
Stellar: A Programming Model for Developing
Protocol-Compliant Agents

Akın Günay and Amit K. Chopra

Lancaster University
Lancaster, LA1 4WA, UK

{a.gunay, amit.chopra}@lancaster.ac.uk

Abstract. An interaction protocol captures the rules of encounter in a
multiagent system. Development of agents that comply with protocols
is a central challenge of multiagent systems. Our contribution in this
chapter is a programming model, Stellar, that simplifies development of
agents compliant with information protocols specified in BSPL. A sig-
nificant distinction of Stellar from similar approaches is that it does not
rely upon extracting control flow structures from protocol specifications
to ensure compliance. Instead, Stellar provides a set of fundamental op-
erations to programmers for producing viable messages according to the
correct flow of information between agents as specified by a protocol, en-
abling flexible design and implementation of protocol-compliant agents.
Our main contributions are: (1) identification of a set of programming
errors that commonly occur when developing agents for protocol-based
multiagent system, (2) definition of Stellar’s operations and a simple
yet effective pattern to develop protocol-compliant agents that avoid the
identified errors, and (3) demonstration of Stellar’s effectiveness by pre-
senting concrete agents in e-commerce and insurance policy domains.

1 Introduction

Interaction protocols capture the rules of encounter in multiagent systems by
defining operational constraints on the occurrence and ordering of messages be-
tween agents. Effective interaction of agents in a multiagent system depends on
their compliance with the system’s protocol. However, development of protocol-
compliant agents is challenging in practical settings where communication is
asynchronous.

There are several approaches to specify and implement interaction protocols,
such as HAPN [14], Scribble [5,15], BPMN in conjunction with BPEL [10], and
business artifacts [6,9]. These approaches mainly use procedural control flow
structures (e.g., sequencing, branching, etc.) to specify interactions of agents,
whose implementations reflect the protocol’s control flow to ensure compliance.
This is mostly achieved by developing agents on top of rigid code skeletons that
are extracted from the protocol specifications. As a result, protocol specifica-
tions and implementations of agents who enact them become tightly coupled.
An imminent drawback of this approach is the lack of flexibility in agent design,



which is a critical limitation particularly in open multiagent systems, where inde-
pendent parties implement their own agents according to their private business
requirements and logic. Another technical drawback of this approach is the need
for synchronization between agents to ensure correct ordering of messages, which
is hard to achieve in asynchronous decentralized environments.

Several information-based protocol languages [11,13,3] have been proposed in
the recent years to overcome limitations of the procedural protocol specification
approaches. These languages specify protocols in a declarative way with respect
to the correct flow of information between the agents, rather than specifying
rigid messages sequences. Hence, information-based languages do not impose a
control flow for implementing protocol-compliant agents. As a result, indepen-
dent parties can design their own agents as they see fit according to their own
requirements, as long as their agents emit messages complying with the pro-
tocol’s flow of information. Consequently, information-based languages do not
rely on synchronization and inherently support asynchronous and decentralized
communication.

In this chapter we focus particularly on BSPL [11] which constitutes the
base for all later information-based languages. Although BSPL provides a rich
protocol specification language, it does not define a systematic methodology
for developing protocol-compliant agents. Our contribution, namely Stellar, ad-
dresses this issue with a simple yet effective programming model. To this end,
Stellar defines a set of fundamental operations and a software pattern over these
operations that enables developers to build compliant agents. Hence, developers
can focus on the business logic of their agents without worrying about compli-
ance with protocols. Thanks to BSPL’s declarative approach, Stellar does not
rely on control flow structures (e.g., no code skeleton is created), which enables
maximum flexibility when designing and implementing agents. Our main contri-
butions are as follows. One, we identify common pitfalls of protocol-compliant
agent development in decentralized multiagent systems. Two, we develop Stel-
lar’s programming model, describe its programming pattern, and define its op-
erations. Three, we demonstrate Stellar’s effectiveness by developing agents in
e-commerce and insurance policy domains.

2 BSPL

In this section we provide an overview of BSPL to establish the necessary back-
ground. BSPL [11] is an information-based protocol specification language. The
main difference of BSPL from procedural protocol specification approaches is
its way of characterizing operational constraints with respect to causality and
flow of information between agents. We explain BSPL’s main features using an
example purchase protocol that we present in Listing 1.

Listing 1: A BSPL protocol for purchase.

Purchase {

roles B, S // buyer , seller



parameters out pID key , out item , out price , out result

B 7→ S: rfq [out pID , out item]

S 7→ B: quote [in pID , in item , out price]

B 7→ S: accept [in pID , in item , in price , out result]

B 7→ S: reject [in pID , in item , in price , out result]

}

A BSPL protocol is composed of a name, a set of roles, a set of public pa-
rameters, and a set of message schemas. BSPL is a declarative language and
hence the ordering of message schemas in a protocol specification is irrelevant.
The name of the protocol in Listing 1 is Purchase. It includes two roles, B and
S corresponding to a buyer and a seller, respectively. Purchase has four public
parameters pID, item, price, and result, which describe the protocol’s interface,
intuitively corresponding to the identifier of the protocol, an item to purchase,
price of the item, and the outcome of the interaction, respectively. A proto-
col’s enactment is complete when all of its public parameters are bound. BSPL
protocols can be composed using their interfaces to build complex interactions.
However, we do not consider composite protocols in this chapter for brevity.
Each message schema in the form of s 7→ r : m[P ] has a sender s and a receiver
r role, a message name m, and a set of parameters P .

For instance, the name of the first message schema in Listing 1 is rfq, cor-
responding to a request for a quote, in which the sender is B, the receiver is S,
and the parameters are pID and item. Instances of message schemas are relational
tuples that represent the bindings of message parameters. For instance, Table 1
shows three instance of quote. In the rest of the chapter we use “message” to refer
to both a message schema and message instance when there is no ambiguity.

Table 1: Instances of quote message.
pID item price

1 book 5
2 bike 10
3 phone 20

An enactment of a protocol corresponds to the set of messages that are ex-
changed between the agents with respect to a unique key. Each unique enactment
of a protocol is identified by one or more key parameters. In our example the
only key parameter is pID. Hence, each distinct enactment of Purchase must have
a unique binding for pID. The uniqueness constraints of typical relational models
apply to the bindings of keys in each message instance (i.e., no two instances
of a message can have the same binding for a key), and each parameter across
the messages (i.e., a parameter has the same binding for the same key in the
instances of different messages).



Agents can enact multiple instances of a protocol concurrently. To this end,
each agent keeps its own local history, which is the set of sent and received
messages by the agent in all enactments. Table 2 shows an example local history
of an agent who enacts the buyer role. In Table 2, there are four enactments of
Purchase (i.e., one for each distinct binding of pID). Note that only the enactments
in which pID is bound to 1 and 2 are complete. That is, all the public parameters
of Purchase are bound in these two enactments. The local history of an agent is
sufficient for the agent to carry out its interactions with other agents complying
with a protocol. In other words, an agent does not need any information about
the states of the other agents to interact with them. Hence, BSPL protocols can
be enacted by agents in a fully decentralized way without referring to any global
state.

Table 2: Local history of an agent enacting the buyer role.
(a) rfq

pID item

1 book
2 bike
3 phone
4 pen

(b) quote

pID item price

1 book 5
2 bike 10
3 phone 20

(c) accept

pID item price result

1 book 5 OK

(d) reject

pID item price result

2 bike 10 NOK

Given an agent’s local history, we say that a parameter’s binding is known
to the agent in an enactment of a protocol, if the agent’s local history includes
a message with a binding of the parameter for that particular enactment. Oth-
erwise, we say that the parameter’s binding is unknown to the agent in that
particular enactment. For instance, according to the local history of the buyer
in Table 2, binding of price is known (as 5) to the buyer for the enactment of
Purchase where pID is bound to 1. This is due to the quote message that is received
by the buyer for this enactment. However, the binding of price is unknown to
the buyer for the enactment where pID is bound to 4, since there is no message
in the buyer’s local history with a binding of price for that enactment.

As we have stated earlier, the key idea of BSPL is to specify operational
constraints of a protocol in terms of correct flow of information among agents,
instead of using procedural control structures. BSPL models the flow of infor-
mation in a protocol by adorning parameters with pinq, poutq, or pnilq.

Parameters that are adorned pinq in a message correspond conceptually to
the inputs of the message, whose bindings must be known to the sender before
sending the message. For instance, the seller must know the bindings of pID



and item before sending a quote. Parameters that are adorned poutq correspond
conceptually to the outputs of a message, whose bindings are produced by the
sender when sending the message. For instance, the seller must produce the bind-
ing of price when sending a quote. Agents cannot violate integrity of information
when sending messages. That is, a sender cannot change the known binding of
a parameter when sending a message. As a consequence, if two or more message
share the same poutq adorned parameter, only one of these messages can be
sent in an enactment to ensure integrity, meaning that the messages that share
poutq adorned parameters are mutually exclusive (e.g., accept and reject due to
poutq adorned parameter outcome). Lastly, if a parameter is adorned pnilq in a
message, the sender must not know the binding of the parameter and also must
not produce a binding for the parameter when sending the message.

BSPL formalizes the correct flow of information in a protocol by defining
viability of messages in an enactment. A message is viable for a sender in an
enactment, if and only if (1) the sender knows the bindings of all the pinq adorned
parameters of the message, and (2) there is no earlier message in the sender’s
local history that already binds any of poutq or pnilq adorned parameters of the
message. Agents comply with a protocol, if they exchange only viable messages
in an enactment of the protocol. For instance, considering the local history of the
buyer in Table 2, the instance (3, phone, 20,OK) of accept is viable for the buyer,
since the bindings of all its pinq adorned parameters are known (due to the earlier
rfq and quote messages that are exchanged in the enactment) and the binding of
the poutq adorned result is unknown to the buyer for the enactment where pID is 3.
Hence, the buyer can send this message by producing the binding of result, which
is OK in our case. Similarly, the reject message instance (3, phone, 10,NOK) is
also viable.

On the other hand, there is no viable accept message for the enactment where
pID is bound to 2, since the poutq adorned result is already bound to NOK in
this enactment as a result of the prior reject message (i.e., the value of an poutq
adorned parameter is known). Similarly, there is no viable reject message for the
enactment where pID is bound to 1, since the poutq adorned result is already
bound to OK in this enactment because of the prior accept message. For the
enactment where pID is bound to 4, the buyer does not know the binding of
price, which is adorned pinq in accept and reject messages. Hence, there are no
viable accept or reject messages for this enactment.

3 Pitfalls of Developing Protocol-Compliant Agents

Development of a protocol-compliant agent for an information-based protocol
is a challenging task due to factors such as concurrent enactments of the pro-
tocol and asynchronous communication between agents. Without a well-defined
methodology, developers may easily fail to identify subtle details of a protocol
and implement non-compliant agents. In this section we identify such potential
pitfalls of agent development for information-based protocols using our Purchase

example from the previous section. Although our example is specified in BSPL,



the issues that we discuss here are general and occur when developing agents for
protocols that are specified in any language.

Let us start by examining some interactions between a protocol-compliant
buyer and seller for our Purchase protocol. Figure 1 shows two such interactions.
In both cases, the buyer first sends an rfq in which pID and item are bound to
1 and book, respectively. Then, the seller replies with a quote that binds price

to 5. Finally, the buyer either sends an accept as in Figure 1(a) or a reject as
in Figure 1(b) in response to the received quote. Now we identify several issues
that induce non-compliant implementation of agents.

B S
rfq[1, book]

quote[1, book, 5]

accept[1, book, 5, OK]

(a) Accept Quote

B S
rfq[1, book]

quote[1, book, 5]

reject[1, book, 5, NOK]

(b) Reject Quote

Fig. 1: Compliant interactions between the buyer (B) and seller (S).

Information Integrity: Protocol-compliant agents must ensure integrity of the
exchanged information when interacting according to an information-based pro-
tocol. An agent may easily violate information integrity (maliciously or acciden-
tally) by either creating information that does not exist or by altering known
information. Figure 2(a) shows an interaction that corresponds to the former
case, where the buyer sends an accept message to the seller without receiving a
quote message by creating the binding of price as 3 even tough price is adorned
pinq for accept. Figure 2(b) shows an interaction that corresponds to the latter
case, where the buyer alters the binding of the item to bike when sending the
accept message, which should actually be book as in the prior rfq message that
she sent to the seller earlier.

In both cases, the integrity of the exchanged information is violated by the
buyer leading to a non-compliant enactment of the protocol. These kind of mis-
takes occur especially when an agent is implemented for concurrently enacting
multiple instances of a protocols. For instance, consider a buyer that interacts
concurrently with multiple sellers to purchase the cheapest copy of a book. This
normally can be achieved by executing multiple instances of the buyer agent
concurrently (e.g., in separate threads), each handling a separate enactment of
Purchase with a different seller. If each concurrent instance of the buyer code can
be executed in complete isolation, the errors we identify cannot happen. How-
ever, in most realistic applications, instances of an agent cannot be fully isolated
since they must access to some shared data. In our example, the instances of



buyer agent must share the price information they receive from different buyers.
A developer may make a mistake when developing the buyer agent, which may
cause the price that is received in one enactment to be used in another enactment
as we demonstrate in Figure 2.

B S

rfq[1, book]

accept[1, book, 3, OK]

(a) Value Fabrication

B S
rfq[1, book]

quote[1, book, 5]

accept[1, bike, 5, OK]

(b) Value Alteration

Fig. 2: Violation of information integrity.

Mutual Exclusion: Realistic information-based protocols usually involve mu-
tually exclusive messages. For instance, when the buyer receives a quote message
from the seller, she must either send an accept or reject message, but not both.
Figure 3(a) shows violation of the mutual exclusion by the buyer, who sends first
an accept message and then a reject message after receiving a quote message. Note
that, in this example mutual exclusion is local to the buyer. That is, emission
of the accept and reject messages are local choices of the buyer. Hence, violation
of mutual exclusion can be avoided by ensuring the buyer’s compliance with the
protocol.

However, mutual exclusion may also be non-local [7]. Suppose that in an
extended version of our purchase protocol the seller may cancel its quote by
sending a cancel message, which binds result, between the quote and accept mes-
sages. Therefore, if there is a cancel message, there should not be an accept

message and vice versa. However, these message are emitted by different agents
(i.e., mutual exclusion is non-local) and violation of mutual exclusion may occur
as Figure 3(b) shows even though the agents are protocol-compliant. In general,
non-local mutual exclusion cannot be satisfied unless behaviors of agents are
synchronized, which is costly and hard to achieve (if not impossible) in realis-
tic systems. A protocol is called safe if it does have any enactments where two
agents may bind the same parameter, and in this chapter we only consider safe
protocols.

Concurrency: As we have discussed in information integrity issues, in many
practical multiagent systems, agents concurrently enact multiple instances of
protocols. For instance, in our purchase scenario, the buyer may concurrently
send multiple quote requests to the seller for different items in different enact-
ments. Besides, the buyer (and also seller) can interact with multiple sellers
(buyers) concurrently in different enactments of the purchase protocol. In such



B S
rfq[1, book]

quote[1, book, 5]

accept[1, book, 5, OK]

reject[1, book, 5, NOK]

(a) Mutual Exclusion (Local)

B S
rfq[1, book]

quote[1, book, 5]

accept[1, book, 5, OK] cancel[1, book, 5, NOK]

(b) Mutual Exclusion (Non-local)

Fig. 3: Violation of mutual exclusion.

situations, in addition to the integrity issues that we have discussed, develop-
ers should also deal with interleaved asynchronous emission and reception of
messages in different enactments. To this end, developers normally use multi-
threading mechanisms (i.e., each concurrent protocol instance is executed in
a separate thread). However, this requires the use of complex synchronization
mechanisms between the threads to properly handle interleaving messages from
different enactments. For instance, the the seller must check if there are sufficient
quantity of goods when making concurrent quotes. Achieving such synchroniza-
tion is an error-prone task and if not done correctly may easily cause agents to
act in a non-compliant manner or event stop operating due to deadlock issues.

4 Stellar

Stellar1 is a programming model to develop protocol-compliant agents for BSPL
protocols. Stellar eliminates the pitfalls of protocol-compliant agent development
that we have discussed in Section 3. To this end, Stellar provides a a set of well-
defined operations around a software pattern for developing agents to enact roles
in a protocol. If an agent’s interactions are implemented using the operations of
Stellar following its software pattern, the developed agent is guaranteed to be
protocol-compliant.

We implement Stellar as a Java framework. The implementation provides,
(1) a code generation tool, which, given a BSPL protocol, automatically gener-
ates a protocol-specific code library that includes classes to represent the roles,
messages, and parameters of the given protocol, and (2) a static core library
that provides the operations to apply Stellar’s software patterns.

The workflow for developing a protocol-compliant agent using Stellar is as
follows. First, a BSPL protocol for which an agent is intended to be developed is
specified. Second, the protocol is provided to Stellar’s code generation tool, which
automatically generates a library of classes corresponding to the roles, messages,

1 Stellar is available on https://github.com/akingunay/stellar

https://github.com/akingunay/stellar


and parameters of the given protocol. Third, programmers develop their agents
using the static core library and the automatically generated protocol-specific
library and by following Stellar’s software pattern.

Before explaining Stellar’s details, we first highlight its key features for devel-
oping protocol-compliant agents using the following Java snippet, which shows
a possible implementation of the seller agent in Purchase protocol to handle the
reception of an rfq message and respond with the corresponding quote message.

Listing 2: Handling of a received rfq message by a seller.
1 public void handleRfq(Rfq rfq)
2 {
3 // create a query to define a criteria for message retrieval
4 Query query = new Query ("pID", Query.EQ , rfq.get(Rfq.pID));
5
6 // use adapter to retrieve an enabled message according to the criteria
7 Quote quote = adapter.retrieveEnabled(Quote.class , query).getFirst ();
8
9 // seller 's business logic to determine the requested item 's price

10 String price = priceMap.get(quote.get(Quote.ITEM));
11
12 // send the enabled message by binding necessary parameters
13 quote.send(price);
14 }

Stellar follows BSPL’s declarative approach. Hence, it does not impose a
control flow for developing protocol-compliant agents. Instead, Stellar uses an
event-driven model, where viable messages are created and sent according to
the local history of an agent when certain events happen. In this regard, the
above code snippet shows an event handler for the reception of an rfq message.
A key class of Stellar is a role adapter, which provides operations to retrieve and
exchange viable messages during enactment of protocols. In our code snippet
the seller’s adapter is referred via the variable adapter, which is created during
the initialization of the seller agent as we will demonstrate later.

A fundamental feature of an adapter is to provide operations for retrieving
enabled messages from an agent’s local history. In an enabled message, all pinq
adorned parameters are bound according to the local history of the agent, and
all poutq and pnilq parameters are unbound. Hence, the programmer can easily
create a viable message from an enabled message, which is retrieved from its lo-
cal history using the role adapter, simply by producing bindings for all unbound
poutq parameters according to the business logic of the agent. In this way Stel-
lar ensures that agents send only viable messages and accordingly guarantees
compliance of an agent’s implementation with a protocol.

To exemplify, in Line 7 of Listing 2, adapter object’s retrieveEnabled method
retrieves an enabled quote object of Quote class, which corresponds to a quote

message of Purchase protocol, to create a viable response to the received rfq mes-
sage. The retrieval operation takes a query to determine which particular enabled
message(s) it should retrieve. In our example, a single object corresponding to
the enabled quote message is retrieved as a response to the received rfq, using
the identifier of the received message in the query that is provided to retrieveEn-

abled. Finally, in Line 13, the send method of the retrieved Quote object is used
to send the actual message to its recipient (i.e., the buyer who sent the received



rfq message), which is automatically set by the adapter when retrieving the Quote

object from the sender’s local history. Note that, in order to make the corre-
sponding message viable, the send method takes a price argument, whose value
is determined by the seller’s business logic.

agent’s
business

logic

Stellar

determine message
retrieval criteria

retrieve enabled
messages

determine poutq
parameter bindings

send viable messages
with bindings

criteria

enabled
messages

viable messages
with bindings

Fig. 4: Pattern to implement protocol-compliant agents using Stellar.

Figure 4 shows an abstract representation of Stellar’s software pattern that
we use in the above code snippet in Listing 2 to ensure compliance of the seller
agent. First, the agent’s business logic determines the criteria to retrieve a certain
type of enabled message(s) from its local history. Then, the agent uses Stellar to
retrieve the enabled message(s) that satisfy its criteria. Next, the agent’s business
logic determines the bindings of the poutq adorned parameters of the retrieved
enabled message(s), and provide them to Stellar. Finally, Stellar compiles viable
messages using the enabled messages and the provided bindings for the poutq
adorned parameters, and sends them to their recipients.

4.1 Developing Agents using Stellar

In this section we present details of Stellar using an example in which we imple-
ment a buyer agent for the Purchase protocol in Listing 1.

Structure of an Agent: Listing 3 shows the overall structure of the Buyer class,
which we use to implement the buyer agent. The object adapter of class BAdapter

is the buyer’s role adapter which is generated by Stellar from the specification
of the Purchase protocol. Buyer class implements QuoteHandler interface, which is
also generated by Stellar, with a single method handleQuote, which is called by
adapter when the buyer receives a Quote message. Note that QuoteHandler could
also be implemented by a separate class to enhance modularity. Buyer class may
have other variables and methods as usual to represent the buyer’s business logic.
Also note that Buyer is a programmer defined class and it is not generated by
Stellar. That is, Stellar does not require developers to inherit a certain base class
or use a certain code skeleton when implementing their agents.



Listing 3: Structure of the buyer’s agent.
1 public class Buyer implements QuoteHandler
2 {
3
4 private BAdapter adapter;
5
6 // class variables and methods to represent buyer 's business logic
7 ...
8
9 // object initialization

10 ...
11
12 public void handleQuote(Quote quote)
13 {
14 ...
15 }
16
17 }

Initialization of Agent: Listing 4 shows the constructor of Buyer class. The
object adapter of class BAdapter is initialized using the factory method newAdapter

according to a Configuration object, which includes information about the buyer’s
deployment such as its own and other agents network addresses. We discuss these
concepts in detail in Section 4.2. Next, the created Buyer object registers itself
as the handler for the received Quote messages.

Listing 4: Initialization of the buyer’s agent.
1 public Buyer(Configuration configuration)
2 {
3 adapter = BAdapter.newAdapter(configuration);
4 adapter.registerQuoteHandler(this);
5
6 // initialization of other class variables
7 ...
8 }

Initialization of Interaction: Listing 5 shows how the buyer agent initiates
its interaction with a seller agent. The code first retrieves an enabled rfq mes-
sage object calling the method retrieveEnabled of adapter. Remember that in the
Purchase protocol the rfq message does not have any pinq adorned parameters.
Hence, this message corresponds to an entry point for a new enactment of the
protocol. Therefore, the buyer can send this message at any time to initiate a
new enactment by setting its poutq adorned parameters. In other words, an rfq

message is always viable. When retrieveEnabled method is called for such a mes-
sage, Stellar automatically assigns values to the key parameter(s) of the message
to create a unique key for initiating a new enactment ensuring information in-
tegrity. Hence, the only thing the buyer should do is to determine the item, for
which it intends to request a quote, and call the send method of the retrieved rfq

object.

Listing 5: Initialization of interaction by the buyer’s agent.
1 Rfq rfq = adapter.retrieveEnabled(Rfq.class);
2 String item = ... // set by buyer 's business logic
3 rfq.send(item);

This code snippet can be part of any programmer-defined method that captures
the buyer agent’s business logic. For instance, if the buyer agent is provided a



list of items to buy, it can iterate over the list and execute the snippet for each
item in effect imitating a new (concurrent) enactment of the Purchase protocol.
Note that, although the buyer can enact multiple protocols concurrently, it is
executed as a single thread, avoiding pitfalls of concurrency. Agents that are
developed using Stellar process a single message at a time (similar to actors
model). Hence, an agent is always implemented as a single thread even if it
enacts multiple protocols concurrently.
Handling of Messages: The next two code snippets show handling of received
quotes. Listing 6 shows the interface that is generated by Stellar from the spec-
ification of Purchase and Listing 7 shows the implementation of the interface by
the buyer’s agent.

Listing 6: Specification of QuoteHandler interface.
1 public interface QuoteHandler
2 {
3 public void handleQuote(Quote quote);
4 }

For simplicity, suppose that the business logic of the buyer is to accept quotes
below 50 and reject others. The code in Listing 7 first creates a Query object to
represent the buyer’s acceptance criteria for the received quotes. The first part
of the query calls the get method to determine the identifier of the enactment for
which the quote is received (Line 3), and then defines the buyer’s criterion for
the acceptable value of the price (Line 4). Next, the code calls the retrieveEnabled

method to retrieve an enabled Accept message object that matches the given
query.

Listing 7: Implementation of QuoteHandler interface by buyer’s agent.
1 public void handleQuote(Quote quote)
2 {
3 Condition c1 = new Condition ("pID", Query.EQ , quote.get(Quote.pID));
4 Condition c2 = new Condition (" price", Query.LT, 50));
5 Query aQuery = new Query(new AndCondition(c1 , c2));
6
7 Accept accept = adapter.retrieveEnabled(Accept.class ,

aQuery).getFirst ();
8
9 if (accept != null) {

10 accept.send("OK");
11 } else {
12 Query rQuery = new Query ("pID", Query.EQ , quote.get(Quote.pID));
13 Reject reject = adapter.retrieveEnabled(Reject.class ,

rQuery).getFirst ();
14 reject.send("NOK");
15 }
16 }

Note that there can only be one enabled accept message for every enactment
with a particular binding of pID. However, retrieveEnabled returns a MessageSet

object, which implements the Set interface with additional convenience methods.
In Line 7, getFirst is one of these convenience methods that retrieves a single
message if the set is a singleton and null otherwise.

If there is an enabled accept message that matches the query (i.e., the quoted
price is below 50), the code sends the retrieved Accept message using its send



method, providing ”OK” as the binding of result parameter (Lines 9–10). Other-
wise (i.e., the quoted price is above 50 and hence accept is null), the code sends a
Reject message, which is retrieved by calling the retrieveEnabled method with the
corresponding query (Lines 11–14).

Remember that the buyer should either send an accept or a reject message
for a received quote to comply with Purchase (i.e., accept or reject are mutually
exclusive). Let us explain how this is guaranteed by Stellar. Suppose that the
programmer of buyer agent made a mistake an wrote the following code to handle
received quote messages instead of the code in Listing 7.

1 public void handleQuote(Quote quote)
2 {
3 ...
4 Accept accept = adapter.retrieveEnabled(Accept.class ,

aQuery).getFirst ();
5 if (accept != null) {
6 accept.send("OK");
7 }
8 Query rQuery = new Query ("pID", Query.EQ , quote.get(Quote.pID));
9 Reject reject = adapter.retrieveEnabled(Reject.class ,

rQuery).getFirst ();
10 if (reject != null) {
11 reject.send("NOK");
12 }
13 ...

This piece of code tries to send first an accept and then a reject message for
the same pID binding. However, when an accept message for a pID binding is sent
(Line 6), the parameter result is bound for the pID binding, which makes the
reject message for the same pID binding disabled, since result is adorned poutq in
reject. Accordingly, retrieveEnabled always returns null when it is called to retrieve
a Reject object for a binding of pID for which an accept message is already sent
(Line 9). Hence, the agent still complies with the Purchase protocol, event though
its business logic is not correctly implemented.

4.2 Implementation of Stellar

Management of Local Histories: Stellar stores local history of an agent in
a local relational database. Stellar hides the details of the particular database
system from programmers. In fact, the programmer should not access the local
history of the agent directly. Instead, the programmer should use only the re-

trieve and send methods provided by Stellar. Our implementation currently uses
MySQL to store local histories of agents, however any relational database system
that supports fundamental relational operations can be easily adopted.
Emission and Reception of Viable Messages: Stellar uses asynchronous
message passing for agent communication, which we implemented using UDP.
The messages that are exchanged over the network are serialized into parameter-
value pairs and represented in JSON format. Emission of messages is enabled
only via the send methods of the generated message classes. The aim of these
methods is to ensure that agents send only viable messages by binding all of the
necessary parameters. Otherwise, these methods throw exception. Reception of
messages and their insertion into an agent’s local history is handled by the



adapters of Stellar. Hence, Stellar does not provide any method to programmers
for manual message reception. Instead, the programmers should implement han-
dlers of the messages that they want to react, which are automatically called by
the adapters of Stellar when a message is received. This simplifies programming
of agents in asynchronous settings.

Retrieval of Enabled Messages: Here we provide Stellar’s algorithm for the
retrieval of enabled messages from an agent’s local history. Below, we use, P for
a BSPL protocol, p for individual parameters, P,Q,K for lists (or sets if their
ordering is not important) of parameters. We use calligraphic capital letters for
relations in the local history of an agent, and apply standard relational algebra
operators Π for projection, σ for selection, ./ for natural join, ./ for full outer
join, and ./ for left outer join. We also use the utility methods allParams,
keyParams, inParams, nilParams, and outParams with a relation and protocol
argument to access the set of all, key, pinq, pnilq, and poutq adorned parameters
of the relation, respectively.

Algorithm 1: retrieveEnabled(M, φ,P)

1 Pin ← inParams(M,P) // pinq adorned parameters of M
2 Pnil ← nilParams(M,P) // pnilq adorned parameters of M
3 Pout ← outParams(M,P) // poutq adorned parameters of M
4 K ← keyParams(M,P) // key parameters of M
5 WI ← ∅
6 if Pin is ∅ then
7 return {()}
8 WI ←

⋃
N∈PΠK(N )

9 foreach p ∈ Pin do
10 Q← K ∪ {p}
11 Wp ← createRelation(Q)
12 foreach N ∈ P such that p ∈ allParams(N ,P) do
13 Wp ← ΠQ(N ) ∪Wp

14 WI ←WI ./K Wp

15 WE ←
⋃

N∈PΠK(N )
16 foreach p ∈ Pout ∪ Pnil do
17 Q← K ∪ {p}
18 Wp ← createRelation(Q)
19 foreach N ∈ P such that p ∈ allParams(N ,P) do
20 Wp ← ΠQ(N ) ∪Wp

21 WE ←WE ./ K Wp

22 W ← σPout=null∧Pnil=null(WI ./K WE)
23 return σφ(W)

Algorithm 1 defines retrieval of enabled messages, given the relation M that
corresponds to a message schema (e.g., a quote message schema), the user defined



query φ, and the protocol specification P. Note that the algorithm returns a
relation (not actual message objects in Java), where each tuple of the relation
corresponds to the parameter bindings of an enabled instance of the message
schema M. A Stellar adapter uses this relation to create the corresponding
message objects and return them as the result of a retrieveEnabled method call as
we demonstrated in earlier examples.

Algorithm 1 can be divided into three phases. In the first phase (from lines 8
to 14), the algorithm builds the relation WI where all pinq adorned parameters
of M are bound. In the second phase (from lines 15 to 21), the algorithm builds
another relation WE where one or more poutq or pnilq adorned parameters of
M are bound. In the last phase (lines 22–23), the algorithm removes the tuples
from WI for which there is a matching tuple (i.e., identified by the same key)
in WE . Hence, each tuple of the resulting relation corresponds to an enabled
message (i.e., all pinq parameters are bound and all poutq and pnilq parameters
are unbound). Note that this operation removes the tuples that would cause
violation of mutual exclusion. If a message M′ that is mutually exclusive to M
is already emitted in an enactment, then there are tuples in WE with bindings of
the parameters that are adorned poutq in both M and M′, and accordingly the
corresponding tuples in WI are removed. Hence, the messages that can cause to
violation of mutual exclusion are not enabled. The algorithm applies the given
query φ to the resulting relation W to filter the tuples.

4.3 Revisiting Pitfalls

Stellar’s retrieval and emission operations ensure causality and information in-
tegrity. Specifically, retrieval operations ensure integrity of pinq adorned param-
eters by binding them permanently to the corresponding values according to the
agent’s local history. Hence, a programmer cannot fabricate or alter pinq adorned
parameters of a message. The send operations ensure integrity of poutq and pnilq
adorned parameters by enforcing the programmer to assign values to only poutq
adorned parameters when needed. Hence, the programmer cannot omit assign-
ment of mandatory parameters and thus break integrity. Further, Stellar handles
creation of bindings for key parameters ensuring their uniqueness, which prevents
key related integrity issues.

Stellar’s retrieval operations prevent emission of mutually exclusive messages.
That is, if two (or more) messages are mutually exclusive in a protocol and an
agent has already sent one of these messages in an enactment of the protocol,
the retrieval operation does not consider the other mutually exclusive message(s)
as enabled in the same enactment. Hence, the agent cannot retrieve and send
mutually exclusive messages. Stellar does not directly handle non-local mutual
exclusion. However, safety of a BSPL protocol, which means that the protocol is
free from non-local mutual exclusion, can be verified automatically [12] at design
time to avoid non-local mutual exclusion issues.

Communication in Stellar is fully asynchronous. Hence a single-threaded
agent can easily enact multiple protocols at the same time using Stellar. That
is, an agent’s execution is never blocked when sending or receiving messages.



Further, Stellar’s programming model handles one incoming message at a time.
Hence, developers can implement their agents without any thread synchroniza-
tion that deals with interleaving reception of multiple messages in different en-
actments. This feature of Stellar substantially simplifies design of an agent, as
our case study in Section 5 demonstrates. Note that UDP, which is used in our
implementation, is an unreliable protocol (i.e., it does not guarantee delivery of
emitted messages), which may compromise liveness of an interaction. This issue
can be avoided using a reliable alternative, such as RUDP, TCP, or message
queues. However, these alternatives provide features (e.g., ordered message de-
livery), which are not needed by Stellar. We chose UDP for our implementation
to show that lack of such features do not affect protocol-compliance of agents.
We will address liveness of interactions in our future work.

5 Case Study

To demonstrate the use of Stellar in a more comprehensive case, where an agent
should consider multiple messages for decision making, we use a claim handling
scenario from insurance domain. We list the protocol that represents this sce-
nario in Listing 8. In this scenario there is a policy subscriber and an insurer. The
subscriber can make multiple claims (claim message) by sending an incident’s de-
tails and the claimed amount to the insurer. The insurer either approves (approve

message) or rejects a claim (reject message). In case of approval, the insurer pays
the claimed amount to the subscriber. The insurer can pay its balance immedi-
ately for each claim or as lump sum for several claims (pay message). For brevity,
we omit some policy aspects such as premium payments.

Listing 8: An insurance policy claim protocol.
Insurance {
roles I, S //insurer , subscriber

parameters out sID key , out cID key , out pID key , out subscriber , out
period ,
out type , out date , out incident , out cAmount , out outcome , out pAmount

S 7→ I: subscribe[out sID , out subscriber , out period , out type]
I 7→ S: register[in sID , in subscriber , in period , in type , out date]
S 7→ I: claim[in sID , out cID , out incident , out cAmount]
I 7→ S: approve[in sID , in cID , in incident , in cAmount , out outcome]
I 7→ S: reject[in sID , in cID , in incident , in cAmount , out outcome]
I 7→ S: pay[in sID , out pID , out pAmount]

}

Listing 9 shows the implementation of ClaimHandler interface by the insurer
agent to handle claim messages when enacting Insurance. As we explained earlier,
ClaimHandler interface is generated by Stellar from the specification of Insurance

and consists of a single method handleClaim, which is used to define the insurer’s
business logic for handling claims. Suppose that the insurer handles a claim in
two steps. In the first step, the insurer decides whether the received claim is valid
or not. In the second step, if the claim is valid and the insurer’s policy balance
exceeds a minimum payable amount, the insurer pays its balance. Otherwise,
the insurer does not make any immediate payment.



The method processClaim (Lines 8–21) captures the first step. The method first
decides whether the received claim is valid by calling isValidClaim (Line 12), which
returns true for valid and false for invalid claims. We do not present the details of
isValidClaim since they are not relevant to our demonstration. Depending on the
validity of the claim, processClaim retrieves and sends either the enabled Approve

(Lines 13–15) or Reject (Lines 17–19) message. Finally, processClaim returns true
or false depending on the validity of the claim.

If the claim is approved (Line 3), handleClaim calls payBalance (Line 4), which
captures the second step (Lines 23–30). The method payBalance first computes
the insurer’s total balance for the policy using approvedClaimAmount and paid-

ClaimAmount methods (Line 24). We describe these methods later in Listing 10.
If the insurer’s balance is more that the minimum payable amount, processClaim

retrieves and sends the enabled Pay message to pay the insurer’s balance (Lines
25–29).

Listing 9: Implementation of ClaimHandler interface by the insurance agent.
1 public void handleClaim(Claim claim)
2 {
3 boolean isApproved = processClaim(claim);
4 if (isApproved) {
5 payBalance(claim.get(Claim.sID));
6 }
7 }
8
9 private void processClaim(Claim claim)

10 {
11 Condition c1 = new Condition ("sID", Query.EQ , claim.get(Claim.sID));
12 Condition c2 = new Condition ("cID", Query.EQ , quote.get(Claim.sID));
13 Query query = new Query(new AndCondition(c1 , c2));
14
15 if (isValidClaim(claim)) {
16 Approve msg = adapter.retrieveEnabled(Accept.class , query).getFirst ();
17 msg.send(" APPROVED ");
18 return true;
19 } else {
20 Reject msg = adapter.retrieveEnabled(Reject.class , query).getFirst ();
21 msg.send(" REJECTED ");
22 return false;
23 }
24 }
25
26 private void payBalance(String sId)
27 {
28 int balance = payableClaimedAmount(sId) - totalPaidAmount(sId);
29
30 if(MIN_PAYABLE_AMOUNT <= balance) {
31 Query query = new Query ("sID", Query.EQ , sId);
32 Pay msg = adapter.retrieveEnabled(Pay.class , query);
33 msg.send(balance);
34 }
35 }

Computation of the insurer’s balance for a policy requires consideration of
multiple messages. That is, we should first compute the total payable claimed
amount for the policy according to the approved claims. Then we should com-
pute the total paid amount for the policy according to the previous payments,
and subtract it from the total payable claimed amount. The method payable-

ClaimedAmount in Listing 10 (Lines 1–9) computes the total payable claimed



amount. It first retrieves all the sent Approve messages for the policy, which
is identified by sId, from the insurer’s message history calling retrieveMessage

method (Line 3). Note that this is a different method than retrieveEnabled. Next,
the total payable amount is computed by iterating over all the retrieved Approve

messages and summing up the claimed amount of each message. The method
totalPaidAmount (Lines 11–19) repeats the same process to compute the total
paid amount for the policy using Pay messages (instead of Approve messages)
and corresponding paid amounts in those messages.

Listing 10: Computation of total claimed and paid amounts.
1 private int payableClaimedAmount(String sId)
2 {
3 Query query = new Query ("sID", Query.EQ , sId);
4 MessageSet <Approve > msgs = adapter.retrieveMessage(Approve.class ,

query);
5
6 int sum = 0;
7 for (Approve msg : msgs) {
8 sum += (int) msg.get(Approve.cAmount);
9 }

10 return sum;
11 }
12
13 private int totalPaidAmount(String sId)
14 {
15 Query query = new Query ("sID", Query.EQ , sId);
16 MessageSet <Pay > msgs = adapter.retrieveMessage(Pay.class , query);
17
18 int sum = 0;
19 for (Pay msg : msgs) {
20 sum += (int) msg.get(Pay.pAmount);
21 }
22 return sum;
23 }

6 Discussion

We summarize our contributions, relate them to the literature, and discuss di-
rections for future work.

6.1 Summary

This chapter presented Stellar, a programming model for developing protocol-
compliant agents for BSPL. Stellar’s main idea is to ensure compliance of agents
by allowing exchange of only viable messages between them. To this end, Stellar
provides a simple yet effective software pattern for retrieving enabled messages
from an agent’s local history and for sending them ensuring their viability. Com-
munication in Stellar is fully asynchronous. Further, Stellar implicitly ensures
information integrity of interaction, prevents emission of locally mutually ex-
clusive messages, and enables concurrent enactment of protocols without relying
on multithreading mechanisms. Accordingly, Stellar simplifies agent development
in decentralized settings ensuring their compliance. Stellar is different from pro-
gramming models that ensure agent compliance using control flow structures



(i.e., code skeletons), and more distantly related to distributed programming
models without interaction protocols.

6.2 Related Work

Scribble [15] enforces design-time adherence to protocols that specify typed mes-
sage signatures and messaging constraints with explicit control flow. Scribble [5]
extracts state machines from protocol specifications to generate APIs for end-
points. Sending or receiving a message returns a protocol state object and each
protocol state object provides message sending and receiving operations that
comply with correct subsequent state transitions. Stellar provides more flexibil-
ity to developers, since it does not impose a control flow for ensuring compliance
when implementing agents. Developers are free to design their agents as they
see fit, without being distracted about the state of their interactions. Stellar’s
retrieve and send pattern ensures exchange of only viable messages and accord-
ingly ensures compliance of agent, which is independent from a control flow.

Business-oriented approaches for web services propose the use of high-level
processes according to which correct interactions are enforced in code. Business
Process Modeling Notation (BPMN) has been used to specify processes that
are then translated into the Business Process Execution Language [10] (BPEL),
an executable language for externally invoking web services and their inter-
actions based on event occurrences. The BPMN-BPEL approach is inherently
process-oriented and depends on the correct realization of workflows. Stellar
is information-oriented and uses a declarative approach without imposing any
workflow. Business artifacts [9] are high-level representations of both processes,
interaction, and the relational data that they operate on. Artifact interoperation
hubs [6] enforce correct messaging with business processes by acting as central
communication points between web services. Stellar only uses local information
and does not rely on any centralized communication artifacts to ensure compli-
ance.

Programming models for distributed systems generally do not consider pro-
tocols, e.g., functional reactive programming [2], the Sunny Event-driven pro-
gramming model [8], and the Actor programming model [4] implemented in Akka
[1]. These programming models support interaction derived from internal sys-
tem or actor code, without a protocol specification against which correct imple-
mentations must comply. In Stellar, we focus on supporting independent agent
development against protocol specifications, where programmers are protected
from violating protocol compliance and integrity of information.

6.3 Future Work

Stellar is a first step toward declarative agent programming based on declarative
information-based protocols. A fuller exploration of agent programming would
need to consider abstractions for agent policies and how they fit with Stellar. An-
other interesting direction would be to explore how normative abstractions (e.g.,



commitments) may be used alongside Stellar, especially since norms represent
the meaning of information communicated via protocols.

Acknowledgments. Munindar P. Singh and Thomas C. King gave valuable
suggestions that helped improve this chapter. Akın Günay and Amit Chopra
were supported by the EPSRC grant EP/N027965/1 (Turtles).

References

1. Akka: 2.5.6 (2017), http://akka.io
2. Bainomugisha, E., Carreton, A.L., van Cutsem, T., Mostinckx, S., de Meuter, W.:

A survey on reactive programming. ACM Computing Surveys 45(4), 52:1–52:34
(2013)

3. Chopra, A.K., Christie V., S.H., Singh, M.P.: Splee: A declarative information-
based language for multiagent interaction protocols. In: Proceedings of the 16th
Conference on Autonomous Agents and MultiAgent Systems. pp. 1054–1063 (2017)

4. Hewitt, C., Bishop, P., Steiger, R.: A universal modular actor formalism for ar-
tificial intelligence. In: Proceedings of the 3rd International Joint Conference on
Artificial Intelligence. pp. 235–245. IJCAI’73, Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA (1973)

5. Hu, R., Yoshida, N.: Hybrid session verification through endpoint api generation.
In: Proceedings of the 19th International Conference on Fundamental Approaches
to Software Engineering - Volume 9633. pp. 401–418. Springer-Verlag, New York,
NY, USA (2016)

6. Hull, R., Narendra, N.C., Nigam, A.: Facilitating workflow interoperation using
artifact-centric hubs. In: Proceedings of the 7th International Joint Conference on
Service-Oriented Computing. pp. 1–18. ICSOC-ServiceWave ’09, Springer-Verlag,
Berlin, Heidelberg (2009)

7. Ladkin, P.B., Leue, S.: Interpreting message flow graphs. Formal Aspects of Com-
puting 7(5), 473–509 (1995)

8. Milicevic, A., Jackson, D., Gligoric, M., Marinov, D.: Model-based, event-driven
programming paradigm for interactive web applications. In: Proceedings of the
2013 ACM International Symposium on New Ideas, New Paradigms, and Reflec-
tions on Programming & Software. pp. 17–36. Onward! 2013, ACM, New York,
NY, USA (2013)

9. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specifi-
cation. IBM Systems Journal 42(3), 428–445 (2003)

10. Ouyang, C., Dumas, M., van der Aalst, W.M.P., Hofstede, t.A.H.M., Mendling, J.:
From business process models to process-oriented software systems. ACM Trans-
actions on Software Engineering and Methodology 19(1), 2:1–2:37 (2009)

11. Singh, M.P.: Information-driven interaction-oriented programming: BSPL, the
Blindingly Simple Protocol Language. In: Proceedings of the 10th International
Conference on Autonomous Agents and MultiAgent Systems. pp. 491–498 (2011)

12. Singh, M.P.: Semantics and verification of information-based protocols. In: Pro-
ceedings of the 11th International Conference on Autonomous Agents and Multi-
agent Systems. pp. 1149–1156 (2012)

13. Singh, M.P.: Bliss: Specifying declarative service protocols. In: Proceedings of the
2014 IEEE International Conference on Services Computing. pp. 235–242 (2014)

14. Winikoff, M., Yadav, N., Padgham, L.: A new hierarchical agent protocol notation.
Autonomous Agents and Multi-Agent Systems 32(1), 59–133 (2018)

http://akka.io


15. Yoshida, N., Hu, R., Neykova, R., Ng, N.: The scribble protocol language. In: 8th
International Symposium on Trustworthy Global Computing - Volume 8358. pp.
22–41. TGC 2013, Springer-Verlag New York, Inc., New York, NY, USA (2014)


	Stellar: A Programming Model for Developing Protocol-Compliant Agents

