

More salt, please: global patterns, responses, and impacts of foliar sodium in grasslands

Journal:	Ecology Letters
Manuscript ID	ELE-01200-2018.R1
Manuscript Type:	Letters
Date Submitted by the Author:	11-Feb-2019
Complete List of Authors:	Borer, Elizabeth; University of Minnesota, Ecology, Evolution, Behavior Lind, Eric; University of Minnesota, Ecology, Evolution and Behavior Firn, Jennifer; Queensland University of Technology, School of Earth, Environmental and Biological Sciences Seabloom, Eric; University of Minnesota, Ecology, Evolution, and Behavior Anderson, T. Michael; Wake Forest University, Biology Bakker, Elisabeth; Netherlands Institute of Ecology, Department of Aquatic Ecology Biederman, Lori; Iowa State University La Pierre, Kimberly; Smithsonian Environmental Research Center, Ecosystem Conservation MacDougall, Andrew; University of Guelph, Moore, Joslin; Monash University, School of Biological Sciences Risch, Anita; Swiss Federal Institute for Forest, Snow and Landscape Research, Community Ecology Schuetz, Martin; Swiss Federal Institute for Forest, Snow and Landscape research, Stevens, Carly; Lancaster University, Lancaster Environment Centre
Key Words:	herbivory, nitrogen, phosphorus, potassium, micronutrients, plant taxonomy, biogeography, Nutrient Network (NutNet)

1		
2 3	1	
4	1	More salt, please: global patterns, responses, and impacts of foliar sodium in grasslands
5	2	ET Deven ^{1†} ENA Lind ¹ L Finn ² ENA Cookleans ¹ TNA Andeveon ³ EC Debber ⁴ L Diodeveon ⁵
6	3	E.T. Borer ¹⁺ , E.M. Lind ¹ , J. Firn ² , E.W. Seabloom ¹ , T.M. Anderson ³ , E.S. Bakker ⁴ , L. Biederman ⁵ ,
7 8	4 5	K.J. La Pierre ⁶ , A.S. MacDougall ⁷ , J.L. Moore ⁸ , A.C. Risch ⁹ , M. Schutz ⁹ , C.J. Stevens ¹⁰
9	5 6	1. Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA;
10	7	borer@umn.edu, elind@umn.edu, seabloom@umn.edu
11	8	2. Queensland University of Technology (QUT), School of Earth, Environmental and Biological Sciences, Science and
12	9	Engineering Faculty, Brisbane, QLD, 4001 Australia]; jennifer.firn@qut.edu.au
13	10	3. Wake Forest University, Department of Biology, 049 Winston Hall, Winston-Salem NC 27109;
14 15	11	anderstm@wfu.edu
16	12 13	4. Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands;
17	13	l.bakker@nioo.knaw.nl 5. Department of Ecology, Evolution, and Organismal Biology, 251 Bessey Hall, Iowa State University, Ames Iowa
18	15	50010 USA; Ibied@iastate.edu
19	16	6. Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD 21037; lapierrek@si.edu
20	17	7. Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G2W1; asm@uoguelph.ca
21 22	18	8. School of Biological Sciences, Monash University, Victoria 3800, Australia; joslin.moore@monash.edu
22	19	9. Swiss Federal Institute for Forest, Snow and Landscape Research, Zuercherstrasse 111, 8903 Birmensdorf,
24	20	Switzerland; anita.risch@wsl.ch, martin.schuetz@wsl.ch
25	21 22	10. Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK; c.stevens@lancaster.ac.uk
26	22	+ corresponding author: Elizabeth Borer
27	23	borer@umn.edu
28 29	24	University of Minnesota, Department of Ecology, Evolution, and Behavior
30	26	140 Gortner Lab, 1479 Gortner Ave.
31	20	Saint Paul, MN 55108
32	28	
33	29	Key Words: herbivory; nitrogen, phosphorus, potassium, micronutrients; plant taxonomy;
34	30	biogeography; Nutrient Network (NutNet)
35 36	31	Short title: Foliar sodium biogeography and implications
37	32	
38		MAIN TEXT INFORMATION
39		Title: 95 characters (with spaces)
40		Abstract: 150 words
41 42		Text: 4,218 words (intro to discussion); 6,336 (abstract to end of figure legends, including refs)
43		References: 51
44		Figures: 5
45		ONLINE SUPPLEMENTAL INFORMATION
46		Site information table, details of statistical models, additional figures, details of author contributions
47	33	
48 49	24	
50	34 35	Authorship statement: EB, EL, and ES developed and framed the research question; JF led chemical
51	33 36	analyses; EB, EL, and ES performed statistical analyses. All authors performed the experiment at their sites and collected data used in these analyses; EB, ES, and EL also seerdinated the experiment. EB
52	30 37	sites and collected data used in these analyses; EB, ES, and EL also coordinated the experiment. EB wrote the first draft of the manuscript, and all other authors contributed substantially to revisions. See
53	38	Table SI 11 for details.
54 55	39	Data information: All data contributors are listed in SI Table 12.
56	57	
57		
58		
59		1
60		

1	
2 3	
4	
5	
6	
7	
8	
9 10	
11	
12	
13	
14	
15 16	
17	
18	
19	
20	
21 22	
22 23	
24	
25	
26	
27 28	
20 29	
30	
31	
32	
33 24	
34 35	
36	
37	
38	
39	
40 41	
42	
43	
44	
45 46	
40 47	
48	
49	
50	
51 52	
52 53	
54	
55	
56	
57 58	
58 59	
60	

40	ABSTRACT		
41	Sodium is unique among abundant elemental nutrients, because most plant species do not require it for		
42	growth or development, whereas animals physiologically require sodium. Foliar sodium influences		
43	consumption rates by animals and can structure herbivores across landscapes. We quantified foliar		
44	sodium in 201 locally-abundant, herbaceous species representing 32 families and, at 26 sites on four		
45	continents, experimentally manipulated vertebrate herbivores and elemental nutrients to determine		
46	their effect on foliar sodium. Foliar sodium varied taxonomically and geographically, spanning five		
47	orders of magnitude. Site-level foliar sodium increased most strongly with site aridity and soil sodium;		
48	nutrient addition weakened the relationship between aridity and mean foliar sodium. Within sites, high		
49	sodium plants declined in abundance with fertilization, whereas low sodium plants increased. Herbivory		
50	provided an explanation: herbivores selectively reduced high nutrient, high sodium plants. Thus,		
51	interactions among climate, nutrients, and the resulting nutritional value for herbivores determine foliar		
52	sodium biogeography in herbaceous-dominated systems.		
53			
54	INTRODUCTION		
55	Sodium is an essential nutrient for herbivores (Michell 1989; Snell-Rood et al. 2014) that can determine		
56	animal foraging preferences and movement patterns in space and time (McNaughton 1988; Prather et		
57	al. 2018). In contrast, sodium is not used for physiological function in most plants, and at high		
58	concentrations sodium can be toxic for plants (Mäser et al. 2002; Pardo & Quintero 2002; Marschner		
59	2011; Maathuis 2014). Because of this key difference in the mineral nutrition of herbivores and the		

60 plants they eat, herbivores must use natural salt licks and seek out and efficiently use the sodium

- 61 present in plants to meet physiological demands for sodium (Michell 1989). In spite of the essential role
- 62 of plant sodium content for wild herbivores (Seastedt & D. A. Crossley 1981), there is little
- 63 understanding of the relative importance of the many factors that may control foliar sodium in plants.
- 2

Page 3 of 43

1

Ecology Letters

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 37
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

64	For example, abiotic factors including soil sodium content, soil fertility, or climate may determine
65	sodium availability, whereas biotic constraints such as plant species phylogeny and lifeform or
66	palatability to herbivores may determine the capacity for sodium exclusion and whole tissue losses that
67	may occur with preferential herbivory. Further, these factors may interact and operate globally or
68	regionally to influence foliar sodium, and context may determine whether foliar sodium is likely to
69	interact with herbivory to determine the composition of plant communities in future environments.
70	Plants access sodium through leaf uptake from atmospheric deposition (Benes <i>et al.</i> 1996) or root
71	uptake from soil water (Epstein 1973). Because of the similarity of sodium to the potassium ion that is
72	physiologically critical for plants, cation transporters of roots will transport both sodium and potassium
73	across cell membranes (Pardo & Quintero 2002; Maathuis 2014). Although a relatively small group of
74	plants – mostly C ₄ grasses – requires sodium (Brownell & Crossland 1972; Furumoto <i>et al.</i> 2011), the
75	sodium cation is present in the foliage of many species and can be used for a variety of critical plant
76	functions, including stomatal opening and closing, particularly when potassium is in short supply
77	(Subbarao et al. 2003). However, terrestrial sodium is geographically variable (Kaspari et al. 2008;
78	Kaspari <i>et al.</i> 2009; Wicke <i>et al.</i> 2011; Vet <i>et al.</i> 2014; Doughty <i>et al.</i> 2016) because of mineral
79	acquisition from sources such as ocean spray, terrestrial salinization, or road salting practices
80	(Ramakrishna & Viraraghavan 2005; Vet <i>et al.</i> 2014), urine (Kaspari <i>et al.</i> 2017), loss from leaching
81	(Vitousek & Sanford 1986), and climatic influences, particularly aridity (Raheja 1966). In spite of these
82	general associations, it remains unclear whether foliar sodium varies predictably among plant taxonomic
83	lineages or biogeographically with e.g., distance to coast or site aridity and whether there are site or
84	plant species characteristics that effectively predict the foliar sodium content of the most abundant
85	plants.
86	Although plant sodium is often assumed to simply track soil sodium supply, at biogeographic scales, a

Although plant sodium is often assumed to simply track soil sodium supply, at biogeographic scales, a
 growing body of evidence suggests that plant sodium content may not be determined solely via soil

2	
3 4	
4 5	
6 7	
8	
9	
10 11	
12	
13	
14	
15	
16 17	
18	
19	
20	
21	
22 23	
24	
25	
26	
27 28	
20 29	
30	
31	
32	
33 34	
35	
36	
37	
38	
39 40	
41	
42	
43	
44 45	
45 46	
47	
48	
49	
50 51	
52	
53	
54	
55	
56 57	
58	
59	
60	

111

1

88 sodium supply. Like other soil cations, sodium uptake by plants can be reduced in high pH soils (Tyler & 89 Olsson 2001; Bolan & Brennan 2011), and aridity can lead to increased soil pH (Slessarev et al. 2016), 90 suggesting that aridity may either increase foliar sodium via increased soil sodium or reduce it via 91 increased soil pH. Evidence also is accumulating that the supply of macronutrients such as nitrogen can 92 reduce the availability of mineral cations to plants (Lucas et al. 2011). Thus, anthropogenic activities that 93 are altering soil pH or increasing macronutrient supply to ecosystems (Franklin et al. 2016) may 94 interactively alter the sodium content of foliage and quality of foliage for herbivores (Kaspari et al. 95 2017). Furthermore, herbivores may themselves alter the sodium concentration in plant tissue either by 96 promoting the availability of sodium through recycling (McNaughton et al. 1997; Doughty et al. 2016), 97 by promoting saline soil conditions (McLaren & Jefferies 2004), or selectively consuming plant species 98 with elevated salt levels in their foliage (Seastedt & D. A. Crossley 1981; Welti et al. 2019). These 99 conditions may, alternatively, promote plant species with relatively high foliar sodium that have traits, 100 such rapid regrowth, basal meristems, or use of sodium to modify osmotic potential under drought, that 101 are beneficial under both saline soil conditions and high grazing intensity (Coughenour 1985; Veldhuis et 102 al. 2014; Griffith et al. 2017). 103 Here, we use existing and experimentally-created environmental gradients to address the following 104 questions (1) Patterns of foliar sodium: Which site (10⁴ m²), plot (10⁰ m²), and species characteristics 105 predict foliar sodium content? For example, does foliar sodium vary predictably among plant taxa, with 106 distance to coast, or along a gradient of soil pH or site aridity? (2) Responses of foliar sodium to a 107 changing environment: Do selective herbivory or elevated nutrient supply reduce foliar sodium at the 108 local (plot) scale? (3) Effects of foliar sodium on grassland species composition: Does a grassland species' 109 foliar sodium content predict changes in the species' relative abundance in response to herbivory or 110 elevated nutrients?

Page 5 of 43

1 2		
3 4	112	METHODS
5 6 7	113	Experimental design and locations. Samples for this study were collected at 26 sites that are part of a
8 9	114	long-term, nutrient-addition and herbivore-fencing experiment being performed in herbaceous-
10 11	115	dominated sites around the world, the Nutrient Network distributed experiment (NutNet,
12 13	116	www.nutnet.org). The subset of the NutNet sites that were able to collect tissue samples that comprise
14 15 16	117	the data used in this study spanned Africa, Australia, Europe, and North America (SI Table 1).
17 18 19	118	Each site had three experimental blocks composed of 10 – 5 x 5 m plots, each assigned randomly to one
20 21	119	of 10 unique treatment combinations. Treatments included a factorial addition of N (10 g N m $^{-2}$ yr $^{-1}$ as
22 23	120	timed-release urea [(NH ₂) ₂ CO]), P (10 g P m ⁻² yr ⁻¹ as triple-super phosphate [Ca(H ₂ PO ₄) ₂]), and K
24 25	121	(10 g K m ⁻² yr ⁻¹ as potassium sulphate [K ₂ SO ₄]) plus micronutrients (μ , a mix of Fe (15%), S (14%), Mg
26 27 28	122	(1.5%), Mn (2.5%), Cu (1%), Zn (1%), B (0.2%) and Mo [0.05%]), for a total of 8 plots/block. Importantly,
28 29 30	123	no sodium (Na) was added in any treatment. N, P, and K were applied annually at each site for 2-4 years
31 32	124	(SI Table 1); the micronutrient mix, μ , was applied once in the first experimental year to avoid toxicity.
33 34 35	125	For the focal fence and fertilization experiment, fence treatments were crossed with the control and the
36 37	126	all nutrient treatment (N+P+K μ), adding two fenced plots to each block. Fences were built to exclude
38 39 40	127	medium and large mammals and had been in place for 2-4 years at the time of sampling. Fences were
41 42	128	230 cm tall with four strands of barbless wire suspended at equal vertical distances above the lower
43 44	129	90 cm which was surrounded by 1-cm woven wire mesh with a 30-cm outward-facing flange stapled to
45 46	130	the ground. At some sites, logistical considerations required slight modifications of the fence design
47 48 49	131	(Fence exceptions table, SI Table 2). All sampling plots were separated by at least 1 m wide walkways to
50 51	132	reduce the impact of treatments on adjacent plots. For additional methods details, see (Borer et al.
52 53	133	2014).
54 55		
56 57		
58 59 60		5
00		

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
25 26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40 41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
54 55	
56	
57	
58	
59	
60	

1

134 Pre-treatment soil collection. Before applying the experimental treatments, three 2.5 x 10cm soil cores 135 were collected from each experimental plot, combined, homogenized into a single sample for each 5 x 5 136 m plot (roughly 500 g of soil), and dried. Percent soil C and N from each plot were analyzed in a single 137 analytical laboratory using a Costech ECS 4010 CHNSO Analyzer on pulverized soil (Knops lab, University 138 of Nebraska, USA). Extractable soil P, K, and micronutrients, including Na, and pH for every soil sample 139 also were quantified in a single analytical laboratory using standard methods (Borer et al. 2014) (A&L 140 Laboratories, Memphis, Tennessee, USA). Across our study sites, plot-level soil sodium ranged from 21 141 ppm (at Val Mustair in Switzerland) to 150 ppm (at Elliott Chaparral, USA). 142 Plant abundance and biomass estimation. To determine the most abundant plant species in each plot

and the change in cover of species in response to the experimental treatments, the percent areal cover
 of each species was estimated to the nearest 1 percent for each species within a permanently marked 1 m² subplot of each treatment unit.

A metric of site-level net herbivore impact was estimated as the average difference in live mass inside and outside of fences within a block during the first year of the treatment. To estimate this, we clipped the aboveground biomass of all plants rooted within a 0.2 m² area of each fenced and control plot. Each sample was divided into growth from the current year and litter from previous years. We used the first year of treatment to estimate herbivore impact on vegetation mass, prior to species-level selection and turnover in response to long-term herbivore exclusion.

152 Foliar sampling & sodium analysis. Within each plot, the most abundant species were determined as a
 153 function of percent cover, and a single healthy leaf was collected from five unique individuals of the
 154 species with the greatest cover at the site. Most sites had three to five dominant species present in most
 155 plots; however, one site collected 8 different species (Val Mustair), because there were not clearly
 156 dominant species. All leaves were transported in a cooler, and then dried at 60°C for 48 hours (Firn *et al.*

2 3 4	157	2019). The collected species represented 5.3% (Val Mustair, Switzerland, a high elevation, highly diverse
5 6	158	(25 species/plot) site; this is the site that sampled 8 species) to 52.1% (Saline, KS, USA) of the total plot
7 8	159	cover with an average representation of 26% of the total cover across all plots and sites (SI Table 1). All
9 10 11	160	leaves were then sent to Queensland University of Technology (Dr. J. Firn) for sodium analysis. Dried
12 13	161	leaves were ground to a fine powder, then analyzed for sodium content with an Agilent 8800 Laser
14 15	162	Ablation Inductively Coupled Plasma Mass Spectrometer (LA-ICP-MS), following Duodu et al. (Duodu et
16 17	163	al. 2015) with two exceptions: C, the most abundant naturally occurring element, was used as a
18 19 20	164	standard, and no additional pulverizing was performed beyond that required for C analysis. The
20 21 22	165	reference material for sodium was NIST SRM 1570a Trace elements in spinach leaves (USA National
23 24	166	Institute of Standards and Technology 2014). Elemental quantification followed the method of Longerich
25 26	167	et al. (1996), using Iolite, a data reduction software (Paton <i>et al.</i> 2010).
27 28 29	168	<u>Climate data.</u> The WorldClim database provided comparable long-term climate data for all sites (version
29 30 31	169	1.4; http://www.worldclim.org/bioclim). These global climate data were interpolated at high-resolution
32 33	170	from data stations with 10 to 30 years of data (Hijmans <i>et al.</i> 2005). We used these data to test whether
34 35	171	foliar sodium in the most abundant taxa declined with mean annual precipitation (MAP in mm per year)
36 37	172	or increased with a site-level index of aridity (MAP divided by potential evapotranspiration in mm per
38 39 40	173	year)(Barrow 1992). Site-level MAP ranged from 14 at Sheep Station, USA to 1898 mm of annual
41 42	174	precipitation at HJ Andrews LTER; Lookout, USA and the index of aridity ranged from 0.2 at Mount
43 44	175	Caroline, Western Australia to 2.4 mm at Val Mustair, Switzerland (SI Table 1).
45 46		
47 48	176	Analyses. We explored the relative importance and interactions among the many factors that we
49 50 51	177	hypothesized to constrain foliar sodium. Many of these factors could covary (e.g., annual precipitation,
52 53	178	distance to coast, and soil pH), and it was possible that there could be multiple models that were
54 55	179	similarly informative (i.e., had similar AICc values). For this reason, we used a multi-model approach,
56 57	180	which does not try to identify a single best model (Grueber et al. 2011). This information theoretic
58 59 60		7
00		

approach starts by calculating all possible subsets of the parameters in the full model, and then uses Akaike's information criterion (AICc) to determine the subset of models sharing similarly high levels of parsimony (Grueber et al. 2011). In our case, we included in our high parsimony set all models that fell within 4 AICc units of the model with the lowest AICc value (Grueber et al. 2011). Parameter estimates and significance are based on a weighted average of the set of high parsimony models. We present the weighted average parameter value estimate, significance, and the summed AIC weights for all models in which the parameter is included, or *importance*. We used the *dredge* function in the MuMIn R library to calculate the AICc of all possible models and the model.avg function in the MuMIn R library to calculated the weighted parameter and statistics.

All models used a random effect structure with site and species within site treated as random intercepts to account for the hierarchical nature of the sampling. To examine biogeographic predictors of foliar sodium, we examined only control plot values, but for the effects of environmental change, we used data from all experimental plots. Experimental treatments were retained in all models. Because of missing soil data, one site (Mt. Caroline) is excluded from experimental analyses. In addition, to avoid bias from having rare species that were found only in one treatment driving the results, for the analysis of the fence and fertilization experiment (shown in Fig 4), we include species that are present in Control plots and at least two other treatments (e.g., Control, Fence, and Fertilized or Control, Fence, and Fence + Fertilized). Similarly, for analysis of the factorial nutrient experiment (SI Figure 1), we include only species present in Control plots and at least 5 other treatments. Finally, in analyses of abiotic factors associated with foliar sodium, we tested the leverage of two outlier sites. In particular, we examined the role of a single site (Sheep Station, USA) in driving the association of foliar sodium with soil pH and another site (Lancaster, UK) in determining the importance of distance from the coast in foliar sodium content.

1 2			
2 3 4	204	In addition to assessing foliar sodium, we also used multi-model inference to examine the cover	
5 6 7 8	205	response of each plant for which sodium was measured in each plot as a function of the sodium	
	206	concentration of that species. For assessing the effects of foliar sodium on plant cover in response to t	he
9 10 11	207	experimental treatments, species with less than 0.1% cover in a plot were removed (23 out of 1,828	
12 13	208	records or 1.3%).	
14 15 16 17	209	All analyses were performed in R (version 3.3; R Foundation for Statistical Computing).	
18 19	210	RESULTS	
20 21 22	211	Patterns of foliar sodium	
23 24 25	212	Foliar sodium in 201 of the most abundant grassland plant species from 26 sites on four continents,	
25 26 27	213	including representatives of 32 plant families, varied across five orders of magnitude among sites and	
28 29 30 31	214	the most abundant plant taxa in unmanipulated plots. Foliar sodium ranged from 0.5 ppm in Phleum	
	215	pratense (Poaceae) to 28,271 ppm in Epaltes australis (Asteraceae, SI Table 1), and average site-level	
32 33 34	216	plant sodium across the most abundant species ranged from 2.7 ppm (at Konza Prairie in the North	
35 36	217	American Great Plains) to 9,715 ppm (at Burrawan in southeastern Australia). Foliar sodium of the mo	st
37 38	218	abundant species in control plots was similar across grasses with C4 (463 \pm 201 ppm) and C3 (624 \pm 159)
39 40	219	ppm) photosynthetic pathways (P = 0.10). However, across all taxa in unmanipulated (control) plots,	
41 42 43	220	foliar sodium varied spatially both within and among sites (Fig. 1); mean foliar sodium content also	
44 45	221	varied substantially among plant families (Fig. 1, <i>P</i> <0.001, SI Table 3).	
46 47	222	We found that among sites, mean site-scale foliar sodium in control plots increased with soil sodium	
48 49 50	223	(Fig. 2, P=0.015; t=2.68), whereas within sites, foliar sodium did not co-vary with plot-scale soil sodium	۱
51 52	224	(P=0.51; t=0.64). In a model that included multiple candidate predictors (site aridity, distance from	
53 54	225	coast, soil pH, photosynthetic pathway, and soil sodium), foliar sodium declined with increasing site-	
55 56 57	226	level water availability (increasing AI; P=0.001) and soil pH (Fig. 3, P=0.04, SI Table 4). However, our	
58 59			9
60			,

model selection criteria did not retain soil sodium or photosynthetic pathway in final models. The decline in foliar sodium was similar across both coastal and inland sites except for a single site in the UK with high precipitation and exceptionally high sodium ion deposition relative to most locations on Earth (Vet et al. 2014) (Fig 3b, Lancaster, UK). In contrast, for sites with neutral to acidic soils (all except one in this study, Sheep Station, USA), there was no relationship between foliar sodium and soil pH (Fig. 3). Thus, the biogeographic variation in foliar sodium content is explained, in part, by a combination of local conditions, including soil sodium availability and aridity. *Responses of foliar sodium to a changing environment*

Nutrients and herbivory interacted to determine the foliar sodium of the most abundant plants, and the strength of this effect depended on aridity but not soil pH (SI Table 5). In particular, at mesic sites, when herbivores were present, nutrient addition favored abundant plants with high foliar sodium compared to plants in ambient (control) plots (Fig. 4a, SI Table 5). As a result, the addition of the full suite of nutrients (N+P+K μ , but not Na) outside of fences weakened the negative effect of increasing water availability (increasing AI) on foliar sodium content (Fig. 4b). The factorial nutrient addition experiment clarified that the interaction between aridity and nutrient supply was primarily driven by the effects of potassium and micronutrients (Kµ) and to a lesser extent the effects of nitrogen and phosphorus addition (SI Table 6, SI Fig. 1).

We examined the subset of species that were sampled multiple times among plots and sites to explore the role of intraspecific variability of sodium content in determining these observed responses. Of the 245 246 201 species in this experiment, 41 were among the most abundant (and therefore sampled) in plots at more than one site, and 94 were sampled in both control and treatment plots within sites. Models of the subset of species present among sites and in both control and treatment plots were qualitatively similar to models of the larger dataset for both experiments (SI Tables 7 and 8), suggesting that some of

Ecology Letters

2	
3	
4	
4	
5	
S	
6 7	
0	
7	
8 9	
0	
9	
-	
10	
11	
12	
13	
14	
14	
15	
15	
16	
16 17	
10	
18	
19	
20	
20	
71	
د ا	
22	
21 22 23 24 25 26 27 28 29 30	
~ ~	
24	
25	
25	
26	
20	
27	
21	
28	
20	
29	
30	
21	
31	
32	
32	
33	
55	
34	
54	
35	
36 37	
~ 7	
37	
38	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
•	
55	
56	
57	
58	
59	
60	

the observed variation in foliar chemistry is attributable to intraspecific change in foliar sodium contentin response to the biotic and abiotic environment.

252 Effects of foliar sodium on grassland species composition

253 The sodium content of foliage and plot-scale nutrient supply contributed to the effects of herbivores on 254 changes in the relative abundance of grassland plant species. Fertilization (with NPK μ) increased the 255 cover of the most abundant species, and in the presence of herbivores, the abundance of species low in 256 foliar sodium increased in response to fertilization, whereas high sodium species became less abundant 257 when fertilized (Fig. 5). However, in the absence of herbivores, fertilization had no consistent effects on 258 species abundances in relation to their foliar sodium concentration (SI Table 9, SI Fig. 2). These effects 259 on foliar sodium were independent of the intensity of herbivory among sites (measured as the site-level 260 log ratio of live biomass inside and outside of herbivore exclusion fences (P > 0.57 for all main effects 261 and interactions; importance < 0.40 [model not shown]). The factorial nutrient addition experiment 262 clarified that, in the presence of herbivores, the addition of any elemental nutrient caused dominant 263 plant species with relatively high foliar sodium content to decline more than species with lower foliar 264 sodium (SI Table 10); this effect was greatest in response to fertilization with P (SI Table 10). These 265 results point to selective consumption by herbivores of high nutrient, high sodium plants.

266 DISCUSSION

267 This multi-continent, biogeographic study demonstrated that foliar sodium in dominant grassland plants 268 is highly variable among sites and even plots within a site, and there also is significant variation in foliar 269 sodium among families and taxa within families, regardless of geographic location. These patterns likely 270 reflect variation in long-term environmental conditions (e.g., aridity, grazing) that have selected for 271 species with differing strategies for environmental sodium uptake. While there is evidence for 272 phylogenetic conservation of cation transport proteins that can influence sodium uptake (Schachtman &

3	
4	
5	
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 22 33 34 35 36 37 38 9	
7	
8	
9	
10	
11	
12	
13 14	
14	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25 26	
20 27	
27	
29	
30	
31	
32	
33	
34	
35	
36	
3/ 20	
38 20	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50 51	
51 52	
53	
54	
55	
56	
57	
58	
59	
60	

60

1 2

273 Liu 1999) with predictable differences across photosynthetic pathways (Brownell & Crossland 1972), 274 photosynthetic pathway was not a predictor of foliar sodium in grasses. Nonetheless, the very highest 275 foliar sodium content recorded in this study was 9% (91,818 ppm) in *Eragrostis curvula* (Poaceae, 276 commonly called African Lovegrass) found at Burrawan, Australia. This species has a C4 photosynthetic 277 pathway, indicating a physiological requirement for sodium, and this site is among the more arid sites in 278 the experiment, suggesting that both photosynthetic pathway (Brownell & Crossland 1972; Furumoto et 279 al. 2011) and aridity (Raheja 1966) can be strongly associated with foliar sodium, in some cases. 280 However, while individual species supported this hypothesis, as a group, C₄ grasses were not 281 consistently high in foliar sodium. 282 The results of this globally-extensive study demonstrate that the relative abundance of plant species in 283 grasslands is altered by herbivores as a function of sodium content and elemental nutrient supply. In 284 particular, herbivores in grasslands spanning four continents with a variety of herbivore types and 285 densities consistently reduced the cover of plants with high foliar sodium only in high nutrient 286 conditions. The reduction in abundance of sodium-rich plants in fertilized plots is evidence of targeted 287 herbivory of high sodium, protein-rich plants. In particular, herbivores are attracted to plots with 288 elevated nutrients (Mattson 1980), and selective consumption reduces the abundance those species 289 with the highest sodium. These plants are not likely extirpated from the community, since the same 290 species are generally found at higher abundance inside herbivore exclosures, rather they are likely to be 291 in a constant state of regrowth from having their aboveground foliage selectively consumed. Such 292 selective foraging is common in many ecosystems (Belovsky 1981; Jefferies et al. 1994; Wallis de Vries & 293 Schippers 1994; Bartolome et al. 1998; Doughty et al. 2016). Related to this, the impact of herbivores on 294 sodium content of the most abundant plant species was contingent on aridity, with foliar sodium 295 content high and indistinguishable among experimental treatments at arid sites, but declining with 296 increasing water availability. Our arid region results are consistent with previous work that found

Page 13 of 43

Ecology Letters

1 2		
3 4	297	positive feedbacks generating and maintaining high sodium content grazing lawns because of high
5 6	298	evaporation rates under the cropped vegetation (McNaughton 1988). By examining herbivore impa
7 8 9	299	across a much broader precipitation gradient, we demonstrate that both aridity and herbivory
9 10 11	300	determine foliar sodium biogeography across the world's grasslands, with declining sodium conten
12 13	301	under increased precipitation and preferential feeding by herbivores.
14 15 16	302	Our experimental work also demonstrated that the sodium content of locally abundant plants increased
17 18	303	with soil sodium at the site-scale; however, when included in models, site aridity was a much more
19 20	304	effective predictor of biogeographic variation in foliar sodium than soil sodium. At broad spatial sca
21 22 23	305	foliar sodium is positively related to soil sodium as has been observed in previous work (Sutcliffe 1
23 24 25	306	Epstein 1973; Pardo & Quintero 2002; Maathuis 2014), but foliar sodium was not strongly predicte
26 27	307	distance to coast, a common a surrogate for sodium ion deposition (Vet et al. 2014). However, bec
28 29	308	arid regions are characterized by high evapotranspiration relative to precipitation, these sites tend
30 31 32	309	accumulate salts over time (Raheja 1966). In contrast, coastal sites may have both high ion input a
33 34	310	high precipitation (Vet et al. 2014), reducing the environmental pools of ions, including sodium, an
35 36	311	causing a mismatch between salt deposition and the location of sodic soils (Wicke et al. 2011). In the
37 38	312	study, the coastal site with exceptionally high foliar sodium relative to site-scale precipitation (Land
39 40 41	313	UK) is also situated in a location on Earth with an exceptionally high rate of sodium ion input (Vet e
42 43	314	2014), suggesting that site aridity combined with direct measures of site-level sodium ion input rat
44 45	315	likely provide even better predictions of site-level foliar sodium in the most abundant plant taxa. In
46 47	316	addition, although we found a decline in foliar sodium with increasing soil pH, this pattern was o
48 49 50	317	by a single, arid site in the intermountain west of the USA. While this pattern is consistent with
50 51 52	318	expectations of reduced cation uptake in higher pH soils (Tyler & Olsson 2001; Bolan & Brennan 2
53 54	319	we have only a single site with a pH above neutral. Because soil pH is intimately associated with
55 56 57 58 59 60	320	aridity (Slessarev et al. 2016), disentangling the roles of soil pH and aridity in determining grass

r experimental work also demonstrated that the sodium content of locally abundant plants increases h soil sodium at the site-scale; however, when included in models, site aridity was a much more ective predictor of biogeographic variation in foliar sodium than soil sodium. At broad spatial scales, ar sodium is positively related to soil sodium as has been observed in previous work (Sutcliffe 1959; tein 1973; Pardo & Quintero 2002; Maathuis 2014), but foliar sodium was not strongly predicted by tance to coast, a common a surrogate for sodium ion deposition (Vet *et al.* 2014). However, because l regions are characterized by high evapotranspiration relative to precipitation, these sites tend to umulate salts over time (Raheja 1966). In contrast, coastal sites may have both high ion input and h precipitation (Vet et al. 2014), reducing the environmental pools of ions, including sodium, and sing a mismatch between salt deposition and the location of sodic soils (Wicke *et al.* 2011). In this dy, the coastal site with exceptionally high foliar sodium relative to site-scale precipitation (Lancaster, is also situated in a location on Earth with an exceptionally high rate of sodium ion input (Vet et al. 4), suggesting that site aridity combined with direct measures of site-level sodium ion input rate will ly provide even better predictions of site-level foliar sodium in the most abundant plant taxa. In lition, although we found a decline in foliar sodium with increasing soil pH, this pattern was driven a single, arid site in the intermountain west of the USA. While this pattern is consistent with pectations of reduced cation uptake in higher pH soils (Tyler & Olsson 2001; Bolan & Brennan 2011), have only a single site with a pH above neutral. Because soil pH is intimately associated with dity (Slessarev et al. 2016), disentangling the roles of soil pH and aridity in determining grassland

2	
2 3 4	32
5 6	32
7 8	32
9 10 11	32
12 13	32
14 15	32
16 17	32
18 19 20	32
21 22	32
23 24 25	33
25 26 27	33
28 29	33
30 31	33
32 33	33
34 35 36	33
37 38	33
39 40	33
41 42 43	33
44 45	33
46 47	34
48 49	34
50 51 52	34
53 54	34
55 56	34
57 58	
59 60	

	321	plant sodium biogeography will require more thorough sampling, particularly at sites with basic soils
	322	spanning a range of aridity. Nonetheless, the strong spatial variation in foliar sodium suggests that
	323	environmental context is key in determining foliar sodium which, by extension, implies that future
)	324	environmental changes may alter foliar sodium for herbivores. Given the importance of dietary sodium
2	325	for herbivores (Seastedt & D. A. Crossley 1981; McNaughton 1988; McNaughton et al. 1997; Kaspari et
 	326	al. 2008; Doughty et al. 2016), biogeographic patterns of foliar sodium in abundant grassland plants may
, ,	327	arise from interactions with wild herbivores, and likely have significant implications for the distribution
)	328	and impacts of consumers in grassland ecosystems.
)	329	The strong difference in the physiological importance of sodium to grassland plants and wild herbivores
- 5 L	330	
		has gained increasing attention in ecology, with recent calls for a greater understanding of the
,	331	biogeography of sodium (Kaspari <i>et al.</i> 2008). The current study of both patterns and responses to
)	332	experimental manipulation, performed at 26 sites spanning wide biotic and abiotic gradients,
)	333	demonstrates that aridity, soil acidity, nutrient supply, and herbivory, interact to influence
- ; ;	334	biogeographic patterns of foliar sodium and its effect on plant abundance. In future environments,
5	335	climate change is expected to impact global patterns of soil salinity via changes in precipitation and
, ;	336	evapotranspiration (Schofield & Kirkby 2003). The current results suggest that the impact of these
)	337	changes on grassland plant composition will depend on the interactive effects of large-scale changes in
2	338	aridity and elemental nutrient (N, P) supply and the resulting nutritional value for consumers.
, 	339	ACKNOWLEDGMENTS
, ,	340	This work was generated using data from the Nutrient Network experiment (<u>http://www.nutnet.org</u>),
;)	341	funded at the site-scale by individual researchers. Coordination and data management have been
)	342	supported by funding to E. Borer and E. Seabloom from the National Science Foundation Research
- - -	343	Coordination Network (NSF-DEB-1042132) and Long Term Ecological Research (NSF-DEB-1234162 to
; ;	344	Cedar Creek LTER) programs, and the Institute on the Environment (DG-0001-13). We also thank the
, ;		

2		
3 4	345	Minnesota Supercomputer Institute for hosting project data and the Institute on the Environment and
5 6	346	sDiv at the University of Leipzig for hosting Network meetings. We thank QUT's Central Analytical
7 8 9	347	Facilities (CARF), part of the Institute of Future Environments (IFE) for use of their facilities to analyze
9 10 11	348	leaf nutrient concentrations. Author contributions are listed in SI Table 11 and data contributors are
12 13 14	349	listed in SI Table 12.
15 16	350	Code availability R code of all analyses will be made available via GitHub (https://github.com/).
17 18	351	Data availability Data supporting the findings of this study will be made available on Dryad
19 20 21	352	(http://datadryad.org).
22 23	353	REFERENCES
24	354	1.
25	355	Barrow, C.J. (1992). World atlas of desertification (United nations environment programme), edited by
26		
27	356	N. Middleton and D. S. G. Thomas. Edward Arnold, London, 1992. isbn 0 340 55512 2, £89.50
28	357	(hardback), ix + 69 pp. 3, 249-249.
29	358	2.
30	359	Bartolome, J., Franch, J., Plaixats, J. & Seligman, N. (1998). Diet selection by sheep and goats on
31	360	Mediterranean heath- woodland range. Journal of Range Management, 51, 383-391.
32	361	3.
33	362	Belovsky, G.E. (1981). Food Plant Selection by a Generalist Herbivore: The Moose. <i>Ecology</i> , 62, 1020-
34	363	1030.
35	364	4.
36	365	Benes, S.E., Aragüés, R., Grattan, S.R. & Austin, R.B. (1996). Foliar and root absorption of Na+ and Cl– in
37	366	maize and barley: Implications for salt tolerance screening and the use of saline sprinkler
38	367	irrigation. <i>Plant Soil</i> , 180, 75-86.
39 40	368	5.
40 41	369	
42		Bolan, N. & Brennan, R. (2011). Bioavailability of N, P, K, Ca, Mg, S, Si, and Micronutrients. In: Handbook
43	370	of soil sciences: resource management and environmental impacts (2nd ed.). (eds. Huang, PM, Li,
44	371	Y & Sumner, ME). CRC Press. Boca Raton, FL, pp. 11-80.
45	372	6.
46	373	Borer, E.T., Harpole, W.S., Adler, P.B., Lind, E.M., Orrock, J.L., Seabloom, E.W. et al. (2014). Finding
47	374	generality in ecology: a model for globally distributed experiments. <i>Methods Ecol Evol</i> , 5, 65-73.
48	375	7.
49	376	Brownell, P.F. & Crossland, C.J. (1972). The requirement for sodium as a micronutrient by species having
50	377	the c(4) dicarboxylic photosynthetic pathway. <i>Plant Physiol</i> , 49, 794-797.
51	378	8.
52	379	Coughenour, M.B. (1985). Graminoid Responses to Grazing by Large Herbivores: Adaptations,
53	380	Exaptations, and Interacting Processes. Annals of the Missouri Botanical Garden, 72, 852-863.
54	381	9.
55	501	
56		
57		
58		
59 60		15
60		

1		
2		
3 4	382	Doughty, C.E., Wolf, A., Baraloto, C. & Malhi, Y. (2016). Interdependency of plants and animals in
5	383	controlling the sodium balance of ecosystems and the impacts of global defaunation. Ecography,
6	384	39, 204-212.
7	385	10.
8	386	Duodu, G.O., Goonetilleke, A., Allen, C. & Ayoko, G. (2015). Determination of refractive and volatile
9	387	elements in sediment using laser ablation inductively coupled plasma mass spectrometry.
10	388	Analytica Chimica Acta, 898, 19-27.
11	389	11.
12	390	Epstein, E. (1973). Mechanisms of Ion Transport through Plant Cell Membranes. <i>International Review of</i>
13	391	Cytology, 34, 123-168.
14	391	12.
15		
16	393	Firn, J., McGree, J.M., Harvey, E., Flores-Moreno, H., Schütz, M., Buckley, Y.M. et al. (2019). Leaf
17	394	nutrients, not specific leaf area, are consistent indicators of elevated nutrient inputs. Nature
18	395	Ecology & Evolution.
19	396	13.
20	397	Franklin, J., Serra-Diaz, J.M., Syphard, A.D. & Regan, H.M. (2016). Global change and terrestrial plant
21	398	community dynamics. Proceedings of the National Academy of Sciences, 113, 3725-3734.
22	399	14.
23	400	Furumoto, T., Yamaguchi, T., Ohshima-Ichie, Y., Nakamura, M., Tsuchida-Iwata, Y., Shimamura, M. <i>et al.</i>
24 25	401	(2011). A plastidial sodium-dependent pyruvate transporter. Nature, 476, 472-475.
25 26	402	15.
20	403	Griffith, D.M., Anderson, T.M. & Hamilton, E.W. (2017). Ungulate grazing drives higher ramet turnover in
28	404	sodium-adapted Serengeti grasses. J Veg Sci, 28, 815-823.
29	405	16.
30	405	Grueber, C.E., Nakagawa, S., Laws, R.J. & Jamieson, I.G. (2011). Multimodel inference in ecology and
31	400	
32	407	evolution: challenges and solutions. <i>J Evolution Biol</i> , 24, 699-711.
33		
34	409	Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005). Very high resolution interpolated
35	410	climate surfaces for global land areas. Int J Climatol, 25, 1965-1978.
36	411	18.
37	412	Jefferies, R.L., Klein, D.R. & Shaver, G.R. (1994). Vertebrate Herbivores and Northern Plant Communities:
38	413	Reciprocal Influences and Responses. <i>Oikos</i> , 71, 193-206.
39	414	19.
40	415	Kaspari, M., Roeder, K.A., Benson, B., Weiser, M.D. & Sanders, N.J. (2017). Sodium co-limits and
41	416	catalyzes macronutrients in a prairie food web. <i>Ecology</i> , 98, 315-320.
42 43	417	20.
45 44	418	Kaspari, M., Yanoviak, S.P. & Dudley, R. (2008). On the biogeography of salt limitation: A study of ant
44 45	419	communities. Proceedings of the National Academy of Sciences, 105, 17848-17851.
46	420	21.
47	421	Kaspari, M., Yanoviak, S.P., Dudley, R., Yuan, M. & Clay, N.A. (2009). Sodium shortage as a constraint on
48	422	the carbon cycle in an inland tropical rainforest. <i>Proceedings of the National Academy of</i>
49	423	Sciences, 106, 19405-19409.
50	423	22.
51		
52	425	Longerich, H.P., Jackson, S.E. & Gunther, D. (1996). Laser Ablation Inductively Coupled Plasma Mass
53	426	Spectrometric Transient Signal Data Acquisition and Analyte Concentration Calculation*. Journal
54	427	of Analytical Atomic Spectrometry 11, 899-904.
55	428	23.
56		
57		
58		

2		
3	429	Lucas, R.W., Klaminder, J., Futter, M.N., Bishop, K.H., Egnell, G., Laudon, H. et al. (2011). A meta-analysis
4	430	of the effects of nitrogen additions on base cations: Implications for plants, soils, and streams.
5	431	Forest Ecol Manag, 262, 95-104.
6	432	24.
7	433	Maathuis, F.J.M. (2014). Sodium in plants: perception, signalling, and regulation of sodium fluxes. <i>J Exp</i>
8 9	434	Bot, 65, 849-858.
9 10	435	25.
11		
12	436	Marschner, H. (2011). <i>Mineral Nutrition of Higher Plants</i> . Academic Press.
13	437	26.
14	438	Mäser, P., Gierth, M. & Schroeder, J.I. (2002). Molecular mechanisms of potassium and sodium uptake in
15	439	plants. <i>Plant Soil</i> , 247, 43-54.
16	440	27.
17	441	Mattson, W.J. (1980). Herbivory in relation to plant nitrogen-content. Annu Rev Ecol Syst, 11, 119-161.
18	442	28.
19	443	McLaren, J.R. & Jefferies, R.L. (2004). Initiation and maintenance of vegetation mosaics in an Arctic salt
20	444	marsh. <i>J Ecol</i> , 92, 648-660.
21	445	29.
22	446	McNaughton, S.J. (1988). Mineral nutrition and spatial concentrations of African ungulates. <i>Nature</i> , 334,
23	447	343-345.
24	448	30.
25	449	McNaughton, S.J., Banyikwa, F.F. & McNaughton, M.M. (1997). Promotion of the Cycling of Diet-
26 27	450	Enhancing Nutrients by African Grazers. <i>Science</i> , 278, 1798-1800.
27 28	451	31.
20 29	452	Michell, A.R. (1989). Physiological Aspects of the Requirement for Sodium in Mammals. <i>Nutrition</i>
30		
31	453	Research Reviews, 2, 149-160.
32	454	32.
33	455	Pardo, J.M. & Quintero, F.J. (2002). Plants and sodium ions: keeping company with the enemy. <i>Genome</i>
34	456	Biology, 3, reviews1017.1011-reviews1017.1014.
35	457	33.
36	458	Paton, C., Woodhead, J.D., Hellstrom, J.C., Hergt, J.M., Greig, A. & Maas, R. (2010). Improved laser
37	459	ablation U-Pb zircon geochronology through robust downhole fractionation correction.
38	460	Geochem. Geophys. Geosyst. , 11.
39	461	34.
40	462	Prather, C.M., Laws, A.N., Cuellar, J.F., Reihart, R.W., Gawkins, K.M. & Pennings, S.C. (2018). Seeking salt:
41	463	herbivorous prairie insects can be co-limited by macronutrients and sodium. 21, 1467-1476.
42	464	35.
43	465	Raheja, P.C. (1966). Aridity and Salinity. In: Salinity and Aridity: New Approaches to Old Problems (ed.
44 45	466	Boyko, H). Springer Netherlands Dordrecht, pp. 43-127.
45 46	467	36.
47	468	Ramakrishna, D.M. & Viraraghavan, T. (2005). Environmental Impact of Chemical Deicers – A Review.
48	469	Water, Air, and Soil Pollution, 166, 49-63.
49	470	37.
50	471	
51		Schachtman, D. & Liu, W. (1999). Molecular pieces to the puzzle of the interaction between potassium
52	472	and sodium uptake in plants. <i>Trends in plant science</i> , 4, 281-287.
53	473	
54	474	Schofield, R.V. & Kirkby, M.J. (2003). Application of salinization indicators and initial development of
55	475	potential global soil salinization scenario under climatic change. Global Biogeochem Cy, 17, n/a-
56	476	n/a.
57		
58		
59		17
60		

3		
4	477	39.
5	478	Seastedt, T.R. & D. A. Crossley, J. (1981). Sodium Dynamics in Forest Ecosystems and the Animal
6	479	Starvation Hypothesis. 117, 1029-1034.
7	480	40.
8	481	Slessarev, E.W., Lin, Y., Bingham, N.L., Johnson, J.E., Dai, Y., Schimel, J.P. <i>et al.</i> (2016). Water balance
9	482	creates a threshold in soil pH at the global scale. <i>Nature</i> , 540, 567.
10	483	41.
11	484	
12		Snell-Rood, E.C., Espeset, A., Boser, C.J., White, W.A. & Smykalski, R. (2014). Anthropogenic changes in
13	485	sodium affect neural and muscle development in butterflies. Proceedings of the National
14	486	Academy of Sciences, 111, 10221-10226.
15	487	42.
16	488	Subbarao, G.V., Ito, O., Berry, W.L. & Wheeler, R.M. (2003). Sodium—A Functional Plant Nutrient.
17	489	Critical Reviews in Plant Sciences, 22, 391-416.
18	490	43.
19	491	Sutcliffe, J.F. (1959). Salt uptake in plants. <i>Biological Reviews</i> , 34, 159-220.
20	492	44.
21	493	Tyler, G. & Olsson, T. (2001). Concentrations of 60 elements in the soil solution as related to the soil
22	494	acidity. 52, 151-165.
23	495	45.
24		
25	496	USA National Institute of Standards and Technology (2014). Standard Reference material® 1570A Trace
26	497	Elements in Spinach Leaves. Gaithersburg, MD 20899.
27	498	46.
28	499	Veldhuis, M.P., Howison, R.A., Fokkema, R.W., Tielens, E. & Olff, H. (2014). A novel mechanism for
29	500	grazing lawn formation: large herbivore-induced modification of the plant–soil water balance. J
30	501	Ecol, 102, 1506-1517.
31	502	47.
32	503	Vet, R., Artz, R.S., Carou, S., Shaw, M., Ro, CU., Aas, W. <i>et al.</i> (2014). A global assessment of
33	504	precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids,
34	505	acidity and pH, and phosphorus. Atmospheric Environment, 93, 3-100.
35	505	48.
36		
37	507	Vitousek, P.M. & Sanford, J., R L (1986). Nutrient Cycling in Moist Tropical Forest. Annu Rev Ecol Syst, 17,
38	508	137-167.
39	509	49.
40	510	Wallis de Vries, M.F. & Schippers, P. (1994). Foraging in a landscape mosaic: selection for energy and
41 42	511	minerals in free-ranging cattle. <i>Oecologia</i> , 100, 107-117.
42 43	512	50.
43 44	513	Welti, E.A.R., Sanders, N.J., de Beurs, K.M. & Kaspari, M. (2019). A distributed experiment demonstrates
44	514	widespread sodium limitation in grassland food webs. 0, e02600.
46	515	51.
47	516	Wicke, B., Smeets, E., Dornburg, V., Vashev, B., Gaiser, T., Turkenburg, W. <i>et al.</i> (2011). The global
48	517	technical and economic potential of bioenergy from salt-affected soils. <i>Energy & Environmental</i>
49	518	Science, 4, 2669-2681.
50		30121102, 4, 2009-2081.
51	519	
52		
53	520	
54		
55		
56		
57		
58		
59		18
60		

Fig. 1. Foliar Na variation across taxonomic and spatial scales: Variance components analysis of foliar sodium in the 85 locally-abundant plant taxa from control plots at 26 sites across nested taxonomic and spatial scales. Foliar sodium for 41 species was measured at two or more sites. Variation in foliar sodium associated with plant location is shown in orange; variation associated with taxonomic groups is shown in blue. Variance explained by genus is extremely small, but non-zero (<3x10⁻⁶), thus is barely visible in this graph. SI Table 3 provides the full statistical model associated with this figure.

Fig. 3. Predictors of foliar Na: The foliar sodium of the most abundant plant species declined across a gradient of plot-scale pH (z=2.03, P=0.04) and site-scale water availability (MAP/PET; z=3.24, P=0.001). Data include the 85 taxa across 22 sites that were growing in control plots. Coastal (orange) and Inland (blue) are divided at 100km from a coast. The dashed yellow line shows the model with all sites included; the solid yellow line shows these relationships without a single site in the UK (Lancaster, orange circled site) with high precipitation and coastal salt input. Similarly, the dashed blue line shows the model with all sites included; the solid blue line shows the relationships without the only site with basic soil pH found in US Intermountain West (Sheep Station, blue circled site). Error bars represent ±SE. SI Table 4 provides the full statistical model associated with the solid lines shown in this figure.

Fig. 4. Responses of foliar sodium to changes in herbivory and nutrient supply: Response of foliar Na in
153 locally abundant plants to a factorial combination of fencing to reduce vertebrate herbivory and
fertilization by a suite of micro- and macronutrients (not including Na⁺) (a) across a gradient in plot-scale
pH and (b) across a gradient in site-scale water availability. Foliar sodium is higher than expected from
control plots where precipitation is relatively high and nutrients are added (z=3.49, P=0.0005). Error bars
represent ±SE. SI Table 5 provides details of the full statistical model.

557 SI: DATA AND MODEL TABLES UNDERLYING RESUTS TEXT

558 SI Table 1. Sites, locations, mean annual precipitation (MAP), index of aridity, modeled nitrogen deposition (N Dep.), measured plot-scale soil

559 pH, and measured foliar sodium in each of the most abundant species at the site (leaf Na (ppm).

Site name	Continent	Country	Latitude	Longitude	MAP	AI	Leaf Na (ppm)	Soil pH	Soil Na (ppm)
Mt Gilboa	Africa	ZA	-29.28424	30.29174	943	0.7797	233.13	5.07	35.58
Summerveld	Africa	ZA	-29.81161	30.71573	944	0.7324	125.01	5.15	43.58
Bogong	Australia	AU	-36.874	147.254	1678	1.9159	228.35	4.47	22.10
Burrawan	Australia	AU	-27.734896	151.139517	643	0.4335	9715.51	5.55	59.53
Kinypanial	Australia	AU	-36.2	143.75	408	0.3224	751.22	6.04	148.43
Mt. Caroline	Australia	AU	-31.782138	117.610853	324	0.2186	7628.36	5.29	38.19
Fruebuel	Europe	СН	47.113187	8.541821	1546	2.0892	3.86	5.46	25.50
Val Mustair	Europe	СН	46.631345	10.372252	681	2.4389	38.31	5.66	26.70
Companhia das Lezirias	Europe	РТ	38	-8	564	0.4532	65.69	5.93	25.81
Lancaster	Europe	UK	53.9856247	-2.6284176	1522	2.2003	2478.44	4.77	41.56
Cowichan	North America	СА	48.46	-123.38	762	1.0743	112.67	5.63	48.60
Boulder South Campus	North America	US	39.972022	-105.23354	487	0.3701	2358.66	6.82	58.39
Bunchgrass (Andrews LTER)	North America	US	44.2766854	-121.96802	1618	1.9348	38.65	5.54	23.71

Ecology Letters

	Chichaqua Bottoms	North America	US	41.7850667	-93.385383	871	0.849	22.15	6.11	21.94
	Duke Forest	North America	US	36.00828	-79.020423	1157	0.9121	70.05	5.27	19.07
	Elliott Chaparral	North America	US	32.875	-117.05224	344	0.2565	459.89	5.69	145.46
	Hopland REC	North America	US	39.0127534	-123.06031	1065	0.8593	346.67	NA	22.99
	Konza LTER	North America	US	39.070856	-96.582821	889	0.7608	2.67	NA	20.56
	Lookout (Andrews LTER)	North America	US	44.2051771	-122.12845	1877	2.3085	246.88	5.07	20.83
	Mclaughlin UCNRS	North America	US	38.8642721	-122.40641	936	0.6615	316.49	NA	42.48
	Sagehen Creek UCNRS	North America	US	39.43	-120.24	831	0.8579	307.13	5.93	63.67
	Saline Experimental Range	North America	US	39.05	-99.1	608	0.491	41.99	NA	23.67
	Sheep Experimental Station	North America	US	44.242989	-112.19839	246	0.2689	14.02	7.98	23.54
	Shortgrass Steppe LTER	North America	US	40.81667	-104.76667	369	0.3244	36.65	6.16	21.88
	Sierra Foothills REC	North America	US	39.2355096	-121.2837	936	0.6932	42.19	5.96	36.04
	Smith Prairie	North America	US	48.2065807	-122.62475	605	0.7796	421.54	6.09	43.53
560										

5		Site name	Fence Typ	pe Exce	eption description					
7 8 9		Lancaster	Sheep	Sim	ilar to NutNet stand	ard but top strand at 1.2 m				
10 11		Sheep Experimental	Sheep	Sim	ilar to NutNet stand	ard but top strand at 1.2 m				
12 13		Station								
14 15 16 17		Val Mustair	Val Musta		4	5 cm diameter) driven 70 cm into ground, 3 m apart, covered with 5 high and with extra cabling and supports to prevent snow damage.				
18 19 20				Fen	ces enclose 6 m x 7	m area.				
21 22	565									
23 24	566	SI Table 3. Patterns of foliar Na: Analysis of spatial and taxonomic variance components in foliar sodium of 85 locally abundant grassland species								
25 26 27	567	found in the unmanipulate	ed control plot	s of 26 site	5.					
27 28 29	568	Random effects:								
30	569	Groups	Name	Variance	Std.Dev.	Number of obs for group				
31 32	570	Taxon:(genus:Family)	(Intercept)	2.389e-02	4.888e-01	85				
33	571	genus:Family	(Intercept)	7.450e-12	2 2.729e-06	66				
34 35	572	plot:site_code	(Intercept)	8.214e-02	2 2.866e-01	60				
36	573	site_code	(Intercept)	8.052e-02	8.973e-01	22				
37 38	574	Family	(Intercept)	2.924e-02	2 1.710e-01	17				
39 40	575	Residual		4.623e-02	2 2.150e-01					
41	576									
42 43										
44						26				
45 46										
47										

1 2												
3 4	577	SI Table 4. Predictors of foliar	Na:									
5 6	578	Variation of site-level mean foliar sodium with distance to coast, aridity (MAP/PET), and soil pH for the 85 dominant grassland species found in										
7 8	579	the control plots of the 26 stuc	ly sites. Model s	hows the condit	ional averag	e estimat	es of model param	eters for all sites	except the very high			
9 10	580	precipitation, very high sodium influx site (Lancaster; see Figure and legend in main text).										
11 12	581	Estimate Std. Error Adjusted SE z value $Pr(> z)$ Importance Num models										
13 14	582	(Intercept)	1.7957	0.1884	0.1897	9.466	< 2e-16 ***					
15 16	583	c.coastal	0.3700	0.4098	0.4125	0.897	0.36975	0.78	6			
17 18	584	z.AI	-1.3337	0.4089	0.4116	3.240	0.00119 **	1.00	8			
19 20	585	z.pH	-0.4880	0.2392	0.2406	2.028	0.04252 *	1.00	8			
21 22	586	c.coastal:z.pH	-1.3458	0.5913	0.5954	2.260	0.02379 *	0.66	4			
23 24	587	z.soil.na.lg	0.2049	0.2199	0.2213	0.926	0.35448	0.35	4			
25	588	c.coastal:z.AI	-0.6275	1.7061	1.7181	0.365	0.71492	0.12	1			
26 27	589	c.coastal:z.soil.na.lg	-0.7663	0.5640	0.5677	1.350	0.17712	0.13	2			
28 29	590											
30 31	591	Signif. codes: 0 '***'	0.001 '**'	0.01 '*' 0.0)5 '.' 0.1	' ' 1						
32 33	592											
34 35	593	SI Tables 5 & 6. Responses of f	oliar sodium to	a changing envi	ronment:							
36 37	594								ulation of houting and			
38		SI Table 5. Response of foliar s										
39 40	595	nutrients. Regression table sho	ws conditional a	average model r	esults witho	ut Lancast	ter; when this site i	s included, the r	esults are qualitatively			
41 42												
43 44									27			
45 46									21			
40												

2											
3 4	596	similar but the effect o	of nutrient addit	ion across the	water availabilit	y gradient	is somewha	t wea	aker due to the o	extreme outlier. The re	gression
5 6	597	table shows the condi	tional average v	alues across m	odels in which p	arameters	were includ	ed, tl	ne number of m	odels in which parame	ters were
7 8	598	included, and their im	portance in the	models.							
9 10	599										
11 12	600		Estimate	Std. Error	Adjusted SE	z value	Pr(> z)		Importance	Num models	
13 14	601	(Intercept)	1.6286948	0.1348117	0.1350290	12.062	< 2e-16	***			
15 16	602	z.AI	-0.6601019	0.3111010	0.3116025	2.118	0.034140	*	1.00	5	
17 18	603	z.pH	-0.3787517	0.0792799	0.0794058	4.770	1.8e-06	***	1.00	5	
19 20	604	c.Fnc	-0.0144227	0.0345935	0.0346491	0.416	0.677226		1.00	5	
21 22	605	c.NPK	0.0816837	0.0347964	0.0348523	2.344	0.019093	*	1.00	5	
23 24	606	c.Fnc:c.NPK	0.0006431	0.0686576	0.0687668	0.009	0.992538		1.00	5	
25	607	c.Fnc:z.AI	-0.0134223	0.0699543	0.0700666	0.192	0.848083		1.00	5	
26 27	608	c.NPK:z.AI	0.2581523	0.0739461	0.0740549	3.486	0.000490	***	1.00	5	
28 29	609	c.NPK:z.pH	0.1199696	0.0799398	0.0800687	1.498	0.134047		0.58	3	
30 31	610	c.Fnc:c.NPK:z.AI	-0.4660938	0.1361232	0.1363347	3.419	0.000629	***	1.00	5	
32 33	611	c.Fnc:z.pH	0.0060036	0.0802725	0.0804007	0.075	0.940477		0.35	3	
34 35	612	c.Fnc:c.NPK:z.pH	0.2183428	0.1549416	0.1551920	1.407	0.159451		0.12	1	
36	613										
37 38	614	Signif. codes: (0 '***' 0.00	1 '**' 0.01	'*' 0.05 '.	′ 0.1 ′	' 1				
39 40											
41 42											
43 44											28
45 46											20

Ecology Letters

 SI Table 6. Response of foliar sodium in 179 dominant grassland plant species growing in plots treated with a factorial addition of elemental nutrients (but not sodium). Model excludes one site (Lancaster) which was a substantial outlier for AI and pH. Models are qualitatively similar with Lancaster included. The regression table shows the conditional average values across models in which parameters were included; the number of models in which parameters were included are shown below the table.

13 14	620		Estimate	Std. Error	Adjusted SE	z value	Pr(> z)	Importance	Num models
15 16	621	(Intercept)	1.68363	0.13936	0.13947	12.071	< 2e-16 ***	-	
17	622	z.AI	-0.64993	0.31441	0.31465	2.066	0.03887 *	1.00	40
18 19	623	z.pH	-0.24259	0.05384	0.05388	4.503	6.7e-06 ***	1.00	40
20 21	624	c.K	-0.01129	0.02289	0.02291	0.493	0.62225	1.00	40
22	625	c.N	0.06474	0.02302	0.02304	2.810	0.00495 **	1.00	40
23 24	626	c.P	0.02553	0.02282	0.02283	1.118	0.26360	1.00	40
25 26	627	c.K:c.N	0.03479	0.04543	0.04546	0.765	0.44413	0.95	37
27	628	c.K:z.AI	0.24490	0.05063	0.05066	4.834	1.3e-06 ***	1.00	40
28 29	629	c.K:z.pH	0.10960	0.05034	0.05038	2.176	0.02958 *	0.92	35
30 31	630	c.N:z.AI	0.10176	0.04981	0.04984	2.042	0.04120 *	1.00	40
32	631	c.P:z.AI	0.11270	0.04591	0.04595	2.453	0.01417 *	1.00	40
33 34	632	c.K:c.N:z.AI	0.23943	0.09389	0.09396	2.548	0.01083 *	0.95	37
35 36	633	c.N:z.pH	-0.07174	0.05135	0.05139	1.396	0.16272	0.57	24
37	634	c.N:c.P	0.05290	0.04522	0.04525	1.169	0.24239	0.45	21
38 39	635	c.K:c.N:z.pH	0.10350	0.09983	0.09990	1.036	0.30019	0.18	9
40 41	636	c.K:c.P	0.03394	0.04511	0.04515	0.752	0.45217	0.33	16

1									
2 3	637	c.P:z.pH -0.01439	0.05017	0.05021	0.287	0.77439	0.18	10	
4 5	638	c.K:c.P:z.AI 0.10380	0.08934	0.08941	1.161	0.24564	0.10	5	
6 7	639	c.N:c.P:z.AI 0.01774	0.08995	0.09002	0.197	0.84379	0.05	3	
8	640	c.N:c.P:z.pH -0.12625	0.09267	0.09274	1.361	0.17343	0.03	2	
9 10	641	c.K:c.N:c.P -0.08298	0.09077	0.09084	0.913	0.36103	0.03	2	
11 12	642								
13	643	Signif. codes: 0 '***'	0.001 '**'	0.01 '*' 0	.05 '.'	0.1 ' ' 1			
14 15	644								
16 17									
18									
19 20									
21 22									
23									
24 25									
26									
27 28									
29 30									
31									
32 33									
34 35									
36									
37 38									
39									
40 41									
42 43									
44									
45									

1 2										
2 3 4	655	SI Tables 7 and 8. Res	ponses of folia	r sodium to a ch	anging enviro	onment:				
5 6	656	SI Table 7. Response of	of foliar sodium	to experimenta	l manipulatio	n of herbiv	vores and nutrients	for the subset c	f 60 species present in co	ntrol
7 8	657	plots and at least 3 ex	perimentally tr	eated plots of th	ne fence x fert	ilization ex	operiment. The reg	ression table sho	ows the conditional average	ge
9 10	658	values across models,	relative import	tance values are	shown below	the table.				
11 12	659									
13 14	660		Estimate St	td. Error Ad	justed SE :	z value	Pr(> z)	Importance	Num models	
15 16	661	(Intercept)	1.60760	0.15658	0.15690	10.246	< 2e-16 ***			
17 18	662	z.AI	-0.90293	0.35730	0.35803	2.522	0.01167 *	1.00	6	
19 20	663	z.pH	-0.42239	0.08360	0.08377	5.042	5e-07 ***	1.00	6	
21 22	664	c.Fnc	-0.01764	0.03728	0.03736	0.472	0.63688	1.00	6	
23 24	665	C.NPK	0.09444	0.03743	0.03751	2.518	0.01181 *	1.00	6	
25	666	c.Fnc:c.NPK	-0.01041	0.07499	0.07514	0.139	0.88984	1.00	6	
26 27	667	c.Fnc:z.AI	0.01691	0.07840	0.07856	0.215	0.82958	0.92	5	
28 29	668	c.Fnc:z.pH	0.05260	0.08338	0.08354	0.630	0.52896	0.55	4	
30 31	669	c.NPK:z.AI	0.28640	0.08119	0.08134	3.521	0.00043 ***	1.00	6	
32 33	670	c.NPK:z.pH	0.12557	0.08425	0.08442	1.487	0.13690	0.69	4	
34 35	671	c.Fnc:c.NPK:z.AI	-0.48307	0.15742	0.15771	3.063	0.00219 **	0.92	5	
36 37	672	c.Fnc:c.NPK:z.pH	0.36304	0.17535	0.17566	2.067	0.03876 *	0.34	2	
38	673									
39 40	674	Signif. codes:	0 '***' 0.00	0.01	'*' 0.05	··' 0.1	' ′ 1			
41 42										
43 44										33
45 46										33
40 47										

Page 34 of 43

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
11 12 13 14 15 16 17 18 19	
16	
17	
18	
20	
20 21	
22	
23	
24	
24 25 26	
26	
27	
28	
29	
30	
31	
32	
33 24	
34 35 36	
36	
37	
38	
39	
40	
41	
42	
43	
11	

3 4	675	SI Table 8. Respo	onse of foliar soo	dium to a factoria	al addition of e	lemental	nutrients (b	out not sodiu	im for the subse	t of 62 species present in control
5	676	plots and at leas	t 6 experimenta	lly treated plots	in the factorial	ΝΡΚμ exp	periment. T	he regressio	n table shows th	e conditional average values
/ 3 5	677	across models, r	elative importar	nce values are sh	own below the	table.				
10	678									
11 12	679		Estimate S	td. Error Ad	justed SE z	value	Pr(> z)		Importance	Num models
13 14	680	(Intercept)	1.650418	0.156368	0.156525	10.544	< 2e-16	* * *		
15 16	681	z.AI	-0.713841	0.363376	0.363740	1.963	0.04970	*	1.00	78
17 18	682	z.pH	-0.258238	0.060821	0.060879	4.242	2.22e-05	* * *	1.00	78
19	683	c.K	-0.006721	0.025683	0.025709	0.261	0.79378		1.00	78
20 21	684	c.N	0.073374	0.025576	0.025601	2.866	0.00416	* *	1.00	78
22 23	685	c.P	0.021680	0.025634	0.025660	0.845	0.39818		1.00	78
24 25	686	c.K:c.N	0.044384	0.050890	0.050941	0.871	0.38360		0.76	57
26 27	687	c.K:z.AI	0.303815	0.056138	0.056193	5.407	1.00e-07	***	1.00	78
28 29	688	c.K:z.pH	0.138719	0.056652	0.056708	2.446	0.01444	*	0.99	77
30 31	689	c.N:c.P	0.075999	0.050956	0.051006	1.490	0.13622		0.72	57
32	690	c.N:z.AI	0.081498	0.056873	0.056926	1.432	0.15225		0.89	68
33 34	691	c.N:z.pH	-0.112398	0.056589	0.056645	1.984	0.04723	*	0.89	67
35 36	692	c.P:z.AI	0.131357	0.053185	0.053237	2.467	0.01361	*	0.99	77
37 38	693	c.K:c.N:z.AI	0.247463	0.109837	0.109940	2.251	0.02439	*	0.70	50
39 40	694	c.P:z.pH	-0.018531	0.057573	0.057628	0.322	0.74778		0.43	38
41 42	695	c.N:c.P:z.pH	-0.213430	0.106099	0.106205	2.010	0.04447	*	0.31	25

1 2											
3 4	696	c.K:c.N:z.pH 0.142	729 0.11	.13412 0.1	.13525 1.	.257 0.	20866		0.27	20	
5	697	c.K:c.P 0.051	492 0.05	50758 0.0	50809 1.	.013 0.	31085		0.40	38	
6 7	698	c.N:c.P:z.AI 0.023	955 0.11	0.1	.12340 0.	.213 0.	83115		0.12	12	
8 9	699	c.K:c.P:z.AI 0.076	209 0.10	0.1582 0.1	.01683 0.	.749 0.	45357		0.07	7	
10 11	700	c.K:c.N:c.P -0.051	459 0.10	02002 0.1	.02104 0.	.504 0.	61427		0.03	4	
12 13	701	c.K:c.P:z.pH -0.013	211 0.10	0.1	.03284 0.	.128 0.	89822		0.01	2	
14	702										
15 16	703	Signif. codes: 0 '	***' 0.001	· ** · 0.01	·*' 0.05	.' 0.1	' ' 1				
17 18	704										
19 20	705										
21 22											
23	706	SI Tables 9 & 10. Effects of	of foliar sodiu	im on changes	in species ab	undance	n respons	e to a ch	anging environ	ment:	
24 25	707	SI Table 9. Response of p	ot scale cove	r of focal specie	es as a functio	on of folia			-	ntal manipulation of he	rbivores
26 27	708	and nutrients. (N=153 spe	ecies).								
28 29	709										
30 31	710	(conditional average)									
32	711		Estimate	Std. Error A	djusted SE	z value	Pr(> z)		Importance	Num models	
33 34	712	(Intercept)	1.17346	0.05116	0.05125	22.898	< 2e-16	***			
35 36	713	z.lf.na.lg	-0.02289	0.04719	0.04727	0.484	0.6282		1.00	5	
37 38	714	c.Fnc	-0.01806	0.02609	0.02613	0.691	0.4895		1.00	5	
39	715	c.NPK	0.06037	0.02624	0.02628	2.297	0.0216	*	1.00	5	
40 41	716	c.Fnc:c.NPK	-0.06492	0.05079	0.05087	1.276	0.2019		0.61	3	
42 43											
44											35
45											5.

1 2													
3	717	c.Fnc:z.lf.na.	lg	0.06108	0.05457	0.05465	1.118	0.2637	0.56	3			
4 5	718	c.NPK:z.lf.na.	lg ·	-0.23515	0.05410	0.05418	4.340	1.43e-05	*** 1.00	5			
6 7	719	c.Fnc:c.NPK:z.	lf.na.lg	0.20691	0.10431	0.10448	1.980	0.0477	* 0.30	1			
8	720												
9 10	721	Signif. codes:	0 '***'	0.001 '**'	0.01 '*' 0.0	05 '.' 0.	1 ' ' 1						
11 12	722												
13 14	723												
15 16	724	SI Table 10. Resp	onse of plo	t scale cover	of focal species	as a functi	ion of foli	ar sodium i	n response to a	factorial add	lition of eleme	ental nutrier	nts
17 18	725	(but not sodium).	. The regres	sion table sh	ows the condit	ional avera	ige values	across mo	dels. (N=179 sp	ecies)			
19 20	726												
21 22	727	(conditional a	verage)										
23 24	728		Estimate	Std. Error	Adjusted SE	z value :	Pr(> z)		Importance	Num model	ls		
25 26	729	(Intercept)	1.11276	0.05274	0.05278	21.083	< 2e-16	***					
27	730	z.lf.na.lg	-0.10085	0.03770	0.03773	2.673	0.00752	**	1.00	11			
28 29	731	c.K	0.02774	0.01732	0.01734	1.600	0.10951		1.00	11			
30 31	732	c.N	0.02403	0.01748	0.01749	1.374	0.16944		1.00	11			
32	733	c.P	0.03991	0.01723	0.01724	2.315	0.02063	*	1.00	11			
33 34	734	c.K:c.P	0.08592	0.03427	0.03429	2.505	0.01223	*	1.00	11			
35 36	735	c.K:z.lf.na.lg	-0.06344	0.03453	0.03455	1.836	0.06639		0.71	7			
37	736	c.N:z.lf.na.lg	-0.06115	0.03468	0.03471	1.762	0.07810	•	0.68	7			
38 39	737	c.P:z.lf.na.lg	-0.10016	0.03469	0.03471	2.885	0.00391	* *	1.00	11			
40 41	738	c.K:c.N	0.02331	0.03446	0.03448	0.676	0.49899		0.26	4			
42													
43 44													36
45 46													

Pag	e 37 of 43	
1 2		
3	739	c.N:c.P
4 5	740	
6 7	741	Signif.
8	742	

Ecology Letters

739	c.N:c.P	0.01356	0.03428	0.03430	0.395	0.69253	0.23	4	
740									
741	Signif. code	s: 0 '***' (0.001 '**' 0	.01 '*' 0.05	' . ' 0.1	''1			
742									
743									
744									
745	SI Table 11. Au	thor contributi	ons and site-le	evel acknowled	lgments ta	able.			
			Developed		0	Contributed		Nutrient	
		Contributed	research	Analyzed	Wrote	to paper	Site	Network	Site-level acknowledgments
	Name	samples	question	data	paper	writing	coordinator	coordinator	(funding, access, etc)
									i i i i i i i i i i i i i i i i i i i

	Continuation		/			0.00		
Name	samples	question	data	paper	writing	coordinator	coordinator	(funding, access, etc)
Borer,	x	х	x	x	4	x	x	
Elizabeth T.						0		
Lind, Eric M.	х	х	x		x		×	
Seabloom,	x		x		х	x	х	
Eric W.								
Firn,	x				x	x		
Jennifer								

Anderson,				х	х	
T. Michael						
Bakker,				x	x	
Elisabeth S.						
Biederman,	Х	~		x	x	
Lori						
La Pierre,	Х		C	x	x	Funding: Konza Prairie LTER
Kimberly J			0			
MacDougall,	x			x	x	Funding: NSERC Discovery
Andrew S				-4		Grant; In-kind site support:
					O_{h}	Nature Conservancy of
					$\neg \gamma$	Canada; sampling processing
						Carly Ziter
Joslin	x			x	x	
Moore						

2											
3 4		Risch, Anita	х			х	x				
5 6 7		С.									
7 8 9		Schütz,	x			х	x				
9 10 11		Martin									
12 13		Stevens,	x	\sim		х	x				
14 15 16		Carly J.									
17 18	746										
19 20	747										
21 22 23 24 25	748	SI Table 12. All data contributors listed by site; site names match those in SI Table 1. Their effort in providing samples was key to this work.									
		Site Pl		Site name(s) from whi	ich trait dat	a were co	ontributed				
26 27		Peter Adler		Sheep Experimental St	tation						
28 29 30		Jonathan Bakl	ker	Smith Prairie							
31 32		Lori Biederma	in	Chichaqua Bottoms							
33 34		Dana Blumenthal		Shortgrass Steppe LTER							
35 36 37				.TER), Sierra F	oothills REC	Hopland REC	C, Lookout				
38 39	(Andrews LTER)										
40 41											
42 43											
44 45											39
46 47											

1	0	
1 1 1 1 2	2345678901	
2 2 2 2 2 2 2 2	1 2 3 4 5 6 7	
2 2 3 3	8 9 0 1	
3 3	2 3 4 5 6 7 8 9 0	
4 4 4 4	-1 -2 -3 -4 -5	

Cynthia Brown	Shortgrass Steppe LTER
Miguel Bugalho	Companhia das Lezirias
Maria Caldeira	Companhia das Lezirias
Elsa Cleland	Elliott Chaparral
Kendi Davies	Boulder South Campus
Jennifer Firn	Burrawan
Daniel Gruner	Sagehen Creek UCNRS
Sabine Güsewell	Fruebuel
W. Stanley Harpole	Hopland REC, Chichaqua Bottoms, Mclaughlin UCNRS, Sierra Foothills REC
Yann Hautier	Fruebuel
Andy Hector	Fruebuel
Janneke Hille Ris Lambers	Smith Prairie
Kirsten Hofmockel	Chichaqua Bottoms
Julia Klein	Shortgrass Steppe LTER
Alan Knapp	Shortgrass Steppe LTER

1				
2 3 4	Kimberly La Pierre	Konza LTER, Saline Experimental Range		
5 6 7	Andrew MacDougall	Cowichan		
8 9	Brett Melbourne	Boulder South Campus		
10 11	Charles Mitchell	Duke Forest		
12 13 14	Joslin Moore	Bogong		
15 16	John Morgan	Bogong, Kinypanial		
17 18 19	Suzanne Prober	Mt. Caroline		
20 21	Anita Risch Val Mustair Martin Schuetz Val Mustair			
22 23 24	Martin Schuetz	Val Mustair		
24 25 26	Eric Seabloom	Hopland REC, Lookout (Andrews LTER), Mclaughlin UCNRS, Bunchgrass (Andrews LTER), Sierra		
27 28 29		Foothills REC		
30 31	Melinda Smith	Konza LTER, Saline Experimental Range		
32 33	Carly Stevens	Lancaster		
34 35 36	Lauren Sullivan	Chichaqua Bottoms		
37 38	Peter Wragg	Mt Gilboa, Summerveld		
39 40 41				
41 42				

1 2			
3 4		Justin Wright	Duke Forest
5 6 7 8 9 10 11 12 13		Louie Yang	Sagehen Creek UCNRS
	749		
	750		
	751		
14 15	752		
17	753		
 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 			

SI Figure 3. Site-level soil pH declines as a function of site-level water availability (MAP/PET); this relationship does not vary as a function of
 distance from coast. Coastal and Inland are divided at 100km from a coast. The Lancaster site in the UK, shown with a black circle and cross-hairs
 in this figure, falls along this line, but has very high coastal sodium influence in its precipitation, leading to exceptionally high site-level sodium
 (see main text).