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ABSTRACT – 150 word limit for Ecology Letters 20 

Functional diversity is predicted to influence ecosystem dynamics through links between 21 

organismal traits and ecosystem processes. Theory predicts that key functional traits and high 22 

functional redundancy can buffer communities against environmental disturbances. While 23 

experimental evidence and data from simple ecological systems support these notions, evidence 24 

from natural experiments with large species assemblages is lacking. Using long-term data from 25 

both temperate and tropical fish assemblages, we examine how initial functional-trait structure and 26 

functional redundancy buffer communities against ecological shifts during disturbance. We find 27 

that functional vulnerability to disturbance increases depending on both initial functional-trait 28 

structure and lower functional redundancy of communities. In both temperate and tropical fish 29 

assemblages, increasing dominance by climatically-sensitive functional traits rendered 30 

communities more susceptible to ecological shifts, while communities with higher functional 31 

redundancy were more resistant to change. Our results exemplify a consistent link between 32 

biological structure and ecosystem vulnerability, providing insight for anticipating future 33 

disturbance impacts on biodiversity.  34 

 35 

INTRODUCTION 36 

Global environmental change threatens the stability of ecosystem functions and services, with 37 

severe consequences, such as food insecurity, predicted by the end of the century (Bellard et al. 38 

2012; IPCC 2014; Melillo 2014). Accordingly, understanding how variation in biodiversity 39 

influences the vulnerability of communities and ecosystems to environmental change is crucial 40 

(Bellard et al. 2014; Beaugrand et al. 2015; Segan et al. 2016; Heilpern et al. 2018). Species 41 
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diversity has been shown to enhance ecosystem productivity and to buffer communities against 42 

environmental disturbances (Worm et al. 2006; Naeem et al. 2012; Mellin et al. 2014; Schneider 43 

et al. 2016). A functional approach enables exploration of the impacts of biodiversity loss on 44 

ecosystem processes and services (Sakschewski et al. 2016; Soliveres et al. 2016; Gross et al. 45 

2017). Functional diversity measures are used to describe ecosystem functioning, as organismal 46 

traits can be linked to ecosystem processes like nutrient cycling and biomass production, and can 47 

provide a mechanistic understanding of community changes via trait-environment relationships 48 

(Bejarano et al. 2017; Cadotte 2017; Henriques et al. 2017; Villéger et al. 2017).  49 

The presence of key ecological functions (i.e., functional traits or groups) and high functional 50 

redundancy can buffer communities against the impacts of environmental change (Dı́az & Cabido 51 

2001; Laliberte et al. 2010; Dee et al. 2016; Nash et al. 2016; Sanders et al. 2018). For instance, 52 

on coral reefs key functions such as grazing and bio-erosion by large parrotfishes maintain benthic 53 

community structure following disturbances (Bozec et al. 2016; Heenan et al. 2016; McLean et al. 54 

2016), and high diversity within parrotfish groups can reinforce these functions (Walker 1992; 55 

Burkepile & Hay 2008; Sanders et al. 2018). However, functional redundancy may not always 56 

buffer communities, particularly when functionally synonymous species exhibit similar negative 57 

responses (i.e., low response diversity) (Laliberte et al. 2010), and long-term empirical evidence 58 

demonstrating the buffering effects of functional redundancy is lacking.  59 

 While community responses are normally linked directly to environmental variation, 60 

environmental gradients ultimately lead to variability in community structure, which can determine 61 

biological responses to disturbance (McIntyre et al. 1995; Chapin et al. 1997; Fukami et al. 2005; 62 

Williams et al. 2010). Therefore, when examining why some communities are vulnerable to 63 

disturbances while others are resistant, it is necessary to address biological variability among 64 
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communities. Two potential biological mechanisms may explain differences in vulnerability 65 

among neighboring communities: 1) communities differ in biological composition such that some 66 

communities are more dominated by species with vulnerable (or resistant) functional traits, and 67 

community structure is more weighted by these traits (McLean et al. MEPS), or 2) vulnerable 68 

communities have lower levels of functional redundancy (Walker 1992; Williams et al. 2010). 69 

Thus communities’ initial functional composition and diversity at a baseline time period (i.e., pre-70 

disturbance) could determine communities’ vulnerability or resistance to environmental 71 

disturbances.  72 

Here, using multidimensional functional spaces based on species’ functional traits, we show 73 

how the vulnerability of communities’ functional structures is determined both by initial 74 

functional-trait composition and by initial functional redundancy. Using long-term data from both 75 

north-temperate and tropical-reef fish assemblages, we show that increased dominance by 76 

climatically-sensitive functional traits rendered communities more susceptible to ecological shifts, 77 

while communities with higher functional redundancy were more resistant to change. 78 

 79 

MATERIALS AND METHODS 80 

Eastern English Channel: temperate marine fish communities 81 

Disturbance 82 

The fish assemblage of the Eastern English Channel (EEC) experienced a major shift in both 83 

taxonomic and functional structure in the late 1990s in response to an Atlantic-wide climate 84 

oscillation (The Atlantic Multidecadal Oscillation) that led to rapid sea surface warming and 85 
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oceanographic changes (Ting et al. 2009; Auber et al. 2015, 2017 McLean et al. MEPS). While all 86 

sampling sites throughout the EEC were concurrently impacted by a basin-wide climate 87 

disturbance, the amplitude of community change was highly variable among sites, with some sites 88 

experiencing very pronounced shifts and others remaining relatively unchanged (Auber et al. 2017) 89 

(McLean et al. MEPS). 90 

 91 

Fish community data 92 

The fish community of the EEC (area VIId defined by the International Council for the Exploration 93 

of the Sea, ICES) has been sampled every October since 1988 during the Channel Ground Fish 94 

Survey (CGFS). Here, we focused on the study period of 1988 – 2011. The CGFS sampling scheme 95 

is spatially stratified by subdividing the EEC into 15’×15’ rectangles where at least one 30-min 96 

haul is made during daylight hours at an average speed of 3.5 knots. A high (3 m) vertical opening 97 

bottom trawl (GOV) with a 10-mm-stretched-mesh-size codend was used. The stratified sampling 98 

scheme completed 90 to 120 hauls per year depending on weather conditions. After each haul, all 99 

captured fishes were identified and counted. Abundance indices at each sampling station were 100 

obtained from the ICES data portal and were standardized to numbers of individuals per km2 101 

(ICES). Abundance data were log10(x+1) transformed before analyses. 102 

 103 

Functional traits 104 

Nine functional traits related to life history, habitat use, and trophic ecology were collected for 73 105 

taxa (67 species, 6 identified to genera only). These included length and age at maturity, fecundity, 106 
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offspring size, water column position, temperature preference, trophic guild, and trophic level. 107 

Temperature preference was calculated as the median temperature of a species across its global 108 

range of observations for which data were available. Trait data came from FishBase (Froese & 109 

Pauly 2012), the Ocean Biogeographic Information System (http://www.iobis.org/), the Global 110 

Biodiversity Information Facility (https://www.gbif.org/), Engelhard et al. (2011), and Pecuchet et 111 

al. (2017). Functional traits were chosen if they were potentially implicated in community 112 

responses to environmental change (McLean et al. MEPS) and based on sufficient availability and 113 

accuracy. 114 

 115 

Environmental factors 116 

Environmental parameters included depth, sea surface temperature (SST), salinity, and 117 

chlorophyll-a, which were all collected in-situ at each survey site during the CGFS monitoring 118 

campaigns. However, spatially-resolved data for chlorophyll-a were not available prior to 1998.  119 

 120 

Seychelles Islands: coral reef-fish communities 121 

Disturbance 122 

The Seychelles Islands experienced wide-spread coral mortality following severe coral bleaching 123 

during the 1998 El Niño, which led to substantial changes in reef fish taxonomic and functional 124 

structure (Graham et al. 2006, 2015). The mass bleaching was severe across the entire inner 125 

Seychelles (Graham et al. 2006, 2015), and of the 21 sites surveyed, all but one site had losses in 126 

coral cover, with an average 65% loss across all sites. While differential benthic trajectories 127 

http://www.iobis.org/
https://www.gbif.org/
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following the mass bleaching have been linked to environmental and ecological conditions 128 

(Graham et al. 2015), variation in initial disturbance vulnerability has not yet been investigated. 129 

 130 

Fish community data 131 

Fish abundance data were collected at 21 sites around the Seychelles Islands using underwater 132 

visual census (UVC) in both 1994 (pre-disturbance) and 2005 (post-disturbance). At each site 16 133 

individual 7-m radius (154m-2) stationary point counts were surveyed along the reef slope, and the 134 

identity, density and individual sizes of diurnally active, non-cryptic reef fishes were recorded 135 

within each count (Graham et al. 2006, 2015). Abundance data were log10(x+1) transformed before 136 

analyses. 137 

 138 

Functional traits 139 

Four functional traits related to habitat use, behavior, and trophic ecology were collected for the 140 

129 species sampled. Trait data came from both FishBase (Froese & Pauly 2012) and previously 141 

published literature (WILSON S. K. et al. 2008; Graham et al. 2011; Stuart-Smith et al. 2013; 142 

Graham et al. 2015). These included maximum length, diet, gregariousness, and habitat 143 

specialization (i.e., facultative vs. obligate relation with corals). Functional traits were again chosen 144 

because they have been implicated in the response of coral reef fish communities to environmental 145 

change (Wilson et al. 2006 GCB; Pratchett et al. 2008 OMBAR, Graham et al. 2011 Ecol Lett). 146 

 147 

Environmental factors 148 
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Environmental data included depth, coral cover, reef complexity, and management status (i.e., 149 

fished vs. marine reserve). Within each stationary point count, the percent cover of live hard coral 150 

was quantified and the structural complexity of the reef were visually estimated (Graham et al. 151 

2006, 2015). Structural complexity was assigned to one of the five categories: 0 = no vertical relief, 152 

1 = low (<30 cm) and sparse relief, 2 = low but widespread relief, 3 = widespread moderately 153 

complex (30–60 cm) relief, 4 = widespread very complex (60–100 cm), and 5 = exceptionally 154 

complex (>1 m) relief, which aligns with several other methods of assessing structural complexity 155 

on coral reefs (Graham et al. 2006, 2015). 156 

 157 

Quantifying functional vulnerability 158 

Multidimensional functional space 159 

We created a functional-trait space for each ecosystem where species are arranged according to 160 

their functional trait composition, and species’ relative positions are based on their functional 161 

similarity (Villéger et al. 2008; Laliberté & Legendre 2010; Mouillot et al. 2013). We created 162 

functional-trait space by first creating a Gower dissimilarity matrix of the species by trait table, 163 

with species in rows and functional traits in columns. Gower dissimilarity is well-adapted for 164 

examining functional traits as it can handle multiple data types (i.e., continuous and categorical) 165 

and missing values (Gower 1971; Laliberté & Legendre 2010). Functional space was then built by 166 

ordinating the Gower similarity matrix using principal coordinates analysis (PCoA) (Mouillot et 167 

al. 2013).  168 

 169 
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Functional vulnerability 170 

We quantified ‘functional vulnerability’ as the amplitude of change in functional-trait structure 171 

before and after disturbance using the functional-trait space. Large shifts in functional structure 172 

indicate low resistance and thus high vulnerability, while small shifts indicate high resistance and 173 

low vulnerability. For a given ecosystem, we first calculated abundance-weighted community 174 

centroids on the first two axes of functional space for all sites in all time periods (Fig. 1a). Within 175 

the functional-trait space, the location of any given site in any given year is defined as the centroid 176 

of all species for that site, weighted by species’ abundances (Fig. 1a). Thus, the movement of a site 177 

in the functional-trait space can be used to quantify changes in functional-trait structure through 178 

time. We therefore calculated functional vulnerability as the distance between a site’s position in 179 

functional space before and after a disturbance (Fig. 1b). This quantifies the amount of distance 180 

each site moved in functional space during a disturbance, where sites with larger movements 181 

display higher vulnerability and sites with smaller movements display higher resistance. 182 

Additionally in the case of long time series that exhibit gradual changes (i.e., no abrupt phase 183 

change or regime shift), it is possible to quantify vulnerability as the absolute value of the slope of 184 

the movement of a site or community along the functional space axes. Sites with large changes in 185 

functional structure through time (i.e., high vulnerability) will have large slopes along either one 186 

or both axes of functional space. In the case of EEC, where an abrupt community shift occurred in 187 

the middle of a long time series, for each site, we calculated the distance between the average 188 

positon of all years before and all years after the disturbance, while in the Seychelles, for each site, 189 

we calculated the distance between 1994 (pre-bleaching) and 2005 (post-bleaching). 190 

 191 
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 192 

Figure 1. Conceptual diagrams showing the calculation of functional vulnerability according to 193 
change in the abundance-weighted community position of a site (a) before and after disturbance 194 
(b), along with potential links between functional vulnerability and i) functional-trait structure (c) 195 
and ii) functional redundancy (FRed) (d). 196 

 197 

Functional Redundancy 198 

Functional redundancy quantifies the degree to which species in a community share similar 199 

functional characteristics, i.e., whether functional strategies are supported by few or many species. 200 

Here, we quantified functional redundancy following de Bello et al. (2007), where functional 201 

redundancy is parsimoniously defined as the degree to which a community is ‘saturated’ with 202 

similar functional traits, and is calculated as the difference between taxonomic diversity 203 

(Simpson’s index) and functional diversity (Rao’s quadratic entropy) (de Bello et al. 2007). In this 204 
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fashion, communities with the same level of functional diversity but different levels of species 205 

richness (or vice versa) will vary in functional redundancy, where a community with either more 206 

functionally similar species or higher species richness will have higher functional redundancy. 207 

Previous studies quantifying functional redundancy using this metric found significant 208 

relationships with community stability and environmental filtering (Pillar et al. 2013; Kang et al. 209 

2015; Bruno et al. 2016). Additionally, this metric of functional redundancy is calculated at the 210 

community level using continuous data, and does not require defining functional groups, which 211 

can be subjective and controversial. Initial functional redundancy (i.e., pre-disturbance) was 212 

calculated for all sites in both ecosystems using the R package SYNCSA. 213 

 214 

Generalized Linear Models (GLM) 215 

When considering the influences of environmental variables, we calculated the change in each 216 

variable before and after disturbance for each site rather than using temporally-averaged spatial 217 

variables to avoid using static independent variables to predict dynamic dependent variables. Thus, 218 

changes in local environmental parameters were used to predict changes in functional-trait 219 

structure.  For instance, while the EEC was impacted by an Atlantic-wide climate oscillation and 220 

associated ocean warming, local-scale variability in SST or salinity change could explain 221 

variability in community responses. Depth was the only parameter included in all statistical models, 222 

as it is a permanent environmental condition (on ecological time scales). Therefore, in the EEC, 223 

we built general linear models (GLMs) testing the influences of i) the initial position of each site 224 

in functional-trait space (PCoA 1 and PCoA 2 scores), ii) the initial functional redundancy, iii) 225 
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species richness, iv) depth, v) changes in local SST, and vi) changes in local salinity on the 226 

functional vulnerability of each site. 227 

In the Seychelles, we used GLMs to test the influences of i) the initial position of each site 228 

in functional space (PCoA1 and PCoA2 scores), ii) the initial functional redundancy, iii) species 229 

richness, iv) depth, v) percent change in coral cover, vi) percent change in reef structural 230 

complexity, and vii) management status on functional vulnerability. All GLM models were 231 

assessed using Akaike weights to identify the most contributive independent variables, and the R 232 

package visreg was used to examine relationships between independent and dependent variables 233 

while accounting for co-variation among independent variables. 234 

 235 

Null Models 236 

To examine whether the relationships between functional vulnerability and i) initial functional-trait 237 

structure, or ii) initial functional redundancy were significantly different than expected by random 238 

chance, we built null models examining the slope of the linear regression between functional 239 

vulnerability and each metric, following Fukami et al. (2005). For each null model we randomly 240 

permutated the species by abundance table, re-calculated abundance-weighted community 241 

centroids in functional space, re-calculated functional redundancy, and re-computed the 242 

corresponding linear models. This process was repeated 1000 times and the corresponding linear 243 

modes were used to build null distributions of 1000 slopes. The actual observed slopes between 244 

functional vulnerability and i) initial position in functional space, and ii) initial functional 245 

redundancy were then compared to the resulting null distributions. 246 

 247 
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RESULTS 248 

Climatic disturbance in a temperate marine fish community 249 

In the EEC, the first two axes of functional-trait space captured 48% of overall variation in 250 

functional structure among the 73 taxa (Fig. 2a). The first axis of functional space was primarily 251 

characterized by differences between large-bodied, long-lived, high trophic-level species with large 252 

offspring size (higher values) vs. small-bodied, short-lived pelagic species, and detritivores (lower 253 

values), while the second axis was characterized by differences between carcinophages and 254 

benthopiscivores with high parental care (higher values) vs. pelagic and mesopelagic species and 255 

planktivores and detritivores (lower values) (Fig. 2a). We found that the distance each site moved 256 

in functional space before and after the disturbance (1997), was significantly correlated to the initial 257 

position of each site along the second axis of the functional space, as sites with lower PCoA 2 258 

values had higher changes in functional-trait structure before and after the disturbance (r = -0.28, 259 

P = 0.01). We next examined whether the distance moved in functional space was related to initial 260 

values of functional redundancy (mean functional redundancy across all years prior the regime 261 

shift). We found that distance moved was significantly and negatively correlated to functional 262 

redundancy: sites with higher functional redundancy were more resistance and had less pronounced 263 

shifts (r = -0.46, P < 0.0001). GLM models then ranked functional redundancy, initial PCoA 2 264 

position, depth, and local changes in salinity as the most important independent variables predicting 265 

the distance moved by each site in functional-trait space (Fig. 2b-d, Fig. S1, Fig. S2). Distance 266 

moved (i.e., functional vulnerability) was higher in deeper sites and in sites where salinity 267 

decreased before and after the disturbance (Fig. S1, Fig. S2). 268 

 269 
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 270 

Figure 2. Relationships between functional vulnerability and the initial functional structure of 271 
communities in the Eastern English Channel (EEC) and Seychelles Islands. a) Functional-trait 272 
structure of the overall fish community of the EEC. b) Functional vulnerability of each site in the 273 
EEC defined by the distance moved (i.e., amplitude of change) along the first two axes of 274 
functional-trait space before and after disturbance; larger circles = higher movement and therefore 275 
higher vulnerability. Relationships between functional vulnerability and c) initial position on PCoA 276 
axis 2 of functional-trait space, and d) initial functional redundancy in the EEC. e) Functional-trait 277 
structure of the overall fish community of the Seychelles. f) Functional vulnerability of each site 278 
in the Seychelles. Relationships between functional vulnerability and g) initial position on PCoA 279 
axis 2 of functional-trait space, and h) initial functional redundancy in the Seychelles. 280 

 281 

Null models indicated that the slope of the relationship between functional vulnerability 282 

and initial PCoA 2 position was larger than expected by random chance, but not significantly so, 283 

as the observed slope was smaller than the 95% most extreme expected values (Fig 3a). However, 284 

the slope of the relationship between functional vulnerability and initial functional redundancy was 285 

significantly larger than expected by random chance, as the observed slope was greater than 95% 286 

of slopes in the null distribution (Fig 3b).  287 

 288 
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 289 

Figure 3. Results of null models comparing the observed slope of the relationship between 290 
functional vulnerability and i) initial position on the second axis of functional-trait space, and ii) 291 
initial functional redundancy in the Eastern English Channel (a, b) and Seychelles Islands (c, d). 292 

 293 

Reef-fish community responses to coral bleaching 294 
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In the Seychelles, the first two axes of functional-trait space captured 54% of overall variation in 295 

functional structure among the 129 species (Fig. 2e). The first axis of functional space was 296 

primarily characterized by differences between large-bodied species, facultative species, and 297 

piscivores/carnivores (higher values) vs. planktivores, schooling species, scraping herbivores, and 298 

algal farmers (lower values), while the second axis was characterized by differences between 299 

corallivores, planktivores, pairing, and schooling species (higher values) vs. benthic invertivores, 300 

solitary species, and larger-bodied species (lower values) (Fig. 2e). We found that the distance 301 

moved by each site between the two time periods (1994 and 2005) was significantly correlated to 302 

the initial position of each site along PCoA axis 2, as sites with higher PCoA 2 scores had larger 303 

changes in functional-trait structure (r = -0.60, P = 0.004). We next found that the distance moved 304 

by each site was also significantly and negatively correlated to the initial functional redundancy of 305 

each site, as sites with higher functional redundancy were less vulnerable and more resistant to 306 

changes in functional-trait structure (r = -0.55, P = 0.009). GLM models then ranked depth, 307 

functional redundancy, initial PCoA 2 position, and management status as the most important 308 

independent variables predicting the distance moved by each site in functional-trait space (Fig. 2f-309 

h, Fig. S1, Fig. S2). Distance moved (i.e., functional vulnerability) was higher in shallower sites 310 

and in openly fished sites (Fig. S1, Fig. S2). 311 

Null models indicated that the slope of the relationship between functional vulnerability 312 

and both i) initial PCoA 2 position and ii) initial functional redundancy were significantly larger 313 

than expected by random chance, as the observed slopes were greater than 99% of slopes in the 314 

null distributions (Fig 3c,d).  315 

 316 
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DISCUSSION 317 

To our knowledge, ours is the first extensive study using long-term data to show that functional 318 

redundancy can buffer change in the functional structure of large species assemblages against 319 

environmental disturbances. Past experimental studies and studies from simple ecological systems 320 

have shown that higher levels of functional redundancy can maintain community stability in the 321 

face of environmental change (Rosenfeld Jordan S. 2002; Loreau Michel 2004; Allison & Martiny 322 

2008). However, here we use datasets spanning nearly 25 years to examine changes in large natural 323 

ecosystems in both temperate and tropical environments. Our findings support long-standing 324 

ecological theory that a higher proportion of species supporting similar ecological functions can 325 

generate greater community stability, reducing vulnerability to climatic disturbances (Walker 326 

1992; Rosenfeld Jordan S. 2002; Elmqvist et al. 2003). 327 

 As disturbances in both ecosystems were related to climate warming, our results provide 328 

critical information for future conservation planning and ecosystem management under climate 329 

change. Not only were communities with lower functional redundancy more vulnerable to climate-330 

based disturbances, but dominance by certain functional traits rendered communities particularly 331 

sensitive to disturbance. For example, in the EEC increasing dominance by small pelagics led to 332 

greater shifts in functional structure through time as small pelagic species are highly impacted by 333 

ocean warming and changes in oceanographic processes (Rijnsdorp et al. 2009; Lindegren et al. 334 

2013; Alheit et al. 2014). In the Seychelles, communities more dominated by small, schooling 335 

corallivores and planktivores were more impacted by large-scale coral mortality (Graham et al. 336 

2007; Pratchett et al. 2008; Richardson et al. 2018). Interestingly, in both ecosystems, small, 337 

quickly reproducing species were most impacted by climatic disturbances. This is an interesting 338 

result as fishing down the food web in marine ecosystems generally removes large, long-lived 339 
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species first, leading to communities dominated by smaller, shorter lived species. Thus global 340 

overfishing is likely leading to fish communities dominated by species with climatically sensitive 341 

functional traits with reduced functional redundancy (McLean et al. MEPS) (Jackson et al. 2001; 342 

Micheli & Halpern 2005; Pinsky & Byler 2015). This is alarming as historical human impacts have 343 

likely rendered communities less resilient to the anticipated future impacts of climate change 344 

(Graham et al. 2011). Our results highlight the need to identify trait-environment relationships in 345 

marine ecosystems worldwide in order to anticipate how climate warming might impact current 346 

and future communities through changes in functional-trait composition.  347 

 Beyond biological composition, both depth and salinity change influenced functional 348 

vulnerability in the EEC, while depth and management status influenced vulnerability in the 349 

Seychelles. In the EEC, sites where salinity decreased before and after the disturbance had greater 350 

shifts in functional structure, as decreasing salinity levels can destabilize communities 351 

(Wurtsbaugh & Berry 1990). Decreasing salinity may have driven declines in the abundance and 352 

richness of species with narrow salinity tolerances, resulting in communities more dominated by 353 

euryhaline species (Lappalainen Antti et al. 2000; Maes J. et al. 2005). Communities in shallower 354 

depths were more resistant to change, while deeper communities were more vulnerable, exhibiting 355 

greater ecological shifts. In the EEC, productivity (chlorophyll-a) is highest in shallow areas along 356 

the coast, leading to higher species richness, greater abundance, and more functional redundancy 357 

(Gentilhomme & Lizon 1997; Grioche et al. 1999). While it was not possible to calculate change 358 

in chlorophyll-a before and after the disturbance, we did indeed find that temporally-averaged 359 

chlorophyll-a values were strongly correlated to initial functional redundancy (McLean unpubl 360 

data). In the Seychelles, we found that openly fished sites had greater shifts in functional structure 361 

than marine reserves. Overfishing coral reefs has been shown to reduce ecological resilience and 362 
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increase vulnerability through reductions in both taxonomic and functional diversity, as fishing 363 

quickly erodes key ecological functions (Jackson et al. 2001; Bellwood David R. et al. 2003; Houk 364 

et al. 2017). In contrast to the EEC, communities in shallower depths had higher vulnerability and 365 

lower resistance in the Seychelles. This is in line with previous studies showing that shallower 366 

coral reef communities are more vulnerable to disturbances like bleaching (i.e., greater light 367 

penetration and lower thermal inertia) and storm impacts (Bridge et al. 2013), and that deeper sites 368 

have greater recovery potential (Graham et al. 2015). 369 

Interestingly, higher functional redundancy does not necessarily correspond to higher 370 

overall functional diversity, as functionally simple communities can have high functional 371 

redundancy (Fonseca & Ganade 2001; Mouillot et al. 2014; Casatti et al. 2015). In the Seychelles, 372 

the most impacted sites were actually those with the highest functional diversity, as species in those 373 

communities varied greatly in functional-trait composition. However, species richness was similar 374 

among all sites, suggesting that, although impacted sites were functionally diverse, individual 375 

ecological functions were supported by few species. Additionally it is important to note that the 376 

impact of ecological disturbances and the buffering capacity of functional redundancy are entirely 377 

dependent on the type of disturbance and which ecological functions are affected. For instance, the 378 

least impacted sites in the Seychelles were sites with the lowest levels of small, corallivorous 379 

species. Thus while the functions provided by these species (e.g., shaping coral diversity [Cole 380 

Andrew J. et al. 2008]) were most impacted, these functions were already low or absent in 381 

unaffected sites. However, if the unaffected sites with high functional redundancy have low 382 

response diversity (all species respond similarly to a given disturbance), a future disturbance could 383 

drastically impact those communities (Laliberte et al. 2010; Bhaskar et al. 2018).  384 
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 As with all functional-trait studies, the choice and number of functional traits have major 385 

impacts on the calculation of functional diversity and redundancy (Leps et al. 2006; Violle et al. 386 

2007; Violle & Jiang 2009). For example, communities may have little redundancy along one niche 387 

axes, but high redundancy along another, and contrasting trends in the two axes could mask 388 

redundancy patterns (Spasojevic Marko J. & Suding Katharine N. 2012). However, multiple 389 

functional traits are needed to capture nuances among diverse species assemblages, as 390 

combinations of traits (e.g., habitat type and life history) may act synergistically, leading to higher 391 

or lower disturbance vulnerability (Villéger et al. 2010; Mouillot et al. 2013; Villéger et al. 2017). 392 

We further advocate examination of functional structure and redundancy of large species 393 

assemblages using long time series across ecosystems, species diversity gradients, and spatial 394 

scales. 395 

 396 

Conclusion 397 

Despite wide belief that functional redundancy can buffer communities against the impacts of 398 

environmental change, few studies have provided empirical support in large, natural ecosystems. 399 

Here we found that communities dominated by particular functional traits and communities with 400 

low functional redundancy were more impacted by environmental disturbances, providing strong 401 

evidence for long standing ecological theories. Future studies should examine the influence of 402 

functional structure and redundancy on ecological shifts using a variety of methods. Here, by using 403 

functional-trait space, we directly examined changes in functional trait structure, but additional 404 

methods for quantifying both taxonomic and functional vulnerability are possible. Future studies 405 

should also attempt to identify thresholds of functional trait and functional redundancy values to 406 
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identify tipping points in ecosystem stability. Additionally, future research should examine the 407 

influence of redundancy on community structure not only before and after disturbances, but during 408 

recovery trajectories (Mouillot et al. 2013; Graham et al. 2015; Nash et al. 2016). While not 409 

examined here, our results also have potential implications for ecosystem functioning given the 410 

link between community functional structure and ecosystem processes, and more work is needed 411 

to quantify the impact of functional redundancy on ecological functions. Finally, our work provides 412 

guidance for marine resource management, demonstrating the need to maintain resilient functional 413 

structures and high functional redundancy to conserve biodiversity under climate change. 414 
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 639 

Supplementary Figure 1. Functional space with the movement of each site before and after the 640 
disturbance in both ecosystems. a) Convex hull of functional space in the Eastern English Channel 641 
with the initial position of all sites for the years before the disturbance. b) Arrows showing the 642 
movement of each site in functional space before and after the disturbance. c) Initial position of 643 
each site before the disturbance, with the size of each site scaled by the distance moved in 644 
functional space. a) Convex hull of functional space in the Seychelles Islands with the initial 645 
position of all sites for the years before the disturbance. b) Arrows showing the movement of each 646 
site in functional space before and after the disturbance. c) Initial position of each site before the 647 
disturbance, with the size of each site scaled by the distance moved in functional space. 648 
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 650 

Supplementary Figure 2. Relationship between the most influential environmental factors and 651 
functional vulnerability in the Eastern English Channel (a,b) and Seychelles Islands (c,d). 652 


