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ABSTRACT  40 

Sodium is unique among abundant elemental nutrients, because most plant species do not require it for 41 

growth or development, whereas animals physiologically require sodium. Foliar sodium influences 42 

consumption rates by animals and can structure herbivores across landscapes. We quantified foliar 43 

sodium in 201 locally-abundant, herbaceous species representing 32 families and, at 26 sites on four 44 

continents, experimentally manipulated vertebrate herbivores and elemental nutrients to determine 45 

their effect on foliar sodium. Foliar sodium varied taxonomically and geographically, spanning five 46 

orders of magnitude. Site-level foliar sodium increased most strongly with site aridity and soil sodium; 47 

nutrient addition weakened the relationship between aridity and mean foliar sodium. Within sites, high 48 

sodium plants declined in abundance with fertilization, whereas low sodium plants increased. Herbivory 49 

provided an explanation: herbivores selectively reduced high nutrient, high sodium plants. Thus, 50 

interactions among climate, nutrients, and the resulting nutritional value for herbivores determine foliar 51 

sodium biogeography in herbaceous-dominated systems. 52 

 53 

INTRODUCTION 54 

Sodium is an essential nutrient for herbivores (Michell 1989; Snell-Rood et al. 2014) that can determine 55 

animal foraging preferences and movement patterns in space and time (McNaughton 1988; Prather et 56 

al. 2018). In contrast, sodium is not used for physiological function in most plants, and at high 57 

concentrations sodium can be toxic for plants (Mäser et al. 2002; Pardo & Quintero 2002; Marschner 58 

2011; Maathuis 2014). Because of this key difference in the mineral nutrition of herbivores and the 59 

plants they eat, herbivores must use natural salt licks and seek out and efficiently use the sodium 60 

present in plants to meet physiological demands for sodium (Michell 1989). In spite of the essential role 61 

of plant sodium content for wild herbivores (Seastedt & D. A. Crossley 1981), there is little 62 

understanding of the relative importance of the many factors that may control foliar sodium in plants. 63 
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For example, abiotic factors including soil sodium content, soil fertility, or climate may determine 64 

sodium availability, whereas biotic constraints such as plant species phylogeny and lifeform or 65 

palatability to herbivores may determine the capacity for sodium exclusion and whole tissue losses that 66 

may occur with preferential herbivory. Further, these factors may interact and operate globally or 67 

regionally to influence foliar sodium, and context may determine whether foliar sodium is likely to 68 

interact with herbivory to determine the composition of plant communities in future environments.   69 

Plants access sodium through leaf uptake from atmospheric deposition (Benes et al. 1996) or root 70 

uptake from soil water (Epstein 1973). Because of the similarity of sodium to the potassium ion that is 71 

physiologically critical for plants, cation transporters of roots will transport both sodium and potassium 72 

across cell membranes (Pardo & Quintero 2002; Maathuis 2014). Although a relatively small group of 73 

plants – mostly C4 grasses – requires sodium (Brownell & Crossland 1972; Furumoto et al. 2011), the 74 

sodium cation is present in the foliage of many species and can be used for a variety of critical plant 75 

functions, including stomatal opening and closing, particularly when potassium is in short supply 76 

(Subbarao et al. 2003). However, terrestrial sodium is geographically variable (Kaspari et al. 2008; 77 

Kaspari et al. 2009; Wicke et al. 2011; Vet et al. 2014; Doughty et al. 2016) because of mineral 78 

acquisition from sources such as ocean spray, terrestrial salinization, or road salting practices 79 

(Ramakrishna & Viraraghavan 2005; Vet et al. 2014), urine (Kaspari et al. 2017), loss from leaching 80 

(Vitousek & Sanford 1986), and climatic influences, particularly aridity (Raheja 1966). In spite of these 81 

general associations, it remains unclear whether foliar sodium varies predictably among plant taxonomic 82 

lineages or biogeographically with e.g., distance to coast or site aridity and whether there are site or 83 

plant species characteristics that effectively predict the foliar sodium content of the most abundant 84 

plants. 85 

Although plant sodium is often assumed to simply track soil sodium supply, at biogeographic scales, a 86 

growing body of evidence suggests that plant sodium content may not be determined solely via soil 87 

Page 3 of 43 Ecology Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

 4 

sodium supply. Like other soil cations, sodium uptake by plants can be reduced in high pH soils (Tyler & 88 

Olsson 2001; Bolan & Brennan 2011), and aridity can lead to increased soil pH (Slessarev et al. 2016), 89 

suggesting that aridity may either increase foliar sodium via increased soil sodium or reduce it via 90 

increased soil pH. Evidence also is accumulating that the supply of macronutrients such as nitrogen can 91 

reduce the availability of mineral cations to plants (Lucas et al. 2011). Thus, anthropogenic activities that 92 

are altering soil pH or increasing macronutrient supply to ecosystems (Franklin et al. 2016) may 93 

interactively alter the sodium content of foliage and quality of foliage for herbivores (Kaspari et al. 94 

2017). Furthermore, herbivores may themselves alter the sodium concentration in plant tissue either by 95 

promoting the availability of sodium through recycling (McNaughton et al. 1997; Doughty et al. 2016), 96 

by promoting saline soil conditions (McLaren & Jefferies 2004), or selectively consuming plant species 97 

with elevated salt levels in their foliage (Seastedt & D. A. Crossley 1981; Welti et al. 2019). These 98 

conditions may, alternatively, promote plant species with relatively high foliar sodium that have traits, 99 

such rapid regrowth, basal meristems, or use of sodium to modify osmotic potential under drought, that 100 

are beneficial under both saline soil conditions and high grazing intensity (Coughenour 1985; Veldhuis et 101 

al. 2014; Griffith et al. 2017).  102 

Here, we use existing and experimentally-created environmental gradients to address the following 103 

questions (1) Patterns of foliar sodium: Which site (104 m2), plot (100 m2), and species characteristics 104 

predict foliar sodium content? For example, does foliar sodium vary predictably among plant taxa, with 105 

distance to coast, or along a gradient of soil pH or site aridity? (2) Responses of foliar sodium to a 106 

changing environment: Do selective herbivory or elevated nutrient supply reduce foliar sodium at the 107 

local (plot) scale? (3) Effects of foliar sodium on grassland species composition: Does a grassland species’ 108 

foliar sodium content predict changes in the species’ relative abundance in response to herbivory or 109 

elevated nutrients?  110 

 111 
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METHODS 112 

Experimental design and locations. Samples for this study were collected at 26 sites that are part of a 113 

long-term, nutrient-addition and herbivore-fencing experiment being performed in herbaceous-114 

dominated sites around the world, the Nutrient Network distributed experiment (NutNet, 115 

www.nutnet.org). The subset of the NutNet sites that were able to collect tissue samples that comprise 116 

the data used in this study spanned Africa, Australia, Europe, and North America (SI Table 1).  117 

Each site had three experimental blocks composed of 10 – 5 x 5 m plots, each assigned randomly to one 118 

of 10 unique treatment combinations. Treatments included a factorial addition of N (10 g N m−2 yr−1 as 119 

timed-release urea [(NH2)2CO]), P (10 g P m−2 yr−1 as triple-super phosphate [Ca(H2PO4)2]), and K 120 

(10 g K m−2 yr−1 as potassium sulphate [K2SO4]) plus micronutrients (µ, a mix of Fe (15%), S (14%), Mg 121 

(1.5%), Mn (2.5%), Cu (1%), Zn (1%), B (0.2%) and Mo [0.05%]), for a total of 8 plots/block. Importantly, 122 

no sodium (Na) was added in any treatment. N, P, and K were applied annually at each site for 2-4 years 123 

(SI Table 1); the micronutrient mix, µ, was applied once in the first experimental year to avoid toxicity.  124 

For the focal fence and fertilization experiment, fence treatments were crossed with the control and the 125 

all nutrient treatment (N+P+Kµ), adding two fenced plots to each block. Fences were built to exclude 126 

medium and large mammals and had been in place for 2-4 years at the time of sampling. Fences were 127 

230 cm tall with four strands of barbless wire suspended at equal vertical distances above the lower 128 

90 cm which was surrounded by 1-cm woven wire mesh with a 30-cm outward-facing flange stapled to 129 

the ground. At some sites, logistical considerations required slight modifications of the fence design 130 

(Fence exceptions table, SI Table 2). All sampling plots were separated by at least 1 m wide walkways to 131 

reduce the impact of treatments on adjacent plots. For additional methods details, see (Borer et al. 132 

2014).   133 
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Pre-treatment soil collection. Before applying the experimental treatments, three 2.5 x 10cm soil cores 134 

were collected from each experimental plot, combined, homogenized into a single sample for each 5 x 5 135 

m plot (roughly 500 g of soil), and dried. Percent soil C and N from each plot were analyzed in a single 136 

analytical laboratory using a Costech ECS 4010 CHNSO Analyzer on pulverized soil (Knops lab, University 137 

of Nebraska, USA). Extractable soil P, K, and micronutrients, including Na, and pH for every soil sample 138 

also were quantified in a single analytical laboratory using standard methods (Borer et al. 2014) (A&L 139 

Laboratories, Memphis, Tennessee, USA). Across our study sites, plot-level soil sodium ranged from 21 140 

ppm (at Val Mustair in Switzerland) to 150 ppm (at Elliott Chaparral, USA). 141 

Plant abundance and biomass estimation. To determine the most abundant plant species in each plot 142 

and the change in cover of species in response to the experimental treatments, the percent areal cover 143 

of each species was estimated to the nearest 1 percent for each species within a permanently marked 1-144 

m2 subplot of each treatment unit.  145 

A metric of site-level net herbivore impact was estimated as the average difference in live mass inside 146 

and outside of fences within a block during the first year of the treatment. To estimate this, we clipped 147 

the aboveground biomass of all plants rooted within a 0.2 m2 area of each fenced and control plot. Each 148 

sample was divided into growth from the current year and litter from previous years. We used the first 149 

year of treatment to estimate herbivore impact on vegetation mass, prior to species-level selection and 150 

turnover in response to long-term herbivore exclusion.  151 

Foliar sampling & sodium analysis. Within each plot, the most abundant species were determined as a 152 

function of percent cover, and a single healthy leaf was collected from five unique individuals of the 153 

species with the greatest cover at the site. Most sites had three to five dominant species present in most 154 

plots; however, one site collected 8 different species (Val Mustair), because there were not clearly 155 

dominant species. All leaves were transported in a cooler, and then dried at 60°C for 48 hours (Firn et al. 156 
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2019). The collected species represented 5.3% (Val Mustair, Switzerland, a high elevation, highly diverse 157 

(25 species/plot) site; this is the site that sampled 8 species) to 52.1% (Saline, KS, USA) of the total plot 158 

cover with an average representation of 26% of the total cover across all plots and sites (SI Table 1). All 159 

leaves were then sent to Queensland University of Technology (Dr. J. Firn) for sodium analysis. Dried 160 

leaves were ground to a fine powder, then analyzed for sodium content with an Agilent 8800 Laser 161 

Ablation Inductively Coupled Plasma Mass Spectrometer (LA-ICP-MS), following Duodu et al. (Duodu et 162 

al. 2015) with two exceptions: C, the most abundant naturally occurring element, was used as a 163 

standard, and no additional pulverizing was performed beyond that required for C analysis. The 164 

reference material for sodium was NIST SRM 1570a Trace elements in spinach leaves (USA National 165 

Institute of Standards and Technology 2014). Elemental quantification followed the method of Longerich 166 

et al. (1996), using Iolite, a data reduction software (Paton et al. 2010). 167 

Climate data. The WorldClim database provided comparable long-term climate data for all sites (version 168 

1.4; http://www.worldclim.org/bioclim). These global climate data were interpolated at high-resolution 169 

from data stations with 10 to 30 years of data (Hijmans et al. 2005). We used these data to test whether 170 

foliar sodium in the most abundant taxa declined with mean annual precipitation (MAP in mm per year) 171 

or increased with a site-level index of aridity (MAP divided by potential evapotranspiration in mm per 172 

year)(Barrow 1992). Site-level MAP ranged from 14 at Sheep Station, USA to 1898 mm of annual 173 

precipitation at HJ Andrews LTER; Lookout, USA and the index of aridity ranged from 0.2 at Mount 174 

Caroline, Western Australia to 2.4 mm at Val Mustair, Switzerland (SI Table 1). 175 

Analyses. We explored the relative importance and interactions among the many factors that we 176 

hypothesized to constrain foliar sodium. Many of these factors could covary (e.g., annual precipitation, 177 

distance to coast, and soil pH), and it was possible that there could be multiple models that were 178 

similarly informative (i.e., had similar AICc values). For this reason, we used a multi-model approach, 179 

which does not try to identify a single best model (Grueber et al. 2011). This information theoretic 180 
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approach starts by calculating all possible subsets of the parameters in the full model, and then uses 181 

Akaike’s information criterion (AICc) to determine the subset of models sharing similarly high levels of 182 

parsimony (Grueber et al. 2011). In our case, we included in our high parsimony set all models that fell 183 

within 4 AICc units of the model with the lowest AICc value (Grueber et al. 2011). Parameter estimates 184 

and significance are based on a weighted average of the set of high parsimony models. We present the 185 

weighted average parameter value estimate, significance, and the summed AIC weights for all models in 186 

which the parameter is included, or importance. We used the dredge function in the MuMIn R library to 187 

calculate the AICc of all possible models and the model.avg function in the MuMIn R library to calculated 188 

the weighted parameter and statistics.   189 

All models used a random effect structure with site and species within site treated as random intercepts 190 

to account for the hierarchical nature of the sampling. To examine biogeographic predictors of foliar 191 

sodium, we examined only control plot values, but for the effects of environmental change, we used 192 

data from all experimental plots. Experimental treatments were retained in all models. Because of 193 

missing soil data, one site (Mt. Caroline) is excluded from experimental analyses. In addition, to avoid 194 

bias from having rare species that were found only in one treatment driving the results, for the analysis 195 

of the fence and fertilization experiment (shown in Fig 4), we include species that are present in Control 196 

plots and at least two other treatments (e.g., Control, Fence, and Fertilized or Control, Fence, and Fence 197 

+ Fertilized). Similarly, for analysis of the factorial nutrient experiment (SI Figure 1), we include only 198 

species present in Control plots and at least 5 other treatments. Finally, in analyses of abiotic factors 199 

associated with foliar sodium, we tested the leverage of two outlier sites. In particular, we examined the 200 

role of a single site (Sheep Station, USA) in driving the association of foliar sodium with soil pH and 201 

another site (Lancaster, UK) in determining the importance of distance from the coast in foliar sodium 202 

content.   203 
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In addition to assessing foliar sodium, we also used multi-model inference to examine the cover 204 

response of each plant for which sodium was measured in each plot as a function of the sodium 205 

concentration of that species. For assessing the effects of foliar sodium on plant cover in response to the 206 

experimental treatments, species with less than 0.1% cover in a plot were removed (23 out of 1,828 207 

records or 1.3%).  208 

All analyses were performed in R (version 3.3; R Foundation for Statistical Computing). 209 

RESULTS 210 

Patterns of foliar sodium  211 

Foliar sodium in 201 of the most abundant grassland plant species from 26 sites on four continents, 212 

including representatives of 32 plant families, varied across five orders of magnitude among sites and 213 

the most abundant plant taxa in unmanipulated plots. Foliar sodium ranged from 0.5 ppm in Phleum 214 

pratense (Poaceae) to 28,271 ppm in Epaltes australis (Asteraceae, SI Table 1), and average site-level 215 

plant sodium across the most abundant species ranged from 2.7 ppm (at Konza Prairie in the North 216 

American Great Plains) to 9,715 ppm (at Burrawan in southeastern Australia). Foliar sodium of the most 217 

abundant species in control plots was similar across grasses with C4 (463 ± 201 ppm) and C3 (624 ± 159 218 

ppm) photosynthetic pathways (P = 0.10). However, across all taxa in unmanipulated (control) plots, 219 

foliar sodium varied spatially both within and among sites (Fig. 1); mean foliar sodium content also 220 

varied substantially among plant families (Fig. 1, P<0.001, SI Table 3).  221 

We found that among sites, mean site-scale foliar sodium in control plots increased with soil sodium 222 

(Fig. 2, P=0.015; t=2.68), whereas within sites, foliar sodium did not co-vary with plot-scale soil sodium 223 

(P=0.51; t=0.64). In a model that included multiple candidate predictors (site aridity, distance from 224 

coast, soil pH, photosynthetic pathway, and soil sodium), foliar sodium declined with increasing site-225 

level water availability (increasing AI; P=0.001) and soil pH (Fig. 3, P=0.04, SI Table 4). However, our 226 
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model selection criteria did not retain soil sodium or photosynthetic pathway in final models. The 227 

decline in foliar sodium was similar across both coastal and inland sites except for a single site in the UK 228 

with high precipitation and exceptionally high sodium ion deposition relative to most locations on Earth 229 

(Vet et al. 2014) (Fig 3b, Lancaster, UK). In contrast, for sites with neutral to acidic soils (all except one in 230 

this study, Sheep Station, USA), there was no relationship between foliar sodium and soil pH (Fig. 3).  231 

Thus, the biogeographic variation in foliar sodium content is explained, in part, by a combination of local 232 

conditions, including soil sodium availability and aridity. 233 

Responses of foliar sodium to a changing environment  234 

Nutrients and herbivory interacted to determine the foliar sodium of the most abundant plants, and the 235 

strength of this effect depended on aridity but not soil pH (SI Table 5). In particular, at mesic sites, when 236 

herbivores were present, nutrient addition favored abundant plants with high foliar sodium compared 237 

to plants in ambient (control) plots (Fig. 4a, SI Table 5). As a result, the addition of the full suite of 238 

nutrients (N+P+Kµ, but not Na) outside of fences weakened the negative effect of increasing water 239 

availability (increasing AI) on foliar sodium content (Fig. 4b). The factorial nutrient addition experiment 240 

clarified that the interaction between aridity and nutrient supply was primarily driven by the effects of 241 

potassium and micronutrients (Kµ) and to a lesser extent the effects of nitrogen and phosphorus 242 

addition (SI Table 6, SI Fig. 1). 243 

We examined the subset of species that were sampled multiple times among plots and sites to explore 244 

the role of intraspecific variability of sodium content in determining these observed responses. Of the 245 

201 species in this experiment, 41 were among the most abundant (and therefore sampled) in plots at 246 

more than one site, and 94 were sampled in both control and treatment plots within sites. Models of 247 

the subset of species present among sites and in both control and treatment plots were qualitatively 248 

similar to models of the larger dataset for both experiments (SI Tables 7 and 8), suggesting that some of 249 
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the observed variation in foliar chemistry is attributable to intraspecific change in foliar sodium content 250 

in response to the biotic and abiotic environment. 251 

Effects of foliar sodium on grassland species composition  252 

The sodium content of foliage and plot-scale nutrient supply contributed to the effects of herbivores on 253 

changes in the relative abundance of grassland plant species. Fertilization (with NPKµ) increased the 254 

cover of the most abundant species, and in the presence of herbivores, the abundance of species low in 255 

foliar sodium increased in response to fertilization, whereas high sodium species became less abundant 256 

when fertilized (Fig. 5). However, in the absence of herbivores, fertilization had no consistent effects on 257 

species abundances in relation to their foliar sodium concentration (SI Table 9, SI Fig. 2). These effects 258 

on foliar sodium were independent of the intensity of herbivory among sites (measured as the site-level 259 

log ratio of live biomass inside and outside of herbivore exclusion fences (P > 0.57 for all main effects 260 

and interactions; importance < 0.40 [model not shown]). The factorial nutrient addition experiment 261 

clarified that, in the presence of herbivores, the addition of any elemental nutrient caused dominant 262 

plant species with relatively high foliar sodium content to decline more than species with lower foliar 263 

sodium (SI Table 10); this effect was greatest in response to fertilization with P (SI Table 10). These 264 

results point to selective consumption by herbivores of high nutrient, high sodium plants.  265 

DISCUSSION 266 

This multi-continent, biogeographic study demonstrated that foliar sodium in dominant grassland plants 267 

is highly variable among sites and even plots within a site, and there also is significant variation in foliar 268 

sodium among families and taxa within families, regardless of geographic location. These patterns likely 269 

reflect variation in long-term environmental conditions (e.g., aridity, grazing) that have selected for 270 

species with differing strategies for environmental sodium uptake. While there is evidence for 271 

phylogenetic conservation of cation transport proteins that can influence sodium uptake (Schachtman & 272 
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Liu 1999) with predictable differences across photosynthetic pathways (Brownell & Crossland 1972), 273 

photosynthetic pathway was not a predictor of foliar sodium in grasses. Nonetheless, the very highest 274 

foliar sodium content recorded in this study was 9% (91,818 ppm) in Eragrostis curvula (Poaceae, 275 

commonly called African Lovegrass) found at Burrawan, Australia. This species has a C4 photosynthetic 276 

pathway, indicating a physiological requirement for sodium, and this site is among the more arid sites in 277 

the experiment, suggesting that both photosynthetic pathway (Brownell & Crossland 1972; Furumoto et 278 

al. 2011) and aridity (Raheja 1966) can be strongly associated with foliar sodium, in some cases. 279 

However, while individual species supported this hypothesis, as a group, C4 grasses were not 280 

consistently high in foliar sodium.  281 

The results of this globally-extensive study demonstrate that the relative abundance of plant species in 282 

grasslands is altered by herbivores as a function of sodium content and elemental nutrient supply. In 283 

particular, herbivores in grasslands spanning four continents with a variety of herbivore types and 284 

densities consistently reduced the cover of plants with high foliar sodium only in high nutrient 285 

conditions. The reduction in abundance of sodium-rich plants in fertilized plots is evidence of targeted 286 

herbivory of high sodium, protein-rich plants. In particular, herbivores are attracted to plots with 287 

elevated nutrients (Mattson 1980), and selective consumption reduces the abundance those species 288 

with the highest sodium. These plants are not likely extirpated from the community, since the same 289 

species are generally found at higher abundance inside herbivore exclosures, rather they are likely to be 290 

in a constant state of regrowth from having their aboveground foliage selectively consumed. Such 291 

selective foraging is common in many ecosystems (Belovsky 1981; Jefferies et al. 1994; Wallis de Vries & 292 

Schippers 1994; Bartolome et al. 1998; Doughty et al. 2016). Related to this, the impact of herbivores on 293 

sodium content of the most abundant plant species was contingent on aridity, with foliar sodium 294 

content high and indistinguishable among experimental treatments at arid sites, but declining with 295 

increasing water availability. Our arid region results are consistent with previous work that found 296 
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positive feedbacks generating and maintaining high sodium content grazing lawns because of high 297 

evaporation rates under the cropped vegetation (McNaughton 1988). By examining herbivore impacts 298 

across a much broader precipitation gradient, we demonstrate that both aridity and herbivory 299 

determine foliar sodium biogeography across the world’s grasslands, with declining sodium content 300 

under increased precipitation and preferential feeding by herbivores.  301 

Our experimental work also demonstrated that the sodium content of locally abundant plants increases 302 

with soil sodium at the site-scale; however, when included in models, site aridity was a much more 303 

effective predictor of biogeographic variation in foliar sodium than soil sodium. At broad spatial scales, 304 

foliar sodium is positively related to soil sodium as has been observed in previous work (Sutcliffe 1959; 305 

Epstein 1973; Pardo & Quintero 2002; Maathuis 2014), but foliar sodium was not strongly predicted by 306 

distance to coast, a common a surrogate for sodium ion deposition (Vet et al. 2014). However, because 307 

arid regions are characterized by high evapotranspiration relative to precipitation, these sites tend to 308 

accumulate salts over time (Raheja 1966). In contrast, coastal sites may have both high ion input and 309 

high precipitation (Vet et al. 2014), reducing the environmental pools of ions, including sodium, and 310 

causing a mismatch between salt deposition and the location of sodic soils (Wicke et al. 2011). In this 311 

study, the coastal site with exceptionally high foliar sodium relative to site-scale precipitation (Lancaster, 312 

UK) is also situated in a location on Earth with an exceptionally high rate of sodium ion input (Vet et al. 313 

2014), suggesting that site aridity combined with direct measures of site-level sodium ion input rate will 314 

likely provide even better predictions of site-level foliar sodium in the most abundant plant taxa. In 315 

addition, although we found a decline in foliar sodium with increasing soil pH, this pattern was driven 316 

by a single, arid site in the intermountain west of the USA. While this pattern is consistent with 317 

expectations of reduced cation uptake in higher pH soils (Tyler & Olsson 2001; Bolan & Brennan 2011), 318 

we have only a single site with a pH above neutral. Because soil pH is intimately associated with 319 

aridity (Slessarev et al. 2016), disentangling the roles of soil pH and aridity in determining grassland 320 
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plant sodium biogeography will require more thorough sampling, particularly at sites with basic soils 321 

spanning a range of aridity. Nonetheless, the strong spatial variation in foliar sodium suggests that 322 

environmental context is key in determining foliar sodium which, by extension, implies that future 323 

environmental changes may alter foliar sodium for herbivores. Given the importance of dietary sodium 324 

for herbivores (Seastedt & D. A. Crossley 1981; McNaughton 1988; McNaughton et al. 1997; Kaspari et 325 

al. 2008; Doughty et al. 2016), biogeographic patterns of foliar sodium in abundant grassland plants may 326 

arise from interactions with wild herbivores, and likely have significant implications for the distribution 327 

and impacts of consumers in grassland ecosystems. 328 

The strong difference in the physiological importance of sodium to grassland plants and wild herbivores 329 

has gained increasing attention in ecology, with recent calls for a greater understanding of the 330 

biogeography of sodium (Kaspari et al. 2008). The current study of both patterns and responses to 331 

experimental manipulation, performed at 26 sites spanning wide biotic and abiotic gradients, 332 

demonstrates that aridity, soil acidity, nutrient supply, and herbivory, interact to influence 333 

biogeographic patterns of foliar sodium and its effect on plant abundance. In future environments, 334 

climate change is expected to impact global patterns of soil salinity via changes in precipitation and 335 

evapotranspiration (Schofield & Kirkby 2003). The current results suggest that the impact of these 336 

changes on grassland plant composition will depend on the interactive effects of large-scale changes in 337 

aridity and elemental nutrient (N, P) supply and the resulting nutritional value for consumers.  338 
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  521 

Fig. 1. Foliar Na variation across taxonomic and spatial scales: Variance components analysis of foliar 522 

sodium in the 85 locally-abundant plant taxa from control plots at 26 sites across nested taxonomic and 523 

spatial scales. Foliar sodium for 41 species was measured at two or more sites. Variation in foliar sodium 524 

associated with plant location is shown in orange; variation associated with taxonomic groups is shown 525 

in blue. Variance explained by genus is extremely small, but non-zero (<3x10-6), thus is barely visible in 526 

this graph. SI Table 3 provides the full statistical model associated with this figure.   527 
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 528 

 529 

Fig. 2. Foliar Na and soil Na: Foliar sodium increases with soil sodium in 85 locally-abundant plant taxa 530 

from control plots control plots among sites but not among plots or species within sites. Sites have 531 

different colors; site means are shown as large points and small points are species data. Site-level 532 

regression is shown as a black line.   533 
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  534 

Fig. 3. Predictors of foliar Na: The foliar sodium of the most abundant plant species declined across a 535 

gradient of plot-scale pH (z=2.03, P=0.04) and site-scale water availability (MAP/PET; z=3.24, P=0.001). 536 

Data include the 85 taxa across 22 sites that were growing in control plots. Coastal (orange) and Inland 537 

(blue) are divided at 100km from a coast. The dashed yellow line shows the model with all sites 538 

included; the solid yellow line shows these relationships without a single site in the UK (Lancaster, 539 

orange circled site) with high precipitation and coastal salt input. Similarly, the dashed blue line shows 540 

the model with all sites included; the solid blue line shows the relationships without the only site with 541 

basic soil pH found in US Intermountain West (Sheep Station, blue circled site).  Error bars represent 542 

±SE. SI Table 4 provides the full statistical model associated with the solid lines shown in this figure. 543 
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 544 

Fig. 4. Responses of foliar sodium to changes in herbivory and nutrient supply: Response of foliar Na in 545 

153 locally abundant plants to a factorial combination of fencing to reduce vertebrate herbivory and 546 

fertilization by a suite of micro- and macronutrients (not including Na+) (a) across a gradient in plot-scale 547 

pH and (b) across a gradient in site-scale water availability. Foliar sodium is higher than expected from 548 

control plots where precipitation is relatively high and nutrients are added (z=3.49, P=0.0005). Error bars 549 

represent ±SE. SI Table 5 provides details of the full statistical model. 550 
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  551 

Fig. 5. Effects of foliar sodium on grassland species composition: Response of plant abundance to a 552 

factorial combination of fencing to reduce vertebrate herbivory and fertilization by a suite macro- and 553 

micronutrients (not including Na+) as function of foliar sodium in 153 grassland plant species. SI Table 9 554 

shows the final model describing species abundance as a function of treatments and foliar sodium 555 

content.556 
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SI: DATA AND MODEL TABLES UNDERLYING RESUTS TEXT 557 

SI Table 1. Sites, locations, mean annual precipitation (MAP), index of aridity, modeled nitrogen deposition (N Dep.), measured plot-scale soil 558 

pH, and measured foliar sodium in each of the most abundant species at the site (leaf Na (ppm). 559 

Site name Continent Country Latitude Longitude MAP AI Leaf Na (ppm) Soil pH Soil Na (ppm) 

Mt Gilboa Africa ZA -29.28424 30.29174 943 0.7797 233.13 5.07 35.58 

Summerveld Africa ZA -29.81161 30.71573 944 0.7324 125.01 5.15 43.58 

Bogong Australia AU -36.874 147.254 1678 1.9159 228.35 4.47 22.10 

Burrawan Australia AU -27.734896 151.139517 643 0.4335 9715.51 5.55 59.53 

Kinypanial Australia AU -36.2 143.75 408 0.3224 751.22 6.04 148.43 

Mt. Caroline Australia AU -31.782138 117.610853 324 0.2186 7628.36 5.29 38.19 

Fruebuel Europe CH 47.113187 8.541821 1546 2.0892 3.86 5.46 25.50 

Val Mustair Europe CH 46.631345 10.372252 681 2.4389 38.31 5.66 26.70 

Companhia das Lezirias Europe PT 38 -8 564 0.4532 65.69 5.93 25.81 

Lancaster Europe UK 53.9856247 -2.6284176 1522 2.2003 2478.44 4.77 41.56 

Cowichan North America CA 48.46 -123.38 762 1.0743 112.67 5.63 48.60 

Boulder South Campus North America US 39.972022 -105.23354 487 0.3701 2358.66 6.82 58.39 

Bunchgrass (Andrews LTER) North America US 44.2766854 -121.96802 1618 1.9348 38.65 5.54 23.71 
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Chichaqua Bottoms North America US 41.7850667 -93.385383 871 0.849 22.15 6.11 21.94 

Duke Forest North America US 36.00828 -79.020423 1157 0.9121 70.05 5.27 19.07 

Elliott Chaparral North America US 32.875 -117.05224 344 0.2565 459.89 5.69 145.46 

Hopland REC North America US 39.0127534 -123.06031 1065 0.8593 346.67 NA 22.99 

Konza LTER North America US 39.070856 -96.582821 889 0.7608 2.67 NA 20.56 

Lookout (Andrews LTER) North America US 44.2051771 -122.12845 1877 2.3085 246.88 5.07 20.83 

Mclaughlin UCNRS North America US 38.8642721 -122.40641 936 0.6615 316.49 NA 42.48 

Sagehen Creek UCNRS North America US 39.43 -120.24 831 0.8579 307.13 5.93 63.67 

Saline Experimental Range North America US 39.05 -99.1 608 0.491 41.99 NA 23.67 

Sheep Experimental Station North America US 44.242989 -112.19839 246 0.2689 14.02 7.98 23.54 

Shortgrass Steppe LTER North America US 40.81667 -104.76667 369 0.3244 36.65 6.16 21.88 

Sierra Foothills REC North America US 39.2355096 -121.2837 936 0.6932 42.19 5.96 36.04 

Smith Prairie North America US 48.2065807 -122.62475 605 0.7796 421.54 6.09 43.53 

 560 

 561 

 562 

 563 
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SI Table 2. Description of exceptions to the fence design; sites not included in this list have standard design. 564 

Site name Fence Type Exception description 

Lancaster Sheep Similar to NutNet standard but top strand at 1.2 m 

Sheep Experimental 

Station 

Sheep Similar to NutNet standard but top strand at 1.2 m 

Val Mustair Val Mustair 2.7 m wooden poles (25 cm diameter) driven 70 cm into ground, 3 m apart, covered with 5 

cm square mesh to 2 m high and with extra cabling and supports to prevent snow damage. 

Fences enclose 6 m x 7 m area. 

 565 

SI Table 3. Patterns of foliar Na: Analysis of spatial and taxonomic variance components in foliar sodium of 85 locally abundant grassland species 566 

found in the unmanipulated control plots of 26 sites.  567 

Random effects: 568 

 Groups               Name        Variance  Std.Dev.   Number of obs for group 569 

 Taxon:(genus:Family) (Intercept) 2.389e-01 4.888e-01  85 570 

 genus:Family         (Intercept) 7.450e-12 2.729e-06  66 571 
 plot:site_code       (Intercept) 8.214e-02 2.866e-01  60 572 

 site_code            (Intercept) 8.052e-01 8.973e-01  22 573 

 Family               (Intercept) 2.924e-02 1.710e-01  17 574 

 Residual                         4.623e-02 2.150e-01 575 

 576 
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SI Table 4. Predictors of foliar Na: 577 

Variation of site-level mean foliar sodium with distance to coast, aridity (MAP/PET), and soil pH for the 85 dominant grassland species found in 578 

the control plots of the 26 study sites. Model shows the conditional average estimates of model parameters for all sites except the very high 579 

precipitation, very high sodium influx site (Lancaster; see Figure and legend in main text). 580 

                       Estimate Std. Error Adjusted SE z value Pr(>|z|)     Importance Num models 581 

(Intercept)              1.7957     0.1884      0.1897   9.466  < 2e-16 ***  582 

c.coastal                0.3700     0.4098      0.4125   0.897  0.36975     0.78  6 583 

z.AI                    -1.3337     0.4089      0.4116   3.240  0.00119 **  1.00  8 584 

z.pH                    -0.4880     0.2392      0.2406   2.028  0.04252 *   1.00  8 585 

c.coastal:z.pH          -1.3458     0.5913      0.5954   2.260  0.02379 *   0.66  4 586 

z.soil.na.lg             0.2049     0.2199      0.2213   0.926  0.35448     0.35  4 587 

c.coastal:z.AI          -0.6275     1.7061      1.7181   0.365  0.71492     0.12  1 588 

c.coastal:z.soil.na.lg  -0.7663     0.5640      0.5677   1.350  0.17712     0.13  2 589 

--- 590 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 591 

 592 

SI Tables 5 & 6. Responses of foliar sodium to a changing environment: 593 

SI Table 5. Response of foliar sodium in 153 dominant grassland plant species growing in plots with experimental manipulation of herbivores and 594 

nutrients. Regression table shows conditional average model results without Lancaster; when this site is included, the results are qualitatively 595 
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similar but the effect of nutrient addition across the water availability gradient is somewhat weaker due to the extreme outlier.  The regression 596 

table shows the conditional average values across models in which parameters were included, the number of models in which parameters were 597 

included, and their importance in the models. 598 

 599 

                   Estimate Std. Error Adjusted SE z value Pr(>|z|)     Importance Num models 600 

(Intercept)       1.6286948  0.1348117   0.1350290  12.062  < 2e-16 ***  601 

z.AI             -0.6601019  0.3111010   0.3116025   2.118 0.034140 *   1.00  5 602 

z.pH             -0.3787517  0.0792799   0.0794058   4.770  1.8e-06 *** 1.00  5 603 

c.Fnc            -0.0144227  0.0345935   0.0346491   0.416 0.677226     1.00  5 604 

c.NPK             0.0816837  0.0347964   0.0348523   2.344 0.019093 *   1.00  5 605 

c.Fnc:c.NPK       0.0006431  0.0686576   0.0687668   0.009 0.992538     1.00  5 606 

c.Fnc:z.AI       -0.0134223  0.0699543   0.0700666   0.192 0.848083     1.00  5 607 

c.NPK:z.AI        0.2581523  0.0739461   0.0740549   3.486 0.000490 *** 1.00  5 608 

c.NPK:z.pH        0.1199696  0.0799398   0.0800687   1.498 0.134047     0.58  3 609 

c.Fnc:c.NPK:z.AI -0.4660938  0.1361232   0.1363347   3.419 0.000629 *** 1.00  5 610 

c.Fnc:z.pH        0.0060036  0.0802725   0.0804007   0.075 0.940477  0.35  3    611 

c.Fnc:c.NPK:z.pH  0.2183428  0.1549416   0.1551920   1.407 0.159451     0.12  1 612 

--- 613 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 614 
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SI Table 6. Response of foliar sodium in 179 dominant grassland plant species growing in plots treated with a factorial addition of elemental 615 

nutrients (but not sodium). Model excludes one site (Lancaster) which was a substantial outlier for AI and pH. Models are qualitatively similar 616 

with Lancaster included. The regression table shows the conditional average values across models in which parameters were included; the 617 

number of models in which parameters were included are shown below the table. 618 

 619 
             Estimate Std. Error Adjusted SE z value Pr(>|z|)     Importance Num models 620 

(Intercept)   1.68363    0.13936     0.13947  12.071  < 2e-16 ***  621 

z.AI         -0.64993    0.31441     0.31465   2.066  0.03887 *   1.00  40 622 

z.pH         -0.24259    0.05384     0.05388   4.503  6.7e-06 *** 1.00  40 623 

c.K          -0.01129    0.02289     0.02291   0.493  0.62225     1.00  40 624 
c.N           0.06474    0.02302     0.02304   2.810  0.00495 **  1.00  40 625 

c.P           0.02553    0.02282     0.02283   1.118  0.26360     1.00  40 626 

c.K:c.N       0.03479    0.04543     0.04546   0.765  0.44413     0.95  37 627 

c.K:z.AI      0.24490    0.05063     0.05066   4.834  1.3e-06 *** 1.00  40 628 

c.K:z.pH      0.10960    0.05034     0.05038   2.176  0.02958 *   0.92  35 629 
c.N:z.AI      0.10176    0.04981     0.04984   2.042  0.04120 *   1.00  40 630 

c.P:z.AI      0.11270    0.04591     0.04595   2.453  0.01417 *   1.00  40 631 

c.K:c.N:z.AI  0.23943    0.09389     0.09396   2.548  0.01083 *   0.95  37 632 

c.N:z.pH     -0.07174    0.05135     0.05139   1.396  0.16272     0.57  24 633 

c.N:c.P       0.05290    0.04522     0.04525   1.169  0.24239     0.45  21 634 
c.K:c.N:z.pH  0.10350    0.09983     0.09990   1.036  0.30019     0.18   9 635 

c.K:c.P       0.03394    0.04511     0.04515   0.752  0.45217     0.33  16 636 
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c.P:z.pH     -0.01439    0.05017     0.05021   0.287  0.77439     0.18  10 637 

c.K:c.P:z.AI  0.10380    0.08934     0.08941   1.161  0.24564     0.10   5 638 

c.N:c.P:z.AI  0.01774    0.08995     0.09002   0.197  0.84379     0.05   3 639 
c.N:c.P:z.pH -0.12625    0.09267     0.09274   1.361  0.17343     0.03   2 640 

c.K:c.N:c.P  -0.08298    0.09077     0.09084   0.913  0.36103     0.03   2 641 

--- 642 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 643 

 644 
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 645 

SI Figure 1. Response of foliar sodium in locally abundant plants to a factorial combination of nitrogen, phosphorus, and potassium plus 646 

micronutrients (not including Na+). Plot-scale soil pH and site-scale water availability are significant biogeographic drivers of foliar Na that 647 

improve model fit, so are included in all models. This analysis includes 179 species from the factorial nutrient addition experimental plots. 648 

 649 
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 650 

SI Figure 2. Response of plant abundance to a factorial combination of nitrogen, phosphorus, and potassium plus micronutrients (not including 651 

Na+) as a function of foliar sodium. This analysis includes 179 species from the factorial nutrient addition experimental plots. 652 

 653 

 654 
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SI Tables 7 and 8. Responses of foliar sodium to a changing environment: 655 

SI Table 7. Response of foliar sodium to experimental manipulation of herbivores and nutrients for the subset of 60 species present in control 656 

plots and at least 3 experimentally treated plots of the fence x fertilization experiment. The regression table shows the conditional average 657 

values across models, relative importance values are shown below the table. 658 

 659 

                 Estimate Std. Error Adjusted SE z value Pr(>|z|)     Importance Num models 660 

(Intercept)       1.60760    0.15658     0.15690  10.246  < 2e-16 *** 661 

z.AI             -0.90293    0.35730     0.35803   2.522  0.01167 *   1.00  6 662 

z.pH             -0.42239    0.08360     0.08377   5.042    5e-07 *** 1.00  6 663 

c.Fnc            -0.01764    0.03728     0.03736   0.472  0.63688     1.00  6 664 

c.NPK             0.09444    0.03743     0.03751   2.518  0.01181 *   1.00  6 665 

c.Fnc:c.NPK      -0.01041    0.07499     0.07514   0.139  0.88984     1.00  6 666 

c.Fnc:z.AI        0.01691    0.07840     0.07856   0.215  0.82958     0.92  5 667 

c.Fnc:z.pH        0.05260    0.08338     0.08354   0.630  0.52896     0.55  4 668 

c.NPK:z.AI        0.28640    0.08119     0.08134   3.521  0.00043 *** 1.00  6 669 

c.NPK:z.pH        0.12557    0.08425     0.08442   1.487  0.13690     0.69  4 670 

c.Fnc:c.NPK:z.AI -0.48307    0.15742     0.15771   3.063  0.00219 **  0.92  5 671 

c.Fnc:c.NPK:z.pH  0.36304    0.17535     0.17566   2.067  0.03876 *   0.34  2 672 

--- 673 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 674 
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SI Table 8. Response of foliar sodium to a factorial addition of elemental nutrients (but not sodium for the subset of 62 species present in control 675 

plots and at least 6 experimentally treated plots in the factorial NPKµ experiment. The regression table shows the conditional average values 676 

across models, relative importance values are shown below the table. 677 

 678 

              Estimate Std. Error Adjusted SE z value Pr(>|z|)     Importance Num models 679 

(Intercept)   1.650418   0.156368    0.156525  10.544  < 2e-16 *** 680 

z.AI         -0.713841   0.363376    0.363740   1.963  0.04970 *   1.00  78 681 

z.pH         -0.258238   0.060821    0.060879   4.242 2.22e-05 *** 1.00  78 682 

c.K          -0.006721   0.025683    0.025709   0.261  0.79378     1.00  78 683 

c.N           0.073374   0.025576    0.025601   2.866  0.00416 **  1.00  78 684 

c.P           0.021680   0.025634    0.025660   0.845  0.39818     1.00  78 685 

c.K:c.N       0.044384   0.050890    0.050941   0.871  0.38360     0.76  57 686 

c.K:z.AI      0.303815   0.056138    0.056193   5.407 1.00e-07 *** 1.00  78 687 

c.K:z.pH      0.138719   0.056652    0.056708   2.446  0.01444 *   0.99  77 688 

c.N:c.P       0.075999   0.050956    0.051006   1.490  0.13622     0.72  57 689 

c.N:z.AI      0.081498   0.056873    0.056926   1.432  0.15225     0.89  68 690 

c.N:z.pH     -0.112398   0.056589    0.056645   1.984  0.04723 *   0.89  67 691 

c.P:z.AI      0.131357   0.053185    0.053237   2.467  0.01361 *   0.99  77 692 

c.K:c.N:z.AI  0.247463   0.109837    0.109940   2.251  0.02439 *   0.70  50 693 

c.P:z.pH     -0.018531   0.057573    0.057628   0.322  0.74778     0.43  38 694 

c.N:c.P:z.pH -0.213430   0.106099    0.106205   2.010  0.04447 *   0.31  25 695 
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c.K:c.N:z.pH  0.142729   0.113412    0.113525   1.257  0.20866     0.27  20 696 

c.K:c.P       0.051492   0.050758    0.050809   1.013  0.31085     0.40  38 697 

c.N:c.P:z.AI  0.023955   0.112241    0.112340   0.213  0.83115     0.12  12 698 

c.K:c.P:z.AI  0.076209   0.101582    0.101683   0.749  0.45357     0.07   7 699 

c.K:c.N:c.P  -0.051459   0.102002    0.102104   0.504  0.61427     0.03   4 700 

c.K:c.P:z.pH -0.013211   0.103181    0.103284   0.128  0.89822     0.01   2 701 

--- 702 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 703 

 704 

 705 

SI Tables 9 & 10. Effects of foliar sodium on changes in species abundance in response to a changing environment: 706 

SI Table 9. Response of plot scale cover of focal species as a function of foliar sodium in response to experimental manipulation of herbivores 707 

and nutrients. (N=153 species). 708 

 709 
(conditional average)  710 

                       Estimate Std. Error Adjusted SE z value Pr(>|z|)     Importance Num models 711 

(Intercept)             1.17346    0.05116     0.05125  22.898  < 2e-16 ***  712 

z.lf.na.lg             -0.02289    0.04719     0.04727   0.484   0.6282     1.00  5 713 

c.Fnc                  -0.01806    0.02609     0.02613   0.691   0.4895     1.00  5 714 
c.NPK                   0.06037    0.02624     0.02628   2.297   0.0216 *   1.00  5 715 

c.Fnc:c.NPK            -0.06492    0.05079     0.05087   1.276   0.2019     0.61  3 716 
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c.Fnc:z.lf.na.lg        0.06108    0.05457     0.05465   1.118   0.2637     0.56  3 717 

c.NPK:z.lf.na.lg       -0.23515    0.05410     0.05418   4.340 1.43e-05 *** 1.00  5 718 

c.Fnc:c.NPK:z.lf.na.lg  0.20691    0.10431     0.10448   1.980   0.0477 *   0.30  1 719 
--- 720 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 721 

 722 

 723 

SI Table 10. Response of plot scale cover of focal species as a function of foliar sodium in response to a factorial addition of elemental nutrients 724 

(but not sodium). The regression table shows the conditional average values across models. (N=179 species) 725 

 726 

(conditional average)  727 

               Estimate Std. Error Adjusted SE z value Pr(>|z|)     Importance Num models 728 

(Intercept)     1.11276    0.05274     0.05278  21.083  < 2e-16 ***  729 

z.lf.na.lg     -0.10085    0.03770     0.03773   2.673  0.00752 **  1.00  11 730 

c.K             0.02774    0.01732     0.01734   1.600  0.10951     1.00  11 731 
c.N             0.02403    0.01748     0.01749   1.374  0.16944     1.00  11 732 

c.P             0.03991    0.01723     0.01724   2.315  0.02063 *   1.00  11 733 

c.K:c.P         0.08592    0.03427     0.03429   2.505  0.01223 *   1.00  11 734 

c.K:z.lf.na.lg -0.06344    0.03453     0.03455   1.836  0.06639 .   0.71   7 735 

c.N:z.lf.na.lg -0.06115    0.03468     0.03471   1.762  0.07810 .   0.68   7 736 
c.P:z.lf.na.lg -0.10016    0.03469     0.03471   2.885  0.00391 **  1.00  11 737 

c.K:c.N         0.02331    0.03446     0.03448   0.676  0.49899     0.26   4 738 

Page 36 of 43Ecology Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

 37 

c.N:c.P         0.01356    0.03428     0.03430   0.395  0.69253     0.23   4 739 

--- 740 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 741 
 742 

 743 

 744 

SI Table 11. Author contributions and site-level acknowledgments table. 745 

Name 

Contributed 

samples 

Developed 

research 

question 

Analyzed 

data 

Wrote 

paper 

Contributed 

to paper 

writing 

Site 

coordinator 

Nutrient 

Network 

coordinator 

Site-level acknowledgments 

(funding, access, etc) 

Borer, 

Elizabeth T. 

x x x x 
 

x x 
 

Lind, Eric M. x x x 
 

x 
 

x 
 

Seabloom, 

Eric W. 

x 
 

x 
 

x x x 
 

Firn, 

Jennifer 

x 
   

x x 
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Anderson, 

T. Michael 

    
x x 

  

Bakker, 

Elisabeth S. 

    
x x 

  

Biederman, 

Lori 

x 
   

x x 
  

La Pierre, 

Kimberly J 

x 
   

x x 
 

Funding: Konza Prairie LTER 

MacDougall, 

Andrew S 

x 
   

x x 
 

Funding: NSERC Discovery 

Grant; In-kind site support: 

Nature Conservancy of 

Canada; sampling processing: 

Carly Ziter 

Joslin 

Moore 

x    x x   
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Risch, Anita 

C. 

x 
   

x x 
  

Schütz, 

Martin 

x 
   

x x 
  

Stevens, 

Carly J. 

x 
   

x x 
  

 746 

 747 

SI Table 12. All data contributors listed by site; site names match those in SI Table 1. Their effort in providing samples was key to this work.  748 

Site PI Site name(s) from which trait data were contributed 

Peter Adler  Sheep Experimental Station 

Jonathan Bakker  Smith Prairie 

Lori Biederman  Chichaqua Bottoms 

Dana Blumenthal  Shortgrass Steppe LTER 

Elizabeth Borer  Mclaughlin UCNRS, Bunchgrass (Andrews LTER), Sierra Foothills REC, Hopland REC, Lookout 

(Andrews LTER) 
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Cynthia Brown  Shortgrass Steppe LTER 

Miguel Bugalho  Companhia das Lezirias 

Maria Caldeira  Companhia das Lezirias 

Elsa Cleland  Elliott Chaparral 

Kendi Davies  Boulder South Campus 

Jennifer Firn  Burrawan 

Daniel Gruner  Sagehen Creek UCNRS 

Sabine Güsewell  Fruebuel 

W. Stanley Harpole  Hopland REC, Chichaqua Bottoms, Mclaughlin UCNRS, Sierra Foothills REC 

Yann Hautier  Fruebuel 

Andy Hector  Fruebuel 

Janneke Hille Ris Lambers  Smith Prairie 

Kirsten Hofmockel  Chichaqua Bottoms 

Julia Klein  Shortgrass Steppe LTER 

Alan Knapp  Shortgrass Steppe LTER 
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Kimberly La Pierre  Konza LTER,  Saline Experimental Range 

Andrew MacDougall  Cowichan 

Brett Melbourne  Boulder South Campus 

Charles Mitchell  Duke Forest 

Joslin Moore  Bogong 

John Morgan  Bogong,  Kinypanial 

Suzanne Prober  Mt. Caroline 

Anita Risch  Val Mustair 

Martin Schuetz  Val Mustair 

Eric Seabloom  Hopland REC, Lookout (Andrews LTER), Mclaughlin UCNRS, Bunchgrass (Andrews LTER), Sierra 

Foothills REC 

Melinda Smith  Konza LTER, Saline Experimental Range 

Carly Stevens  Lancaster 

Lauren Sullivan  Chichaqua Bottoms 

Peter Wragg  Mt Gilboa, Summerveld 
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Justin Wright  Duke Forest 

Louie Yang  Sagehen Creek UCNRS 

 749 

 750 

 751 

 752 

 753 

Page 42 of 43Ecology Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

 43 

 754 

SI Figure 3. Site-level soil pH declines as a function of site-level water availability (MAP/PET); this relationship does not vary as a function of 755 

distance from coast. Coastal and Inland are divided at 100km from a coast. The Lancaster site in the UK, shown with a black circle and cross-hairs 756 

in this figure, falls along this line, but has very high coastal sodium influence in its precipitation, leading to exceptionally high site-level sodium 757 

(see main text). 758 
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