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Changepoint analysis (also known as segmentation analysis) aims to analyze an ordered,8

one-dimensional vector, in order to find locations where some characteristic of the data9

changes. Many models and algorithms have been studied under this theme, including models10

for changes in mean and / or variance, changes in linear regression parameters, etc. In this11

work, we are interested in an algorithm for the segmentation of long duration acoustic signals;12

the segmentation is based on the change of the RMS power of the signal. We investigate13

a Bayesian model with two possible parameterizations, and propose a binary algorithm in14

two versions, using non-informative or informative priors. We apply our algorithm to the15

segmentation of annotated acoustic signals from the Alcatrazes marine preservation park in16

Brazil.17
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I. INTRODUCTION20

The problem of signal segmentation arises in differ-21

ent contexts1–5. The problem is broadly defined as fol-22

lows: given a discretely sampled signal y ∈ <N , divide23

it in contiguous sections that are internally homogeneous24

with respect to some characteristic. The segmentation is25

based on the premise that the signal structure changes26

one or many times during the sampled period, and one27

is looking for the times where the changes occur, i.e., the28

changepoints.29

In this work we are interested in segmenting acoustic30

signals, more specifically underwater acoustic signals ac-31

quired off the Brazilian coast. Since 2010, the Acoustics32

and Environment Laboratory (LACMAM) at University33

of São Paulo has been designing equipment for underwa-34

ter acoustic monitoring6; and over the past few years, we35

have acquired and stored over 2 years of acoustic record-36

ings taken from different locations, amounting to more37

than 35 Tb of data.38

The main challenge in exploring these data lies on the39

abundance of interesting events, and at the same time on40

the sparsity of such events. The sparsity of events makes41

the direct inspection of long duration signals a very de-42

manding task, while the variety of potentially interesting43

events discourages the design and application of detec-44

tion algorithms aimed at specific events, for they would45

potentially miss many unexpected (and for this exact rea-46

son, interesting) events.47

Our approach is based on the hypothesis that the oc-48

currence of an event induces an immediate change on the49

total sound pressure level, and that this change can be50

detected on the variance of the signal’s amplitude. What51

we seek then is a variance changepoint detection al-52

gorithm.53

A few algorithms to detect changes in signal’s vari-54

ance are available; in the next section we give a quick re-55

view on the signal segmentation and changepoint analysis56

literature. After that, section II defines the algorithm to57

be used for the segmentation; section III presents our58

results in the segmentation of both simulated and real59

acoustic signals, and section IV concludes the paper.60

A. Changepoint analysis and signal segmentation61

An interesting review on the signal segmentation62

analysis can be found in Theodorou et al5. The algo-63

rithms described by him have a few features in common:64

1. The use of a more or less detailed parametric model65

to describe the signal;66

2. The definition of frames, or windows, to character-67

ize local behavior;68

3. A peak detection or thresholding procedure ap-69

plied to the collection of frames to obtain segments’70

boundaries.71

These methods are well suited for the analysis of72

short to medium term signals (up to a few thousand data73

points), because the estimation step for the parametric74

models, be it a discrete Fourier or wavelet transform, and75

/ or a filtering procedure, is usually computationally in-76

tensive. Also, the use of a detailed parametric model is77

adequate only when the additional structure imposed by78

the model over the original signal is well justified, i.e.,79

when the phenomena causing the change in the signal’s80

characteristics is reasonably well known.81
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Recent literature, however, proposes solutions for the82

problem that do not rely on detailed parametric models83

for the signal. Jackson10, for instance, provides a general84

method based on dynamic programming that is able to85

find the global optimum of a fitness function, V (P ) =86 ∑
g(Bm), where the sum is taken over m blocks, and g is87

the fitness function of a single block (usually a likelihood88

based on a probabilistic model), in O(N2) time.89

In the same spirit, Killick et al11 improve the work90

of Jackson by proposing a Pruned Exact Linear Time91

(PELT) algorithm that is able to optimize the global92

fitness function with complexity O(n) under reasonable93

conditions. Killick’s method is general, and can be ap-94

plied to any fitness function as long as it fulfills a mild95

condition on the relation between the fitness of an entire96

segment and the fitness of the same segment divided by97

one changepoint (for details, see the original paper11).98

To the best of our knowledge, PELT is currently the99

state-of-the-art algorithm for signal segmentation. It suf-100

fers, however, from overfitting problems when applied101

to the analysis of long term signals with few change-102

points. This overfitting also increases the computing time103

and memory requirements, since overfitting implies more104

changepoints to be tested and stores.105

In this paper we propose a new, Bayesian binary al-106

gorithm, that is competitive when compared to PELT107

in the segmentation of short / medium size signals, but108

works better in long signals. Our algorithm approaches109

the problem of segmentation as one of sequential hypoth-110

esis testing. We adopt a binary strategy, first finding the111

best changepoint for the entire signal, and, if this change-112

point is accepted, applying the procedure recursively to113

each segment obtained. In the next section, we define114

our model and the Bayesian binary algorithm.115

II. A BAYESIAN ALGORITHM FOR VARIANCE CHANGE-116

POINT DETECTION117

We start by assuming that the (discretely sampled)118

signal at time t, yt ∈ <, has 0 mean amplitude for all t,119

and finite power σ2
t . We adopt a Gaussian probabilistic120

model for the signal, yt ∼ N (0, σ2
t ).121

We will assume that σ2
t is a piecewise constant func-122

tion on t, and we are interested in estimating the local-123

ization of discontinuities or jumps in this function.124

This is a very general signal model, which fits the125

main goal of our algorithm: to allow efficient analysis of126

long term signals, searching for sections that are likely to127

contain an event, regardless of the specific characteristics128

of the event.129

If we do not consider the specific nature of the acous-130

tical event, the best we can say about the signal after the131

event starts is that the total RMS power must increase132

(except if signal and noise are correlated, which we as-133

sume is not the case). Looking for changes in the signal’s134

power is thus the most general segmentation model we135

can assume.136

A. Binary algorithms137

One of the simplest ways to tackle the changepoint138

location task is by using a binary algorithm. Given the139

entire signal, the first part of the algorithm looks for the140

single changepoint that is most likely or best in some141

sense. After obtaining this changepoint, the traditional142

binary approach will apply the same procedure recur-143

sively to the newly obtained segments. The stopping144

condition is usually based on a model selection criteria12.145

Figure 1 illustrates the binary segmentation process; in146

the figure, dashed vertical lines indicate the candidate147

changepoint at each step.148

Our algorithm differs from the traditional binary149

strategy in the choice of the statistical hypothesis testing150

procedure to be applied at each step to decide if a given151

changepoint is valid (i.e., if there is enough evidence in152

the data that there is indeed a change at this point).153

After applying the procedure, and if the changepoint is154

considered valid, the algorithm continues to estimate new155

changepoints in the two segments obtained from the last156

iteration. If not, the execution is halted.157

The binary segmentation algorithm is then based on158

a single changepoint model defined as follows:159

yt ∼

{
N (0, σ2

0) if t ≤ t̄
N (0, σ2

1) if t > t̄
(1)

In this model, we use a Gaussian distribution for the sig-160

nal, and we assume that the signal’s variance (associated161

to the RMS power) changes abruptly when t = t̄.162

The first step of the algorithm involves estimating t̄;163

this is done using Bayesian methods. We start by defining164

the log-likelihood function associated with the model165

l(t̄, σ2
0 , σ

2
1 |y) = − t̄

2
log
(
2πσ2

0

)
−

N − t̄
2

log
(
2πσ2

1

)
−
∑t̄
t=1 y

2
t

2σ2
0

−
∑N
t=t̄+1 y

2
t

2σ2
1

(2)
The likelihood function connects the data (signal) with166

our model; multiplying the likelihood by the prior, we ar-167

rive at the (unnormalized) posterior distribution for t̄,168

i.e., the probability distribution for the parameter after169

seeing the data. In our model, this posterior will depend170

on t̄, but also on σ0 and σ1 (the signal’s variances be-171

fore and after the changepoint). However, in estimating172

t̄, these values are not important, i.e., they are nuisance173

parameters (we do not care what are the values of the174

variances, since we are just trying to estimate the mo-175

ment at which they change). We thus eliminate this pa-176

rameters from the posterior distribution, obtaining the177

marginal posterior of t̄. To do that, we adopt Jeffreys’178

priors13,14 for both σ0 and σ1, and integrate them out.179

This can be done analitically, yielding the marginal pos-180
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FIG. 1. Illustration of a binary segmentation approach

terior181

P (t̄|y) ∝π(t̄) ·

(
t̄∑
t=1

y2
t

)− t̄2  N∑
t=t̄+1

y2
t

−
(N−t̄)

2

×

Γ

(
t̄

2

)
Γ

(
N − t̄

2

) (3)

With this marginal posterior, the algorithm now182

must estimate the best unique changepoint for the cur-183

rent segment. We use the Maximum Posterior (MAP)184

estimate for the changepoint, i.e., we choose the candi-185

date changepoint as the value of t̄ that maximizes 3.186

After estimating the current changepoint candidate,187

the algorithm must test its validity of the current change-188

point. This will be done by using a full Bayesian test de-189

signed for precise (sharp) hypothesis. In the first author’s190

PhD thesis15 (in portuguese), different testing procedures191

are analyzed and compared, including Snedecor F’s test,192

and a generalized likelihood procedure. The best results193

were obtained by using the Bayesian procedure we de-194

scribe next.195

B. Full Bayesian evidence measure196

To be a valid changepoint, in the present context,197

means that the signal variances of the two segments are198

different. So this step requires an equality of variances199

test.200

From the full model’s likelihood 2, conditioning on t̄201

and multiplying by the joint prior on (σ0, σ1) yields the202

posterior203

P (σ0, σ1|y, t̄) ∝ π(σ0, σ1) · L(t̄, σ2
0 , σ

2
1 |y) (4)

Now, given the changepoint’s location at t̄, the goal204

is to test the equality of variances H0 : σ0 = σ1 .205

It is important to note that the full model 4 is defined206

over a 2-dimensional parametric space, and that H0 de-207

scribes a lower (1-)dimensional manifold on this original208

space. Hypothesis that define lower dimensional mani-209

folds on the parametric space are called sharp or precise210

hypothesis in the Bayesian literature16.211

These hypothesis are challenging to test in the usual212

Bayesian hypothesis testing frameworks, because the pos-213

terior measure over H0 is by definition 0. Pereira and214

Stern17, however, present a Bayesian evidence measure215

designed specifically for the test of sharp hypothesis;216

their measure is shown to be fully Bayesian (in the sense217

that it arrives directly from a particular cost function18),218

and to possess many desirable properties. This test219

has been succesfully applied to many problems involv-220

ing sharp hypothesis testing19–22.221

Following the original authors, we call this measure222

the e-value, ev(H0) being the evidence value in favor of223

H0. The full definition and analysis of the e-value is be-224

yond the scope of this paper; however, to keep this work225

reasonably self-contained, we summarize the e-value in226

broad terms and refer the interested reader to the origi-227

nal paper by Pereira and Stern17.228
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Given a full posterior model P (θ|x) with θ ∈ Θ, and229

a sharp hypothesis H0 : θ ∈ Θ0 with dim(Θ0) < dim(Θ),230

we obtain the maximum value of the full-posterior re-231

stricted to Θ0232

θ∗ = argmaxθ∈Θ0
P (θ|x)

p∗ = P (θ∗|x)

Now define the tangent space or surprise set as233

T (p∗) = {θ ∈ Θ : P (θ|x) > p∗} (5)

The tangent space is the set of all parameter values234

with higher posterior density than the maximum poste-235

rior under H0. If this set has high posterior measure, it236

means that H0 does not traverse regions of high posterior237

density, and the evidence in favor of H0 must be low. In238

fact, define239

ev(H0) = 1−
∫
T (p∗)

P (θ|x)dθ (6)

to be the evidence in favor of H0. The evidence will240

take the value 0 if the measure of the surprise set is 1 (i.e.,241

if the maximum posterior value under H0 is almost surely242

the minimum unrestricted posterior value), and conversly243

the evidence in favor of H0 will be 1 if the measure of the244

surprise set is 0 (i.e., the maximum posterior under H0245

is almost surely the unrestricted maximum).246

The definition of the test procedure finishes the con-247

struction of the binary algorithm. One full step of the248

algorithm will consist of two substeps: first, to estimate249

the segmentation point t̄; second, to compare the vari-250

ance of the segments, calculating a measure of evidence251

for the hypothesis H0 : σ0 = σ1. A diagram illustrating252

the algorithm’s flow can be seen in Figure 2.253
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FIG. 2. One step of the sequential segmentation algorithm.

C. Informative priors and the power of the e-value254

To calculate the e-value, from the segmentation255

model 4, all that is left to do is to pick a joint prior256

π(σ0, σ1), and from then on follow the procedure delin-257

eated above.258
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FIG. 3. Evidence value for H0

One obvious choice for the priors is to adopt the259

product of Jeffreys’ priors (s1s2)−1; by doing so, the260

model is treating both these parameters as completely261

unknown in advance, i.e., the algorithm will act as if it262

knows nothing about the segments’ variances and the re-263

lation between them.264

This choice gives the optimal value265

σ∗ =

∑N
t=1 y

2
t

N + 2
(7)

for the signal’s variance under H0 (no changepoint). To266

calculate the evidence in favor of H0, we estimate the in-267

tegral of the posterior over the surprise set by the adap-268

tive MCMC method of Haario23.269

To test the behavior of the e-value with this choice270

of priors, we simulate Gaussian signals with various sam-271

ple sizes, divided into two segments, with the variance272

of the first segment set to 1, and that of the second seg-273

ment varying in [0.7, 1.3]. Figure 3 shows the evidence274

in favor of H0 (i.e., the evidence that variances are equal275

between segments) for several values of σ1 and several276

sample sizes, where we have repeated each simulation277

500 times. It is very important to take notice that the e-278279

value is not a significance measure, i.e., it does not result280

from a control type-I error procedure. This implies that281

the sampling distribution of the e-value is not uniform;282

however, a transformation exists that changes the e-value283

into a significance measure24. Using this transformation,284

it is possible to fix the type-I error at 0.05 (for a single285

application of the test) and evaluate the resulting power.286

The result for different sample sizes and values of σ1 is on287

figure 4, where the horizontal dashed line marks the 0.05288

significance level. We ran 500 simulations for each combi-289

nation of N and σ1. The test based on the (transformed)290291

e-value is quite powerful, as the simulations indicate. As292

expected, for a fixed type-I error, we can detect smaller293

changes as the sample size increases.294

This is an important issue, especially in the segmen-295

tation algorithm where the test will be sequentially ap-296

plied to the comparison of segments with different sample297

sizes. If we choose to keep α (probability of type-I error)298

fixed, the power of the test will change as the sample299

size changes. However, in a signal detection setup, usu-300

ally one desires to balance both type-I and type-II error301

probabilities regardless of the size of the incoming signal.302
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FIG. 4. Power of the test based on the e-value

D. Using informative priors303

The relation between significance levels, test power304

and sample size is a deep and often discussed question305

in hypothesis testing25,26. Recent literature proposes to306

change the significance level as the sample size changes,307

to keep some relation u(α, β) between the probabilities308

of both error types at a constant value. This can be done309

by using adaptive significance levels (given by a function310

of the sample size n, see25) or by imposing an ordering311

on the parameter space based on Bayes factors26.312

For the segmentation task, however, and in our par-313

ticular application (segmentation of large samples), the314

algorithm will have to work with segments of very differ-315

ent sizes (from 10000 to more than 9 million), and the316

adaptive significance level would also vary wildly. The317

consequence is that, for the larger segments, the algo-318

rithm would require very small significance values; and319

in a MCMC setting, higher precision for the probability320

estimates means longer chains, and longer chains mean321

higher execution times.322

So instead of using an adaptive significance value, we323

propose instead to use a strongly informative prior, and324

use the hyperparameters to calibrate the power of the325

procedure.326

This idea was first introduced in a previous paper27.327

The paper analyzes the binary algorithm for signal seg-328

mentation, but uses a different parameterization θ =329

(σ0, δ) where δ = σ1/σ0. Independent priors for these330

two parameters are proposed, one that is uninformative331

on the value of σ0, and strongly informative over δ. The332

advantage of working with (σ0, δ) instead of (σ0, σ1) is333

that δ is a pure number, i.e., it does not depend on scale.334

It can be interpreted as the quotient between the power335

of any two contiguous segments.336

There are however some difficulties in working with337

δ = σ1/σ0, one of them being that, as σ0 and σ1 are338

nonnegative, δ must also be nonnegative. This limits the339

choice of priors for δ, and for this new, current version340

of the algorithm, we parameterize the problem using δ =341

log(σ1/σ0), and propose a Laplace prior with the form342

p(δ) =
1

2β
e−
|δ|
β (8)

The above Laplace distribution has a peak on x = 0,343

and the peak is sharper as the value of β > 0 decreases.344

The segmentation algorithm works as above, except345

that now the e-value calculation uses the Laplace prior346

for δ. This prior, when β is close enough to 0, changes347

significantly the power of the test, and thus allows tuning348

of the algorithm’s behavior.349

Figure 5 shows the same estimation of power as in350

figure 4, but this time using the Laplace prior. The val-351

ues of β were taken as 0.005, 0.0005, 0.00005 for N =352

1000, 10000, 10000 respectively (i.e., for N = 1000, β =353

0.005, for N = 10000, β = 0.0005, and so on). Again, for354

each value of N and σ1 we ran 500 simulations, and the355

horizontal dashed line marks the 0.05 significance level.356

The effect of the highly informative prior is to lower357

the power of the test for all sample sizes. This is the358

case even when the hypothesis is true, i.e., when σ1 =359

1; in this case, it would be expected that the power be360

equal to the significance value (0.05 in the simulations).361

What happens, however, is that the prior evidence on the362

manifold σ1 = σ0 is so strong, that the evidence in the363

data is incapable of raising the evidence value above 0.364
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FIG. 5. Power of the test based on the e-value with strongly

informative priors

Being able to control the power of the test will prove365

useful when segmenting underwater acoustic signals; in366

this setting, long segments with stationary power are not367

to be expected, even when the segment is capturing a sin-368

gle event. That is the case because both the background369

noise and the event’s physical cause might be changing,370

due to many factors (including the weather, the move-371

ment of event’s cause relative to the hydrophone, among372

others). With a high sampling rate (the data we use in373

this paper was sampled at 24KHz) the e-value would374

give strong evidence against H0 : σ0 = σ1 even inside375

a segment containing a uniform event, and this would376

lead to oversegmentation (overfitting). To control the377

power of the test using an informative prior will allow378

the algorithm’s sensibility to be tuned to the goals of the379

analysis: if one is interested in capturing larger sections,380

that might suffer an internal power change that is small381

compared to the difference between the segment overall382

power and the background noise power, one only needs383

to adjust the hyperparameter accordingly.384
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E. The resolution parameter385

The most demanding step in our binary algorithm is386

the optimization procedure that looks for the most likely387

changepoint at each step. This is done by a brute force388

procedure, that can be parallelized but nevertheless is389

costly, especially with long signals.390

One way to increase the speed of our algorithm is to391

limit the search for the optimal changepoint: instead of392

calculating the objective function for all i ∈ {1, ..., N},393

we can instead calculate the objective only for i = lj, j ∈394

{1, ..., N/l}.395

If the (discrete) posterior for t̄, the changepoint pa-396

rameter, is not very sharp around its maximum, and if397

the minimum expected segment length is also not too398

small, l above can be set to a high value, increasing the399

speed of the algorithm while still being able to identify400

the most probable changepoints at each step. This strikes401

a balance between the computational cost of achieving a402

segmentation and the accuracy of that segmentation.403

However, and since the optimization step will be ap-404

plied many times, to segments of different lengths, it is405

not advisable to pick a fixed integer value for l; imag-406

ine, for instance, that we fix l = 1000. In a signal of407

size N = 1, 000, 000, this value won’t stop the algorithm408

from identifying a good approximation for the change-409

point locations; however, for a signal of size N = 10, 000,410

it is quite possible that using l = 1000 will cause the al-411

gorithm to miss the optimal point. For this reason, we412

adopt an adaptive resolution strategy: we pick a start-413

ing value for the resolution (say l = 1000), but as the414

algorithm starts obtaining new segments, it will keep the415

ratio l/N fixed at each step.416

In the analysis of discretely sampled acoustic signals,417

the value of l can be converted to a time resolution: for418

instance, if the sampling rate is 1 kHz, l = 1000 means419

that the algorithm looks for candidate changepoints that420

are 1 second apart. When sampling rates are higher, as421

is usually the case, a value of l = 1000 will keep the time422

resolution sufficiently high when looking for candidate423

changepoints.424

There is also one more important point about the425

time resolution parameter. It is only applied at the opti-426

mization step, i.e., in the search for the candidate change-427

point. The equality of variances test is executed over the428

whole signal.429

F. The PELT algorithm430

As a basis of comparison to the Bayesian binary al-431

gorithm results, we use the PELT algorithm of Killick11;432

the PELT (Pruned Exact Linear Time) algorithm solves433

the dynamical optimization problem exactly, yielding the434

global optimum of the model. It does that with O(n2)435

complexity in the worst case, but it can be shown to have436

O(n) complexity under mild conditions, which includes437

observing changepoints regularly throughout the data.438

The algorithm is defined in terms of an additive cost439

function440

C({ti}) =

m+1∑
i=1

[
C(yti−1+1:ti

]
+ βf(m) (9)

In the case of detection of variance changepoints441

C(yti−1+1:ti) =− |ti − ti−1|
2

log

 ti∑
j=ti−1

y2
j

+

log

[
Γ

(
|ti − ti−1|

2

)] (10)

and f(m) is the penalty or regularization function442

for the number of segments.443

The penalty function is essential, since the direct444

optimization of the cost function will lead to over-445

fitting (which, in this case, will mean oversegmenta-446

tion). In our tests below, we adopt the MBIC penalty447

function28, which is the penalty function used by default448

by the R package changepoint that implements the PELT449

algorithm29.450

For further comparison of our algorithm with other451

alternatives, we also run the binary segmentation algo-452

rithm of Scott30, which is also implemented by the R453

package changepoint.454

III. RESULTS455

A. Simulated data456

To analyze the performance of the Bayesian binary457

algorithm, we start by simulating Gaussian signals with458

constant mean and variance. We then simulate the459

changepoint process by using a geometric distribution to460

model the times between changepoints, and multiply the461

signal between changepoints for a given factor in order462

to obtain different variances.463

It is clear that the effectiveness of a changepoint de-464

tection algorithm depends directly on both the size of the465

segments, and the magnitude of the jump in the process466

parameters. To observe the behavior of all algorithms467

with varying segment sizes, we will keep the expected468

number of changepoints fixed at 50 changepoints regard-469

less of the signal’s size. When the signal’s size n changes,470

the expected length of the segments will change accord-471

ingly (linearly with n).472

To simulate the magnitude of change in power be-473

tween segments, we force the segments to alternate vari-474

ances between 1.0 and 2.0. The simulation of the change-475

point process was repeated ten times for each value of N ,476

and we report the average results for each of these values.477

The results appear in table I. The table reports the478

true number of changepoints in the simulated signal, the479

estimated total number of changepoints for each algo-480

rithm, and the F1 score. The F1 score is calculated as481

F1 =
precision ∗ recall
precision+ recall
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TABLE I. Simulation results; see text for details

N Algorithm Time (s) True k Estimated k F1 score

10,000 binseg 0.4072 34.3 2.4 0.0857
10,000 pelt 0.0378 34.3 5.1 0.2180
10,000 jeffreys 0.2104 34.3 4.0 0.1720
10,000 laplace 0.2450 34.3 5.9 0.2365

50,000 binseg 2.1517 46.1 15.9 0.4890
50,000 pelt 0.1775 46.1 30.7 0.7939
50,000 jeffreys 1.6281 46.1 28.6 0.7017
50,000 laplace 1.5635 46.1 34.1 0.7613

100,000 binseg 4.2698 45.9 29.5 0.7725
100,000 pelt 0.3332 45.9 38.2 0.9074
100,000 jeffreys 2.6243 45.9 37.3 0.8409
100,000 laplace 2.3943 45.9 41.7 0.8728

500,000 binseg 20.9543 50.8 42.6 0.8708
500,000 pelt 1.9974 50.8 49.1 0.9817
500,000 jeffreys 4.5585 50.8 50.2 0.8886
500,000 laplace 4.0887 50.8 49.9 0.8285

1,000,000 binseg 20.6610 51.8 40.0 0.3720
1,000,000 pelt 3.9094 51.8 50.0 0.9826
1,000,000 jeffreys 6.2435 51.8 53.7 0.9246
1,000,000 laplace 5.9118 51.8 56.5 0.9215

where precision is the number of true positives di-482

vided by the total number of changepoints identified, and483

recall is the number of true positives divided by the to-484

tal number of true changepoints. To accept an estimated485

changepoint as a true one, it must be between N/100486

points of a true changepoint.487

The value of α for the Jeffreys prior, and the values of488

both α and β for the Laplace prior were selected using the489

Bayesian Information Criterion (BIC); both the PELT490

and the BinSeg algorithms utilized the Modified BIC of491

Zhang28. The time resolution parameter for the Bayesian492

binary algorithm was kept fixed and with value l = 1.493

The PELT algorithm was the quickest and also the494

most accurate algorithm on average for all signal sizes,495

except for N = 10, 000 where the Bayesian binary algo-496

rithm with the Laplace prior showed a higher F1 score.497

The binary algorithm of Scott30 was always the slowest498

and less precise; also, since it is implemented recursively,499

for longer signals there was an operational system error500

related to the stack size that stopped the algorithm from501

running in many simulations.502

The Bayesian binary segmentation can be seen to be503

competitive with PELT in accuracy, even though PELT504

runs considerably faster in all cases. The use of an infor-505

mative (Laplace) prior improved the accuracy in almost506

all scenarios.507

In the next section, we apply the Bayesian binary508

algorithm and PELT to real underwater acoustic signals;509

the binary algorithm won’t be tested because it is un-510

practical for signals of the size we will be using.511

B. Underwater acoustic signals512

Now we apply the three algorithms to the segmen-513

tation of real underwater acoustic signals. These signals514

were obtained by the LACMAM’s team on 2017, in the515

region of Alcatrazes, an archipelago 35 km off the Brazil-516

ian coast, in the city of São Sebastião, SP. More infor-517

mation about the data and the experiment can be found518

in the work of Sanchez-Gendriz and Padovese31.519

One of the main goals in acquiring these samples is520

the study of acoustical signatures of boats. Alcatrazes is521

a marine ecological reserve, the second largest in Brazil,522

and as such fishing is prohibited in the archipelago’s area.523

As passive acoustic monitoring is cheap, efficient algo-524

rithms for boat detection using hydrophone data are a525

valuable resource to the reserve’s fiscalization authori-526

ties.527

The laboratory has, by January, 2019, collected al-528

most two years of acoustic signals from the reserve’s re-529

gion. In these signals, many events can be found: the530

passage of boats, but also fish and whales’ vocalizations,531

and other events with both biological and anthropogenic532

sources. These events, however, are scarce, making the533

direct inspection and annotation of the signal a demand-534

ing task. The segmentation algorithm will be used to535

aid in this inspection, by first separating sections of the536

signal that are likely to contain any significant event.537

To test the segmentation algorithms, we have cho-538

sen two 15 minutes long samples where visual inspection539

of the spectrogram shows many short duration events.540

After examination of the spectrograms, the samples were541

listened to and the start and finish times of all events were542

annotated by an expert. A total number of 32 change-543

points were detected, all of them caused by the passage544

of boats. What we expect is that the segmentation algo-545

rithm will be able to correctly identify the boundaries of546

these events.547

One disclaimer is due at this point. The inspection548

of the samples was aimed at the separation of samples549

of the acoustic signal generated by the passage of boats.550

The researcher responsible for the annotation, thus, was551

not looking to annotate changes in the signal power. For552

that reason, it is not expected that any algorithm will get553

high measures of precision or recall, due to other features554

in the data that will present themselves as changes in555

variance.556

The sampling rate of these files is 24 kHz, resulting557

in signals with size 21, 600, 000 for 15 minutes record-558

ings. To reduce this signal size, it is possible to arbi-559

trarily break the 15 minutes signal into smaller pieces, or560

to downsample the signal. The arbitrary separation of561

smaller pieces seem the least desirable approach, since it562

introduces the problem of deciding where to separate the563

pieces.564

For the following tests, however, no downsampling565

was adopted, and the reported results refer to the seg-566

mentation of the full 21, 600, 000 points signal.567

For the Bayesian binary algorithm with the Laplace568

prior, the selection of the β value is done based on an569

elbow plot of the BIC criterion, i.e., we select the greater570

β for which the plot BIC = f(β) shows a pronounced571

decrease when compared to the previous β value (i.e., the572

elbow method in scree plots). For the PELT algorithm,573

the MBIC criterion is applied, using the default penalty574

value. Methods such as the scree plot could be applied575
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to the selection of PELT’s penalty value, but this would576

be unpractical regarding total computation time.577

In the results in table II, the execution time for the578

Bayesian binary algorithm with Laplace prior includes all579

the runs necessary to obtain the best β. In order to assess580

the effect of using strongly informative priors in our al-581

gorithm, we also included the results for the Bayesian582

binary algorithm using the Jeffreys’ (non-informative)583

prior.584

As seen in table II, the Bayesian binary algorithm585

showed superior results to PELT in the segmentation of586

real samples. The first thing to notice is that PELT re-587

sulted in an excessive number of changepoints; that is the588

case because PELT works with the exact optimization589

of a cost function that is based on a (Gaussian) likeli-590

hood, and even with the regularization induced with the591

MBIC criterion, a higher number of changepoints gives a592

better fit. The same happens with the Bayesian binary593

algorithm using non-informative priors, i.e., with uncon-594

trolled power of the test based on the e-value.595

With the Bayesian binary algorithm, on the other596

hand, the value of β helps to control the power of the597

test based on the e-value, avoiding oversegmentation.598

In figures 6 and 7, the changepoints estimated by the599

Bayesian binary algorithm are plotted over the spectro-600

gram of the samples. It is noticeable that the boundaries601

of the most prominent events are correctly captured by602

the algorithm, while at the same time sections with no603

important events (as can be seen by direct inspection of604

the spectrogram) are kept unsegmented.605

IV. CONCLUSION606

The segmentation of acoustic signals is an important607

task, especially in the retrospective analysis of long du-608

ration signals.609

Among the many possible criteria for the segmen-610

tation, the RMS-based segmentation is particularly in-611

teresting when one is mainly interested in separating612

sections with background noise only, from sections com-613

posed of background noise plus some (possibly) interest-614

ing event.615

In this paper, we present a Bayesian binary algo-616

rithm for RMS-based acoustic signal segmentation. We617

show that this algorithm is precise, and robust to viola-618

tions on the basic assumptions: normality of background619

noise, and a stepfunction for the RMS in the different620

segments. We claim that this robustness is mainly due621

to two characteristics of our algorithm: first, the use of a622

marginal posterior for the selection of candidate change-623

points; and second, the use of strongly informative priors.624

By comparing our algorithm with other alternatives625

from the literature, we showed that it is competitive626

with the current state-of-the-art changepoint algorithm627

(PELT), and sensibly superior to previous binary algo-628

rithms in simulated data. When analyzing real data, we629

showed that our algorithm can have superior results even630

when compared to PELT, if we use the strongly informa-631

tive (Laplace) prior on the log-ratio of variances between632

segments.633

The hyperparameter of the Laplace prior can be effi-634

ciently selected using model selection criteria such as the635

Bayesian Information Criterion (BIC).636

Further work will analyze other possibilities for the637

model selection problem in this setting. We are also638

working on a hybrid version of our algorithm and the639

PELT algorithm, by using a version of our marginal pos-640

terior as the cost function to be optimized with PELT.641

Our algorithm is written in cython, is open642

sourced an can be downloaded at http://github.com/643

paulohubert/bayeseg, along with some sample acous-644

tic data and some illustrative IPython notebooks. The645

signals used in this paper are available upon request.646
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TABLE II. Results on real samples; see text for details
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FIG. 6. Spectrogram of sample A with changepoints estimated by the Bayesian binary algorithm

FIG. 7. Spectrogram of sample B with changepoints estimated by the Bayesian binary algorithm
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