η0 5 η for all η ∈ P. In the context of the DEA MOLP (3), we can choose

η0 = ηI , the ideal point defined by

ηIi := min
{
xji : j = 1, . . . , n

}
for i = 1, . . . ,m, (7)

ηIm+r := min
{
−yjr : j = 1, . . . , n

}
for r = 1, . . . , s. (8)

This implies that there also exists ϑ0 ∈ Rp such that ϑ0 =K ϑ for all ϑ ∈ D.

We can formally derive the dual MOLP formulation of DEA, by substituting C, A and b from

(4) into (6). This gives (9).

K
max
π,ω

(ω1, . . . , ωm+s−1, πm+s+1 − πm+s+2), (9)

s.t. πi = ωi for i = 1, . . . ,m+ s,

−
m∑
i=1

πix
j
i +

s∑
r=1

πm+ry
j
r + πm+s+1 − πm+s+2 + πm+s+j = 0 for j = 1, . . . , n,

m+s∑
i=1

ωi = 1,

π = 0,

ω = 0.

Setting π0 = πm+s+1 − πm+s+2 as an unconstrained variable, removing variables πm+s+j for

j = 1, . . . , n and substituting ωi with πi for i = 1, . . . ,m+ s we obtain a dual MOLP form (10)of

DEA . This argument can be summarised as Proposition 1.
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Proposition 1. The dual MOLP of primal MOLP (3) is

K
max
π,π0

(π1, . . . , πm, πm+1, . . . , πm+s−1, π0), (10)

s.t. −
m∑
i=1

πix
j
i +

s∑
r=1

πm+ry
j
r + π0 5 0 for j = 1, . . . , n,

m∑
i=1

πi +

s∑
r=1

πm+r = 1,

πi = 0 for i = 1, . . . ,m,

πm+r = 0 for r = 1, . . . , s.

It is clear that the feasible sets in the outcome space of problems (9) and (10) are the same, so

that applying our algorithm to (10) will produce the same results as applying it to (9). From now

on, denote by U the feasible set of problem (10) and by X the feasible set of problem (3). Hence, as

defined in Section 3, the extended primal and dual outcome spaces are defined as P := CX +Rm+s
=

and D := DU −K, respectively. We refer to the illustrative example in Section 4 and Figure 2 for

illustrations of P and D.

The dual MOLP (10) seeks to identify (normalised) nonnegative prices πi, for i = 1, . . .m+s, of

inputs and outputs and a profit π0, such that the sum of priced outputs minus priced inputs is less

than or equal to −π0 for all existing DMUs, while the vector (π1, . . . , πm, πm+1, . . . , πm+s−1, π0)

is K-nondominated, and, by the definition of K, profit is maximised. We note that (10) does not

refer to a specific DMU and hence considers all DMUs simultaneously, like MOLP (3) does. Note

that the variable π0 is unrestricted in LP (10), so that negative profit (loss) is possible.

4. Developing the Algorithm

Heyde and Löhne (2008) establish relationships between the primal and dual MOLP problems

(5) and (6) and the corresponding polyhedral sets P and D in the respective outcome spaces. We

summarise the main results of geometric duality as stated in Heyde and Löhne (2008) and Ehrgott

et al. (2012) for the primal and dual MOLP formulations of DEA (3) and (10) in Theorem 2.

Let ϑ ∈ D and η ∈ P and define

ω(ϑ) :=

(
ϑ1, . . . , ϑp−1, 1−

p−1∑
k=1

ϑk

)
, (11)

ω̂(η) := (η1 − ηp, . . . , ηp−1 − ηp,−1) , (12)

and let H(ϑ) and Ĥ(η) be hyperplanes in Rp, defined for ϑ,η ∈ Rp, as follows:

H(ϑ) := {η : ω(ϑ)>η = ϑp}, (13)

Ĥ(η) := {ϑ : ω̂(η)>ϑ = −ηp}. (14)
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Theorem 2. The following statements hold.

• Point ϑ∈ D is a K-nondominated vertex of D if and only if H(ϑ)∩P is a weakly nondomi-

nated facet of P.

• Point η∈ P is a nondominated vertex of P if and only if Ĥ(η) ∩ D is a K-nondominated

facet of D.

Theorem 2 states that there are one-to-one relationships between vertices of D and facets of

P as well as between the vertices of P and the facets of D.

Example 1. Consider a DEA example with n = 1, 000 DMUs with a single input and a single

output where points are sampled from a bivariate normal distribution. The PPS technology set TΛ

is shown in Figure 1.

Figure 1: PPS Technology set TΛ for the illustrative example.

Figure 2 demonstrates the extended feasible sets P and D of Example 1.

The five vertices of P are listed in Table 1. These points correspond to the five efficient DMUs,

but with the negatives of the output values. According to (14) and Theorem 2, a vertex η of P

corresponds to a facet {(ϑ1, ϑ2) : (η1 − η2)ϑ1 − ϑ2 + ϑ1 = 0} of D as listed in Table 4.

Table 1: The vertices of P.

η1 η2 η3 η4 η5

0.480 0.770 0.970 0.100 0.290

-0.760 -0.940 -0.970 -0.200 -0.500

Table 2: The vertices of D.

ϑ1 ϑ2 ϑ3 ϑ4 ϑ5 ϑ6

1.000 0.000 0.383 0.612 0.130 0.578

0.100 -0.970 -0.285 -0.016 -0.717 -0.044

The vertices of D are shown in Table 2. According to (13) and Theorem 2 a vertex ϑ of D

corresponds to a facet {(η1, η2) : ϑ1η1 + (1− ϑ1)η2 − ϑ2 = 0} of P as listed in Table 3.
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(a) The set P obtained by geometric duality.
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(b) The set D obtained by Algorithm 1.

Figure 2: The extended feasible sets P and D in primal and dual objective space for the illustrative example.

Table 3: The facets of the P.

η1 − 0.100 = 0

η2 + 0.970 = 0

0.383η1 + 0.617η2 + 0.285 = 0

0.612η1 + 0.388η2 + 0.016 = 0

0.578η1 + 0.422η2 + 0.044 = 0

0.130η1 + 0.870η2 + 0.717 = 0

Table 4: The facets of D.

1.240ϑ1 − ϑ2 − 0.760 = 0

1.710ϑ1 − ϑ2 − 0.940 = 0

1.940ϑ1 − ϑ2 − 0.970 = 0

0.300ϑ1 − ϑ2 − 0.200 = 0

0.790ϑ1 − ϑ2 − 0.500 = 0

We now develop our algorithm to compute the efficient frontier of TΛ adapting the dual al-

gorithm as described in Hamel et al. (2014) to solve (10) and applying geometric duality as in

Theorem 2 to obtain the efficient extreme points and efficient facets of TΛ. The adaptation shows

that significant simplifications of the dual Benson algorithm are possible for DEA problems and

that, in particular, the algorithm does not require solving any LPs.

Ehrgott et al. (2012) introduce the dual pair of LPs (15),

Problem P (ϑ): min{ω(ϑ)>Cξ : ξ ∈ X},

Problem D(ϑ): max{b>π : π = 0, A>π = C>ω(ϑ)}.
(15)

P (ϑ) has the same feasible set as MOLP (5), but minimises a weighted sum of its objectives,

where the weight vector ω is defined as ω(ϑ) by a point ϑ in D as defined in (11). An optimal

solution ξ∗ defines a supporting hyperplane {ϑ ∈ Rp : ω(ϑ)>(Cξ∗) = ϑp} to D at boundary point

(ω(ϑ),ω(ϑ)>(Cξ∗)).

12



The idea of the dual Benson algorithm is to construct a sequence of polyhedra Sk, k = 0, 1, . . .

containing D by adding supporting hyperplanes of D to their description until, after a finite

number of iterations, Sk−1 = D when the algorithm terminates with both an inequality and a

vertex description of D. At this stage the dual problem is solved, because VN = DN .

The algorithm first constructs a polyhedron S0 := {ϑ ∈ Rm+s : ω(ϑ) = 0,ω(ϑ)>(Cξo) −

ϑm+s = 0} such that D ⊂ S0. Here ξo is an optimal solution of P (ϑ̂) for interior point ϑ̂ of

D. In every iteration, the dual algorithm chooses a vertex ϑk of Sk−1 not contained in D. If

ω(ϑk)>Cξ < ϑkm+s an optimal solution η∗ of P (ϑk)) together with H(η∗) defines a supporting

hyperplane of D. If, on the other hand, ω(ϑk)>Cξ = ϑkm+s then ϑk ∈ DN and another vertex

of Sk−1 needs to be chosen. Sk is defined by intersecting Sk−1 with the halfspace containing D

until, at termination, Sk−1 = D. Detailed descriptions of the general steps of the dual Benson

algorithm can be found in Ehrgott et al. (2012) and Hamel et al. (2014).

4.1. The Dual DEA Algorithm

In this section, we provide the specification of those steps taking into account the structure of

the dual MOLP (3). Specifically, these are the determination of the initial interior point ϑ̂ of D

and the solution of P (ϑ). Then we provide and explain pseudocode for the algorithm and show

the steps of the algorithm on Example 1. Finally, we discuss the complexity of the algorithm.

To find an interior point of D we have Lemma ??, the proof of which is straightforward.

Lemma 1. lem:intP An interior point of D is available as

ϑ̂ :=

(
1

m+ s
, . . . ,

1

m+ s
,min

{
−yjr : r = 1, . . . , s; j = 1, . . . , n

})
. (16)

To determine the initial polyhedron S0, as well as to find a supporting hyperplane of D during

the iterations, it is necessary to solve LPs of the form P (ϑ) in (15). Substituting C, A and b from

(4) in P (ϑ) yields (17)

min
x,y,λ

m∑
i=1

ϑixi −
s−1∑
r=1

ϑm+ryr −

(
1−

m+s−1∑
k=1

ϑk

)
ys, (17)

s.t. −
n∑
j=1

λjx
j + x = 0,

n∑
j=1

λjy
j − y = 0,

n∑
j=1

λj = 1,

λ = 0.

13



LP (17) is feasible for any ϑ such that ϑk = 0, k = 1, . . . ,m+ s− 1 satisfying
∑m+s−1
k=1 ϑk 5 1

and has a finite optimal objective value. In fact, the objective function of (17) is a weighted

sum of the vector valued objective of (3), where the weight vector (ϑ1, . . . , ϑm+s) is calculated

from ϑ ∈ Rm+s−1 so that
∑m+s−1
k=1 ϑk 5 1. By the theory of multi-objective linear programming

(Isermann 1974), any optimal solution ξ∗ = (x∗, y∗, λ∗) of (17) is a weakly efficient solution of

MOLP (3). In Theorem 3, we exploit the fact that any LP has an optimal solution at an extreme

point of its feasible set, and that according to Remark 1 the nondominated extreme points of P

are elements of Γ.

Theorem 3. Let ϑ ∈ Rm+s−1 such that ϑk = 0, k = 1, . . . ,m+ s− 1 and
∑m+s−1
i=1 ϑi 5 1. Define

π(j) :=

m∑
i=1

ϑix
j
i −

s−1∑
r=1

ϑm+ry
j
r −

(
1−

m+s−1∑
i=1

ϑi

)
yjs for j = 1, . . . , n, (18)

j∗(ϑ) := arg min{π(j) : j = 1, . . . , n} and (19)

π∗0(ϑ) := π(j∗(ϑ)). (20)

Then vector (xj
∗(ϑ),yj

∗(ϑ), ej
∗(ϑ)) is an optimal solution to P2(ϑ) in (17), where (xj

∗(ϑ),yj
∗(ϑ)) ∈

Γ. Moreover, the optimal values of (17) and its dual are equal to π∗0(ϑ).

Proof. The dual D(ϑ) of LP P (ϑ) in the form of (17) can be written as shown in (21).

max
π,π0

π0, (21)

s.t. πi = ϑi for i = 1, . . . ,m+ s− 1,

πm+s = 1−
m+s−1∑
i=1

ϑi

−
m∑
i=1

πix
j
i +

s∑
r=1

πm+ry
j
r + π0 5 0 for j = 1, . . . , n,

πi = 0 for i = 1, . . . ,m,

πm+r = 0 for r = 1, . . . , s.

The first m+ s components of π, fixed by the first two sets of constraints, are readily eliminated,

leaving the simplified LP

max
π0

π0,

s.t. π0 5
m∑
i=1

ϑix
j
i −

s−1∑
r=m+1

ϑry
j
r −

(
1−

m+s−1∑
i=1

ϑi

)
yjs for j = 1, . . . , n.

Since xj and yj are known data and ϑ is given, the optimal value of π0 is equal to π∗0(ϑ) in (20).

According to its definition, π∗0(ϑ) is obtained at j∗(ϑ). Thus, the optimal value of problem

(17) is equal to π∗0(ϑ), by linear programming duality. On the other hand, (xj
∗(ϑ),yj

∗(ϑ)) ∈ Γ
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so that it is easy to check that (xj
∗(ϑ),yj

∗(ϑ), ej
∗(ϑ)) is a feasible solution of LP (17) and the

objective value of P (ϑ) for this solution is equal to π∗0(ϑ). Hence (xj
∗(ϑ),yj

∗(ϑ), ej
∗(ϑ)) is an

optimal solution to problem (17) and the proof is complete.

As a consequence of Theorem 3, it is therefore not necessary to solve any LP in order to solve

MOLP (10) (and thus (3)) by our algorithm, which is stated in Algorithm 1.

Algorithm 1 The Dual DEA Algorithm

Input: DEA data Γ

1: Set ϑ̂ as in (16)

2: Find j∗(ϑ̂) as defined in (19)

3: Set

S0 :=

{
ϑ ∈ Rm+s :

m∑
i=1

x
j∗(ϑ̂)
i ϑi −

s−1∑
r=1

yj
∗(ϑ̂)
r ϑm+r −

(
1−

m+s−1∑
i=1

ϑi

)
yj

∗(ϑ̂)
s − ϑm+s = 0,

m+s−1∑
i=1

ϑi 5 1, ϑi = 0 for i = 1, . . . ,m+ s− 1

}
,

find vertS0 by intersecting the halflines {teg : t = 0} for g = 1, . . .m + s − 1 with the the

hyperplane defining S0 and set k := 1

4: while There is a vertex ϑk ∈ Sk−1 such that ϑkm+s > π
∗
0(ϑk) do

5: Find j∗(ϑk) as defined in (19)

6: Set (xk, yk) := (xj
∗(ϑk), yj

∗(ϑk))

7:

Set Sk := Sk−1 ∩

{
ϑ ∈ Rm+s :

m∑
i=1

ϑix
k
i −

m+s−1∑
r=m+1

ϑry
k
r −

(
1−

m+s−1∑
i=1

ϑi

)
yks − ϑm+s = 0

}

8: Update vertSk using the on-line vertex enumeration algorithm of Chen et al. (1991)

9: Set k := k + 1

10: end while

Output: Set of vertices and set of facets of D. Set of efficient DMUs and set of facet defining

hyperplanes of TΛ using Theorem 2.

Step 1 finds an interior point ϑ̂ of D. Step 2 solves P (ϑ̂) and Step 3 uses this information

to construct the initial polyhedron S0 and computes its vertices. Due to the definition of D, the

vertices of S0 are defined by intersecting the halflines {teg : t = 0} for g = 1, . . . ,m+s−1 with the

hyperplane defining S0. Therefore, vertS0 is readily available. The main loop of the algorithm

is the while loop from lines 4 to 10. In each iteration k, if a vertex ϑk of Sk−1 not contained in

D exists, the problem P (ϑk) is solved making use of Theorem 3 (Lines 5 and 6). This defines a
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hyperplane, which is used to update Sk−1 to Sk (Step 7). Finally, the vertex set of Sk is updated

using the on-line vertex enumeration algorithm of Chen et al. (1991). It takes the vertices of the

polyhedron Sk−1 and the hyperplane as inputs and computes the extreme points of the polyhedron

Sk resulting from intersecting the original polyhedron Sk−1 with one of the halfspaces defined by

the hyperplane. The while loop ends once all vertices of Sk−1 belong to D. The facet defining

hyperplanes of TΛ are then known using the geometric duality result of Theorem 2.

We now show in detail the application of Algorithm 1 to Example 1.

Example 2. An interior point of D is ϑ̂ = (0.5,−1.97)>. LP P (ϑ̂) is solved by finding DMU

j∗(ϑ) according to (19) and its input-output vector (xj
∗(ϑ), yj

∗(ϑ))> = (0.48, 0.76)>. Therefore S0

is initialised as S0 := {(ϑ1, ϑ2) : 1.24ϑ1 − ϑ2 − 0.76 = 0, 0 5 ϑ1 5 1} and vertS0 = {(1, 0.48), (0,−0.76)} ,

which are illustrated on the left side of Figure 3.

Iteration 1: Vertex ϑ1 = (0,−0.76)> is selected. The LP P (ϑ1) is solved by finding j∗(ϑ1) and

(xj
∗(ϑ1), yj

∗(ϑ1)) = (0.97, 0.97) which defines S1 = S0 ∩ {(ϑ1, ϑ2) : 1.94ϑ1 − ϑ2 − 0.97 = 0}

with vertex set vertS1 = {(1, 0.48), (0.3, 0.388), (0,−0.97)} . The set S1 is shown on the right

side of Figure 3.

ϑ1

ϑ2

(
0

−0.76

)

(
1

0.48

)

ϑ̂

ϑ1

ϑ2

(
0

−0.97

)
(

0.3
−0.39

)

(
1

0.48

)

Figure 3: The initial polyhedron S0 and the first iteration of the dual algorithm.

Iteration 2: Vertex ϑ2 = (0,−0.97) is chosen for processing. Since ϑ2 is a vertex of D, ϑ2 =

(0.3,−0.388) is chosen. Because it is not a vertex of D we continue by solving P (ϑ2). To

do that we find j∗(ϑ2) = and (xj
∗(ϑ2), yj

∗(ϑ2)) = (0.77, 0.94) which leads to the update S2 :=

S1∩{(ϑ1, ϑ2) : 1.71ϑ1 − ϑ2 − 0.94 = 0} with vertex set vertS2 = {(1, 0.48), (0.383,−0.285),

(0.1304,−0.717), (0,−0.97)} . The set S2 is shown on the left of Figure 4.
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Iteration 3: We first choose ϑ3 = (0.1304,−0.717)>, which turns out to be a vertex of D. Next,

ϑ3 = (0.383,−0.2851)> is selected, which again is a vertex of D. Finally, the third ver-

tex of S2, ϑ3 = (1, 0.48)>, is not a vertex of D. Hence, we proceed with solving LP

P (ϑ3) by finding j∗(ϑ3) and (xj
∗(ϑ3), yj

∗(ϑ3))> = (0.1, 0.2)>, which yields S3 := S2∩

{(ϑ1, ϑ2) : 0.3ϑ1 − ϑ2 − 0.2 = 0} with vertex set vertS3 = {(1, 0.1), (0.5957,−0.02128), (0.38

3,−0.2851), (0.1304,−0.717), (0,−0.97)} . Set S3 is shown on the right of Figure 4.

ϑ1

ϑ2

(
0

−0.97

)
(

0.1304
−0.717

) (
0.3829
−0.2852

)
(

1
0.48

)
ϑ1

ϑ2

(
0

−0.97

)
(

0.1304
−0.717

) (
0.3829
−0.2852

)
(

0.5957
−0.0213

) (
1

0.1

)

Figure 4: The second and third iterations of the dual algorithm.

Iteration 4: Vertex ϑ4 = (0.5957,−0.0213)> of S3 is chosen, which is not a vertex of D. Hence

we continue with solving P (ϑ4) by finding j∗(ϑ4) and (xj
∗(ϑ4), yj

∗(ϑ4))> = (0.29, 0.5)>,

which provides the update S4 := S3∩ {(ϑ1, ϑ2) : 0.79ϑ1 − ϑ2 − 0.5 = 0} with the vertex set

vertS4 = {(1, 0.1), (0.6122,−0.0163), (0.5778,−0.0436), (0.383,−0.2851), (0.1304,−0.717),

(0.0,−0.97)} . Set S4 is shown in Figure 5.

Iteration 5: We first test vertex ϑ5 = (0.5778,−0.04356), which is a vertex D. With the second

choice of ϑ5 = (0.6122,−0.01633) we also find that ϑ5 is confirmed as vertex of D. The last

remaining vertex of S4 that is not already confirmed as a vertex of D is ϑ5 = (1, 0.1). Since

t = ϑ5
2 − π∗(ϑ5) = 0, (1, 0.1) is also a vertex of D. Hence the algorithm terminates with

S4 = D as shown in Figure 5

The dual algorithm has therefore computed six vertices and five facets of D. These are shown

in Figure 5. Because of Theorem 3 it was not necessary to solve any LP to do this. Exploiting the

geometric duality result of Theorem 2, we know that the facets of D correspond to extreme points

of P, which by Remark 1 are efficient DMUs. Moreover, the extreme points of D correspond to the

facets of P, and checking formula (13) we can confirm that the hyperplanes defined by the extreme

points of D indeed coincide with the facets of P computed by the primal algorithm.

Finally, let us discuss the worst case complexity of Algorithm 1. As we have demonstrated, it
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Figure 5: The final polyhedron S4 obtained in iteration four and confirmed in iteration five of the dual algorithm.

is not necessary to solve any optimization problem during the course of the algorithm. Lines 1

– 3 can be executed in linear time. Hence, the complexity of the algorithm is determined by the

number of iterations of the while loop in lines 4 – 10 and the complexity of each iteration. Due to

Theorem 2, the number of extreme points of D is the same as the number of facets of P. According

to the upper bound theorem of McMullen (1970), the number of facets of a polyhedron P in m+s

dimensions having (at most) n extreme points can be very large. Hence, our algorithm suffers from

the same combinatorial problem from which all other algorithms for finding the efficient frontier

of TΛ suffer: It enumerates a potentially very large (exponential) number of facets. Within each

iteration of the while loop, the most time consuming operation is the update of the vertex set.

According to Chen et al. (1991), the complexity of the on-line vertex enumeration algorithm for a

polyhedron Sk in dimension m + s is O((m + s)(| vertSk−1| + v), where v is the number of new

vertices. However, despite the worst case exponential runtime of Algorithm 1, it turns out that

in practical applications of DEA the operations of each iteration of the while loop can be carried

out very fast, so that the algorithm performs well, as we shall demonstrate in Section 5.

5. Numerical Results

In this section we present numerical results obtained by Algorithm 1 compared with computing

the efficient frontier of TΛ with Benson’s algorithm as described in Hamel et al. (2014). For

comparison, we also list the time taken to solve one LP per DMU to identify the efficient DMUs.

Comparing the runtime of Algorithm 1 with the standard DEA approach gives an indication of its

performance for computing the efficient frontier of TΛ since the initial step for existing algorithms

(Olesen and Petersen (2003), Davtalab-Olyaie et al. (2014)) consists of solving DEA LP models

to identify extreme efficient DMUs. All computations were carried out on a PC with Intel (R)

Core(TM) i3 processor with 4 GB RAM and 1GHz speed under a Windows 8 64 bit operating
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system. The algorithms were coded in Matlab R2012a using Gurobi 5.5 as LP solver where needed.

All but the last of the instances in Table 5 are available online at http://www.etm.pdx.edu/

dea/dataset/DEAresults.asp?Criteria=Svalue and are taken from real-world DEA application

studies listed with their dataset ID in the first column of Table 5. The last instance is from

Shermann and Gold (1985). The second column summarises the size of the instance, i.e., number

of inputs, outputs and DMUs in the format I-O-D. The following three columns (EDMUs, % Eff

and Facets) provide information about the efficient frontier of TΛ, namely the number of efficient

DMUs, their percentage among all DMUs and the number of (weakly) efficient facets of TΛ. The

next three columns provide the runtimes (in seconds) of the three methods. DEA shows the time

taken for solving one LP per DMU, whereas Primal gives the computation time of the primal

Benson algorithm. The last column displays the computation time for Algorithm 1.

Table 5: Numerical results for real-world instances.

Dataset ID I-O-D EDMUs % Eff Facets DEA Primal Dual

1 4 − 2 − 69 29 42.03% 734 3.85 327.68 3.16

17 2 − 3 − 47 9 19.15% 61 2.06 15.12 0.07

50 1 − 4 − 62 13 20.97% 97 3.98 57.14 0.13

88 4 − 3 − 12 12 100.00% 362 1.46 118.54 0.73

99 5 − 3 − 24 16 66.67% 1, 172 2.06 586.47 4.02

105 5 − 3 − 96 52 54.17% 6, 831 2.95 1, 015.34 78.45

108 1 − 4 − 73 23 31.51% 199 2.27 95.45 2.02

51 3 − 7 − 52 39 75.00% 10, 826 2.33 1, 713.25 149.18

53 5 − 3 − 49 24 48.98% 1, 239 2.07 935.33 23.53

94 3 − 2 − 15 10 66.67% 45 0.28 8.57 0.52

89 3 − 1 − 31 6 19.35% 20 0.47 29.35 0.02

128 6 − 6 − 15 11 73.33% 3, 248 0.07 483.49 4.91

131 6 − 5 − 23 12 52.17% 2, 252 0.05 537.43 2.32

SG 3 − 4 − 14 12 85.71% 285 0.06 228.35 0.22

Table 5 shows that the standard DEA approach is faster than the primal Benson algorithm for

all of these small instances. This behaviour is typical for algorithms that provide a description of

the facial structure of TΛ and is probably the main reason why such algorithms are not more widely

used. Algorithm 1 on the other hand is faster than DEA on six of the 14 tested instances. We

note that the instances for which the primal Benson algorithm and Algorithm 1 take the longest

are those for which TΛ has the largest number of efficient facets. Considering that both algorithms

explicitly provide an inequality description of TΛ, which the standard DEA approach does not, it

is expected that the computation time is largely determined by the number of efficient facets of

TΛ. Since the primal Benson algorithm has to solve a number of LPs proportional to the number

of facets, its running time can be very large for instances with a large number of efficient facets.

However, and most importantly, Table 5 shows that the computation of extreme points and facets

of TΛ can be completed in a reasonable amount of time by Algorithm 1 for the real world instances

of Table 5, less than two and a half minutes at most and about 20 seconds on average.

To investigate the issue of running time and its relationships with problem characteristics

further, we next test random instances of larger size. We generated 10 instances each with 100, 000
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DMUs and two inputs, one output (Group 1); 10, 000 DMUs and two inputs, three outputs (Group

2); and 5, 000 DMUs with three inputs, three outputs (Group 3), respectively. The results are

summarised in Table 6 in the same format as in Table 5, but with average numbers over the 10

instances of each group.

Table 6: Numerical results for random instances.

Group I-O-D EDMUs % Eff Facets DEA Primal Dual

1 2 − 1 − 100, 000 24 0.24 47 31, 0231.24 195.38 1.88

2 2 − 3 − 10, 000 65 0.65 297 29, 758.12 938.24 11.77

3 3 − 3 − 5, 000 118 2.36 1, 381 3, 626.07 1, 562.43 85.63

For these instances, the number of LPs that are solved by the standard DEA approach is

much bigger than the number of efficient facets, and hence the primal Benson algorithm beats the

standard DEA approach despite the fact that the size of the LPs which Benson’s algorithm solves

is growing throughout the algorithm. However, it is here where the real merit of Algorithm 1 is

revealed. Because the number of efficient DMUs is a small proportion of the number of DMUs and

Algorithm 1 does not have to solve any LP to determine the facets of TΛ, it is much much faster

than the primal Benson algorithm and the standard DEA approach. As the number of inputs and

outputs grows, we expect the proportion of efficient DMUs in random data sets to increase, which

is the case here. Clearly, the most important factor influencing computation time for both the

primal Benson algorithm and Algorithm 1 for these random data sets is the proportion of efficient

DMUs and hence the number of facets.

Finally, to explore the limits of Algorithm 1, we use some of the data sets from Dulá (2014),

with a large number of DMUs and a large proportion of efficient DMUs (and therefore as it turns

out a large number of facets). These instances have at least 2, 500 DMUs. The input-output

vectors of efficient DMUs are uniformly distributed on the boundary of a technology set in the

nonnegative orthant, as explained in detail in Dulá (2014). They are constructed in such a way

that the number of efficient DMUs is a fixed percentage of the total number of DMUs. We again

present the results in the same format as in Tables 5 and 6.

Table 7: Numerical results for instances from Dulá (2014).

Instance I-O-D EDMUs % Eff Facets DEA Primal Dual

1 2-3-2,500 25 1% 313 347.38 310.14 1.52

2 2-3-5,000 50 1% 789 2, 085.50 980.56 10.21

3 2-3-7,500 75 1% 1, 229 3, 654.43 1, 959.24 31.10

4 2-3-10,000 100 1% 1, 777 4, 335.26 2, 059.37 75.42

5 4-6-2,500 25 1% 23, 124 318.23 7, 967.25 265.14

6 2-3-2,500 325 13% 6, 839 336.02 953.26 310.33

7 2-3-2,500 625 25% 14, 011 320.48 5, 465.46 462.35

8 2-3-2,500 1, 250 50% 29, 984 305.22 9, 789.54 875.30

Table 7 contains three types of instances: In the first four instances, the number of DMUs

grows, but the proportion of efficient DMUs is small, in fact fixed at 1% of all DMUs. Here,
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both Benson’s algorithm and Algorithm 1 are faster than solving one LP per DMU. However, the

number of facets grows with the number of efficient DMUs and this is the main factor driving

the computation time of the primal Benson algorithm. On the other hand, the dual algorithm

benefits from the small proportion of efficient DMUs and is much faster (a factor of 70 to almost

100) than both the primal Benson algorithm and the standard DEA approach. One percent of

the 2, 500 DMUs of Instance 5 are also efficient, but Instance 5 has a larger number of inputs

and outputs compared to Instances 1-4, a fact that considerably increases the number of efficient

facets, hence resulting in a computation time of over 2.5 hours for the primal Benson algorithm

in Instance 5. Algorithm 1, on the other hand, can still compute more than 20,000 facets in less

time than the standard DEA approach solves 2,500 LPs. For Instances 6, 7 and 8 an increasing

percentage of 13%, 25% and 50% of their 2, 500 DMUs are efficient. Due to the constant number

of DMUs, inputs and outputs of these instances, the DEA runtime is similar, between around 5

and 6 minutes for each instance. However, the instances have an increasing and very large number

of facets, which means that the primal Benson algorithm has a very large number of LPs to solve,

resulting in very long computation times. Algorithm 1 also experiences long computation times

as the number of efficient DMUs increases, however this is less than 15 minutes and less than 3

times the time it takes to solve the 2,500 LPs. We note that although all the computations in the

dual algorithm are simple, a very large number of computations are executed. This increase in

runtime is, of course, not unexpected, since the problem of computing the facets of a polyhedron is

a combinatorial one, and the number of facets of a polyhedron increases rapidly with the number

of extreme points.

6. Conclusions and Future Work

In this paper, we have developed a new dual MOLP formulation for DEA. We have derived an

algorithm to compute the efficient extreme points and efficient facets of TΛ. This algorithm builds

on a dual version of Benson’s outer approximation algorithm, but uses the structure of our new

dual MOLP formulation in the space of input-output prices to considerably simplify its iterations.

Thus the computation of efficiency scores for inefficient DMUs, their reference set and target values

is possible in closed form. Most importantly, we have shown that using Algorithm 1, it is possible

to compute the efficient frontier of TΛ without solving any LPs or other optimisation problems. The

computational advantage of the dual algorithm versus other algorithms, especially as indicated

by comparing its runtimes against the standard DEA approach, which is often a first step in

those algorithms, is quite notable. This advantage is most pronounced in DEA instances with

large numbers of DMUs, only a few of which are efficient. However, if the percentage of efficient

DMUs is large, the polyhedral structure of TΛ becomes more complicated, and the number of facet

defining inequalities grows rapidly and this becomes a limiting factor eventually. Nevertheless, we
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note that most real-world applications of DEA are such that Algorithm 1 would run in very

reasonable time. Even the most challenging instance with 5 inputs plus outputs and 2,500 DMUs

is solved in less than 15 minutes, computing almost 30,000 facets in the process.

We have focused on the BCC model of DEA, but one can replace
∑n
j=1 λj = 1 with

∑n
j=1 λj = 1

or
∑n
j=1 λj 5 1 in model (3) and derive the MOLP form of increasing returns to scale (IRS) and

decreasing returns to scale (DRS) DEA models (see also Cooper et al. 2007). Theorem 1 is satisfied

for these MOLP models, see Yu, Wei and Brockett (1996) for more details. The dual MOLP forms

of IRS and DRS models can be obtained, respectively, by adding the constraint π0 = 0 and π0 5 0

to model (10). Benson’s algorithm and Algorithm 1 can then be applied to compute the efficient

frontier of the technology set of IRS and DRS models. The main difference is in the initialisation

step where the ideal point needs to be identified. Similar considerations can also be made for the

constant returns to scale or CCR model of DEA.

In future research, we aim to develop acceleration techniques to speed up the algorithm. In

general, our research shows that investigating the structure of DEA problems and the algorithmic

performance of algorithms for DEA is worthwhile and that significant gains in computational

performance may be made.
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