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Summary

Calcium imaging data promises to transform the field of neuroscience by making it possible to record

from large populations of neurons simultaneously. However, determining the exact moment in time

at which a neuron spikes, from a calcium imaging data set, amounts to a non-trivial deconvolution

problem which is of critical importance for downstream analyses. While a number of formulations

have been proposed for this task in the recent literature, in this paper we focus on a formulation

recently proposed in Jewell and Witten (2018. Exact spike train inference via `0 optimization. Ann.

Appl. Statist. 12(4), 2457–2482) that can accurately estimate not just the spike rate, but also the

specific times at which the neuron spikes. We develop a much faster algorithm that can be used to

deconvolve a fluorescence trace of 100,000 timesteps in less than a second. Furthermore, we present

a modification to this algorithm that precludes the possibility of a “negative spike”. We demonstrate
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the performance of this algorithm for spike deconvolution on calcium imaging datasets that were

recently released as part of the spikefinder challenge (http://spikefinder.codeneuro.org/). The

algorithm presented in this paper was used in the Allen Institute for Brain Science’s “platform

paper” to decode neural activity from the Allen Brain Observatory; this is the main scientific

paper in which their data resource is presented. Our C++ implementation, along with R and python

wrappers, is publicly available. R code is available on CRAN and Github, and python wrappers are

available on Github; see https://github.com/jewellsean/FastLZeroSpikeInference.
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1. Introduction

Due to recent advances in calcium imaging technology, it has become possible to record from large

populations of neurons simultaneously in behaving animals (Dombeck and others, 2007; Ahrens and

others, 2013; Prevedel and others, 2014). These data result in a fluorescence trace for each neuron.

However, most downstream analyses require not a fluorescence trace, but instead a measure

of the neuron’s activity over time. Consequently, a number of unsupervised and—more recently—

supervised methods have been developed to infer neural activity on the basis of the fluorescence

trace (Jewell and Witten, 2018; Grewe and others, 2010; Pnevmatikakis and others, 2013; Theis

and others, 2016; Deneux and others, 2016; Sasaki and others, 2008; Vogelstein and others, 2009;

Yaksi and Friedrich, 2006; Vogelstein and others, 2010; Holekamp and others, 2008; Friedrich and

Paninski, 2016; Friedrich and others, 2017; Dyer and others, 2010, 2013).

In this paper, we make use of a generative model that connects the observed fluorescence trace yt

to the underlying and unobserved calcium concentration ct, and the unknown spike times (Vogelstein

and others, 2010; Friedrich and Paninski, 2016; Friedrich and others, 2017). This model assumes
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that the observed fluorescence is a noisy version of the underlying calcium, which exponentially

decays, unless there is a spike, in which case there is an instantaneous increase in the calcium

concentration, as follows:

yt = β0 + β1ct + εt, εt ∼ind. (0, σ2), t = 1, . . . , T ;

ct = γct−1 + zt, t = 2, . . . , T, (1.1)

where zt > 0, and where zt > 0 indicates the presence of a spike at the tth timestep. At most

timesteps zt = 0, corresponding to no spike, and the calcium will decay exponentially at a rate

governed by the parameter γ, which is assumed known. For simplicity, in what follows, we assume

that the intercept β0 is equal to zero. However, this is easy to relax; see Section 2.4 for a straight-

forward extension, and Section 3 for practical considerations. Moreover, we set β1 equal to one,

since the problems we will solve are scale-invariant. That is, the value of β1 does not affect the

scientific conclusions.

Under the additional assumption that the errors εt are normally distributed, model (1.1) suggests

estimating the concentration by solving the following constrained `0 optimization problem

minimize
c1,...,cT ,z2,...,zT

{
1

2

T∑
t=1

(yt − ct)2
+ λ

T∑
t=2

1(zt 6=0)

}
subject to zt = ct − γct−1 > 0, (1.2)

where λ is a non-negative tuning parameter that controls the tradeoff between how closely the

calcium concentration matches the fluorescence trace,
∑T
t=1(yt − ct)2, and the number of non-zero

spikes,
∑T
t=2 1(zt 6=0). The solution to this optimization problem directly provides an estimate for

the spike times; that is, if ẑt 6= 0, then we infer a spike at time t. We note that this problem is

over-parameterized, in the sense that knowing c1, . . . , cT determines z2, . . . , zT .

While (1.2) follows from the biological process described in (1.1), the `0 penalty makes the

problem nonconvex and thus seemingly intractable. Consequently, rather than solving (1.2), prior

approaches have solved a convex relaxation to (1.2) (Vogelstein and others, 2010; Friedrich and
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Paninski, 2016; Friedrich and others, 2017), where the `0 penalty is replaced by an `1 penalty.

In recent work, Jewell and Witten (2018) showed that it is possible to efficiently solve the related

nonconvex optimization problem

minimize
c1,...,cT ,z2,...,zT

{
1

2

T∑
t=1

(yt − ct)2
+ λ

T∑
t=2

1(zt 6=0)

}
subject to zt = ct − γct−1, (1.3)

obtained by removing the positivity constraint, ct−γct−1 > 0, from (1.2). The positivity constraint

enforces the biological property that a firing neuron can only cause the calcium concentration to

increase. Nonetheless, despite the slight loss in physical interpretability caused by the omission of

the positivity constraint, Jewell and Witten (2018) showed that solving (1.3) leads to improved

performance over existing deconvolution approaches that perform a convex relaxation of (1.2). In

particular, the method of Jewell and Witten (2018) provides an accurate estimate of the specific

timesteps at which a neuron fires.

Unfortunately, the algorithm proposed in Jewell and Witten (2018) for solving (1.3) is too slow

to conveniently run on large-scale data. For traces of 100,000 timesteps, the implementation runs

in a few minutes for a single value of the tuning parameter λ; in practice the user must apply the

algorithm over a fine grid of values of λ, leading potentially to hours of computation time for a

single trace. Furthermore, a single experiment could result in hundreds or thousands of fluorescence

traces (Ahrens and others, 2013; Vladimirov and others, 2014).

In this paper, we develop a fast algorithm for solving problem (1.3); for traces of 100,000

timesteps our implementation runs in less than a second. Furthermore, this new algorithm can

easily accommodate the positivity constraint that was omitted from (1.3); in other words, we can

directly solve problem (1.2). Additionally, we exploit ideas from Haynes and others (2017) to effi-

ciently “choose” good values of λ; that is, values of λ where the solution to (1.3) changes.

The algorithm we develop to solve (1.2) was used to obtain the key scientific results in the Allen

Institute’s main scientific paper from the Allen Brain Observatory (de Vries and others, 2018).
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Additionally, the Allen Institute for Brain Science recently released an update to their software

development kit that provides users with the output from our algorithm for close to 60,000 neurons

during different experimental conditions.

In what follows, we introduce our new algorithm for solving (1.2) and (1.3) in Section 2. We

compare its performance in Section 3 to a convex relaxation of (1.2) on a number of calcium imaging

datasets that were recently released as part of the spikefinder challenge (http://spikefinder.codeneuro.org/).

We close with a discussion in Section 4.

2. A fast functional pruning algorithm for solving problems (1.3) and (1.2)

2.1 A review of Jewell and Witten (2018)

Jewell and Witten (2018) point out that the `0 optimization problem (1.3) is equivalent to a

changepoint detection problem,

minimize
0=τ0<τ1<...<τk<τk+1=T,k


k∑
j=0

D(y(τj+1):τj+1
) + λk

 , (2.4)

where

D(ya:b) ≡ min
α

{
1

2

b∑
t=a

(
yt − αγt−b

)2}
. (2.5)

In problem (2.4), we select the optimal changepoints τ1, . . . , τk and the number of changepoints k

such that the cost of segmenting the data into k + 1 exponentially decaying regions is minimal,

where (2.5) is the cost associated with the region that spans the ath to bth timesteps. Problems

(2.4) and (1.3) are equivalent in the sense that ẑτ̂1+1 6= 0, . . . , ẑτ̂k+1 6= 0 and all other ẑt = 0.

To solve the changepoint problem, Jewell and Witten (2018) exploit a simple recursion (Jackson

and others, 2005),

F (s) = min
0=τ0<τ1<···<τk<τk+1=s,k


k∑
j=0

D(y(τj+1):τj+1
) + λk

 = min
06τ<s

{
F (τ) +D(y(τ+1):s) + λ

}
, (2.6)
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where F (s) is the optimal cost of segmenting the data y1:s ≡ [y1, . . . , ys], and where we define

F (0) ≡ −λ. This results in an algorithm with computational complexity O(T 2), which can be

substantially improved by noticing that the minimization on the right hand side of (2.6) can be

performed over a smaller set Es without sacrificing the global optimum (Killick and others, 2012);

details are provided in Jewell and Witten (2018). As mentioned in the introduction, the algorithm

runs in a few minutes for traces of length 100,000, and yields the global optimum to (1.3). We note

that the recursion (2.6) does not naturally lead to an algorithm to solve (1.2); this is discussed in

further detail in Section 2.3.

2.2 Functional pruning for solving (1.3)

2.2.1 Motivation for functional pruning In order to motivate the potential for a much faster

algorithm for solving (1.3) than the one proposed in Jewell and Witten (2018), consider Figure 1.

In this figure, we are interested in determining the optimal cost of segmenting the data up

to time 40, that is, calculating F (40) in (2.6). Instead of directly applying the recursion (2.6),

we consider a slightly different question: What is the optimal most recent changepoint before the

40th timestep, conditional on, the unknown calcium concentration c40? Given the previously stored

values F (0), . . . , F (39), and the data y1:40, it is straightforward to calculate the best most recent

changepoint τ∗(c40), as τ∗(c40) = argmin
06τ<40

{
F (τ) + 1

2

∑40
t=τ+1(yt − γt−40c40)2 + λ

}
, for any value of

the calcium concentration c40.

Figure 1 displays the most recent changepoint τ∗(c40) as a function of c40. We observe that

regardless of the value of the calcium at the current timestep — and consequently, regardless of the

fluorescence values y41, y42, y43, . . . , yT — the only possible times for the most recent changepoint

before the 40th timestep are 20, 37, and 39 ; that is, τ∗(c40) ∈ {20, 37, 39} for all possible c40.

However, the algorithm proposed in Jewell and Witten (2018) does not exploit the fact that 20,
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37, and 39 are the only possible times for the most recent changepoint before the 40th timestep:

the minimization in (2.6) is performed over the set {0, . . . , 39}, or else over a slightly smaller set

{18, . . . , 39} using ideas from Killick and others (2012). This suggests that by viewing the cost of

segmenting the data up until the sth timestep as a function of the calcium at the sth timestep,

we could potentially develop an algorithm that is much faster than the one in Jewell and Witten

(2018) in that it would only require performing the minimization in (2.6) over {20, 37, 39}. The idea

of using this type of conditioning was first suggested by Rigaill (2015) and Maidstone and others

(2017), albeit to speed up algorithms for detecting changepoints in a different class of models.

2.2.2 The functional pruning algorithm To begin, we substitute the cost function D(y(τ+1):s) into

the recursion (2.6), in order to obtain

F (s) = min
06τ<s

{
F (τ) +D(y(τ+1):s) + λ

}
= min

06τ<s

{
F (τ) + min

α

{
1

2

s∑
t=τ+1

(
yt − αγt−s

)2}
+ λ

}

= min
α

min
06τ<s

{
F (τ) +

{
1

2

s∑
t=τ+1

(
yt − αγt−s

)2}
+ λ

}
= min

α
min

06τ<s
Costτs (α)

= min
α

Cost∗s(α), (2.7)

where

Costτs (α) ≡ F (τ) +
1

2

s∑
t=τ+1

(
yt − αγt−s

)2
+ λ, (2.8)

and

Cost∗s(α) = min
06τ<s

Costτs (α). (2.9)

In words, Costτs (α) is the cost of partitioning the data up until time s, given that the most recent

changepoint was at time τ , and the calcium at the sth timestep equals α. Cost∗s(α) is the optimal

cost of partitioning the data up until time s, given that the calcium at the sth timestep equals α.
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The following proposition will prove useful in what follows.

Proposition 1 For Cost∗s(α) defined in (2.9), the following recursion holds:

Cost∗s(α) = min
{

Cost∗s−1(α/γ),min
α′

Cost∗s−1(α′) + λ
}

+
1

2
(ys − α)2. (2.10)

The proof of Proposition 1 is in Appendix S1 of the Supplementary Materials. The recursion

in (2.10) encompasses two possibilities: either there is a changepoint at the (s− 1)st timestep, and

we must determine the optimal cost up to that time, minα′ Cost∗s−1(α′) + λ+ 1
2 (ys − α)2, or there

is no changepoint at the (s− 1)st timestep, Cost∗s−1(α/γ) + 1
2 (ys − α)2. The recursion in (2.10) is

reminiscent of (2.6), and raises the following question: can we use (2.10) as the basis for a recursive

algorithm for solving the problem of interest, (1.3)? At first, it appears almost hopeless, since the

recursion (2.10) involves a function of α, a real-valued parameter. However, as we will see, it turns

out that Cost∗s(α) and Costτs (α) are simple functions of α that are easy to analytically manipulate.

Observe that, by definition (2.9), the optimal cost Cost∗s(α) takes the form

Cost∗s(α) =


Cost0

s(α), α ∈ R0
s,

...
...

Costs−1
s (α), α ∈ Rs−1

s ,

(2.11)

where Rτs ≡
{
α : min06τ ′<s Costτ

′

s (α) = Costτs (α)
}

; this is the set of values for the calcium at the

sth timestep such that the most recent changepoint occurred at time τ . Furthermore, by inspection

of (2.8), we see that Costτs (α) is itself a quadratic function of α for all τ . Thus, Cost∗s(α) is in fact

piecewise quadratic. This means that in order to efficiently store the function Cost∗s(α), we must

simply keep track of the regions R0
s, . . . ,Rs−1

s , as well as the three coefficients (constant, linear,

quadratic) that define the quadratic function corresponding to each region. We will now present

a small toy example illustrating how the recursion (2.10) can be used to build up optimal cost

functions, each of which is piecewise quadratic.
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Example 2.1 Consider the simple dataset y = [1.00, 0.98, 0.96, . . .] with λ = 1
2 and γ = 0.98. We

start with Cost∗1(α), which is just a quadratic centered around y1,

Cost∗1(α) = Cost0
1(α) =

1

2
(y1 − α)2 =

1

2
(1.00− α)2, α ∈ R0

1 ≡ [0,∞).

Then, at the next time point, we form Cost∗2(α) based on (2.10),

Cost∗2(α) = min
{

Cost∗1(α/γ),min
α′

Cost∗1(α′) + λ
}

+
1

2
(y2 − α)2

= min

{
1

2
(1− α/γ)2, 0 +

1

2

}
+

1

2
(0.98− α)2

=

{
1
2 (1− α/γ)2 + 1

2 (0.98− α)2, α ∈ R0
2 ≡ [0, 2γ)

1
2 + 1

2 (0.98− α)2, α ∈ R1
2 ≡ [2γ,∞)

.

Again, using the recursion (2.10) we obtain the next optimal cost function,

Cost∗3(α) = min

{
Cost∗2(α/γ),min

α′
Cost∗2(α

′) + λ

}
+

1

2
(y3 − α)2

= min

{
Cost∗2(α/γ),

1

2

}
+

1

2
(0.96− α)2

=


1
2 + 1

2 (0.96− α)2, α ∈ R2
3 ≡ γ2

{[
0, 1− 1√

1+γ2

)
∪
[
1 + 1√

1+γ2
,∞
)}

1
2 (1− α/γ2)2 + 1

2 (0.98− α/γ)2 + 1
2 (0.96− α)2, α ∈ R0

3 ≡ γ2
[
1− 1√

1+γ2
, 1 + 1√

1+γ2

) .

We note that Cost∗3(α) is defined over just R0
3 and R2

3. This example is displayed in Figure 2.

Although we have shown how to efficiently build optimal cost functions Cost∗s(α) from s =

1, . . . , T , it remains to establish that these cost functions can be used to determine the optimal

changepoints, that is, the values of τ1, . . . , τk that solve (1.3). These can be obtained by finding the

value of τ that satisfies

τ∗(s) = {τ : min
α

Costτs (α) = min
α

Cost∗s(α)} (2.12)

for τ∗(T ), τ∗(τ∗(T )), . . . until 0 is obtained. Full details are provided in Algorithm 1. To summarize,

we have developed a recursive algorithm for solving (1.3) using the recursions in Proposition 1.
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Example 2.2 “Example 1 revisited”

We return to Example 2.1 to illustrate how (2.12) can be used to determine the optimal change-

points. In the interest of simplicity, we assume that T = 3; in other words, we have observed all of

the data. Then, τ∗(3) = {τ : minα Costτ3(α) = minα Cost∗3(α)}, where

min
α

Costτ3(α) =

{
minα Cost2

3(α) = 0.73, α ∈ R2
3

minα Cost0
3(α) = 5.4× 10−8, α ∈ R0

3

.

Therefore, the most recent changepoint is τ∗(3) = 0. In fact, since the most recent changepoint

is at timestep 0, we say that there are no changepoints.

Algorithm 1 is an instance of the class of functional pruning algorithms proposed in Maidstone

and others (2017).

2.2.3 Computational time of functional pruning We saw in Example 2.1 that Proposition 1

can lead to a recursive algorithm for solving the problem of interest (1.3). At first glance, since

Cost∗s(α) is piecewise quadratic with s regions (2.11), and our recursive algorithm requires comput-

ing Cost∗1(α), . . . ,Cost∗T (α), it appears that a total of 1 + 2 + . . .+ T = O(T 2) operations must be

performed in order to deconvolve a fluorescence trace of length T . Critically, however, this is not

the case. This is because, in practice, Cost∗s(α) is piecewise quadratic with substantially fewer than

s regions, as we saw in Figure 1. To see this, recall from (2.11) that the τth region up to timestep s

is defined as Rτs ≡
{
α : min06τ ′<s Costτ

′

s (α) = Costτs (α)
}

. However, if Rτs is the empty set — that

is, if there is no α such that min06τ ′<s Costτ
′

s (α) = Costτs (α) — then Cost∗s(α) is, in fact, not a

function of the τth region.

In practice, Rτs will often be the empty set. For instance, see Figure 1. We note that in this
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example, at timestep s = 40, the optimal cost function is only a function of three regions,

Cost∗40(α) =


1.88α2 − 0.17α+ 2.08, α ∈ R37

40 ≡ [0, 0.06]

142.08α2 − 39.60α+ 3.85, α ∈ R20
40 ≡ [0.06, 0.22]

0.50α2 − 0.10α+ 2.10, α ∈ R39
40 ≡ [0.22,∞)

.

In a similar way, in Example 2.1, we saw that Cost∗3(α) was a function of two regions.

Therefore, though its worst-case performance is upper-bounded by O(T 2), in practice, Algo-

rithm 1 is typically much faster than this. In Appendix S6 of the Supplementary Materials we show

that the maximum number of regions, maxs=0,...,T |{j : Rjs 6= ∅, 0 6 j 6 s− 1}|, is a small fraction

of T ; for T = 100, 000, fewer than 30 regions are required.

Furthermore, by slightly modifying Theorem 6.1 of Maidstone and others (2017), we can show

that Algorithm 1 is no worse than the algorithm proposed in Jewell and Witten (2018). In fact, as

shown in Figure 3, Algorithm 1 is typically up to a thousand times faster than that of Jewell and

Witten (2018) on a fluorescence trace of length 100,000. In simulations, our C++ implementation of

Algorithm 1 runs in less than one second on traces of length 100,000.

2.3 An efficient algorithm to solve the constrained problem (1.2)

As stated in the introduction, our main interest is to solve (1.2) for the global optimum. Problem

(1.2) differs from problem (1.3) in that there is an additional constraint that enforces biological

reality: firing neurons can only cause an increase, but not a decrease, in the calcium concentration.

The algorithm in Jewell and Witten (2018) cannot be used to solve (1.2), because it relies on the

recursion in (2.6), which does not allow for any dependence in the calcium concentration before and

after a changepoint. Thus, at the time of this writing, there are no algorithms available to efficiently

solve (1.2) for the global optimum.

In this section we utilize a simple modification, due to Hocking and others (2017), to the func-

tional recursion (2.10) that ensures that the constraint ct− γct−1 > 0 is satisfied. First, recall from
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(2.10) that Cost∗s(α) = min
{

Cost∗s−1(α/γ),minα′ Cost∗s−1(α′) + λ
}

+ 1
2 (ys−α)2, where we take the

minimum over two terms, which result from adding an additional point ys to the current segment,

Cost∗s−1(α/γ) + 1
2 (ys − α)2, and adding a new candidate changepoint at s − 1 and starting a new

segment at the sth timestep, minα′ Cost∗s−1(α′) + λ+ 1
2 (ys − α)2.

In the latter case, if there is a spike at the sth timestep, then in order to enforce the positivity

constraint, zs = cs − γcs−1 > 0, the term minα′ Cost∗s−1(α′) + λ in (2.10) needs to be modified to

minα′:α>α′ Cost∗s−1(α′/γ) + λ. Therefore, we replace (2.10) with

Cost∗s(α) = min

{
Cost∗s−1(α/γ), min

α′:α>α′
Cost∗s−1(α′/γ) + λ

}
+

1

2
(ys − α)2, (2.13)

and we replace (2.8) with

Costτs (α) ≡ min
α′:α′6γτ−sα

[
Cost∗τ (α′) +

1

2

s∑
t=τ+1

(
yt − αγt−s

)2
+ λ

]
. (2.14)

We note that this is a slight abuse of notation since Cost∗s(α) and Costτs (α) take on different

definitions depending on the optimization problem ((1.2) or (1.3)). Equations (2.13) and (2.14) can

be used to develop an efficient recursive algorithm to solve problem (1.2); see Algorithm 2. Details of

the algorithm itself are included in Appendix S2 of the Supplementary Materials. A continuation of

Example 2.1 that solves (1.2) is included in Appendix S5 of the Supplementary Materials. Figure 3

shows the running time of solving (1.2).

2.4 Solving (1.1) for non-zero intercept β0

Thus far, we have considered (1.1) with β0 = 0. To accommodate the possibility of nonzero baseline

calcium, we consider the problem

minimize
c1,...,cT ,z2,...,zT ,β0

{
1

2

T∑
t=1

(yt − (β0 + ct))
2

+ λ

T∑
t=2

1(zt 6=0)

}
subject to zt > ct − γct−1. (2.15)

Instead of directly solving (2.15) with respect to (c1, . . . , cT , z2, . . . , zT , β0), we consider a fine grid

of values for β0, and solve (1.2) with y−β0 using Algorithm 2, for each value of β0 considered. The
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solution to (2.15) is the set {ĉ1, . . . , ĉT , ẑ2, . . . , ẑT , β0} corresponding to the value of β0 that led to

the the smallest value of the objective, over all values of β0 considered.

2.5 Solving (1.1) with additional spike constraints

The methods used to solve (1.2) and (1.3) can also be used to solve the related nonconvex problem

minimize
c1,...,cT

{
1

2

T∑
t=1

(yt − ct)2

}
subject to ct − γct−1 > zmin or ct − γct−1 = 0, (2.16)

proposed in Friedrich and others (2017). In Appendix S4 of the Supplementary Materials, we

examine this proposal more closely. Remarkably, we show that Algorithm 2 can be generalized to

solve

minimize
c1,...,cT

{
1

2

T∑
t=1

(yt − ct)2 + λ

T∑
t=2

1{ct−γct−1 6=0}

}
subject to ct − γct−1 > zmin or ct − γct−1 = 0

(2.17)

exactly! We note that this is equivalent to (2.16) by taking λ = 0.

3. Real data experiments

In this section, we illustrate the performance of the solution to (1.2) for spike deconvolution

across a number of datasets, which were aggregated as part of the recent spikefinder challenge

(http://spikefinder.codeneuro.org/). Each dataset consists of both calcium and electrophysiolog-

ical recordings for a single cell. As part of the spikefinder challenge, all data recordings were

standardized by resampling to 100Hz and linear trends were removed from the calcium trace via

preprocessing steps described in Theis and others (2016).

Throughout this section, due to computation considerations, the solutions to (1.2) and (1.3) are

obtained using slight modifications of Algorithm 1 and Algorithm 2 described in Appendix S3.1

of the Supplementary Materials. Additionally, since the spikefinder data removed linear trends
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from the raw calcium trace, we do not estimate β0 in (1.1). Instead, we set β0 = 0; our empirical

results suggest that estimation of β0 may not be necessary.

In our experiments, we will treat the spikes ascertained using electrophysiological recording as

the “ground truth”, and will quantify the ability of spike deconvolution algorithms to recover these

ground truth spikes on the basis of the calcium recordings. The data sets differ in terms of the

choice of calcium indicator (GCaMP5, GCaMP6, jRCAMP, jRGECO, OGB), scanning technology

(AOD, galvo, and resonant), and circuit under investigation (V1 and retina).

Throughout this section, we compare our proposal (1.2) to a recent approach from the literature

that employs an `1 (convex) relaxation to (1.2),

minimize
c1,...,cT ,z2,...,zT

{
1

2

T∑
t=1

(yt − ct)2
+ λ|c1|+ λ

T∑
t=2

|zt|
}

subject to zt = ct − γct−1 > 0, (3.18)

proposed by Friedrich and Paninski (2016) and Friedrich and others (2017). Friedrich and others

(2017) developed a very fast algorithm to solve (3.18); in simulated examples their algorithm solves

(3.18) approximately 40-60× faster than Algorithm 1 and 40-900× faster than Algorithm 2. This

is not surprising, since (3.18) is a convex problem whereas (1.2) and (1.3) are nonconvex problems.

Moreover, in practical applications, Algorithm 1 and Algorithm 2 are often fast enough. Indeed,

de Vries and others (2018) uses Algorithm 2 to deconvolve traces from nearly 60,000 neurons.

Since the solution to (3.18) often results in many small non-zero elements of ẑt, we consider post-

thresholding. That is, given ẑ2, . . . , ẑT that solve (3.18), and a threshold L > 0, we set z̃t = ẑt1(ẑt>L);

in other words, we conclude that a spike is present only if ẑt > L.

In Section 3.1 we compare our proposed approach (1.2) to (3.18) on data from the spikefinder

challenge. We describe our experimental approach in Section 3.1.1. Section 3.1.2 illustrates these

methods for a single cell, and in Section 3.1.3, we examine results for all datasets considered in the

spikefinder challenge. In Section 3.2, we illustrate on a real-data example that solving (1.2) gives

superior estimates than solving (1.3). In Section 3.3, we compare the estimated increase in calcium
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due to a spike (using (1.2)) to the actual number of recorded spikes (based on the ground truth

electrophysiological recordings).

R code to reproduce all experiments is available on GitHub at https://github.com/jewellsean/fast-

nonconvex-experiments.

3.1 Comparison of (1.2) to (3.18) on data from the spikefinder challenge

3.1.1 Description of methods for Sections 3.1.2–3.1.3 We now describe the methods that will be

used in Sections 3.1.2–3.1.3. Our main objective is to accurately estimate the times at which spikes

occur. Thus, we use two measures that directly compare two spike trains, both of which have been

used extensively in the neuroscience literature (Quiroga and Panzeri, 2009; Reinagel and Reid,

2000; Gerstner and others, 2014): (i) van Rossum distance with timescale parameter τ = 0.1 (van

Rossum, 2001; Houghton and Kreuz, 2012); and (ii) Victor-Purpura distance with cost parameter 10

(Victor and Purpura, 1997, 1996). We also use an additional measure: (iii) the correlation between

two downsampled spike trains; details of this measure are provided in Theis and others (2016).

As we will see, measures (i) and (ii) are sensitive to the timing of spikes, whereas measure (iii) is

somewhat insensitive to the timing of the spikes, and instead quantifies the similarity between the

spike rates.

To analyze the performances of the proposals (1.2) and (3.18) over a single fluorescence trace, we

take a training/test set approach. Given a fluorescence trace of length T , the first bT/2c timesteps

are used in the training set, and the remainder are used for the test set. We solve (1.2) and (3.18)

for a range of values of the tuning parameter λ on the training set; in the case of (3.18) we also use

a range of threshold values L.

For all tuning parameter values considered, we apply the three measures mentioned earlier to

the estimated and true spike trains, and select the tuning parameter values that optimize these
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measures on the training set. We then apply (1.2) and (3.18) to the test set with the selected values

of the tuning parameters, and evaluate test set performance.

As pointed out by Pachitariu and others (2017), estimating the decay rate γ in (1.1) is difficult.

Therefore, as in Pachitariu and others (2017), we categorize calcium indicators into three groups

based on their decay properties. As in Vogelstein and others (2010), within each calcium indicator

rate category, we set γ = 1− ∆
φ , where ∆ is 1 / (frame rate), and φ is a time-scale parameter based

on the category, defined as

φ =


0.7, fast category

1.25, medium category

2, slow category

.

For example, in Figure 4, GCaMP6f is classified as a fast indicator and the data is recorded at

100Hz. Therefore, we take γ ≈ 0.986.

In practice, users typically do not have the benefit of a training set to select the tuning parameter

value λ to solve (1.2) or (1.3). Therefore, we recommend using the procedure proposed in de Vries

and others (2018), which selects λ based on the firing rate, decay rate γ, and estimated signal-to-

noise ratio.

3.1.2 Results for a single cell In Figure 4, we illustrate this procedure for cell 13, GCaMP6f,

V1, from Chen and others (2013). Each row corresponds to one of the measures described in

Section 3.1.1. The left column displays these measures on the training set, for the solution to (1.2)

with different values of λ, and for the post-thresholded solution to (3.18) with different values of λ

and L. The right column shows the fluorescence trace along with the estimated spikes, on the test

set, using tuning parameters selected on the training set.

There are a number of important observations to draw from Figure 4. As measured by van

Rossum and Victor-Purpura, the estimated spikes from (1.2) are much more accurate than those

estimated (and post-thresholded) using the convex relaxation (3.18). This agrees with our visual
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inspection of the right hand panel: the estimated spikes from problem (1.2) more closely match the

number and timings of the true spikes than those estimated from problem (3.18).

By contrast, if performance is measured by correlation, then the estimated spikes obtained from

(3.18) result in slightly better performance than the estimated spikes from (1.2). However, in the

training set there are 75 true spikes, whereas (3.18) outperforms (1.2) when approximately 200

spikes are estimated. Therefore, selecting the tuning parameter for (3.18) based on correlation leads

to a substantial overestimate of the number of spikes, and therefore poor overall accuracy in the

number and timing of the spikes. This pattern has been observed in other `1 regularization problems

(Zou, 2006; Maidstone and others, 2017), and persists across cells in the spikefinder data (results

not shown).

To summarize, when van Rossum and Victor-Purpura distance are used to evaluate performance,

our proposal (1.2) substantially outperforms the approach in (3.18). When performance is evaluated

using correlation, the performance of (3.18) is slightly better than that of (1.2); however, this better

performance is achieved when far too many spikes are estimated, indicating that correlation is a

poor choice for quantifying the accuracy of spike detection.

3.1.3 Results for all datasets in the spikefinder challenge In this section, we examine the per-

formance of the solutions to (1.2) and (3.18) on all datasets collected as part of the spikefinder

challenge. For the ten datasets included in this challenge, Table S1 tabulates the calcium indicator;

circuit; publishing authors; average, minimum, and maximum fluorescence trace length; the num-

ber of cells measured; and the time-scale classification. In total, there are 174 traces, each of which

contains fewer than 100,000 timesteps. We analyze these 174 cells as described in Section 3.1.1.

The top panel of Figure 5 compares the test set performance, with respect to the van Rossum,

Victor-Purpura, and correlation measures, for each of the 174 cells. As measured by the van Rossum

and Victor-Purpura distance, the solution to (1.2) outperforms the solution to (3.18). However,
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under the correlation measure, the solution to (3.18) achieves higher correlations than the solution to

(1.2). These results are consistent with those on a single cell presented in Section 3.1.2, where it was

shown that van Rossum and Victor-Purpura accurately estimate spike times, whereas correlation

yields a cruder measure of spike rate and encourages overestimation of the number of spikes.

3.2 The solution to (1.2) outperforms the solution to (1.3)

As mentioned earlier, in this paper we have developed not only an algorithm for solving (1.3) that

is much faster than the algorithm proposed in Jewell and Witten (2018), but also an algorithm

for solving (1.2), which cannot be solved using techniques from Jewell and Witten (2018). By

incorporating the fact that a firing neuron causes an increase, but never a decrease, in the calcium

concentration, the estimated spikes from problem (1.2) are closer to the ground truth spikes than

the estimated spikes from (1.3). In practice, the solutions to (1.2) and (1.3) are typically quite

similar; however, the solution to (1.2) benefits from greater interpretability. See Appendix S8 of the

Supplementary Materials for an example.

3.3 Comparison of the estimated spike magnitudes from (1.2) to the true number of spikes

The data from the spikefinder challenge was resampled to 100Hz before we downloaded it. At

this sampling frequency, since one timestep is just 1/100th of a second, there are very few timesteps

with more than one true spike. Nonetheless, for instances where there is more than one spike in a

single timestep, we wish to ask the question: Do larger values of the estimated spike magnitudes,

ĉt − γĉt−1, correspond to more true spikes (as measured by electrophysiology) in the tth timestep?

The bottom panel of Figure 5 investigates whether there is a relationship between the estimated

spike magnitude ĉt − γĉt−1 and the number of spikes measured by electrophysiology at the tth

timestep. Because the estimated spike magnitude of ĉt − γĉt−1 is not directly comparable across
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cells, for each cell we transform the magnitudes into percentiles. We then compare the percentile

of ĉt − γĉt−1 to the true number of spikes within a 0.1 second window of t. The bottom panel of

Figure 5 displays the percentiles and the number of spikes across all 174 traces on a test set; tuning

parameters were chosen to optimize the van Rossum distance on a training set. The left panel

displays a loess curve fit to all ten datasets, and the right panel shows the loess curves along with

95% confidence intervals for each dataset. As expected, a larger value of ĉt − γĉt−1 is associated

with more spikes in the ground truth data.

4. Discussion

Determining the times at which a neuron fires from a calcium imaging dataset is a challenging and

important problem. In this paper, we build upon the nonconvex approach for spike deconvolution

proposed in Jewell and Witten (2018). Though Jewell and Witten (2018) proposed a tractable

algorithm for solving the nonconvex problem, it is prohibitively slow to run on large populations

of neurons for which long recordings are available. The algorithm proposed in this paper solves

the optimization problem of Jewell and Witten (2018) for fluorescence traces of 100,000 timesteps

in less than a second. Moreover, Algorithm 2 overcomes a limitation of Jewell and Witten (2018)

by avoiding “negative” spikes; that is, a decrease in the calcium concentration due to a spike. We

show that these algorithms have excellent performance, relative to existing convex relaxations, as

quantified by the van Rossum and Victor-Purpura measures, on datasets collected as part of the

spikefinder challenge (http://spikefinder.codeneuro.org/). Moreover, Algorithm 2 was recently

used to decode data from nearly 60, 000 neurons in the Allen Institute for Brain Science’s “platform

paper” for the Allen Brain Observatory (de Vries and others, 2018).

In this paper, we assume that the calcium concentration decays exponentially according to a first-

order auto-regressive model. Although this is typically a good approximation, there are datasets
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for which—due to different experimental conditions—spike times estimated from (1.2) and (1.3)

are systematically biased due to model misspecification. In future work, we propose to extend the

functional pruning framework to more general calcium models.

In this paper, we focus on developing point estimates of the times at which a neuron spikes.

However, it is also of interest to propagate uncertainty from the deconvolution procedure to down-

stream analyses that rely on the spike times. It remains an open question to define the notion of

confidence associated with a set of estimated spikes.

Supplementary Material

The reader is referred to the on-line Supplementary Materials for proofs, implementation considera-

tions, an extension to (1.2), an example, and additional information for the empirical computational

complexity and the spikefinder dataset, and an example of an estimated “negative” spike from

solving (1.3).

Acknowledgments

We thank Michael Buice, Peter Ledochowitsch, and Michael Oliver at the Allen Institute for Brain

Science and Ilana Witten at Princeton for helpful conversations. Conflict of Interest: None declared.

Funding

Sean Jewell received funding from the Natural Sciences and Engineering Research Council of

Canada. Toby Hocking is partially supported by the Natural Sciences and Engineering Research

Council of Canada grant RGPGR 448167-2013, and by Canadian Institutes of Health Research

grants EP1-120608 and EP1-120609. This work was partially supported by Engineering and Physi-

cal Sciences Research Council Grant EP/N031938/1 to Paul Fearnhead, and NSF CAREER DMS-



REFERENCES 21

1252624, NIH grants DP5OD009145, R01DA047869, and R01EB026908, and a Simons Investigator

Award in Mathematical Modeling of Living Systems to Daniela Witten.

References

Ahrens, M. B., Orger, M. B., Robson, D. N., Li, J. M. and Keller, P. J. (2013).

Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nature Meth-

ods 10(5), 413–420.

Chen, T.-W., Wardill, T. J., Sun, Y., Pulver, S. R., Renninger, S. L., Baohan, A.,

Schreiter, E. R., Kerr, R. A., Orger, M. B., Jayaraman, V. and others. (2013). Ultra-

sensitive fluorescent proteins for imaging neuronal activity. Nature 499(7458), 295–300.

de Vries, S. E. J., Lecoq, J., Buice, M. A., Groblewski, P. A., Ocker, G. K., Oliver,

M., Feng, D., Cain, N., Ledochowitsch, P., Millman, D., Roll, K., Garrett, M.,

Keenan, T., Kuan, L., Mihalas, S., Olsen, S., Thompson, C., Wakeman, W., Waters,

J., Williams, D., Barber, C., Berbesque, N., Blanchard, B., Bowles, N., Caldejon,

S., Casal, L., Cho, A., Cross, S., Dang, C., Dolbeare, T., Edwards, M., Galbraith,

J., Gaudreault, N., Griffin, F., Hargrave, P., Howard, R., Huang, L., Jewell, S.,

Keller, N., Knoblich, U., Larkin, J., Larsen, R., Lau, C., Lee, E., Lee, F., Leon,

A., Li, L., Long, F., Luviano, J., Mace, K., Nguyen, T., Perkins, J., Robertson,

M., Seid, S., Shea-Brown, E., Shi, J., Sjoquist, N., Slaughterbeck, C., Sullivan, D.,

Valenza, R., White, C., Williford, A., Witten, D., Zhuang, J., Zeng, H., Farrell,

C., Ng, L., Bernard, A., Phillips, J. W., Reid, R. C. and others. (2018). A large-scale,

standardized physiological survey reveals higher order coding throughout the mouse visual cortex.

bioRxiv:359513 .



22 REFERENCES

Deneux, T., Kaszas, A., Szalay, G., Katona, G., Lakner, T., Grinvald, A., Rózsa, B.
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Algorithm 1: A functional pruning algorithm for solving (1.3)

Initialize: Compute Cost∗1(α) := Cost0
1(α) = 1

2 (y1 − α)2, and set R0
1 = [0,∞)

1 foreach timestep s = 2, . . . , T do
2 Calculate and store Cost∗s(α) := min{Cost∗s−1(α/γ),minα′ Cost∗s−1(α′) + λ}+ 1

2 (ys − α)2

3 Set Rs−1
s = {α : Cost∗s(α) = minα′ Cost∗s−1(α′) + λ+ 1

2 (ys − α)2}

4 foreach τ = 0, . . . , s− 1 do
5 Rτs = (γRτs−1) ∩ (Rs−1

s )c

6 end

7 end

8 Initialize list of changepoints cp := (T )

9 Set the current changepoint τ cur := T

10 Initialize list of estimated calcium concentrations c := ()

11 while τ cur > 0 do
12 τprev := τ cur

13 Determine the most recent changepoint τ cur :=

{
τ : argmin

α
{Cost∗τ prev(α)} ∈ Rττ prev

}
14 Determine the calcium concentration at τprev, α∗ := argmin

α∈Rτcur

τprev

{Cost∗τ prev(α)}

15 Update list of changepoints cp := (τ cur, cp)

16 Update list of calcium concentrations, c := (α∗, c)

17 foreach timestep s = (τprev − 1), . . . , (τ cur + 1) do
18 Calculate calcium concentration, α∗/γ, and then append to list, c := (α∗/γ, c)

19 Scale α∗ := α∗/γ

20 end

21 end

Output : Set of changepoints cp, number of changepoints k := card(cp), and estimated

calcium concentrations c.
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Fig. 1. A simple example to show that there are only a few possible values for the most recent changepoint
before timestep 40. We consider solving for the most recent changepoint, given data y1:40, for each possible
value of the calcium concentration at the 40th timestep, c40. For each possible value of c40, we display the
estimated calcium concentration going back in time to the most recent changepoint before timestep 40. The
colors indicate the time of the most recent changepoint. In this example, there are only three possibilities
for the most recent changepoint: {20, 37, 39}. For example, τ∗(0.001) = 37, τ∗(0.02) = 20, and τ∗(1) = 39.
We emphasize that there is no value of c40 that leads to a most recent changepoint of, say, 27.

Algorithm 2: A functional pruning algorithm for solving (1.2)

Initialize: Compute Cost∗1(α) := Cost0
1(α) = 1

2 (y1 − α)2, and set R0
1 = [0,∞)

1 foreach timestep s = 2, . . . , T do
2 Calculate and store

Cost∗s(α) := min{Cost∗s−1(α/γ), min
α′:α>α′

Cost∗s−1(α′/γ) + λ}+ 1
2 (ys − α)2

3 Set Rs−1
s = {α : Cost∗s(α) = min

α′:α>α′
Cost∗s−1(α′/γ) + λ+ 1

2 (ys − α)2}

4 foreach τ = 0, . . . , s− 1 do
5 Rτs = (γRτs−1) ∩ (Rs−1

s )c

6 end

7 end

8 Perform lines 8-21 of Algorithm 1.

Output : Set of changepoints cp, number of changepoints k := card(cp), and estimated

calcium concentrations c.



28 REFERENCES

s = 1 :
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●

●●●●●●
●●●●●●

●●●●●
●●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

α

C
os
t

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●

●●●●●●
●●●●●●

●●●●●
●●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

α

C
os
t*

● τ = 0

s = 2 :
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●●
●●●●●●

●●●●●
●●●●●

●●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

1.
0

2.
0

3.
0

α

C
os
t

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●
●●●●●
●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

1.
0

2.
0

3.
0

α

C
os
t*

● ●τ = 0 τ = 1

s = 3 : ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●

●●●●
●●●●
●●●●
●●●●

●●●●
●●●●
●●●●

●●●●
●●●●
●●●●
●●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●
●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●
●●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

1.
0

2.
0

3.
0

α

C
os
t

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●●●
●●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●
●●●●●●

●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

1.
0

2.
0

3.
0

α

C
os
t*

● ● ●τ = 0 τ = 1 τ = 2

Fig 2: Evolution of Cost⌧s and Cost⇤s(↵) for Example 1. The left-hand panels display
the functions Cost⇤s�1(↵/�) + 1

2
(ys �↵)2 and min↵0 Cost⇤s�1(↵

0) + �+ 1
2
(ys �↵)2, and

the right-hand panels show the function Cost⇤s(↵), which is the minimum of those
two functions. Rows index the timesteps, s = 1, 2, 3. The functions are colored based
on the timestep of the most recent changepoint, that is, the value of ⌧ corresponding
to R⌧

s . Top: When s = 1, Cost⇤1(↵) = 1
2
(1 � ↵)2; this corresponds to the region

R0
1 = [0,1). Center: When s = 2, Cost⇤2(↵) is the minimum of two quantities:

Cost⇤1(↵/�)+ 1
2
(y2 �↵)2, which corresponds to the most recent changepoint being at

timestep zero, and min↵0 Cost⇤1(↵
0) + � + 1

2
(y2 � ↵)2, which corresponds to the most

recent changepoint being at timestep one. These two functions are shown on the
left-hand side, and Cost⇤2(↵) is shown on the right-hand side. Bottom: When s = 3,
Cost⇤3(↵) is calculated similarly; see Example 1 for additional details.

9

Fig. 2. Evolution of Costτs and Cost∗s(α) for Example 2.1. The left-hand panels display the functions

Cost∗s−1(α/γ) + 1
2 (ys − α)2 and minα′ Cost∗s−1(α′) + λ + 1

2 (ys − α)2, and the right-hand panels show
the function Cost∗s(α), which is the minimum of those two functions. Rows index the timesteps, s = 1, 2, 3.
The functions are colored based on the timestep of the most recent changepoint, that is, the value of τ
corresponding to Rτs . Top: When s = 1, Cost∗1(α) = 1

2 (y1−α)2; this corresponds to the region R0
1 = [0,∞).

Center: When s = 2, Cost∗2(α) is the minimum of two quantities: Cost∗1(α/γ)+ 1
2 (y2−α)2, which corresponds

to the most recent changepoint being at timestep zero, and minα′ Cost∗1(α′) + λ + 1
2 (y2 − α)2, which

corresponds to the most recent changepoint being at timestep one. These two functions are shown on the
left-hand side, and Cost∗2(α) is shown on the right-hand side. Bottom: When s = 3, Cost∗3(α) is calculated
similarly; see Example 2.1 for additional details.
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Fig. 3. Timing comparisons between three algorithms for solving (1.2) and (1.3) with λ = 1. Functional
pruning approach used in Algorithm 1 (orange) and Algorithm 2 (purple), and two algorithms from Jewell
and Witten (2018): one based on recursion (2.6) (red), and one based on an improvement to (2.6) called
inequality pruning that makes use of ideas from Killick and others (2012) (blue). Fifty sample datasets

are simulated according to (1.1) with coefficient β0 = 0, decay parameter γ = 0.998, normal errors εt
ind∼

N(0, σ = 0.15), Poisson distributed spikes zt
ind∼ Pois(θ) where θ ∈ {0.1, 0.01, 0.001}, and initial calcium

value c1 ∼ Pois(θ). Standard errors are on average < 0.1% of the average computation time. Panels
correspond to different values of θ. Timing results were obtained on an Intel Xeon E5-2620 2.0 GHz processor.
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Fig. 5. Top: Optimal van Rossum, Victor-Purpura, and correlation measures for our proposal, (1.2), and a
competing proposal, (3.18). Small values of the van Rossum and Victor-Purpura measures suggest accurate
estimation of the timing and number of spikes, whereas a large value of the correlation measure suggests
accurate estimation of the spike rate, though perhaps an overestimate of the number of spikes. Each dot
represents the performance of (1.2) and (3.18) on a single cell, for each of the 174 cells. Cells are colored based
on the dataset from which they were obtained (see Table S1 of the Supplementary Materials). Bottom: Large
increases in the estimated spike magnitude, ĉt − γĉt−1, are associated with more true spikes, as measured
by electrophysiology, at the tth timestep. For each cell, we transform the spike magnitudes into percentiles,
and then compare the percentile of ĉt − γĉt−1 to the true number of spikes within a 0.1 second window
of t. Bottom left: For each cell in each of the ten datasets, we display each timestep for which a spike is
estimated to occur; however, to avoid overplotting, hexagonal bins are used to represent points covered by
the hexagon; darker colors indicate more points. The black curve represents the loess fit across all of the
points. Bottom right: Loess curves along with 95% confidence intervals for each dataset. Cells are colored
based on the dataset from which they were obtained (see Table S1 of the Supplementary materials). Details
are provided in Section 3.3.


