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Abstract

Instrumental variable methods allow unbiased estimation in the presence of unmeasured con-
founders when an appropriate instrumental variable is available. Two-stage least-squares and
residual inclusion methods have recently been adapted to additive hazard models for censored sur-
vival data. The semi-parametric additive hazard model which can include time-independent and
time-dependent covariate effects is particularly suited for the two-stage residual inclusion method,
since it allows direct estimation of time-independent covariate effects without restricting the ef-
fect of the residual on the hazard. In this article we prove asymptotic normality of two-stage
residual inclusion estimators of regression coefficients in a semi-parametric additive hazard model
with time-independent and time-dependent covariate effects. We consider the cases of continuous
and binary exposure. Estimation of the conditional survival function given observed covariates is
discussed and a resampling scheme is proposed to obtain simultaneous confidence bands. The new
methods are compared to existing ones in a simulation study and are applied to a real data set.
The proposed methods perform favourably especially in cases with exposure-dependent censoring.

1 Introduction

Instrumental variables (IV) can be used in regression modelling to avoid bias from unmeasured con-
founding or dependent measurement error in covariates by providing a source of exogenous variation
(Angrist et al., 1996). These methods are also popular in epidemiology in the analysis of observational
studies. In randomized clinical trials with survival endpoints unmeasured confounding may occur as
a result of non-compliance, e.g. when patients switch to salvage treatment after a progression of the
disease. Applying naive analysis methods in such circumstances may result in severe bias (Zeng et al.,
2012).

Two-stage IV methods for duration data in econometrics have been proposed by Bijwaard and
Ridder (2005). Estimation of survival probabilities under treatment non-compliance using IV methods
was considered by Nie et al. (2011). Baker (1998) estimates life years saved using IV methods in the
context of all-or-none compliance. Two-stage IV methods for parametric Bayesian models have been
developed by Li and Lu (2015), and non-parametric binary IV methods for competing risks data by
Richardson et al. (2016). The additive hazard model (Aalen, 1989) is particularly amenable to IV
methods, since it resembles the linear regression model, while the popular Cox proportional hazards
model is inappropriate for IV methods as shown by Tchetgen Tchetgen et al. (2015).

For additive hazard survival models with censored data several two-stage methods employing IVs
have been developed. In the two-stage least squares (2SLS) method the first stage consists of a linear
model for the confounded exposure given the IV and other observed covariates. In the second stage an
additive hazard model is fitted with the observed exposure being replaced by the predicted exposure
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from the first stage regression. Alternatively, the two-stage residual inclusion (2SRI) method (Terza
et al., 2008) keeps the observed exposure in the model, but includes the estimated first stage residual
as additional covariate in the model.

For the 2SRI method the first stage does not need to be a linear model, but additional assumptions
about the unobserved confounding are required (Tchetgen Tchetgen et al., 2015). Essentially, in the
case of continuous exposure, it is required that the unobserved confounding is a linear function of
the first stage residual plus an independent error term. In the case of binary exposure we must be
able to write the unobserved confounder as the sum of the conditional expectation of the unobserved
confounder given exposure, instrument and observed covariates and an independent error term. These
assumptions will be detailed in Section 2.

A 2SLS method for a continuous instrument for the semi-parametric additive hazard model of Lin
and Ying (1994), where all covariate effects are assumed to be time-independent, was developed by Li
et al. (2015). A similar 2SLS method for continuous instruments was proposed by Tchetgen Tchetgen
et al. (2015) for the non-parametric additive hazard model of Aalen (1989), where all covariate effects
are allowed to be time-dependent. For the same model they also develop a 2SRI method for binary
and continuous instruments. However, asymptotic results are only provided for the 2SLS method.
Work on IV methods for the additive hazard model has focused on the case of only time-independent
covariate effects. The semi-parametric additive hazards model of McKeague and Sasieni (1994), which
allows time-independent and time-dependent effects has received less attention. We argue that this
model is more appropriate for the 2SRI method, since it does not require the effect of the residual
included in the second stage model to be time-independent. At the same time the exposure effect can
still be modelled as time-independent, which may be more useful to summarise treatment effects in a
randomized trial.

While the 2SRI method requires more stringent assumptions about the influence of the unobserved
confounder on the hazard, the assumptions about the censoring can be relaxed. It is sufficient that
the censoring is independent of the survival time conditional on the exposure and observed covariates,
since the exposure is still part of the model (Chan, 2016). While the 2SLS method with a linear first
stage can be used in the case of a binary exposure, a non-linear first stage model, such as a logistic
regression model, might be more appropriate.

A different and very general approach is taken by Martinussen et al. (2017), who develop an
IV method for a class of structural cumulative survival models. Their approach does not require
any modelling of the relationship between the exposure and the instrument. However, it requires a
parametric model for conditional expectation of the instrument given the observed confounders and
the survival function cannot be readily estimated from this model. In recent work Choi et al. (2017)
proposed a two-stage procedure for general structural equation models, that can also be applied to
censored survival data.

In Section 2 we extend the 2SRI methods for continuous and binary exposure to the semi-parametric
additive hazards model of McKeague and Sasieni (1994), which allows for time-dependent and time-
independent covariate effects. Hence, the residual can be included in the model without restrictions
(other than linearity), while the effect of the other covariates can be modelled as time-independent.
Asymptotic results are derived for the 2SRI approach with binary and continuous exposure and in-
strument. In Section 2.3 an iid decomposition of an estimator of the conditional survival function
given the exposure, the instrument and all observed confounders is proved. Based on this result a
resampling scheme for obtaining simultaneous confidence bands is proposed. In our simulation study
in Section 3 we find the 2SRI method to be superior to the 2SLS in the binary case and/or exposure-
dependent censoring for the survival times. In Section 4 the methods are applied to a dataset from
the Illinois unemployment bonus experiment (Woodbury and Spiegelman, 1987), where participants
receiving unemployment benefits were offered a cash bonus on re-employment.

2



2 Two-stage instrumental variable methods

Let T be a continuous survival time, C the censoring time and Y = min{T,C} the observed right-
censored survival time. We assume that the follow-up period is a fixed finite interval [0, τ ] and that
the hazard of T follows an additive hazard model

h(t|R,L,U) = α0(t) + βRR+ β′LLZ + αL(t)LX + αU (U, t) (0 ≤ t ≤ τ), (1)

where α0 is the baseline hazard, R is the observed exposure / treatment indicator with a time-
independent effect, LZ is a p-vector of observed covariates with time-independent effects, LX is a
q-vector of observed covariates with time-dependent effects, and αU (U, t) is a term depending on a
vector of unobserved confounders U . All covariates in the model are baseline covariates which cannot
change over time. We call this model the “McKeague-Sasieni model” (McKeague and Sasieni, 1994).
The additive hazard model of Lin and Ying (1994) where all covariate effects are time-independent
will be called the “Lin-Ying model”. The original additive hazard model of Aalen (1989) where all
covariate effects are unrestricted will be called the “Aalen model”. Both the Lin-Ying and the Aalen
model can be viewed as special cases of the McKeague-Sasieni model.

Our main focus is on estimating the causal effect of the exposure on the hazard βR. In general IV
methods can only identify the local average treatment effect (LATE) as shown in Angrist et al. (1996),
i.e. the average treatment effect of those whose exposure changes when the value of the IV changes. IV
methods cannot say anything about subjects whose exposure is always the same regardless of the value
of the IV (so-called “always-takers” and “never-takers” in the context of binary treatment assignement
and instrument). However, implicit in Model 1 is the assumption that the treatment effect βR is the
same for all individuals for a given value of the covariates. This means that the LATE is equal to βR
for all subjects and can therefore be interpreted as the average treatment effect (ATE) for the entire
population. Hence, the IV estimate in this model is a consistent estimate of the population ATE.

Alternatively, one could start with the Aalen model and then use

β̂R =
1

τ

∫ τ

0

B̂R(t)dt

as an estimate of βR, where τ is a fixed time horizon and B̂R(t) is a consistent estimate of the

cumulative effect
∫ t
0
βR(s)ds obtained by 2SLS or 2SRI in the Aalen model (Tchetgen Tchetgen et al.,

2015). Outside of the two-stage setting this approach was also taken by Martinussen et al. (2017).
However, this estimate would have a larger standard error than the semi-parametric estimate and τ
may not be data dependent.

Let L = (L′Z , L
′
X)′. Formally we assume the existence of an instrumental variable G, such that

following assumptions hold:

(A1) G is associated with R conditional on L.

(A2) G is independent of T conditional on L, R and U .

Assumption (A1) implies that there is a non-zero average causal effect of the instrument G on the
exposure R and Assumption (A2) is the exclusion restriction of Angrist et al. (1996). We also assume
that L and G are exogenous, i.e.

(A3) U is independent of L and G.

The 2SLS methods of Li et al. (2015) and Tchetgen Tchetgen et al. (2015) first predict the exposure
from a linear regression model given the instrument and any observed covariates. Then an additive
hazard model is fitted with the observed exposure replaced by the predicted exposure. In the 2SRI
method of Tchetgen Tchetgen et al. (2015) the observed exposure is kept and instead the residual of the
first stage regression is included as an additional regressor in the second stage model. For uncensored
observations and linear first and second stage models both methods would coincide. However, in the
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Figure 1: Visualisation of IV assumptions (A1)-(A4) with instrument G, exposure R, survival time T ,
observed confounders L, unobserved confounders U and censoring time C

case of a binary exposure a non-linear first stage model, such as a logistic regression model, might be
more appropriate.

When considering regression methods for censored survival data it is usually necessary to assume
independence of censoring and survival times conditional on all covariates included in the model. The
2SLS method requires censoring C and survival time T to be independent conditional on the observed
covariates L. The 2SLS method can suffer from bias when censoring and survival are dependent on
the exposure R. The bias of the 2SLS method induced by exposure dependent censoring is explored
in Scenario VI of Li et al. (2015) and in our own simulations in Section 3. Since the exposure R is still
included in the second stage model, it is sufficient to require conditional independence of censoring
and survival times given the observed covariates and the exposure (Chan, 2016):

(A4) C is independent of T conditional on R and L.

The relationships encoded in Assumptions (A1)-(A4) can be represented by a directed acyclic graph
(DAG) as shown in Figure 1. The arrows represent dependencies between random variables. There is
an arrow from G to R (Assumption (A1)), but no arrow from G to T (Assumption (A2)) and no arrows
from U to L and G (Assumption (A3)). The censoring C is allowed to depend on the instrument G
for 2SRI, since removing the nodes R and L from the DAG separates T and C even when C depends
on G. It is however important to note that C must be independent from the unobserved confounder
U given R and L, i.e. no arrow from U to C.

2.1 Binary case

In the case of a binary exposure R we use a logistic regression model in the first stage

log

(
p

1− p

)
= γ0 + γGG+ γ′LL (2)

where γ = (γ0, γG, γ
′
L) and p = P (R = 1|G,L). Denote the maximum likelihood estimator of γ by γ̂.

The predicted probability for a patient with instrument G and covariates L from this model is

p̂ =
1

1 + exp{−γ̂′(G,L′)′}
.

The 2SRI method requires an additional linearity assumption about the unobserved heterogeneity
(Tchetgen Tchetgen et al., 2015):

(A5) αU (U, t) = E{αU (U, t)|R,G,L}+ ε(t),

where ε(t) is an error independent of R, G and L. This assumption holds, for example, when U has a
normal distribution where only the mean depends on R, G and L.

Under assumptions (A1)-(A5) a reparametrization of the original model can be obtained from
Result 3 of Tchetgen Tchetgen et al. (2015):

h(t|R,G,L) = α̃0(t) + βRR+ β′LLZ + αL(t)′LX + {ρ0(t) + ρ1(t)G}∆, (3)
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where ∆ ≡ ∆(R,G,L) = R − P (R = 1|G,L), ρ0(t) = E{αU (U, t)|R = 1, G = 0, L} − E{αU (U, t)|R =
0, G = 0, L} and ρ1(t) = E{αU (U, t)|R = 1, G = 1, L} − E{αU (U, t)|R = 0, G = 0, L} − ρ0(t). Since
the true residual ∆ is unknown it is estimated by ∆̂ = R− p̂.

We emphasize, that the conditional independence assumption (A4) is sufficient in the binary ex-
posure case as well, i.e. censoring is allowed to be dependent on the binary exposure.

An interesting special case is when the exposure is confounded only for the group with G = 1,
which implies that U is independent of R given G = 0 and L. This is the case in our data example
(Section 4) with full compliance in the control group. In this case ρ0 ≡ 0 and the conditional hazard
becomes

h(t|R,G,L) = α̃0(t) + βRR+ β′LLZ + αL(t)′LX + ρ1(t)G∆. (4)

If instead U is independent of R given G = 1 and L, then ρ1 = −ρ0 and ρ1(t)G∆ is replaced by
ρ1(t)(1 − G)∆ in Eq. (4). For example, such a situation occurred in the panitumumab colorectal
cancer trial (Amado et al., 2008), where patients randomized to the standard of care group had the
possibility of switching to the experimental treatment on disease progression. Fitting the model which
only includes the residual-instrument interaction but not the main effect of the residual may avoid
numerical stability issues as in our data example (Section 4).

We are interested in estimating the vector of regression coefficients β = (βR, β
′
L)′ and the vector of

cumulative covariate effects

A(t) =

∫ t

0

{α̃0(s), αL(s)′, ρ0(s), ρ1(s)}′ds.

Let Z = Z(t) be the n× (p+ 1) matrix with i-th row given by Yi(t)(Ri, L
′
Zi), where Yi(t) = I(Yi ≥ t)

is the at-risk indicator at time t of the i-th subject. The n× (q + 3) design matrix X = X(t) for the
time-dependent coefficient functions including the baseline hazard function is defined like Z with i-th
row equal to Yi(t)(1, L

′
Xi,∆i,∆iGi). Furthermore, we obtain the matrix X̂ = X̂(t) by replacing in X

the unknown residuals ∆ with the estimated residuals ∆̂. We can then define the estimators of β and
A like those given by McKeague and Sasieni (1994), but using X̂ instead of X,

β̂ =

(∫ τ

0

Z ′ĤZdt

)−1 ∫ τ

0

Z ′ĤdN, (5)

and

Â(t) =

∫ t

0

(X̂ ′X̂)−1(X̂ ′dN − X̂ ′Zβ̂ds), (6)

where Ĥ = I−X̂(X̂ ′X̂)−1X̂ ′, I is the (q+3)×(q+3) identity matrix and N(t) = {N1(t), . . . , Nn(t)}′ =
{I(Y1 ≤ t)δ1, . . . , I(Yn ≤ t)δn}′ is the vector of counting processes.

The additional variation in the second stage introduced by X̂ must be taken into account when
calculating standard errors for the regression coefficients. The correct standard errors are given by
Theorem 1 below. Its proof and the required regularity assumptions (B1)-(B6) are given in the Ap-
pendix.

Theorem 1 (2SRI, binary case). 1. Under the IV assumptions (A1)-(A5) and the regularity as-
sumptions (B1)-(B3) we have

√
n(β̂ − β) = n−1/2

n∑
i=1

ε
(β)
i + op(1), (7)

where ε
(β)
i are iid vectors defined in Eq. (16) in the Appendix. This implies that β̂ = β + op(1)

and
√
n(β̂ − β) is asymptotically normal with mean zero and covariance matrix Σβ = E(ε

(β)⊗2
i ),

where a⊗2 = aa′ for a vector a.
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2. Under assumptions (A1)-(A5) and (B1)-(B6) we have

√
n(Â−A) = n−1/2

n∑
i=1

ε
(A)
i + op(1), (8)

where ε
(A)
i are iid functions defined in Eq. (18) in the Appendix. This implies that supt ‖Â(t)−

A(t)‖ = op(1) and
√
n(Â−A) converges weakly to a vector of mean-zero Gaussian processes with

covariance function ΣA(s, t) = E{ε(A)
i (s)ε

(A)
i (t)′}.

Theorem 1 can also be applied in the less restrictive Aalen model

h(t|R,G,L) = α̃0(t) + {αR(t), αL(t)′}(R,L′X)′ + ρ0(t)∆ + ρ1(t)∆G, (9)

with only time-dependent covariate effects by setting Z = 0, which implies Ψ(t) = 0 for all t.

2.2 Continuous case

For a continuous exposure we assume a linear model as the first stage model, i.e.

R = γ0 + γGG+ γ′LL+ ∆.

Assumption (A5) needs to be modified to

(A5c) αU (U, t) = ρ0(t)∆ + ε(t),

where ε(t) is an error term independent of ∆ (Tchetgen Tchetgen et al., 2015). According to Result 2
of Tchetgen Tchetgen et al. (2015) we have

h(t|R,G,L) = α̃0(t) + βRR+ β′LLZ + αL(t)′LX + ρ0(t)∆. (10)

When fitting this model the true unknown residual ∆ is again replaced with the residual from the
first stage regression ∆̂ = R − γ̂(1, G, L′)′. The result for the asymptotic distribution of Theorem 1
still holds, when we replace u1i(t) and u2i(t) with ũ1i(t) = Yi(t) and ũ2i(t) ≡ 0, respectively, in
Assumption (B2) and (B6). As in the binary case, this holds for the special case of only time-dependent
effects (Eq. (9)) as well.

2.3 Estimation of the conditional survival function

In the 2SLS approach it is possible to estimate the survival function of T given R and L only, as shown
by Li et al. (2015), whereas in the 2SRI approach this can only be achieved by further modelling of
the conditional distribution of G given R and L and then taking the expectation of S(t|R,G,L) with
respect to that distribution. This is because we can only estimate the covariate effects in the model
for the conditional hazard h(t|R,L,U) (Eq. (1)), but we cannot estimate the original baseline hazard
α0(t). Therefore the survival function can only be estimated from the model for the conditional hazard
h(t|R,G,L) (Eq. (3) and Eq. (10)), which explicitly depends on the first stage residual and therefore
on the instrument G. Only in the case of binary instrument and exposure and no covariates is a simple
non-parametric estimator of S(t|R) available:

Ŝ(t|R = r) =

∑n
i=1 Ŝ(t|R = r,G = g)I(Gi = g,Ri = r)∑n

i=1 I(Ri = r)
.

Let δ(γ) = r−(1, g, l′Z , l
′
X)γ and p̄(r, g, l) = p(r, g, l){1−p(r, g, l)}, where p(r, g, l) = 1/[1+exp{−(1, r, g, l′)γ}].

Then
S(t|r, g, l′Z , l′X) = exp{−x(γ)A(t)− t(βRr + β′LlZ)},
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where x(γ) = {1, l′X , δ(γ)} in the continuous and x(γ) = {1, l′X , δ(γ), δ(γ)g} in the binary case. Uniform
consistency and asymptotic normality of the obvious estimator

Ŝ(t|r, g, lZ , lX) = exp{−x(γ̂)Â(t)− t(β̂Rr + β̂′LlZ)}, (11)

follow from a Taylor expansion around {γ, β,A(t)} and the iid decompositions given in Theorem 2.
In principle an estimator of S(t|r, lZ , lX) could be obtained by

Ŝ(t|r, lZ , lX) =
1

n

n∑
i=1

Ŝ(t|r,Gi, lZ , lX)f̂(Gi|r, lZ , lX),

where f̂(Gi|r, lZ , lX) is an estimator of the conditional probability density of G given R = r and
L = (l′Z , l

′
X), such as a kernel density estimator, which is feasible when the dimension of the covariate

vector L is small. However, deriving the asymptotic properties of Ŝ(t|r, lZ , lX) is beyond the scope of
this paper.

Theorem 2. Let Wn(t) =
√
n{Ŝ(t|r, g, lZ , lX)− S(t|r, g, lZ , lX)}. Under assumptions (A1)-(A5) and

(B1)-(B6) we have

Wn(t) = n−1/2
n∑
i=1

εi(t, r, g, lZ , lX) + op(1),

where

εi(t, r, g, lZ , lX) = −S(t|r, g, lZ , lX){t(r, l′Z)ε
(β)
i + x(γ)ε

(A)
i (t)− (1, g, l′)Aq+2(t)ε

(γ)
i }

in the continuous case and

εi(t, r, g, lZ , lX) = −S(t|r, g, lZ , lX)[t(r, l′Z)ε
(β)
i + x(γ)ε

(A)
i (t)

−p̄(r, g, l)(1, g, l′){Aq+2(t) + gAq+3(t)}ε(γ)i ]

in the binary case, respectively, are iid random variables. The iid decomposition implies weak con-
vergence of Wn to a Gaussian process whose variance function can be consistently estimated by t 7→
n−1

∑
i ε̂i(t, r, lZ , lX)⊗2, where ε̂i(t, r, g, lZ , lX) is obtained by replacing all unknown quantities in the

definition of εi(t, r, g, lZ , lX) with their consistent estimators.

Theorem 2 follows from a Taylor expansion of Ŝ(t|r, g, lZ , lX) around (γ, β,A(t)) and the iid de-

compositions of
√
n(γ̂ − γ),

√
n(β̂ − β) and

√
n(Â−A) in Theorem 1.

Simultaneous confidence bands for S(t|r, g, lZ , lX) can be obtained by Ŝ(t|r, g, lZ , lX) ± n−1/2qα,
where qα is such that P (supt |Wn(t)| ≤ qα) = 1− α. The distribution of Wn(t) can be approximated
using a resampling approach based on the iid decomposition in Theorem 2. For independent standard
normal random variables Qm1 , . . . , Q

m
n , given the observed data, the process

Ŵm(t|r, g, lZ , lX) = n−1/2
n∑
i=1

ε̂i(t, r, g, lZ , lX)Qmi ,

has the same asymptotic distribution as Wn(t) (Martinussen and Scheike, 2007, Theorem 5.4.1).
Therefore the limiting distribution of Wn(t) can be approximated by the empirical distribution of
Ŵ1, . . . , ŴM for a large number M . The quantile qα is then obtained as the empirical quantile of
supt |Ŵ1(t)|, . . . , supt |ŴM (t)|.

3 Simulations

We compare the finite-sample properties of the benchmark method (all confounders included in the
model), the two-stage residual inclusion (2SRI) method, two-stage least squares method and naive
method (confounders ignored) in several simulation scenarios with continuous and binary exposure.
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3.1 Scenarios

1) This scenario corresponds to Case I of Li et al. (2015). The instrument G, unobserved confounder
U and observed confounder L are all standard normal. The exposure R is continuous and is
generated from the linear model R = 1 + 0.5G + L + U + N(0, 0.22), where L ∼ N(0, 1). The
conditional hazard of the survival time is h(t|R,L,U) = 9.5 + 0.5R+ 0.5L+ 1.5U . The censoring
time is exponential with rate 2.5.

2) Same as Scenario 1, but with exposure-dependent censoring, i.e. censoring time is now exponen-
tial with rate 2.5 + 0.5R2

3) Same as Scenario 1, but linearity condition (A5c) for the confounder violated, i.e. in the first
stage R = 1 + 0.5G+ L+ ∆, where ∆ ∼ N(0, 0.22) and U = ∆2 +N(0, 1 + ∆2).

4) Slight modification of Scenario 3 from Martinussen et al. (2017) with continuous instrument
G ∼ N(2, 1.52) and unobserved confounder U = 1.5Z2, where Z ∼ N(1, 0.252). The binary
exposure is generated from the logistic regression model

logit{P (R = 1|G,U)} = −1 + 0.2G+ U − E(U).

The conditional hazard of the survival time is h(t|R,U) = 0.05 + 0.4R + 0.3U and censoring is
uniform on [0, 5].

5) This scenario corresponds to Case VII from Li et al. (2015). The instrument is binary with
P (G = 1) = 0.5. The unobserved confounder U is standard normal. The exposure is set to 1 if
1.5G+1.5U+ε ≥ 0 and to 0 otherwise, where ε is normal with mean 0 and standard deviation 0.2.
This corresponds to a probit model. The survival time has hazard h(t|R,U) = 11+βR(t)R+1.5U
where βR(t) = 2.5 for all t and censoring is exponential with rate 2.5.

6) Same as Scenario 5, but with exposure-dependent censoring, i.e. C given R has an exponential
distribution with rate 1/{0.1(1−R) + 0.3R}.

Our results include as special cases the additive hazards model where all effects are modelled as time-
dependent. We consider a scenario with time-dependent exposure effect on the hazard.

7) The same as Scenario 4, but now βR(t) = 2.5I(t < 0.1)− 2.5I(0.1 ≤ t < 0.2).

In the scenarios with binary exposure estimates were only calculated up to times where at least 15
(approx. 3-4 times the number of covariates) subjects were still at-risk, in order to avoid numerical
instability with singular matrices in the calculation of the estimates.

3.2 Results

In this section we consider the results for the estimated effect of exposure. In all scenarios we also
consider the coverage probability of the confidence intervals based on the unadjusted estimates of the
standard errors, which do not account for the additional variation caused by including the estimated
first stage residuals as covariates in the second stage. The results of the two continuous exposure
Scenarios 1 and 2 are shown in Table 1. For Scenario 1 both two-stage methods can be seen to be
unbiased and near nominal coverage probabilities. The naive method has a substantial bias for all
sample sizes and very small coverage probability that tends to 0 as the sample size increases. In
Scenario 2 with exposure-dependent censoring the 2SLS method is now biased. In Scenario 3, where
the linearity assumption for the confounder is violated, 2SRI has a substantial bias, but the coverage
probabilities are still close to the nominal level.

The results of the binary exposure scenarios are shown in Table 2. In Scenario 4 with a logistic
regression model in the first stage the 2SLS method is again substantially biased, while 2SRI method
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Table 1: Results of 50000 simulations for Scenarios 1-3 (continuous exposure) of benchmark (all
confounders observed), two-stage residual inclusion (2SRI), two-stage least-squares (2SLS) and
naive (confounders ignored) analysis for varying sample sizes n. RMSE=root mean-squared error,
SD=standard deviation, ESE=estimated standard error, ESE∗=estimated unadjusted standard error
of, CP=coverage probability of 95% confidence interval, CP∗=coverage probability of unadjusted 95%
confidence interval

Scenario n Method RMSE Bias SD ESE ESE∗ CP CP∗ Power (%)
1 400 Benchmark 1.031 0.005 1.031 1.029 1.029 0.949 0.949 7.1

2SRI 1.124 -0.030 1.123 1.106 1.114 0.948 0.948 7.4
2SLS 1.118 -0.015 1.118 1.122 1.121 0.952 0.951 6.6
Naive 1.275 1.177 0.489 0.485 0.485 0.310 0.310 93.5

800 Benchmark 0.713 0.004 0.713 0.716 0.716 0.951 0.951 10.3
2SRI 0.775 -0.024 0.774 0.772 0.772 0.950 0.949 9.9
2SLS 0.767 -0.006 0.767 0.776 0.776 0.953 0.953 9.4
Naive 1.218 1.170 0.337 0.339 0.339 0.061 0.061 99.9

2 400 Benchmark 1.083 0.019 1.083 1.086 1.086 0.950 0.950 6.9
2SRI 1.192 0.008 1.192 1.201 1.184 0.955 0.949 6.8
2SLS 1.194 -0.137 1.186 1.184 1.182 0.949 0.949 5.2
Naive 1.287 1.173 0.530 0.530 0.530 0.390 0.390 89.2

800 Benchmark 0.753 0.006 0.753 0.757 0.757 0.951 0.951 9.8
2SRI 0.823 -0.003 0.823 0.829 0.819 0.953 0.949 9.2
2SLS 0.826 -0.136 0.815 0.818 0.818 0.949 0.949 6.6
Naive 1.225 1.168 0.369 0.370 0.370 0.109 0.109 99.5

3 400 Benchmark 1.054 0.008 1.054 1.054 1.054 0.951 0.951 6.9
2SRI 1.117 0.103 1.113 1.129 1.127 0.953 0.953 7.3
2SLS 1.127 0.010 1.127 1.128 1.128 0.951 0.951 6.5
Naive 1.047 0.007 1.047 1.048 1.048 0.951 0.951 6.9

800 Benchmark 0.734 0.001 0.734 0.733 0.733 0.951 0.951 10.3
2SRI 0.785 0.044 0.784 0.787 0.786 0.950 0.950 10.2
2SLS 0.789 -0.001 0.789 0.787 0.787 0.949 0.949 9.4
Naive 0.731 -0.001 0.731 0.731 0.731 0.951 0.951 10.2

is practically unbiased. Although, both methods have a substantially larger root mean-squared error
than the benchmark method and the massively biased naive method. The results for Scenario 4
also show clearly that the unadjusted estimator underestimates standard errors resulting in coverage
probabilities below the nominal level. In Scenario 5 with a probit model in the first stage the 2SRI is
unbiased even though the first stage model is misspecified, while 2SLS has a small bias. In Scenario
6, which is the same as Scenario 5, but with exposure-dependent censoring 2SRI remains unbiased,
while the bias of 2SLS increases. There is a notable difference in the coverage probabilities of the
adjusted and unadjusted confidence intervals for the exposure effects for the 2SRI method. In the
binary scenarios both IV methods do substantially increase the variance of the estimates leading to a
large loss of power compared to the benchmark method. This is a general feature of the two-stage IV
methods and not specific to our method.

For each of the seven scenarios we also used the 2SRI method to estimate the conditional survival
function S(t|R = r,G = g, L = l) (with covariate values fixed at their mean values in the continuous
scenarios). From the estimate Ŝ(t|r, g, l) the median is estimated as m̂ = inf{t : Ŝ(t|r, g, l) > 0.5}.
The confidence interval for the median is obtained by inverting the pointwise confidence interval for
Ŝ(m̂|r, g, l). Simultaneous confidence bands for {S(t|R = r,G = g, L = l) : t ≤ τ} were obtained
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Table 2: Results of 50000 simulations for Scenarios 4-6 (binary exposure) of benchmark (all confounders
observed), two-stage residual inclusion (2SRI), two-stage least-squares (2SLS) and naive (confounders
ignored) analysis for varying sample sizes n. RMSE=root mean-squared error, SD=standard deviation,
ESE=estimated standard error, ESE∗=estimated unadjusted standard error of, CP=coverage proba-
bility of 95% confidence interval, CP∗=coverage probability of unadjusted 95% confidence interval

Scenario n Method RMSE Bias SD ESE ESE∗ CP CP∗ Power (%)
4 400 Benchmark 0.089 -0.000 0.089 0.088 0.088 0.951 0.951 99.1

2SRI 0.236 -0.004 0.236 0.236 0.232 0.955 0.948 43.0
2SLS 0.239 0.068 0.229 0.238 0.238 0.952 0.952 51.8
Naive 0.088 -0.007 0.088 0.087 0.087 0.950 0.950 99.0

800 Benchmark 0.062 -0.001 0.062 0.062 0.062 0.950 0.950 100.0
2SRI 0.162 -0.001 0.162 0.161 0.160 0.952 0.949 70.8
2SLS 0.173 0.067 0.160 0.166 0.166 0.943 0.943 82.1
Naive 0.062 -0.007 0.061 0.061 0.061 0.949 0.949 100.0

5 400 Benchmark 2.005 0.028 2.005 1.994 1.994 0.949 0.949 24.8
2SRI 4.622 0.001 4.622 4.583 4.413 0.955 0.939 8.5
2SLS 4.766 0.117 4.765 4.775 4.767 0.955 0.954 8.2
Naive 2.668 2.211 1.493 1.480 1.480 0.674 0.674 88.8

800 Benchmark 1.395 -0.013 1.394 1.391 1.391 0.949 0.949 43.4
2SRI 3.149 0.005 3.149 3.142 3.084 0.953 0.945 13.0
2SLS 3.262 0.132 3.260 3.284 3.283 0.953 0.952 12.7
Naive 2.416 2.181 1.040 1.037 1.037 0.440 0.440 99.4

6 400 Benchmark 2.165 -0.055 2.165 2.168 2.168 0.952 0.952 21.1
2SRI 4.809 -0.031 4.809 4.769 4.192 0.950 0.899 8.1
2SLS 4.681 -0.289 4.672 4.677 4.672 0.952 0.952 7.2
Naive 2.607 2.095 1.552 1.550 1.550 0.709 0.709 82.8

800 Benchmark 1.518 -0.021 1.518 1.518 1.518 0.951 0.951 37.8
2SRI 3.272 -0.036 3.272 3.264 3.024 0.950 0.925 11.9
2SLS 3.231 -0.266 3.220 3.238 3.237 0.951 0.951 10.4
Naive 2.379 2.116 1.087 1.088 1.088 0.495 0.495 98.2

using the bootstrap method from Theorem 2, where τ is chosen in each scenario such that on average
approx. 10% of the subjects were still at risk at time τ .

The results are shown in Table 3. In all scenarios the median estimate has a very small bias
and the coverage probabilities are close to the nominal level. Only in Scenario 6, where the linearity
assumption for the confounder (Assumption (A5c)) is violated, is the coverage probability of the
simultaneous confidence band markedly below the nominal level.

For Scenario 7 with the time-dependent exposure effect the mean of the cumulative effect BR(t) =∫ t
0
βR(s)ds is shown in Figure 2. Here the naive method is substantially biased and fails to capture

the true time-dependency of the exposure. The 2SRI method is slightly biased for larger times as the
number-at-risk becomes small. Web Figure 1 in Web Appendix A shows the means of the estimated
survival functions S(t|R = 0, G = 0) and S(t|R = 1, G = 0), respectively, for a sample size of 1000. The
95% simultaneous confidence bands obtained from 1000 resampled processes have coverage probabilities
95.0% and 95.9%, respectively.
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Table 3: Mean of estimated median and 95% confidence intervals of the conditional survival function
S(t|R,G,L) for Scenarios 1-7 and sample sizes n = 400 and 800 in 10000 simulations. Coverage
probabilities of 95% confidence intervals for the true median m (CPm) and simultaneous confidence
bands (CPS) for the survival curve on [0, τ ]. Simultaneous confidence bands are estimated from 1000
bootstrap replications.

Scenario τ m n Median (95% CI) CPm (%) CPS (%)
1 0.19 0.069 400 0.070 (0.060, 0.081) 94.7 94.6

800 0.069 (0.062, 0.077) 95.3 95.2

2 0.17 0.069 400 0.070 (0.059, 0.081) 95.3 94.6
800 0.069 (0.062, 0.077) 95.2 94.8

3 0.18 0.070 400 0.070 (0.060, 0.081) 94.9 94.1
800 0.070 (0.062, 0.077) 95.2 95.0

4 2.50 0.770 400 0.775 (0.658, 0.905) 94.5 94.4
800 0.772 (0.689, 0.862) 95.0 95.0

5 0.15 0.050 400 0.050 (0.041, 0.060) 94.8 94.5
800 0.050 (0.043, 0.057) 94.9 94.9

6 0.12 0.050 400 0.048 (0.040, 0.058) 93.4 92.5
800 0.049 (0.043, 0.056) 93.1 92.7

7 0.17 0.050 400 0.050 (0.041, 0.060) 95.0 94.8
800 0.050 (0.044, 0.058) 94.8 94.9

4 Application

We consider data from a social experiment conducted by Illinois Department of Employment Security
between mid-1984 and mid-1985 to test the effect of cash bonuses in reducing the duration of insured
unemployment (W.E. Upjohn Institute, 1987; Woodbury and Spiegelman, 1987). A total of 12101 new
claimants for unemployment insurance were randomized into 3 groups, 3952 to the control group (no
cash bonus offered), 3963 to the employer bonus group (cash bonus offered to the next employer), and
4186 to the claimant bonus group (cash bonus offered to the claimant). The cash bonus of $500 was
only paid if the the claimants found a new job within 11 weeks of claiming unemployment insurance.
Thus, it is plausible to assume that the effect of offering the bonus on the duration of unemployment
is time-dependent.

We will only analyse the data from the claimant bonus experiment consisting of the control group
and the claimant bonus group. Subjects randomized to the control group were not informed about the
experiment and not asked whether they wanted to participate. In the claimant bonus group 659 (15.7%)
refused to participate for unknown reasons, which suggests that there is unobserved confounding.

This dataset has been previously analysed using a two-stage IV method based on a mixed pro-
portional hazards model using the original randomization as the instrument (Bijwaard and Ridder,
2005). We analyse the dataset using the 2SLS and 2SRI methods, both with the cash bonus offer effect
modelled as time-dependent and time-independent, and the naive method without any adjustment.
The 2SRI is implemented based on the model in Eq. (4), which does not include the main effect of the
first stage residual, since including the main effect made the design matrix singular for all event times.
Following Bijwaard and Ridder (2005) we include age, the logarithm of pre-unemployment earnings,
gender, ethnicity, and the logarithm of the weekly amount of unemployment insurance benefits plus
dependence allowance as additional covariates in our first and second stage models.

We use a formal goodness-of-fit test of the additive hazard model which has been proposed by Gandy
and Jensen (2005). Their test statistic can be interpreted as a scaled sum of martingale residuals. The
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Figure 2: Results of Scenario 7. Mean of B̂R(t) for t ∈ [0, 0.25] of 10000 simulations with sample size
n = 1000.

goodness-of-fit test indicates that the additive hazard model fits the data well for the female subgroup
(p = 0.14), but neither the male subgroup (p = 0.006) nor the entire group (p = 1.7 × 10−5). We
therefore restrict our analysis to the 3619 female participants in the claimant bonus experiment.

The estimated cumulative effects are shown in Web Figure 2 in Web Appendix A. The non-
parametric two-stage estimates are slightly larger than the non-parametric naive estimate. The 2SRI
method in the McKeague-Sasieni model and the 2SLS method in the Lin-Ying model give practi-
cally identical results for the effect of the cash bonus offer with the estimated effect 2.84× 10−3 with
standard error 1.19 × 10−3 about 77.5% larger than the naive estimate 1.60 × 10−3 with standard
error 1.02 × 10−3. All estimates are positive, i.e. offering the cash bonus increases the hazard of
re-employment therefore shortening the duration of uninsurance benefit claims, as expected.

The estimated effect for the 2SRI method is statistically significant (p = 0.008), but not for the
naive method (p = 0.059).

5 Discussion

We have provided asymptotic results for the two-stage residual inclusion method in an semi-parametric
additive hazard model for binary and continuous exposure. These results include as a special case the
general model where all effects are time-dependent. The advantage of the semi-parametric model in
connection with 2SRI method is that the effect of the included residual may be time-dependent, while
the effect of other covariates can modelled as constant over time.

Our simulations have shown that the 2SRI method avoids the bias of 2SLS when censoring depends
on the exposure and when the first stage is a non-linear model. Although the asymptotic results assume
a logistic regression model in the first stage, an extension to other generalized linear models would
be straightforward. The coverage probabilities of the confidence intervals are near the nominal level
even for relatively small sample sizes and the method is seen to be robust when the data is generated
from a probit model in the first stage instead of the assumed logistic model. The naive method, which
ignores any confounding, had in some cases a very large bias and coverage probabilities far below the
nominal level.

A potential application of the 2SRI method is when drop-out is suspected to depend on the level
of exposure and/or the instrument, as this would be adjusted for.
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It can be seen that the coverage probabilties of the confidence intervals based on the unadjusted
standard errors can be substantially below the nominal level. This is despite the difference between
the adjusted and unadjusted standard errors seemingly becoming smaller as the sample size increases.
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A

A.1 First stage iid decompositions

We state two well known asymptotic results for the maxmium-likelihood estimators for the logistic
and linear regression models, that we need for our proof of Theorem 1. We have

√
n(γ̂ − γ) = n−1/2

n∑
i=1

ε
(γ)
i + op(1), (12)

where ε
(γ)
i (i = 1, . . . , n) are independent and identically distributed mean-zero random (p + q + 2)-

vectors.

1. Logisitic regression: ε
(γ)
i = V −11 (1, Gi, L

′
i)
′∆i, where V1 = −E{p(1− p)(1, G, L′)′(1, G, L′)}.

2. Linear regression: ε
(γ)
i = V −11 (1, Gi, L

′
i)
′∆i, where V1 = E{(1, G, L′)′(1, G, L′)}.
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A.2 Regularity assumptions

A number of regularity assumptions are needed for proving our asymptotic results:

(B1) There exist positive definite (p+1)×(p+1) matrices Ω and Σ such that n−1
∫ τ
0
Z(t)′H(t)Z(t)dt

p−→
Ω and n−1

∫ τ
0
Z(t)′H(t)diag{dN(t)}H(t)′Z(t)

p−→ Σ, where H = I −X(X ′X)−1X ′.

(B2) For k = 1, 2 exist positive definite matrices Γ1k such that

n−1
∫ τ

0

Z(t)′H(t)diag{uk(t)}X1dA(q+1+k)(t)
p−→ Γ1k,

where X1 is the n× r design matrix of the first stage regression, and u1(t) and u2(t) are vectors
defined by u1i(t) = pi(1− p1)Yi(t) and u2i(t) = u1i(t)Gi, respectively. Let Γ1 = Γ11 + Γ12.

(B3) The covariates R,G and L have bounded support.

In order to prove uniform consistency of A and convergence of
√
n(Â−A) to a mean-zero Gaussian

process we need the following additional assumptions:

(B4) There exists a positive definite (q + 3)× (q + 3) matrix function ξ(t) such that

n sup
t
‖
∫ t

0

{X(s)′X(s)}−1X(s)′diag{dN(s)}X(s){X(s)′X(s)}−1 − ξ(t)‖ p−→ 0.

(B5) There exists positive definite (p+ 1)× (q + 3) matrices Ψ(t) such that

sup
t
‖
∫ t

0

{X(s)′X(s)}−1X(s)′Z(s)ds−Ψ(t)‖ p−→ 0,

where ‖A‖ = maxi
∑
j |aij | for a matrix A = (aij).

(B6) For k = 1, 2 and t ∈ [0, τ ] exist positive definite matrices Γ2k(t) such that

sup
t
‖n−1

∫ t

0

{X(s)′X(s)}−1X(s)′diag{uk(s)}X1dA(q+1+k)(s)− Γ2k(t)‖ p−→ 0.

Let Γ2(t) = Γ21(t) + Γ22(t) for t ∈ [0, τ ].

Furthermore, we also assume the regularity conditions required for asymptotic normality of the
maximum-likelihood estimator γ̂ in the logistic regression model. Specifically, we assume that

√
n(γ̂ − γ) = n−1/2

n∑
i=1

ε
(γ)
i + op(1), (13)

where ε
(γ)
i are iid random variables defined in the Appendix with covariance matrix K = E(ε

(γ)′
i ε

(γ)
i ).

A.3 Proofs

Lemma 1. Under Assumptions (B1), (B3) and (B4)

n−1/2
∫ τ

0

Z ′Ĥ(X̂ −X)dA = −Γ1n
−1/2

n∑
j=1

ε
(γ)
j + op(1),

and

n−1/2
∫ t

0

(X̂ ′X̂)−1X̂ ′(X̂ −X)dA = −Γ2(t)n−1/2
n∑
j=1

ε
(γ)
j + op(1).
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Proof. We only prove the first equation, the proof of the second is almost identical. We have X̂(t) =
X(t) + {0n×(q+1), v1(t), v2(t)}, where v1i(t) = Yi(t)(∆̂i −∆i) = −Yi(t)(p̂i − pi) and v2i(t) = v1i(t)Gi.
The delta method implies

√
n(p̂i − pi) = pi(1− pi)(1, Gi, L′i)

√
n(γ̂ − γ) + op(1). Therefore

n−1/2
∫ τ
0
Z ′Ĥ(X̂ −X)dA

= n−1/2
∫ τ
0
Z ′Ĥ{v1(t)dA(q+2)(t) + v2(t)dA(q+3)(t)}

= −n−1
∫ τ
0
Z ′Ĥ

[
diag{u1(t)}X1dA(q+2)(t) + diag{u2(t)}X1dA(q+3)(t)

]√
n(γ̂ − γ) + op(1)

Since the covariates are bounded and γ̂ = γ+op(1) we have supt ‖Z ′Ĥ−Z ′H‖ = op(1). The conclusion
then follows by Assumption (B3) and Eq. (13).

Proof of Theorem 1. Let M = (M1, . . . ,Mn)′ be the vector of counting process martingales, where

Mi(t) = Ni(t)−
∫ t

0

Yi(s)h(s)ds.

We have ∫ τ
0
Z ′ĤdM =

∫ τ
0
Z ′ĤdN −

∫ τ
0
Z ′ĤXdA−

∫ τ
0
Z ′ĤZdtβ

=
∫ τ
0
Z ′ĤdN +

∫ τ
0
Z ′Ĥ(X̂ −X)dA−

∫ τ
0
Z ′ĤZdtβ

since ĤX̂ = 0. Thus

√
nβ =

(
n−1

∫ τ

0

Z ′ĤZdt

)−1
n−1/2

{∫ τ

0

Z ′ĤdN +

∫ τ

0

Z ′Ĥ(X̂ −X)dA−
∫ τ

0

Z ′ĤdM

}
,

and with the definition of β̂ in Eq. (5) we have

√
n(β̂ − β) =

(
n−1

∫ τ
0
Z ′ĤZdt

)−1
n−1/2

∫ τ
0
Z ′ĤdM

−
(
n−1

∫ τ
0
Z ′ĤZdt

)−1
n−1/2

∫ τ
0
Z ′Ĥ(X̂ −X)dA

(14)

Since supt ‖X̂(t) − X(t)‖ = op(1) we have supt ‖n−1Z ′ĤZ − n−1Z ′HZ‖ = op(1). By Assump-
tion (B1) and Lemma 1 the second term on the right hand side becomes

Ω−1Γ1n
−1/2

n∑
j=1

ε
(γ)
j + op(1), (15)

which is a sum of mean-zero iid terms and asymptotic normality follows from the central limit theorem.
Asymptotic normality of the first term on the right hand side of Equation (14) follows from the

martingale central limit theorem (Andersen et al., 1993). The asymptotic variance of
√
n(β̂ − β)

follows, since the two terms on the right hand side of Equation (14) are asymptotically independent.
Thus, Σβ = Ω−1{Σ + Γ1KΓ′1}Ω−1.

For later reference we note that
√
n(β̂ − β) admits the following iid decomposition

√
n(β̂ − β) =

n−1/2
∑
i ε

(β)
i + op(1), where

ε
(β)
i = Ω−1

∫ τ

0

{Z ′·i(t)− ψ(t)′X ′·i(t)}dMi(t) + Ω−1Γ1ε
(γ)
i , (16)

where ψ(t)′ = Z(t)′X(t){X(t)′X(t)}−1.
Now let Q̂ = (X̂ ′X̂)−1X̂ ′, Q = (X ′X)−1X ′. For showing asymptotic normality of Â we start by

noting that

√
n{Â(t)−A(t)} =

√
n
∫ t
0
Q̂dN −

∫ t
0
Q̂Zds

√
n(β̂ − β)

−
√
n
∫ t
0
Q̂X̂dA−

√
n
∫ t
0
Q̂Zβds+ op(1)

=
√
n
∫ t
0
Q̂dM −

√
n
∫ t
0
Q̂(X̂ −X)dA−

∫ t
0
Q̂Zds

√
n(β̂ − β) + op(1)
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The second term on the right hand side is asymptotically equivalent to Γ2(t)n−1/2
∑n
j=1 ε

(γ)
j , by

Lemma 1, and the last term is asymptotically equivalent to −Ψ(t)′n−1/2
∑
i ε

(β)
i by Assumption (B2)

and Eq. (15). Thus,

√
n{Â(t)−A(t)} =

√
n

∫ t

0

Q̂dM −Ψ(t)′n−1/2
n∑
i=1

ε
(β)
i + Γ2(t)n−1/2

n∑
j=1

ε
(γ)
j + op(1). (17)

The martingale central limit theorem and Assumption (B3) imply convergence of the first term on
the right hand side to a mean-zero Gaussian process with covariation function (s, t) 7→ ξ(s ∧ t). The
second term converges to a mean-zero Gaussian process Ψ(·)′mβ where mβ is a mean-zero normal
random vector with covariance matrix Ω−1ΣΩ−1. The last term on the right hand side converges
to a mean-zero Gaussian process {Γ2(·) − Ψ(·)′Ω−1Γ1}mr where mr is a mean-zero normal random

vector with covariance matrix K. All three processes are asymptotically independent, since each ε
(γ)
j is

time-independent and the covariation between the two martingale processes is 0, by a similar argument
as that in Appendix 1 of McKeague and Sasieni (1994). Thus, ΣA(s, t) = ξ(s ∧ t) + Ψ(s)ΣβΨ(t)′ +
Γ2(s)KΓ2(t)′.

In order to prove uniform consistency of Â on [0, τ ] we divide Eq. (17) by
√
n and see that all terms

converge to 0 uniformly in probability, the first two terms by Lenglart’s inequality (Lenglart, 1977)
and the last term because of the law of large numbers.

We have again an iid decomposition
√
n{Â(t)−A(t)} = n−1/2

∑
i ε

(A)
i (t) + op(1), where

ε
(A)
i (t) =

∫ t

0

V −1X ′·idMi −Ψ(t)′ε
(β)
i + Γ2(t)ε

(γ)
i . (18)
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