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ABSTRACT

This paper focuses on active sensing of nonholonomic wheeled
mobile robots (WMRs). Active sensing solves the following prob-
lem: given a current knowledge about the robot state and the en-
vironment, how to select the next sensing action or sequence of
actions. A vehicle is moving autonomously through a static envi-
ronment gathering information from sensors. The sensor data are
used to generate the robot actions in order to move around a ref-
erence trajectory with preset initial starting and desired goal con-
figurations and imposed constraints. The paper presents a method
for the determination of optimal trajectories based on optimiza-
tion techniques. A suitable performance criterion is formulated to
characterize the uncertainty and the extraction of information from
sensor data. Finally results from experiments are given.

1. MOTIVATION

A great deal of attention has been paid to nonholonomic robots
during the last years and nevertheless it is still an open area of
research where a lot of questions are waiting to find answers. Pre-
dominantly tracking and motion generation topics have been trea-
ted [1], [2], [3], [4], [5]. Recently attention is given to active sens-
ing, that incorporates in itself tracking and motion planning solu-
tions in the presence of uncertainties. The main question to an-
swer in active sensing is: "Where will the robot move at the next
step?”. An appropriate criterion is needed for gathering maximum
information about the environment and for properly determining
the robot motions. Some proposed trajectory generation strategies
are based on entropy minimization [3], [2] or consider the robot
motion composed of primitives [6]. In [7] the concentration is on
information-gathering tasks and the choice *where to look next* is
investigated as a special case of an optimal experiment design. A
weighted trace of the estimation error covariance matrix is chosen
as a criterion to perform the next motion.

Active sensing for nonholonomic wheeled mobile robots (WMRs)
is a challenging goal for various reasons:

e The nonholonomic character of the systems. A nonholo-
nomic system can be defined as a system subject to kine-
matic constraints such that the dimension of the admissible
controls at each point is less than the dimension of the con-
figuration variables [1], [8]. A consequence of the nonholo-
nomic constraints is that not each path from the admissible
configuration space corresponds to a feasible trajectory for
the robot.

The task solution depends on the optimality criterion. It
should be such that maximum information is extracted from
the sensor data and at the same time this information is pro-
cessed in a computationally efficient way.
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e Itis related to the computational load (time, number of op-
erations). All generated motions are needed to be executed
on-line.

The nonlinear character of the problem poses questions
about the system controllability. The majority of existing
methods reduce the nonlinear model to a form easier to deal
with (chained forms, Goursat normal forms or other lin-
ear representations with special properties), generate mo-
tion with the chosen specific form and then transform the
resulting trajectory into the original representation [1], [9].

Obstacle avoidance adds an additional level of difficulty.
Steering methods rely on topological properties of the en-
vironment [8], or other learning techniques [3], [2].

e Other uncertainties, e.g. in the models and sensor data.

So, it can be pointed out that active sensing is an optimization
problem. This work deals with active sensing of nonholonomic
WMRs in the presence of uncertainties. The robot is moving in
the Cartesian space starting from a given initial configuration to
a desired goal configuration. Between two points there are an in-
finite number of possible trajectories. On the basis of the sensor
data the robot is taking decisions how to move around a preset ref-
erence trajectory. The errors in the sensor data, the inaccuracies in
the WMR maodel, and inaccuracies of other type can be the reason
that the robot does not arrive at the desired goal configuration or
to arrive with considerable errors. The key idea of the approach
proposed here is to use some parameterized family of possible tra-
jectories and thus to reduce the infinite-dimensional problem to a
finitely parameterized optimization problem. To characterize the
robot motion and to process the sensor information efficiently, an
appropriate criterion is introduced. The approach proposed here
examines active sensing as a global optimization problem subject
to constraints.

The paper is organized as follows. The motion and measurement
models of the considered nonholonomic WMR are described in
Section 2. The proposed approach for active sensing and related
criteria are given in Section 3. Section 4 presents simulation re-
sults illustrating the effectiveness of the approach. Section 5 sum-
marizes the results.

2. MOTION AND MEASUREMENT MODELS

A WMR is moving in a plane. The environment is supposed known
and obstacle free. The WMR motion is in the configuration space
starting from a point (x5, ys), and it is required to reach a desired
goal configuration (z4, y,) moving around a reference trajectory.
The WMR generates its actions by processing the sensor data.
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Figure 1: WMR coordinates

The vehicle motion at each time instant & is determined by the
kinematic model [5]

Tri1 x + v, AT cos(¢r, + ) Mo,k
Yrtr | = | ye + v ATsin(de +9r) | + | myr |, Q)
P+ o + 22T sinyy Nk

where x;, and y,, denote the WMR position coordinates in a fixed
frame (Fig. 1), ¢ is the angle measuring the orientation with re-
spect to the z axis. L is the wheel base line (the distance between
the front steering wheel and the axis of the driving wheels), AT is
the travel time between two time steps, 11, = (Nu.k» No.k> Do k)~
represents a process noise due to both modeling and discretization
errors. The state vector , = (z‘k,yk,¢k)T is denoted below
with different subscripts: s stands for the starting configuration, g
refers to the goal configuration, r to the reference trajectory, and
the modified robot trajectory is without any subscript.

The WMR is controlled through a demanded velocity vy and a
direction of travel v, i.e. the control vector is us = (vk,wk)T.
Due to physical constraints, both the velocity v, and the angle
1, of any WMR cannot exceed boundary values, namely vy, €
[Oyvmam]x wk € [_wmamﬂ/}mam] (wmam < % ) The WMR can
perform only forward motions.

The vehicle is equipped with a sensor that can measure the range
r and bearing 6, to a beacon B, located at coordinates, (z B, yB
The observation equation for the beacon is

i) _ [V(&B — 1)+ (yB — yr)? &,
(9:) - ( arctan(i’gifv:) — ok > + (56,2) )

where &, = (§T,k,§g,k)T is the observation noise. The measure-
ment vector is further denoted by z3 = (r, ek)T. The noise
vectors n,, and &, are assumed Gaussian, zero mean, mutually un-
correlated, with covariances @, and Ry, respectively.

3. TRAJECTORY OPTIMIZATION

The robot "knows* preliminary a reference trajectory, i.e. &, =
@y Yrok, dri) T IS preset at every moment k = 1,2,.... The
control vector of this trajectory is w,,x. How to move in the *best
way according to a formulated criterion, from the starting to the
goal configuration?

Let Q be a class of smooth functions. The problem of determining
the “best* trajectory ¢* with respect to an index J can be formu-
lated as

q* = argmin(J) 3

).
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subject to constraints

|ly,k| S l;q,maacy (4)
Vg S VUmazx, (5)
[Yr| < Ymass (6)

where [, i is the lateral deviation of the optimal trajectory from
the reference one (lateral is called the orthogonal robot motion
deviation from the reference trajectory in y direction), Iy mae iS
the maximum allowed lateral deviation value. The experiments
are conducted in a way to minimize a measure, characterizing the
WMR estimate vector.
The approach proposed here is based on a parametrization of a
class Q,

Q=09(p), peP, O]

of harmonic functions where p is a vector of parameters obeying
to preset physical constraints. Given N number of harmonic func-
tions, the new (modified) robot trajectory is generated on the basis
of the reference one by a lateral deviation as a linear superposition

Sr.k
S, fin

N
ly,k= E Ai,ksin(iﬂ

i=1

) ®)

of sinusoids, the amplitudes A; » of which are constants; s, is
the path length up to instant &, and s, f;,, is the whole path length.
Clearly, the problem described above can be cast into the problem
of trajectory generation of a system described by equations

Tr+1 = f(Tr, ur, My) )

zk = h(zk, &) (10)
with f and A nonlinear functions. In this formulation active sens-
ing is a global optimization problem (on the whole WMR trajec-
tory) with a criterion to be minimized

J= lglin{clI + c2C} (11)
ik

under constraints (4)-(6). The optimization reduces to an optimal
choice of amplitudes A; . The criterion (11) is composed of two
terms : Z characterizes the information extraction and accuracy,
C is the cost part. As Z could be chosen the entropy, or a scalar
function of the covariance matrix of the estimated states. Here Z
is in the form

T =trace(WP), (12)

where P is the covariance matrix of the estimated states (at the
goal configuration), W' is a weighting matrix; trace(.) denotes
the matrix trace; ¢1 and c» above are positive weighting constants.
C accounts the relative time

c :tfin/tr,fin (13)
where ¢ ;5 is the final time for reaching the goal configuration on
the modified trajectory versus the respective time ¢, ¢, over the
reference trajectory (when the WMR travels at a constant veloc-
ity). Minimization of J with respect to parameters of the mod-
ified trajectories guarantees trajectories with minimal uncertainty
bounds. Within a statistical framework the covariance matrix P
represents an information criterion. The weighting matrix W' is a
product of a normalizing matrix IV, by a scaling matrix M, i.e.
W = M N. The normalizing matrix N = diag{1/o?, 1/03,
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..,a2}, (n is the state vector dimension) transforms the crite-
rion into invariant measure to different physical units. o; are the
standard deviations at the goal configuration on the reference tra-
jectory, and so the extraction of information compared to the ref-
erence trajectory is obvious. Depending on the particular task,
they could be chosen in another way. The scaling matrix M =
diag{m., ..., my,} gives different weights to the separate terms
of the trace. The optimization is conducted by higher impact on
these state vector components with higher m;, whereas the impact
of the other states is weakened. It is assumed that 3-7"_, m; = n.
The criterion J introduced in this way is a dimensionless scalar.
As "good* are considered trajectories which at the goal configura-
tion have the first term Z within the range [0, n].

The state estimation in the present paper is carried out based on
the Unscented Kalman Filter (UKF) [10], [11] for state vector es-
timation. The UKF is implemented in its form with an augmented
state vector (a concatenation of the states and the noises) [11].
The sigma points and their weights are calculated using the scaled
Unscented Transform [11]. The WMR and beacon models, (1)
and (2), are highly nonlinear, that motivates the use of the UKF
as a filtering algorithm. It does not require linearization, nor ex-
plicit calculation of Jacobians and Hessians. The solution obtained
is optimal within a selected class of harmonic functions, with a
fixed, finite number terms. Harmonic signals have been used for
other aims, for experimental identification of robot parameters in
[12], and [13]. In [13] the problem of robot dynamic calibration
is considered and the optimization problem is solved by a genetic
algorithm. In [12] experimental robot identification has been per-
formed within a statistical framework.

4. SIMULATION RESULTS

The paper is concluded by some simulation results which show the
performance of the developed approach for active sensing.

The covariance matrix Py, of the estimation error ¢ — &, defines
an uncertainty ellipsoid (xs — :ik)TPk(a:k — &) = 1 that with
respect to the positions (zx, yx ) only is converted into a confidence
ellipse, characterizing the performance of active sensing.

The reference trajectory is a straight line with a starting configura-
tionzs = (1 m, 15 m) and a goal configuration : &, = (12.84 m,
15 m). The sampling time is AT = 0.2 sec. The beacon is lo-
cated in a point with coordinates g = 9 m, yp = 19 m. Itis
assumed that vmaz = 0.2 m/sec, Ymaz = 60 deg, ly,maz =3 m
and L = 0.5 m.

The UKF is implemented with the following parameters, recom-
mendable for systems with Gaussian noises and of order n = 3
(sothat k + n = 3)[10], [11]: a = 1,8 = 2,k = 0. The
initial state estimate vector and covariance matrix are: &g/, =

(1m,15m,0deg)”, Po = diag{0.3m?,0.3 m?, 0.0025 deg®}.

The noise covariance matrices are: Q,, = diag{10™° m?,

107% m?, 107* deg®}, Ry, = diag{0.0004d;>m?, 100 deg®},
where d, is the distance from the WMR to the beacon. As in [4],
measured distances are used for simulating the measurements, es-
timates are used in the UKF.

The reference and modified trajectories, generated with different
number of sinusoids IV, in accordance with (8), together with the
uncertainty ellipses are shown on (Figs. 2, 4). The evolution in
time of the weighted covariance trace is presented on Fig. 5. The
bigger IV is, the smaller the value of .J is. Better accuracy is pro-
vided with bigger NV, at the cost of increased computational load.
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Figure 2: Trajectories: reference (IN = 0) and modified (N = 1)
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Figure 3: Trajectories: reference (IV = 0) and modified (V. = 3)

For comparison, the iteration process in the case of N = 1 was
stopped after 3 iterations, and for N = 5, after 64 iterations.

In the experiment the WMR velocity is changeable, so that it reaches
the goal configuration through the different trajectories for the same
time. When the robot is moving with a constant velocity, the time
t¢in IS also an important part of the criterion. The cost criterion C
is presented in Table 1, together with the information criterion Z,
as well as the whole criterion J, computed with¢; =1, ¢ = 0.1.
C is the ratio between the time for traveling over every trajectory
versus the time for traveling on the reference trajectory.

The generated optimal trajectory is required to have a smaller value
for J than the straight line trajectory. For this reason it is advisable
to chosen the elements of IV equal to the standard deviations of P
on the straight line (at the final time step). The squared standard
deviations of N, are o = 0.025 m?, o, = 0.023 m® 0}
1.5% deg® are received from the straight line reference trajectory
at its end point. The scaling matrix M is the identity matrix.
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Figure 4: Trajectories: reference (N = 0) and modified (IN = 5)
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Figure 5: Evolution of trace(W P) in time

Table 1: Active sensing results at the final time step.

(¥l o [ 1 [ 38 [ 5 |
[Z][3.00]2.76]2.42]2.10 |
[C][1.00]1.14]1.20 ] 1.21]
[ J][3.10]2.99]2.54]2.29]

5. CONCLUSIONS

This work concentrates on active sensing of a nonholonomic WMR
in the presence of uncertainties. The robot is required to move
from an initial to a final goal configuration (preset positions). The
paper presents an information-based approach for designing opti-
mal trajectories of the nonholonomic WMR. The problem has been
examined as a global optimization problem subject to constraints.
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A relevant performance criterion has been defined taking into ac-
count accuracy requirements and the constraints (nonholonomic,
physical). The criterion incorporates two parts: information and
cost part. Their influence is decoupled. The criterion is invari-
ant to physical units and is formulated in an appropriate way to
gain information from the measurements. The optimal trajectory
is searched within a preset class of functions, namely those of the
harmonic ones and as a linear combination of sinusoidal compo-
nents.
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