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Abstract  10 

To assess the accuracy of individual tree crown (ITC) delineation techniques the same tree 11 
needs to be identified in two different datasets, for example, ground reference (GR) data and 12 
crowns delineated from LiDAR. Many studies use arbitrary metrics or simple linear-distance 13 
thresholds to match trees in different datasets without quantifying the level of agreement. For 14 
example, successful match-pairing is often claimed where two data points, representing the 15 
same tree in different datasets, are located within 5m of one another. Such simple measures 16 
are inadequate for representing the multi-variate nature of ITC delineations and generate 17 
misleading measures of delineation accuracy. In this study, we develop a new framework for 18 
objectively quantifying the agreement between GR and remotely-sensed tree datasets: the 19 
Accuracy of Remotely-sensed Biophysical Observation and Retrieval (ARBOR) framework. 20 
Using common biophysical properties of ITC delineated trees (location, height and crown 21 
area), trees represented in different data sets were modelled as overlapping Gaussian curves 22 
to facilitate a more comprehensive assessment of the level of agreement. Extensive testing 23 
quantified the limitations of some frequently used match-pairing methods, in particular, the 24 
Hausdorff distance algorithm. We demonstrate that within the ARBOR framework, the 25 
Hungarian combinatorial optimisation algorithm improves the match between datasets, while 26 
the Jaccard similarity coefficient is effective for measuring the correspondence between the 27 
matched data populations. The ARBOR framework was applied to GR and remotely-sensed 28 
tree data from a woodland study site to demonstrate how ARBOR can identify the optimum 29 
ITC delineation technique, out of four different methods tested, based on two measures of 30 
statistical accuracy. Using ARBOR will limit further reliance on arbitrary thresholds as it 31 
provides an objective approach for quantifying accuracy in the development and application 32 
of ITC delineation algorithms. 33 

Keywords 34 
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Highlights 36 

1. ARBOR answers the need for a standardised ITC delineation accuracy assessment  37 

2. Similarity of RS-derived and reference trees assessed using biophysical properties  38 

3. Optimised algorithm applied to matching RS-derived and reference tree populations 39 

4. ARBOR quantifies accuracy using biophysical data and data population size 40 

5. ARBOR is a modular framework for the objective assessment of ITC delineations 41 
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1.0 Introduction  42 

Individual tree crown (ITC) delineation is an important technique for many environmental 43 

remote sensing (RS) studies. These types of investigations include data driven activities such 44 

as forest inventories and management, carbon and biomass accounting, tree growth 45 

modelling and many other geo-spatial data applications. The ability to accurately delineate 46 

individual trees from remotely sensed data is essential for many forest monitoring applications 47 

(Eysn, Hollaus et al. 2012, Jakubowksi, Guo et al. 2013, Duncanson, Dubayah et al. 2015, 48 

Wu, Yu et al. 2016, Zhen, Quackenbush et al. 2016). ITC delineation, sometimes referred to 49 

as tree segmentation, is typically associated with the analysis of high resolution optical 50 

imagery or 3D point clouds captured from light detection and ranging (LiDAR). ITC delineation 51 

is a process where different methods, often computational and automated, identify high peaks 52 

in canopy data as the first step in locating individual trees. This phase is followed by a 53 

segmentation procedure, such as watershedding, valley formation or other similar methods, 54 

to determine the locations and crown perimeters of individual trees. Typically, to assess the 55 

validity of ITC delineation a comparison is made with ground reference (GR) tree data. The 56 

comparison requires that individual trees are matched between the two datasets and this 57 

pairing is used to assess accuracy of the ITC delineation. In many studies, Euclidean distance 58 

is used to pair trees from the different datasets. This has the effect of considering the tree-to-59 

tree matching problem only from a plan perspective, and does not account for tree height or 60 

crown area (Yu, Hyyppä et al. 2006, Kwak, Lee et al. 2007, Hladik and Alber 2012, Lu, Guo 61 

et al. 2014, Zhen, Quackenbush et al. 2016, Yu, Hyyppä et al. 2017).  62 

 63 

Additional insights can be obtained through the combination of ITC delineated trees and other 64 

spatial data. For example, canopy height models (CHM) characterise the upper surfaces of 65 

the delineated tree crown area and provide opportunities to calculate biophysical properties 66 

such as tree height or crown area (Rahman and Gorte 2009). Zhen, Quackenbush et al. (2016) 67 

note that validation is a key issue in ITC delineation studies. Typically, validation involves 68 

assessment of the outputs of ITC delineation procedures in terms of the precision and 69 

accuracy of tree locations and biophysical properties (Leckie, Walsworth et al. 2016). 70 

However, there are other issues that complicate the match-pairing ITC delineation, such as 71 

the self-optimising growth habits of trees in woodlands (see supplementary information). Any 72 

resulting ITC delineation anomalies can subsequently lead to the spurious identification of tree 73 

crowns (Kwak, Lee et al. 2007), causing the pairing of trees that should not be present in the 74 

dataset, or otherwise, through the generation of false-positive matches.  75 

 76 
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Problems that occur in the match-pairing process are further compounded when analysing 77 

data population sizes. A significant consideration when matching pairs of trees is the 78 

directionality of the match that is made. Essentially this is the matching of data A to data B in 79 

the matching sequence, or, matching data B to data A. Errors that arise from directionality 80 

differences can result in the same matches not being achieved in both directions, influenced 81 

by the data that is used first as the primary dataset. A solution is bidirectional matching, i.e. 82 

matching A-B then B-A, and selecting the best agreement (Singh, Evans et al. 2015). 83 

However, this approach reduces the data population as the unmatched trees are unassigned, 84 

leading to losses from the dataset. An additional problem is that sorting the order of the data 85 

effects match-pairings, as does the order sequence that the algorithm attempts the pairings 86 

(Holmgren and Lindberg 2013), for example, matching the tallest trees first. Some data 87 

preparation methods sort data by size as part of the processing steps (Kandare, Ørka et al. 88 

2016), however, within tree-to-tree matched-pairing, this may block later trees in the dataset 89 

that would have been a more suitable pairing, as the primary tree is already allocated to a 90 

corresponding tree. GR data frequently contains many smaller and lower canopy trees that 91 

are readily assigned to pairings that are not a suitable match (Holmgren and Lindberg 2013). 92 

Trees that are observed in the GR data and not seen in the ITC delineation are data omissions 93 

as a product of the data population A, not being the same size as the population B or vice-94 

versa. Similarly, commission errors occur where trees are incorrectly assigned to a match-95 

pairing, or assigned to the wrong tree (Holmgren and Lindberg 2013). Typically these errors 96 

are related to the ITC delineation method used.  97 

 98 

Despite the recognised importance of data validation, in a meta-analysis of 210 studies, only 99 

14.3% validated ITC delineation at a forest stand level, 30% validated ITC delineation on 100 

individual trees, and 23.3% at both levels (Zhen, Quackenbush et al. 2016). Significantly, in 101 

32.4% of the studies, no ITC validation was attempted at all. This suggests that there is a 102 

pressing need for a standardised method for evaluating the accuracy of ITC delineation 103 

techniques, which can be applied widely and consistently (Zhen, Quackenbush et al. 2016). It 104 

is also apparent from the literature that no standardised accuracy assessment procedure 105 

currently exists, and where ITC delineation techniques have been evaluated this has been on 106 

the basis of arbitrary metrics or simple linear distance thresholds. Therefore, there is the need 107 

for analytical metrics to quantify the accuracy with which ITC delineations estimate data 108 

population size and tree biophysical properties. The research outlined in this paper describes 109 

a repeatable and transparent solution for validating ITC delineation techniques that can be 110 

applied to individual trees, plots or stands. This paper describes the development of the 111 

Assessment of Remotely-sensed Biophysical Observations and Retrieval (ARBOR) 112 

framework.  113 
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2.0 Aim and Objectives 114 

The aim of this research is to develop a technique for quantifying the accuracy of ITC 115 

delineation methods. This requires improving tree-to-tree match-pairing with metrics that 116 

include additional analytical parameters beyond simple location or linear distance 117 

measurement. Furthermore, metrics are required to find an optimal way in applying the match-118 

pairing to, and achieving the best match for, the overall data population. This approach needs 119 

to be robust to the influence of directionality, data order and data omissions. If fulfilled, these 120 

requirements allow ITC delineation accuracy in RS data to be assessed in an objective 121 

manner. This will be achieved by addressing the following objectives: 122 

 123 

1. Identifying a suitable technique for quantifying the similarity of a tree as represented in 124 

RS-derived and ground reference datasets, using the biophysical properties: tree 125 

location, height and crown area. 126 

2. Determining an optimal algorithm for matching an entire population of trees 127 

represented in both RS-derived and ground reference datasets, avoiding introduced 128 

bias from directionality, data omissions and other similar factors. 129 

3. Developing metrics for quantifying the accuracy of population size and tree biophysical 130 

properties  131 

4. Applying the optimal algorithm and metrics to quantify the accuracy of a variety of ITC 132 

delineation methods applied to RS data of a woodland study site. 133 

3.0 Methodology 134 

The methodology for developing the ARBOR framework directly addresses each of the 135 

objectives outlined above. Objectives 1-3 will be met by development and testing within a 136 

synthetic data environment, to establish the validity of the different analytical elements that 137 

will be used within the ARBOR framework. Following the development of the framework and 138 

validation of the components that will be used in ARBOR, Objective 4 will be met by applying 139 

the ARBOR framework to quantify the match-pairing of real-world data, therefore, providing 140 

proof of concept.  141 

3.1 Quantifying the Similarity of a Tree as Represented in RS-derived and 142 

Ground Reference Datasets 143 

3.1.1 Defining the Biophysical Properties of a tree. 144 

Jing, Hu et al. (2012) state that differentiation between natural tree crowns is influenced by 145 

both the width and depth of the inter-canopy space, in addition to the computationally 146 
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delineated, circular crown shape. Correspondingly, each tree crown in this study can be 147 

considered to have at least a location, height and crown area. It is understood that within 148 

broadleaved trees that there may be a linear distance offset between the central point of the 149 

stem and the highest green tip of the crown, however, usual forestry conventions are to 150 

measure to the highest live point irrespective of any offsetting (West, 2009). To quantify 151 

correspondence between two trees, or more specifically, a tree represented in RS-derived 152 

data and the same tree in the GR data, the metric criteria has to consider spatial proximity, 153 

tree height and overall crown area. Also, for the accuracy comparison to be made on a like-154 

for-like basis, metrics should report successful similarity indices with values of between 0 155 

(impossible) and 1 (certain or identical). Note: In this paper, we have chosen to use GR data 156 

as the reference data against which ITC delineations are validated. However, the ARBOR 157 

framework can use reference data that has been collected using non-field based methods, 158 

such as through manual interpretation of aerial photography. 159 

3.1.2 Limitations of Commonly Used Tree-to-tree Match-pairing Methods 160 

Some tree-to-tree match-pairing agreements are based upon the Euclidean distance between 161 

trees (Yu, Hyyppä et al. 2006), however, this approach has problems that may not be 162 

adequately resolved. For example, the 2D measurement of the planar distance between the 163 

tops of trees assumes that each tree only has a singular apical point. Kaartinen, Hyyppä et al. 164 

(2012) note that additional trees in the lower canopy can lead to omission errors between GR 165 

and ITC delineated trees. Alternatives consider tree-to-tree pairwise-matching from a 3D 166 

model perspective, with linear distance statistics such as the Hausdorff distance algorithm, 167 

used to assess the linear correspondence between two points from different datasets (Yu, 168 

Hyyppä et al. 2006, Yu, Hyyppä et al. 2017, Zhao, Suarez et al. 2018). The Hausdorff algorithm 169 

meets the metric criteria following rescaling the index between 0 and 1, however, due to the 170 

distance between the delineated edges of a tree crown, omission errors can occur. Hausdorff 171 

can be used in data point comparison, but can be influenced by directionality. To counter this 172 

effect, a geometric shape for the crown, such as a circle, has to be used when calculating 173 

Hausdorff.  174 

3.2 Gaussian Overlapping and the Jaccard Similarity Coefficient  175 

The analysis of the overlaps between two Gaussian curves (also known as a Gaussian overlap 176 

model), measures the comparative distance between the two distributions (Nowakowska, 177 

Koronacki et al. 2014). This approach uses the curve centre as the tree location, with the apex 178 

indicating the overall tree height and the area under the curve representing the circular crown 179 

area. A component overlap analysis of the mixed, normal data distributions identifies changes 180 

in the curve location, height and crown area between the overlapping parabolas 181 
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(Nowakowska, Koronacki et al. 2015). A Gaussian overlap models where a single tree, 182 

identified and described in both datasets, can be aligned to a potential match in the opposing 183 

dataset and any similarities in the biophysical properties compared and quantified. Issues 184 

regarding complexities in the biophysical properties of trees are discussed further in 185 

supplementary information.  186 

 187 

To satisfy the analysis criteria, the area of overlap between each Gaussian representation of 188 

the tree’s biophysical properties is assessed. Similar trees achieve greater Gaussian overlap 189 

than non-similar trees. To quantify the overlap as a normalised value, the Jaccard similarity 190 

coefficient is calculated. Jaccard is the quotient produced by the division of the intersection by 191 

the union and measures the observable similarities between two finite data sets. Functionally, 192 

Jaccard is a simple measure of the binary distance between data and describes the presence 193 

or absence of data, as defined at equation (1).  194 

 195 

 
 𝐽(𝐴, 𝐵) =  

|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
=  

|𝐴 ∩ 𝐵|

|𝐴| + |𝐵| − |𝐴 ∩ 𝐵|
 

(1) 

 196 

A perfect match is a Jaccard value of one, while inferior matches decrease Jaccard towards 197 

zero. Due to the infinite nature of the tails on a Gaussian curve, an absolute score of zero 198 

cannot be achieved as an inferior score representing a more heavily degenerated match 199 

always remains mathematically possible.  200 

 201 

Figure 1 uses some examples to demonstrate the Gaussian overlap method and Jaccard 202 

coefficient. Figure 1a shows two synthetic trees with a poor match with differing locations, 203 

heights and overall crown size (Jaccard 0.01). Figure 1b shows an improved commission for 204 

location and crown size; however, some commissioning differences remain (Jaccard 0.25). 205 

Figure 1c shows a close alignment in size and location, with small commission losses in 206 

height, resulting in a close match (Jaccard 0.9), whilst Figure 1d shows a low commission 207 

between height, crown size and location (Jaccard 0.15). Figure 1e shows a close match in 208 

location, but a low match in crown height and size (Jaccard 0.40) and Figure 1f shows an 209 

offset in the location, similar crown size and minor differences in height (Jaccard 0.74).  210 

 211 

 212 
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Figure 1 Gaussian overlap used for measuring data agreement between two data sets, where the 213 
difference between the two shapes is quantified using the Jaccard similarity coefficient.  214 

3.3 Optimal Algorithm for Matching Populations of Trees Represented in 215 

both RS-derived and Ground Reference Datasets  216 

3.3.1 Meta-study of Alternative Match-pairing Methods   217 

Following a review of highly-cited papers from peer-reviewed journals, published 2003-2017, 218 

it is apparent that many different match-pairing methods are used when evaluating agreement 219 

between GR and RS-derived data. These match-pairing methods have been consolidated into 220 

Table 1, where similar methods are grouped together (base matching method, filtered or 221 

thresholded, and sorting priority). These groups are further subdivided into methodological 222 

categories including, for example; data filtering by height, area, distance and angle. Table 1 223 

also shows where a threshold has been applied either to the base or secondary matching 224 

filters. The direction of the match for each method is indicated as; 1) matching the GR to the 225 

RS-derived data, 2) matching RS-derived to the GR data, or 3) attempting a match in one 226 

direction, then in the other (bidirectionality) and selecting the match with the highest 227 

agreement. All of these different matching directions can potentially lead to different pairs of 228 

trees being matched, across the varying permutations. Following the review (Table 1), two 229 

representative-match-pairing (RMP) methods are defined, that replicate common match-230 

pairing methods used in the literature:  231 

 232 

● RMP 1: Hausdorff Distance Algorithm  233 

(Trees paired by distance to one another, the closest achieving a pair) 234 

● RMP 2: Within Neighbourhood, Sorted by Area and within a Height Threshold  235 

(Sort A by area. Define neighbourhood of 21m. Find trees within 5m of one another, 236 

and closest sized crown areas are matched) 237 

 238 

 

a. b. c. 

d. e. f. 
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These two RMP methods were subsequently compared to a new approach (see 3.3.2 239 

Hungarian Combinatorial Optimisation Algorithm) in a test using synthetic tree data (3.4 240 

Testing the Pairwise Matching Algorithms with Synthetic Data).  241 

 242 

Table 1 A meta-study of several match-pairing methods showing the base matching method, and 243 
identifying whether subsequent filters or thresholds are applied. The direction of the match is also shown.244 
  245 

 246 

Notes: A = Ground reference (GR) data. B = RS-derived (RS) data. A->B = GR matched on to RS. B->A = RS 247 
matched on to GR.  A<->B@ = match attempted in both directions and the best match chosen. AXB = match 248 
directionality not described.  249 
 250 

3.3.2 Hungarian Combinatorial Optimisation Algorithm 251 

The Hungarian algorithm (also called the Kuhn–Munkres algorithm or Munkres assignment 252 

algorithm) is described in detail by Kuhn (1955). The Hungarian algorithm was originally 253 

defined to resolve the “assignment problem” in operations mathematics (Kuhn 1955), and has 254 

been used widely in data science, but rarely in RS or environmental studies. In this approach, 255 

the description of the data size and suitability of a match available is used in the algorithm, 256 

meaning the biophysical properties of trees from each dataset; location, height and crown area 257 

are also analysed, thereby meeting the metric criteria. The Hungarian algorithm attempts all 258 

possible pairing combinations for each point in data A against each point in data B and then 259 

vice-versa and outputs the optimal overall match-pairing.  260 
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3.3.3 Quantification of Accuracy with which Delineations Estimate Biophysical Properties 261 

and Population Size  262 

Following the completion of match-pairing and Gaussian overlap assessment two accuracy 263 

metrics were calculated. The match-pairing success is quantified by the average match-264 

pairing similarity index (AMPS). This function is the average match-pairing agreement as 265 

measured using the Gaussian overlap method (3.2 Gaussian Overlapping and the Jaccard 266 

Similarity Coefficient) calculated across all tree pairings. Higher AMPS values indicate a better 267 

overall quality of match for the paired trees. In addition to AMPS, the relative dataset sizes are 268 

also quantified to identify disparities in tree population size in GR and RS-derived datasets, 269 

for example, to show the effects of pairing directionality. The dataset size similarity index 270 

(DSS) is defined as the comparison between the total number of trees in the two datasets A 271 

and B, against the number of match-pairings achieved, expressed as a normalised value. As 272 

with AMPS, high DSS scores are preferred as this indicates similar tree population sizes in 273 

the two datasets.  274 

3.4 Testing the Pairwise Matching Algorithms with Synthetic Data  275 

3.4.1 Synthetic Data Environment 276 

A synthetic environment was created to compare the biophysical attributes of RS trees, using 277 

common tree structure values typically output from ITC delineation. For simplicity, the 278 

synthetic tree (syTree) attributes used were a known location, a predefined crown shape 279 

(circle), and a known crown area. During initial testing a single tree was modelled, syTree A, 280 

where the biophysical attributes of a real-world tree was randomly selected from within the 5th 281 

to 95th percentile of a broadleaved GR tree sample. By taking the biophysical attributes of 282 

syTree A, and using randomised offsetting of syTree A’s location, changing the height and 283 

crown area values, a second tree was created, syTree B. The biophysical attribute alterations 284 

were recorded as ‘known changes’ between the two syTree populations. In subsequent testing 285 

phases, similar to the work of Romanczyk, van Aardt et al. (2013), a synthetic environment 286 

was used to simulate a complex woodland area containing 500 new syTrees (syTree A500). As 287 

before, the syTree A500 population was subject to randomised location, height and crown area 288 

changes, further creating a secondary population, syTree B500. This produced trees ranging 289 

from 3 to 14m tall, with crown diameters between 0.75 and 1.4 times the size of the sampled 290 

GR tree average. This procedure ensured that all 500 syTrees had intra- and inter-population 291 

biophysical attribute differences. The recorded alterations were used as a known changes 292 

index for measuring predicted differences between syTree A500 and syTree B500, against the 293 

observed differences. Variation from the known changes index identified commission error. 294 

Figure 2 depicts 500 syTrees, showing a) tree canopies in the predicted reference phase, and 295 
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b) following data noise and population losses. The syTree crowns are organised by height, 296 

replicating the presentation of the data as though observed in a CHM.  297 

 298 

  
Figure 2  500 synthetic trees representing ground reference (GR), and RS-derived LiDAR datasets. 299 

a) models 500 GR trees, and b) represents RS-derived trees with increased noise and tree 300 
losses. This replicates typically observed effects in aerial LiDAR derived canopy height 301 
models.  302 

3.4.2 Introduced Data Noise and Population Losses  303 

Sensitivity testing between the syTree populations was undertaken by increasing data noise 304 

levels and population losses, to intentionally imbalance the datasets. The syTree A population 305 

remained unchanged while the syTree B population received randomised changes in location, 306 

height and crown area on an incremental scale (1-5). Each randomised variable used an 307 

individual set of Gaussian curves replicating the common commission problems that occur 308 

between RS-derived and GR datasets. Figure 3 illustrates changes in the location variable as 309 

each biophysical parameter had a unique set of curves. The biophysical properties of the 310 

syTree B population were modified by +/- of a random sample, within the appropriate 311 

distribution, relative to the prescribed noise level (Table 2). Data population losses were 312 

simulated by removing a randomised amount in incremental steps of 10% of the dataset up to 313 

a maximum of 50% removal. The introduction of data noise and loss from the tree populations, 314 

was applied across all iterations of match-pairing algorithms, to test the robustness of the 315 

different pairing methods. 316 

 317 

 

a. b. 
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 318 

Figure 3  An example of Gaussian curves demonstrating the change on data distribution and 319 
population density for synthetic tree data. This example represents the change in location 320 
data with the x-axis equating to metres offset. This method intentionally introduces data 321 
noise to a remote sensing dataset of synthetic trees. 322 

 323 

Table 2 Introduction of data noise following modification of the normal distribution and standard 324 
deviation (SD) effect on the data population relative to data noise levels. 325 

Data Noise Level Population (%) by Standard Deviation (SD) 

1 SD1 = 68% +/-1, 95% +/-2, 99% +/-3 

2 SD2 = 68% +/-2, 95% +/-4, 99% +/-6 

3 SD3 = 68% +/-3, 95% +/-6, 99% +/-9 

4 SD4 = 68% +/-4, 95% +/-8, 99% +/-12 

5 SD5 = 68% +/-5, 95% +/-10, 99% +/-15 

 326 

3.4.3 Results of Pairwise Matching Tests 327 

To measure the tolerance between the predicted reference (dataset A) and observed values 328 

(dataset B), normalised root mean squared error (NRMSE) was calculated for each match-329 

pairing method; RMP1 (Hausdorff distance), RMP2 (neighbourhood and area), and a new 330 

method, Hungarian with Gaussian overlap (Figure 4a-f). NRMSE describes the distance of the 331 

residuals from the predicted 1:1 line on a normalised scale (Figure 4a-c). This quantifies the 332 

match-pairing performance against the expected known changes index. Low NRMSE scores 333 

are preferable to high scores, hence within Figure 4a-c the scale bar is inverted. Each match-334 

pairing method was tested with incremental data noise (level 0-5), and data population losses 335 

(0-50%). A ratio of matched-pairs was calculated for each data population (Figure 4d-f). For 336 

example, if 50 trees from 500 is paired, this achieves a paired ratio of 0.1, while pairing 450 337 

trees achieves a paired ratio of 0.9.  338 

 339 

Figure 4a establishes that RMP1, the Hausdorff distance match-pairing method, at noise level 340 

0.25, achieves ~0.6 NRMSE. Furthermore, a small increase in the noise level to 0.5, 341 

significantly reduces the efficacy of the RMP1 method in achieving match-pairing to ~1.0 342 

NRMSE. This is a uniform response across all additional levels of noise and all combinations 343 
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of data population losses. In Figure 4d, the paired achieved measure for RMP1, shows a 344 

paired ratio score of 1.0 across all combinations of noise and loss. This unidirectional method 345 

demonstrates a complete data population pairing between the A and B datasets, where the 346 

matching is completed in the direction of B-A.  347 

 348 

Figure 4b & e shows the RMP2 match-pairing method (neighbourhood and area). In 349 

comparison to Figure 4a & d, there is an uplift in results, with ~0.0 NRMSE achieved at 0 noise 350 

and 0% loss. Within Figure 4b the NRMSE score is maintained across the same level of data 351 

noise. However, a gradual increase in data noise up to level 1 rapidly diminished the NRMSE 352 

to ~0.6, at the 0% loss level. The trend follows throughout that as noise and loss increases, 353 

the NRMSE results indicate a worsening match-pairing performance. This continues to noise 354 

level 1.5, where the NRMSE values across all amounts of data loss are between ~0.9 to ~1.0 355 

NRMSE. Figure 4e indicates that very low levels of noise is tolerated throughout all 356 

permutations of data losses (1.0 NRMSE at noise level 0). Only marginal increases in data 357 

noise, to 0.25, rapidly reduce the pairing ratio to ~0.6. At the point of noise level 1 the paring 358 

ratio has decreased to ~0.1 across all permutations. At noise level 2, the pairing ratio is 359 

reduced to 0.0. Figure 4e demonstrates this bidirectional method achieves a full pairing ratio 360 

of 1.0 across all data losses to 50% at noise level 0. A marginal increase in noise to 0.25 361 

reduces the paired matching ratio to ~0.6 across all losses. This rapid decrease continues to 362 

noise level 1, where only a ~0.2 paired ratio is achieved, and by noise level 1.5, the paired 363 

ratio further reduces to ~0.0. Therefore, this bidirectional routine is demonstrably affected by 364 

the data losses applied.  365 

 366 

Figure 4c and f shows the new approach of using the Hungarian and Gaussian overlap match-367 

pairing method. Within Figure 4c this method maintains 0.0 NRMSE across all data loss levels, 368 

up to the 0.5 noise level. At noise level 1, the analysis shows a low reduction to ~0.1 NRMSE 369 

across all data loss levels to 50%, which is a significant improvement over the previous two 370 

match-pairing methods at the same noise level. There is a further increase to ~0.2 NRMSE at 371 

noise level 2, again, this is broadly spread across all loss levels. Figure 4c shows that from 372 

this noise level, the metric achieves low incremental rises in NRMSE scores, with the method 373 

achieving ~0.6 NRMSE at noise level 3. This continues up to the highest noise level of all of 374 

the match-pairing methods, where at noise level 3.75 a ~1.0 NRMSE is reached. Figure 4f 375 

identifies that throughout all combinations of increasing data noise, the Hungarian and 376 

Gaussian overlap match-pairing method maintains the ideal paired ratio 1.0, withstanding all 377 

effects of data loss up to 50%. This bidirectional, optimised method outperforms the RMP2 378 

method in paired ratio results and equals the paired ratio output for RMP1. 379 
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Figure 4 A combination of three data match-pairing methods being tested for the ability to achieve 380 

predicted data pairings between synthetic GR and RS-derived data. Each pixel in plots a-381 
c represents an assessment of normalised root mean squared error (NRMSE) at differing 382 
levels of data noise and loss. Plots d-f represent the effect of the match-pairing on the 383 
data population, expressed as a pairing ratio.  384 

3.4.4 Summary Observations and Recommendation 385 

RMP1 (the Hausdorff distance method), for almost all of the possible data noise and loss 386 

combinations, fails to provide reliable match-pairings against the known changes. The method 387 

computes ~1.0 NRMSE from very low levels of data noise (Figure 4a). The inability to 388 

accommodate this noise is due to the way the Hausdorff algorithm uses a linear distance 389 

measure between the edges of two shapes. In this application, this is the outer edges of two 390 

ITC tree crowns. Correspondingly, the Hausdorff distance score reduces the closer the crowns 391 

are to one another, before the crown edges touch when reaching a ‘union’. The situation 392 

changes, however, at the point that the crown edges begin to intersect (Marošević 2018). 393 

Where a smaller crown passes inside a larger crown, as is typical when aligning GR and RS-394 
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derived trees, the Hausdorff distance increases as the crown edges begin to move away from 395 

each other and the crowns wholly overlap, despite the crown centroids not yet being aligned 396 

(Marošević 2018). This makes the Hausdorff distance algorithm unreliable in match-pairing 397 

using circular crowns. In considering the data population, Figure 4d demonstrates a paired 398 

ratio of 1.0 for the unidirectional method. As the match-pairing runs, the algorithm seeks 399 

matches for all trees within the response dataset B. When all the matches in B are filled against 400 

A, the algorithm is completed and returns the ratio 1.0 (100% matched). Achieving the paired 401 

ratio of 1.0 is maintained up to the 50% data loss, despite there being up to 50% remaining 402 

unmatched trees in the A dataset. This highlights that as the method matches in a single 403 

direction, false-positive results can be reached when data size is not reported.  404 

 405 

RMP2, the neighbourhood and area match pairing method, demonstrates an improved 406 

performance when compared to RMP1 (Figure 4b & e). However, there is a rapid reduction in 407 

the ability of this method to accurately achieve the predicted levels of match-pairing after the 408 

introduction of very low levels of data noise (Figure 4b). This is a consequence of the 409 

neighbourhood and area thresholds that limit the amount of available matches. As shown in 410 

Figure 4b, the threshold effect is compounded rapidly with increasing data noise and 411 

population loss. Notably, Figure 4e demonstrates that despite the bidirectional matching 412 

routine, the pairing ratio rapidly decreases to ~0.1, (~50 trees) at noise level 1.5. During 413 

bidirectional matching, A is matched to B, then B to A, and the best match retained (A=B). 414 

However, the implication is that the match-pairing may not necessarily occur with the same 415 

trees, for example, A matches to B, but B matches to a third tree (B=C), therefore A≠B, so A 416 

is discarded without a match. This effect, and the influence of up to 50% data losses, means 417 

that the bidirectional, RMP2 method, artificially reports acceptable levels of matches only with 418 

the reduced numbers of trees that remain. Significantly, the number of true matches achieved, 419 

as demonstrated by the paired ratio is very low (Figure 4e).  420 

 421 

The new Hungarian and Gaussian overlap match-pairing method provides the highest levels 422 

of agreement with the predicted measures, including into the highest levels of data noise 423 

(Figure 4c). The final NRMSE values are measured at more than twice the noise level 424 

achieved than RMP2. RMP1 reduced to ~1.0 NRMSE at noise level 0.5, while RMP2 achieved 425 

~1.0 NRMSE at noise level 1.5. However, the Hungarian and Gaussian match-pairing method 426 

continues to achieve ~0.6 NRMSE at noise level 3, and finally reaching ~1.0 NRMSE at noise 427 

level 3.75. This indicates that at more than double the noise level of the next best performing 428 

method, the Hungarian and Gaussian method is considerably more robust to the influence of 429 

improper matches. The stability of this method is further demonstrated in Figure 4f, where the 430 

match-pairing method returns a paired ratio of 1.0 across all levels of data noise, and data 431 
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losses. This is due to the optimised, bidirectional nature of the Hungarian algorithm. The 432 

algorithm attempts to pair all possible combinations of each data point in A, with all possible 433 

combinations of points in B, then similar to the bidirectional approach, the process is repeated 434 

visa-versa. However, in the Hungarian algorithm, the routine searches for a match-pair from 435 

the opposing dataset for every individual data point within the primary data, considering every 436 

possible data point in the opposing dataset, and attempting all possible parameter 437 

combinations before the best match is achieved. Therefore, this method achieves a true-438 

positive match from all available options, and a 1.0 paired ratio score for the entire data 439 

population.  440 

 441 

In summary, within the analysis framework conducted in a synthetic environment, the 442 

Hungarian and Gaussian curve match-pairing is demonstrated as being the most effective in 443 

accurately resolving the match-pairing problem between GR and RS-derived data. Therefore, 444 

following the metrics development and analysis phase, the Hungarian and Gaussian curve 445 

match-pairing method is the recommended approach for use in quantifying match-pairing 446 

agreement with real-world data.  447 

3.5 The ARBOR Framework 448 

Following the findings of the analysis and results above, the final implementation of the 449 

ARBOR framework is illustrated at Figure 5. This structure defines the developmental phase 450 

output with a simple, worked example of how the AROBR framework would interact with two 451 

datasets representing a sample of GR trees (n=100), and RS-derived trees for the same area 452 

(n=60).  453 

 454 
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 455 

Figure 5 A working example of the ARBOR framework workflow for the quantification of match-456 
pairing agreement between remote sensing derived and ground reference data. Notes: 457 
AMPS = averaged matched-pairing similarity index, DSS = dataset size similarity index 458 

3.6 Demonstration of ARBOR for Evaluating ITC Delineations  459 

To demonstrate the principal of the ARBOR framework for quantifying agreement between 460 

GR and RS-derived data, the model described in Figure 5, was applied to a large, broadleaved 461 

woodland study site that had been scanned by a fixed-wing aircraft, generating ALS LiDAR 462 

and digital photography data, and contained twenty-six, 20x20m GR plots, that were manually 463 

surveyed with biophysical tree attributes measured and recorded (see supplementary 464 

information).  465 

 466 

The GR plots were identified in the LiDAR data and CHMs for each GR plot was created. Each 467 

GR plot was delineated using four different methods. A technician experienced in both manual 468 

tree surveying and remote sensing undertook manual ITC delineation (ITCMAN) by digitising 469 

vector polygons in ESRI ArcGIS, using a similar approach as described in Brandtberg and 470 
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Walter (1998). The polygon followed tree crown edges on the CHM, defining crown outlines, 471 

crown areas and location centroids. Inverse watershed ITC delineation (ITCIWD) is a frequently 472 

used technique (Kwak, Lee et al. 2007, Jing, Hu et al. 2014). ITCIWD identifies valleys (gulleys), 473 

and in a top-down approach, locates tree crowns edges where adjacent tree crowns meet. 474 

This delineation procedure produces a network of connected valleys with the ITC IWD delineated 475 

crowns as ‘islands’ between the valleys, and outputs a vector-defined crown edge, location 476 

and crown area (Kwak, Lee et al. 2007, Jing, Hu et al. 2014). A variable limit local maxima 477 

ITC delineation algorithm, incorporating metabolic scaling theory (MST) predictions to remove 478 

data noise (ITCMST), was also used (Swetnam and Falk 2014). The ITCMST method initially uses 479 

inverse watershedding delineation, but refines tree locations and assignment with MST, 480 

outputting individual tree locations, crown areas, and tree heights. Finally, a photogrammetric 481 

ITC delineation technique (ITCPHO) was applied to high resolution optical imagery to define 482 

tree crown boundaries and locations. For all ITC delineation methods the resulting vector 483 

polygons provide tree crown location, centralised height points, and circular shaped tree 484 

crowns. 485 

3.6.1 The Results of Applying ARBOR to RS-derived ITC Delineations 486 

The delineation techniques ITCMAN, ITCIWD, ITCMST and ITCPHO were individually analysed 487 

against the GR data using the ARBOR framework, where Gaussian overlap replicates the 488 

biophysical characteristics of trees and defines the AMPS (averaged match-pairing similarity 489 

index) and DSS (dataset size similarity index) to optimise pairwise matching and to measure 490 

data population correspondence. Figure 6 demonstrates that the four ITC delineation 491 

techniques achieved varying levels of match-pairing agreement.  492 

 493 

Figure 6  ARBOR scores comparing the match-pairing success between four different ITC 494 
delineation techniques acquired from aerial LiDAR data with ground reference data over 495 
26 survey plots.  496 

 497 
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ITCMAN and ITCIWD have the highest AMPS values, indicating that these delineation techniques 498 

have a similar level of accuracy (Table 3). The ITCMST delineation also achieved a level of 499 

accuracy commensurate with the ITCMAN and ITCIWD methods, although this was marginally 500 

lower. The interquartile range (IQR) of the AMPS is similar for all four ITC methods. All four 501 

methods show marginal positive skewing in the AMPS values indicating a majority of results 502 

are to the upper end of the IQR, and that the median result is closely aligned to the first quartile 503 

(1Q) results. 504 

 505 

The ITCMAN achieved the highest DSS values indicating the highest overall level of accuracy 506 

in measuring biophysical tree attributes. For the automated delineation techniques, ITC IWD, 507 

ITCMST and ITCPHO achieved lower DSS values of 0.26, 0.29 and 0.1 at the median 508 

respectively. The ITCMAN indicates a large Q3 range to the maximum (~10%). Overall, ITCIWD, 509 

ITCMST and ITCPHO show largely balanced distributions in their respective DSS IQR. The ITCPHO 510 

achieved the lowest overall ARBOR scores in both AMPS and DSS, when compared against 511 

the other delineation techniques.  512 

 513 

In all of the results for both AMPS and DSS values across all four delineation techniques show 514 

the mean, visualised as a circle, is greater than the median line (Figure 6). This indicates there 515 

is a longer upper tail, showing a positive skew to these results. This also shows that the median 516 

result is closely aligned to the 1Q. The only exception is the DSS mean for the ITCMST where 517 

both the mean and median are closely aligned (Figure 6). 518 

 519 

Table 3 Quantification of ARBOR framework scores for four individual tree crown (ITC) 520 
delineation techniques, when compared to known tree location, height and crown areas 521 
of ground reference tree data.  522 

   ARBOR Framework (%) 

  AMPS  DSS 

Delineation Q1 Med Mean Q3 Min Max Q1 Med Mean Q3 Min Max 

ITCMAN 0.51 0.56 0.57 0.61 0.46 0.66 0.25 0.34 0.38 0.43 0.21 0.69 

ITCIWD 0.52 0.56 0.58 0.61 0.43 0.68 0.22 0.26 0.29 0.30 0.11 0.38 

ITCMST 0.46 0.52 0.53 0.56 0.42 0.68 0.23 0.29 0.30 0.35 0.09 0.46 

ITCPHO 0.36 0.42 0.43 0.47 0.26 0.56 0.07 0.10 0.12 0.15 0.02 0.25 
Notes: AMPS = averaged matched-pairing similarity index, DSS = dataset size similarity index, MAN = manual, IWD = inverse watershedding, MST 523 
= variable limit maxima with metabolic scaling theory, PHO = photogrammetric method. 524 
 525 

The application of ARBOR to RS-derived ITC delineation and GR data, demonstrates how the 526 

framework can quantify differences in ITC delineation techniques, and allows a discriminatory 527 

assessment for identifying the ITC delineation technique which would achieve the highest 528 

levels of accuracy for the data user.  529 
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4.0 The Significance of the ARBOR Framework 530 

Culvenor (2002) states that achieving the successful delineation of trees is problematic. 531 

Outlining trees from homogenous groups, without explicitly quantified GR data can lead to 532 

repeated errors. The aim of this study was to develop a framework for objectively quantifying 533 

the agreement between two datasets, focussing on common commission errors in RS data, 534 

with increased data noise and data population differences. The ARBOR framework was 535 

developed and then applied to real-world data to quantify the commission agreement between 536 

four different ITC delineation techniques and GR datasets (Figure 6). This type of analysis is 537 

frequently absent from RS studies that utilise ITC delineation techniques, which instead, rely 538 

upon arbitrary height or other cut-off thresholds to infer the level of agreement (Næsset 2002, 539 

Listopad, Drake et al. 2011, Hyyppa, Yu et al. 2012). However, the findings from this research 540 

indicates that simple measures, thresholding and not accounting for the biophysical 541 

parameters of trees leads to low levels of true-positive match-pairing between GR and RS-542 

derived data (Figure 4). 543 

 544 

Throughout Figure 4a-f, there is a general tendency of higher match-pairing performance at 545 

lower noise levels, with a diminishing of NRMSE as noise levels increase. Concurrently, 546 

increasing data loss, from 0 to 50%, further impacts on the efficacy of the match-pairing. In all 547 

cases, noise affecting the data has the greatest effect, while data loss, less so. What is clear 548 

is that introducing data noise alters the biophysical parameters that the trees are being 549 

matched on, and therefore, assessment of these parameters should always be included as 550 

variables when seeking ITC delineation agreement with GR data. Figure 4a-c shows that 551 

match-pairing methods are sensitive to shifts in the biophysical tree structure under analysis. 552 

The data losses, or differences in tree population numbers between the two datasets, has a 553 

different effect. Where data in the observed dataset B (e.g. LiDAR) has fewer trees, poorer 554 

matches are achieved as the limited tree population will have greater tree numbers available 555 

for matching in the opposing dataset A (e.g. GR). Using some methods, such as Hausdorff 556 

distance, unmatched tree data is discarded from the analysis when all trees in dataset B are 557 

matched. Without measuring the dataset size, the match-pairing analysis declares a 558 

successful match even where there are fewer trees in one set than the other. This creates a 559 

false positive result, where changes in the data population and quantification of the unmatched 560 

pairings is not reported (Figure 4d-e). Furthermore, this analysis has shown that the frequently 561 

used match-pairing method, Hausdorff distance, significantly underperforms in reaching 562 

agreement between GR and RS datasets, particularly when exposed to increasing data noise 563 

and losses, as readily occurs in real-world RS data (Figure 4a & d). However, through the 564 
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creation of the ARBOR framework, a demonstrably robust framework has been established to 565 

quantify agreement between GR and RS-derived data.  566 

 567 

The approach used to develop the ARBOR framework was similar to Ørka, Næsset et al. 568 

(2009), where a synthetic testing environment was used to replicate complex RS tree datasets, 569 

with naturally occurring variations in tree size, shape and location. During early iterations of 570 

metric testing, it was recognised that each tree in the two datasets must achieve a bilateral 571 

matching agreement. However, this was problematic as it was observed that this lead to 572 

‘hugging pairs’ within the data assignment. Specifically, where once assigned a matched pair, 573 

e.g. SYTree A1 to SYTree B1, the assignment excluded any other potential match even where 574 

a subsequent potential match was better suited. Further analysis showed that the order of the 575 

match-agreement process is a relevant factor in achieving high agreement match-pairing. To 576 

overcome this problem, the Hungarian combinatorial optimisation algorithm was used to 577 

search through all the potential combinations in the parallel dataset. An advantage of the 578 

Hungarian algorithm is the optimising nature of the routine where the algorithm cannot reach 579 

completion with an unsuitable data assignment. Therefore, the algorithm attempts all possible 580 

data combinations between the two datasets and completes only when the fullest level of 581 

agreement is reached.  582 

 583 

The AMPS index quantifies the similarity between the datasets as a measure of the 584 

biophysical tree properties agreement, represented as Gaussian overlap (Figure 1), while the 585 

DSS index provides a measure of population size estimates from ITC delineations. Contrary 586 

to the views of Kaartinen, Hyyppä et al. (2012), who state that the comparison of delineation 587 

results between different datasets cannot be achieved due to the variability in crown structures 588 

of different species, this research demonstrates that by using GR representations of trees as 589 

simple objects (with location, height and area), and matching these objects to ITC delineations 590 

using a Gaussian curve model and the Hungarian algorithm, accuracy assessment becomes 591 

possible (Figure 6). Therefore, the ARBOR framework provides a new opportunity for 592 

quantifying the confidence of ITC delineation techniques in RS investigations. Figure 6 and 593 

Table 3 demonstrate that recommendations can be given about the efficacy and suitability of 594 

different ITC delineation techniques applied to remotely-sensed data. We can define optimal 595 

ITC delineation methods, as shown by the AMPS and DSS values calculated within the 596 

ARBOR framework.  597 

 598 

In Figure 6 the AMPS and DSS scores appear to be low for all delineation techniques, given 599 

that they could potentially rise to a value of 1 in the case of perfect matches. In order to explain 600 

the low scores shown in Figure 6, it is worth noting that our reference data was collected in 601 
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the field and all trees >5cm DBH were recorded, meaning that many trees may have been 602 

understorey trees or not exposed as full crowns at the top of the forest canopy. Hence, the 603 

low DSS scores are likely to represent the large number of understory trees shadowed by 604 

more dominant trees and therefore not clearly defined in the LiDAR data. Low AMPS scores 605 

reflect the differences in biophysical properties as expressed in GR and ITC delineations and 606 

this may be explained in part by the errors in both field and ITC delineation methods, as 607 

discussed previously. For example, it is well recognised that penetration of LiDAR signals into 608 

the tree canopy can result in an underestimation of tree height, which may be inconsistent 609 

between tree of differing species and crown characteristics (Næsset, 1997). Furthermore, 610 

trees exhibit a natural structural variance which Mandelbrot (1982) notes is sculpted by 611 

‘chance, irregularities and non-uniformity’. Low AMPS scores are reflective of the natural 612 

complexities that are observed in tree crown structure, which may be difficult to detect in the 613 

simplified descriptions of crown geometry in both field and ITC delineation data. 614 

 615 

When matching reference data to ITC delineations there can be data disparities in both 616 

directions, e.g. several small adjacent trees can be delineated as one large tree in the ITC and 617 

vice versa. ARBOR matches trees in both directions, from reference to ITC delineation and 618 

again in the opposite direction. This approach means that a quantification of the errors can be 619 

made in the examples highlighted above. Where there is a lack of matching it follows that there 620 

are lower AMPS and DSS scores. For example, where 1 large whole tree in the reference data 621 

is matched to an incorrectly identified tree in the ITC delineation data which is actually only a 622 

subcomponent of the large tree canopy, the AMPS score will be lower due to poor 623 

correspondence in the biophysical properties of the matched trees. As another example, 624 

where many smaller trees in the reference data have been erroneously identified as one large 625 

tree in the ITC delineation, only one of the small trees will be matched to the ITC data; this will 626 

depress the DSS score due to the numbers of trees in each dataset being poorly matched. 627 

The ARBOR tool can be used to isolate individual occurrences of mis-agreement between 628 

reference and ITC delineations. This allows a user to investigate the reasons for this mis-629 

agreement and implement appropriate improvements in the ITC delineation procedure. 630 

 631 

The principal emphasis of this work was to enable the quantification of pairwise match 632 

agreement between GR and RS-derived datasets. However, we also recognise there are 633 

opportunities for the ARBOR framework to quantify other types of data agreement, for 634 

example, tree delineations derived from aerial photography matched with those from aerial or 635 

terrestrial LiDAR. Due to the modular nature of the ARBOR framework, it can be adapted, as 636 

is required in future studies, to include a range of different match-pairing metrics not 637 

incorporated into this study and to generate alternative statistical measures of ITC delineation 638 
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accuracy. Furthermore, in this study the ARBOR framework was used for quantifying the 639 

accuracy of ITC delineation in a complex semi-natural temperate broadleaved woodland. 640 

Given the demonstrable robustness of the tree matching technique and sensitivity of the 641 

accuracy metrics, the ARBOR framework holds potential as an objective and transferable tool 642 

that can be applied across the full range of forest types.  643 

 644 

To enable the distribution and further application of the ARBOR framework, a portal has been 645 

developed to allow the uploading and analysis of match-pairing data, to provide objective 646 

quantification of the accuracy of ITC delineations. <<<NOTE for Editor/reviewers: a fully 647 

functioning site with a flexible user interface will be up and running at the time of this paper 648 

being published and the URL will be inserted at this point in the manuscript >>> 649 

5.0 Conclusion 650 

It is recognised that achieving accurate ITC delineation is a difficult task, particularly in 651 

broadleaved tree crowns. Currently there are no standardised techniques or measures of the 652 

amount of agreement between RS-derived and GR datasets. Many potential errors arise in 653 

the alignments of these data, however, a common approach to addressing these errors is to 654 

apply arbitrary cut-off thresholds. These thresholds are intended to determine whether the 655 

same individual tree is identified within the two different datasets, but there are limitations in 656 

these approaches, particularly as some match-pairing methods can lead to false-positive 657 

results. Furthermore, the reporting of ITC delineation accuracy is limited in general. Through 658 

the use of a synthetic test environment, an optimised algorithm was identified for matching 659 

RS-derived and GR tree populations and statistical metrics were developed for quantifying 660 

ITC delineation accuracy based on biophysical attributes and data population size. These 661 

methods were incorporated into the ARBOR framework which provides a practical approach 662 

for achieving and quantifying match-pairing agreement between RS-derived and GR datasets. 663 

Therefore, the ARBOR framework is proposed as a standardised solution for future ITC 664 

delineation accuracy assessment. 665 

6.0 Supplementary Information 666 

Supplementary information is included with this submission.  667 
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9.0 List of Figure Captions 775 

 776 

Figure 1 Gaussian overlap used for measuring data agreement between two data sets, where the 777 
difference between the two shapes is quantified using the Jaccard similarity coefficient.  778 

 779 

Figure 2  500 synthetic trees representing ground reference (GR), and RS-derived LiDAR datasets. 780 
a) models 500 GR trees, and b) represents RS-derived trees with increased noise and tree 781 
losses. This replicates typically observed effects in aerial LiDAR derived canopy height 782 
models. 783 

 784 

Figure 3  An example of Gaussian curves demonstrating the change on data distribution and 785 
population density for synthetic tree data. This example represents the change in location 786 
data with the x-axis equating to metres offset. This method intentionally introduces data 787 
noise to a remote sensing dataset of synthetic trees. 788 

 789 

Figure 4 A combination of three data match-pairing methods being tested for the ability to achieve 790 
predicted data pairings between synthetic GR and RS-derived data. Each pixel in plots a-791 
c represents an assessment of normalised root mean squared error (NRMSE) at differing 792 
levels of data noise and loss. Plots d-f represent the effect of the match-pairing on the 793 
data population, expressed as a pairing ratio. 794 

 795 

Figure 5 A working example of the ARBOR framework workflow for the quantification of match-796 
pairing agreement between remote sensing derived and ground reference data. Notes: 797 
AMPS = averaged matched-pairing similarity index, DSS = dataset size similarity index 798 

 799 

Figure 6  ARBOR scores comparing the match-pairing success between four different ITC 800 
delineation techniques acquired from aerial LiDAR data with ground reference data over 801 
26 survey plots.  802 

 803 


