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Abstract

The Trypanosoma brucei cytoskeleton is generated by an elaborate array of 

subpellicular microtubules. This corset of microtubules requires extensive 

remodelling during cell growth and division. Microtubule nucleation/outgrowth and 

coordinated severing/re-establishment of inter-microtubule cross-links is 

orchestrated by microtubule associated proteins (MAPs). The T. brucei genome 

encodes a discrete set of trypanosomatid specific MAPs but functional data for most 

of these proteins is sparse.

Through bioinformatic analysis we have identified a novel trypanosomatid-specific 

protein (GB4L). GB4L has a functional role in trypanosome morphogenesis and 

microtubule organisation in the procyclic and bloodstream form of the parasite. RNAi 

ablation of GB4L causes a cytokinetic defect, as does depletion of TCP86 (another 

novel and trypanosomatid-specific MAP recently identified in the McKean 

laboratory). Electron microscopy was used to examine both the GB4L and TCP86 

RNAi cell lines, demonstrating that the phenotypes observed after GB4L and TCP86 

protein depletion are very distinct. However, in both cases protein depletion causes 

morphological abnormalities at the posterior end of cells.

' ganisation of subpellicular microtubules was interrogated through localisation of 

canonical plus tip binding proteins (+TIPs) EB1 and XMAP215. Microtubule plus ends 

are organised in a highly reproducible pattern throughout the cell cycle. This 

organisation becomes disrupted when GB4L or TCP86 are depleted, showing that

I



GB4L and TCP86 play critical yet distinct roles in orchestrating cytoskeletal 

remodelling.

RNAi ablation of GB4L and TCP86 also has effects on other MAPs due the concerted 

roles these proteins play in cytoskeletal remodelling. Investigation into MAP 

interdependency relationships suggests that MAPs assemble as distinct complexes in 

a defined temporal order on subpellicular microtubules.

This work provides further insight into the complexities of trypanosome 

morphogenesis and indicates that disruption of critical MAP interactions could 

conceivably provide valid targets for the development of novel chemotherapeutic 

strategies against human and animal trypanosomiasis.
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Chapter 1 Introduction

1.1 The Parasite, Trypanosoma brucei

Trypanosoma brucei, a species of parasitic protist belonging to the order 

Kinetoplastida diverged from the main eukaryotic lineage 900 million years ago 

(Douzery et at, 2004). The parasite is the causative agent of the cattle wasting 

disease N'gana, and Human African Trypanosomiasis (HAT). HAT more commonly 

referred to as African sleeping sickness causes approximately 50,000 deaths per 

annum (WHO, 2006). However, less than 12,000 cases are reported each year making 

HAT one of the most neglected tropical diseases (Brun e ta l, 2010). T. brucei was first 

identified by Sir David Bruce in 1895, however trypanosomiasis is an ancient scourge, 

and symptoms of the disease in cattle are described on papyrus written by ancient 

Egyptians dating from the 2nd millennium BC (Steverding, 2008). Today it is 

recognised as the most economically important disease constraint of livestock 

productivity in Africa causing estimated losses of over 5 Billion US dollars per annum 

(Taylor & Mertens, 1999), significantly contributing to the poverty of afflicted areas.

HAT is prevalent in 36 countries in sub-Saharan Africa and has a devastating effect on 

human health, it is always fatal when untreated, and currently the only treatment 

available is chemotherapy. Many of the drugs available have high levels of toxicity 

are outdated and/or resistance to them is widespread. The first effective drug, 

Suramin, was developed in 1916 and is still in use today (Steverding, 2010). There is 

an urgent need to develop new treatment strategies for the treatment of HAT. 

Studying T. brucei at the molecular level exposes novel drug targets and identifies
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candidate proteins which could act as disease markers for the development of 

sensitive and specific test to aid in the diagnosis and management of HAT.

1.2 Parasite life cycle

The T. brucei life cycle involves the alternation between an insect vector (the tsetse 

fly) and a mammalian host and the parasite must adapt its cellular morphology and 

biology to survive and replicate within these different environments. As such cells at 

different life cycle stages have distinct morphologies, different organelle positioning 

and can often be distinguished by the length of the flagellum (Vickerman, 1985). 

Figure 1.1 is a cartoon representation of the life cycle showing the main 

developmental stages found in the mammalian host and insect vector. The slender 

bloodstream form (BSF) and the procyclic form (PCF) isolated from the fly's mid-gut 

are coloured blue on the diagram. These forms of the parasite are routinely cultured 

in the laboratory and are therefore most relevant to this thesis. Proliferative forms 

such as the BSF and PCF are associated with establishing a parasite population in a 

new environment whereas non-proliferative stages, such as the stumpy form in the 

bloodstream or the metacyclic form in the fly, are associated with major transitions 

between environments (Fenn & Matthews, 2007).
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,e < a t iv e

Long Slender (BSF)
Predominant form in the hosts 
bloodstream, coated with variant 
surface glycoproteins (VSGs) 
which aid immune evasion by 
undergoing antigenic variation.

Short Stumpy
Arrested in G1/G0 pre-adapted 
for transmission. Differentiates 
synchronously into procyclic 
trypomastigotes in the tsetse fly 
midgut

Tsetse fly takes a blood meal 
injecting metacyclics into the host

Metacyclic
Arrested in G1/G0 pre-adapted 
for survival in mammalian blood­
stream, express VSG coat. Cells 
detach from epithelial cells into 
the lumen of the salivary gland

Epimastigote
Attaches via flagellum 
to microvilli of epithe­
lial cells in the salivary 
gland

Salivary glands

Tsetse Fly

Midgut

Mammal
Bloodstream

Procyclic (PCF)
VSG surface coat is replaced by procyclin 
along with other major morphological and 
physiological changes. Differentiated cells 
migrate to the salivary gland

Tsetse fly takes a bloodmeal 
ingesting short stumpy forms

Figure 1.1 Simplified diagram of the life cycle of T. brucei

Cartoon describing the life cycle of T. brucei showing the main developmental stages of the parasite in 

the tsetse fly and the mammalian host: Cells coloured blue are the forms most relevant to this thesis, 

they are readily cultured in vitro and are genetically tractable.

Trypanosomes can infect their hosts very efficiently; given the right conditions a 

single bite from an infected fly can cause infection in a mammal (Thuita et at, 2008). 

Such a bite deposits metacyclic trypanosomes into the dermal connective tissue of 

the mammal where they differentiate into the long slender form and multiply by 

binary fission. They traverse capillary walls, enter the bloodstream and eventually 

access the brain and spinal fluid. The population in the host bloodstream is 

pleomorphic with a number of morphologically different forms existing at any one 

time. The two morphological extremes are the long slender form and the short 

stumpy form, the slender form predominates in the population (Matthews, 2005).
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The level of parasitaemla within an infected mammal is affected by two factors (1) 

the host immune response and antigenic variation of the parasite and (2) the 

differentiation rate of the parasite from a proliferative (long slender) to a non­

proliferative (short stumpy) form.

(1) The BSF is covered in a dense coat of glycoproteins called variant surface 

glycoproteins (VSGs) (Morrison et al, 2009); VSG expression is essential for viability in 

the BSF (Smith et al, 2009). The majority of cells in a population express a specific 

VSG type and are known as the homotype (Van Meirvenne eta l, 1975). The VSG coat 

evokes a strong immune response from the host which kills cells expressing the 

homotype causing the disease to go into remission. However, a small portion of cells 

in the population expresses a different VSG coat (heterotypes) these heterotypes 

survive the host's immune attack and multiply during disease remission to give rise 

to a new wave of parasitaemia (Taylor & Rudenko, 2006).

(2) At peak parasitaemia long slender forms differentiate into short stumpy forms as 

a result of quorum sensing. The transition occurs in response to an uncharacterised 

parasite derived signalling factor known as the stumpy induction factor (SIF) (Vassella 

et al, 1997). The stumpy form is non-proliferative and is arrested in the cell cycle at 

G i/G 0. Differentiation from slender to stumpy form is irreversible and stumpy forms 

are destined for transmission or death by apoptosis (reviewed by Duszenko et al, 

2006).

Progression from slender to stumpy form requires a number of changes in cellular 

physiology and morphology. These changes are made to prepare the cell for the 

transition from mammalian bloodstream to tsetse fly midgut. Pre-adaption requires:
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A remodelling of the cytoskeleton, and changes in the machinery required for energy 

metabolism (reviewed by Matthews, 2005).

Differentiation from long slender BSF into the pre-adapted short stumpy BSF is 

undertaken for two purposes;

(1) Uniform cell cycle arrest at G i/G0 ensures that upon transmission the parasite can 

synchronously re-enter the cell cycle and differentiate into the PCF. Additionally, 

energy for the process of differentiation can be readily generated by machinery 

prepared prior to transmission.

(2) Setting aside a portion of the population in a non-proliferating form allows 

maintenance of high levels of parasitaemia whilst prolonging host survival, therefore 

increasing chances of transmission (Matthews & Gull, 1994a) (reviewed by 

Matthews, 2005).

When infected blood is ingested by the tsetse fly it is taken in to the mid-gut where 

stumpy forms differentiate synchronously into the PCF (Ziegelbauer et al, 1990). A 

family of surface carboxylate-transporters called PAD proteins (proteins associated 

with differentiation) have recently been identified as markers for transmission- 

competent stumpy forms. PAD proteins convey the signal for stumpy to procyclic 

differentiation in the tsetse fly (Dean et al, 2009).

Differentiation from stumpy form to PCF is accompanied by a loss of the VSG coat 

which is quickly replaced by a procyclin coat. Unlike the VSG coat expressed by the 

BSF the procyclin coat is not essential for parasite survival but offers some protection 

against proteases within the tsetse mid-gut (Vassella eta l, 2009).

5



Chapter 1 -  Introduction

The PCF has an increased cell body length, enhanced mitochondrion structure (van 

Hellemond et al, 2005) and the kinetoplast (a specialised organelle containing the 

mitochondrial DNA, discussed in section 1.3) is re-positioned closer to the nucleus in 

a sub-terminal position (Matthews et al, 1995). These changes take between 48 and 

72 hours to complete and occur in the fly's mid-gut accompanied by cellular 

proliferation (Vickerman, 1985).

From the fly's mid-gut the parasites migrate to the salivary glands of the fly where 

cells undergo another gross morphological change to become epimastigotes. 

Differentiation from procyclic trypomastigotes to epimastigotes occurs in 

proliferating cells as a result of asymmetric division (Sharma et al, 2008). In 

epimastigotes the kinetoplast is re-positioned anterior to the nucleus and parasites 

attach to the microvilli of the epithelial cells in the salivary gland via their flagellum, 

whilst attached these cells proliferate and differentiate into metacyclic 

trypomastigotes (Van Den Abbeele eta l, 1999).

Metacyclics are functionally equivalent to the bloodstream stumpy form; they do not 

proliferate and are pre-adapted for transmission into the next environment, in this 

case the mammalian bloodstream. Pre-adaption involves:

(1) Repositioning of the kinetoplast posterior to the nucleus.

(2) Mitochondrion repression, the organelle takes on a simple tubular form and 

relevant respiratory changes are made to pre-adapt the trypanosome to the changes 

in metabolism that it will encounter in the mammalian bloodstream (van Hellemond 

et al, 2005).
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(3) Expression of a VSG surface coat.

The success of T. brucei as a parasite is largely due to its ability to transmit non­

proliferative, pre-adapted cells into the host/vector. Progression through the life 

cycle is therefore intimately linked with cell cycle regulation as life cycle and cell 

cycle need to be co-ordinated. For example the stumpy form is arrested at a G0/G i 

stage of the cell cycle and is receptive to signals for differentiation (Dean et al, 2009). 

Experiments using established markers for both cell cycle progression and 

differentiation show that upon release from cell cycle arrest cells progress through a 

normal cell cycle albeit at a slower rate. Progression through this first cell cycle 

coincides with a number of differentiation markers including; replacement of the 

VSG coat with procyclin, and the expression of the cytoskeletal protein CAP5.5 which 

is strictly stage specific and expressed in the PCF but not the BSF (reviewed in 

Hendriks et al, 2000).

Before reviewing the current knowledge of molecular mechanisms which govern the 

cell cycle in trypanosomes it is important to understand the basic architecture of the 

cell. As described earlier, morphological differences exist between the life cycle 

stages however the PCF of the parasite provides a paradigm for general trypanosome 

cell morphology and this form is described in the following section.

1.3 Cellular Morphology

Trypanosomes have a streamlined, vermiform shape, tapering from the middle of the 

cell out towards the poles. The anterior and posterior ends of the cell are defined 

with reference to the direction of cell movement. The majority of organelles are 

positioned towards the posterior pole of the cell. Figure 1.2 is a cartoon of a PCF
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trypanosome in Gi; many aspects of the T. brucei cell are classically eukaryotic. For 

example, the cell possesses a nucleus contained within a nuclear envelope, as well as 

a cytoskeleton and endomembrane system which includes a plasma membrane, 

endoplasmic reticulum, Golgi apparatus, lysosomes, and vesicles. Alongside these 

characteristics the cell has some unusual features common to kinetoplastids. For 

example, glycolytic processes are confined to a specialised organelle called the 

glycosome (Opperdoes & Borst, 1977; Sommer & Wang, 1994). Also, rather than 

possessing hundreds of individual mitochondria as most eukaryotes do, T. brucei has 

a single elongated mitochondrion the genome of which is concentrated in an 

organelle called the kinetoplast. The kinetoplast is connected by unilateral 

kinetoplast filaments to the mitochondrial membrane and is also attached to the 

basal body by a transmembrane structure called the tripartite attachment complex 

(TAC) (Ogbadoyi et al, 2003). This interconnectivity allows the kinetoplast to maintain 

its position relative to the mitochondrion and the basal body.
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Direction of m ovem ent

Anterior Posterior

1. Mitochondrion
2. Kinetoplast
3.TAC
4. Basal body and probasalbody
5. Flagella pocket

6. Flagellum
7. Flagellum attachment zone (FAZ)
8. Nucleus
9. Subpellicular microtubule corset

Figure 1.2 Cartoon showing the cellular morphology of a procyclic form T. brucei 
cell

The trypanosome cell in Gi possesses a single large mitochondrion (1), A Kinetoplast containing the  

mitochondrial DNA (2) which is attached to the basal body (4) via the tripartite attachment complex 

(TAC) (3). The flagellum (6) extends from the mature basal body (4) exiting the cell via the flagella 

pocket (5) the only site of endo/exocytosis in the cell. The flagellum (6) is attached to the cell body via 

the flagellum attachment zone or FAZ (7). The cellular DNA is contained in a nucleus (8). The 

verm iform shape of the cell is maintained by a highly organised microtubule based cytoskeleton which 

underlies the plasma membrane, called the subpellicular corset (9). The direction of cell movement is 

indicated, the cell swims with its flagellum leading, anterior and posterior ends are defined by this 

directionality of movement.

1.3.1 The subpellicular corset

The characteristic vermiform morphology of the cell is maintained by an 

arrangement of highly stable and organised microtubules (MTs) which lie just 

beneath the plasma membrane forming the subpellicular corset (Angelopoulos, 

1970). The subpellicular corset (Figure 1.2 (9)) is composed of in excess o f 100 MTs 

which are spaced regularly between 18 and 22nm apart and follow a helical pattern
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along the long axis of the cell (Sherwin & Gull, 1989b). The highly organised array is 

maintained by microtubule associated proteins (MAPs) which form inter-MT and MT- 

membrane cross bridges. MAPs associated with the subpellicular corset in T. brucei 

are discussed in section 1.10.

MTs of the corset vary in length but the vast majority have the same polarity, plus 

ends (+) located towards the posterior pole of the cell (Robinson et al, 1995). This 

makes the posterior end of the cell the most dynamic in terms of MT growth, in vitro 

MT assembly is four to five times faster at the posterior end of the cell compared to 

the anterior (Robinson et al, 1995).

The corset in trypanosomes is extremely stable and remains intact throughout the 

cell cycle, changes in morphology are achieved by intercalation of new MTs between 

old ones without disassembly of the existing array (Sherwin & Gull, 1989a). 

Nucleation and growth of new MTs in the corset is discussed below in section 1.6.1.

Similarly to trypanosomes, Apicomplexa, a group of protozoan parasites including 

Toxoplasma and Plasmodium (causative agents of toxoplasmosis and malaria 

respectively) possess a subpellicular array of MTs. The Apicomplexan MT array is 

spirally arranged and confers an elongated shape to the parasite (Morrissette & 

Sibley, 2002). MTs radiate out, with their growing plus ends distal to a structure 

known as the apical polar ring (APR), a circular microtubule organising centre (MTOC) 

unique to apicomplexans (Morrissette & Sibley, 2002). In the trypanosome a MTOC 

resembling the APR has not been identified, suggesting nucleation of the 

subpellicular corset MTs occurs through different means this is discussed further in 

section 1.6.1.
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1.3.2 The basal body

The basal body (Figure 1.2(4)) is an MTOC with numerous roles, from orchestrating 

mitochondrial DNA (kinetoplast) segregation to nucleating growth of the new 

flagellum and serving as a platform for recruitment of intraflagellar transport 

proteins (IFT) (Robinson & Gull, 1991; McKean et al, 2003; Davidge et al, 2006). The 

basal body in T. brucei conforms to the eukaryotic model of centriole/basal body 

structure, essentially being a cylindrical structure consisting of nine MT triplets 

(containing A, B, and C tubules). Early in Gi phase T. brucei has a single mature basal 

body associated with a flagellum flanked by an immature basal body (pro-basal body) 

which elongates and matures during Gi of the cell cycle (McKean, 2003). Growth of 

the new flagellum initiates when this pro-basal body has matured and subsequently 

two new pro-basal bodies are formed, each of which associate with a mature basal 

body. A recent study employing electron tomography has revealed that the new 

basal body rotates around the old basal body from an anterior to a posterior position 

as the new flagellum is forming. This process facilitates flagella pocket division and 

may have implications for kinetoplast segregation (Lacomble et al, 2010). When the 

cell divides the recently matured basal body with the newly formed flagellum and 

associated pro-basal body are inherited by the daughter cell (Woodward & Gull, 

1990).

1.3.3 The flagellum

The flagellum (Figure 1.2(6)) exits the cell via the flagella pocket (Figure 1.2(5)) close 

to the posterior pole (the flagella pocket has been recently reviewed by Field & 

Carrington, 2009). It remains attached to the cell body and follows a left-handed

helical path to the anterior pole where its distal end extends a short way beyond the
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anterior tip of the cell. The primary function of the flagellum is motility; migration 

from the tsetse fly gut to the salivary glands is crucial for life cycle progression and is 

mediated by the flagellum (for a review of the flagellum see Vaughan, 2010). 

Trypanosomes, swim with the flagellum leading, their unusual corkscrew swimming 

style is generated by the flagellum beating from tip to base as opposed to the 

conventional undulating wave propagated from base to the tip, as seen in 

mammalian sperm (Kinukawa eta l, 2005).

The flagellum of T. brucei consists of 3 major structures;

(1) The axoneme

(2) The paraflagella rod (PFR)

(3) The flagellum attachment zone (FAZ)

These structures are shown in Figure 1.3. In the PCF there is a fourth feature, the 

flagella connector (FC), this is a structure built during the cell cycle and as such is not 

shown in either Figure 1.2 or Figure 1.3. The four key components of the flagellum 

are discussed below.
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SPMT

Figure 1.3 The T. brucei flagellum

Thin-section TEM of the BSF showing the key structures of the flagellum in T. brucei including a 

membrane bound axoneme (Ax) and associated paraflagella rod (PFR) which are attached to the main 

cell body by the flagellum attachment zone (FAZ) characterised by a wider space between  

subpellicular microtubules (SPMTs) where a cytoplasmic filam ent (F) is found. The filam ent lies next to  

the microtubule quartet (4MT). Scale bar = 2pm, image adapted from (Hammarton TC, 2007).

1.3.4 The flagellar axoneme

The axoneme is a cylindrical, MT based structure formed from nine outer doublets 

surrounding a central pair at the core. This 9 + 2 arrangement is highly conserved and 

is found within cilia and flagella of many eukaryotic cells. The axoneme extends from 

the basal body and contains numerous sub-structures which can be visualised in 

transmission electron microscopy (TEM) cross sections of the flagellum, including 

radial spokes, nexin (or interdoublet) bridges and the outer and inner dynein arms 

(Ralston & Hill, 2008).
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1.3.5 Paraflagellar rod

Kinetoplastid protozoa like T. brucei possess a unique extra-axonemal structure 

called the paraflagellar rod (PFR) which in TEM cross sections has a lattice like 

structure with thin and thick filaments (Bastin et al, 1998) (see Figure 1.3). The PFR 

runs alongside the axoneme from the flagella pocket to the distal tip and is required 

for motility (Santrich et al, 1997; Bastin et al, 1998) and also acts as a scaffold for 

recruiting signalling molecules and metabolic enzymes (Ridgley et al, 2000; Pullen et 

al, 2004). The PFR is composed of three zones, the proximal, intermediate and distal 

domains with reference to their proximity to the axoneme. The proximal domain is 

linked to MTs of the axoneme by electron dense filaments on outer doublets 4 to 7 

(Farina et al, 1986).

1.3.6 The flagellum attachment zone

The regular spacing of the corset is disrupted at one point where there is a large 

spacing between MTs; this is the site of the flagellum attachment zone (FAZ). The 

FAZ is composed of two elements:

(1) A cytoplasmic filament positioned between the two widely spaced corset MTs

(2) The microtubule quartet (MtQ), located to the left of the filament when the cell is 

viewed from the posterior end

The FAZ filament runs from the basal body area to the anterior tip of the cell and

couples the cytoplasmic side of the flagellum to the cell body membrane by a series

of regularly spaced electron-dense cross-links (Gull, 1999). The M tQ  is nucleated

close to the basal body and are the only MTs to underlie the membrane of the

flagellar pocket. They have opposite polarity to the other MTs in the cortex, have a
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higher resistance to depolymerisation at high salt concentrations and are invariantly 

associated with smooth endoplasmic reticulum (Vickerman, 1969; Sherwin & Gull, 

1989b). The FAZ filament assembly lags slightly behind new flagellum growth 

'stitching' the new flagellum on to the cell body as it is synthesised (Kohl et al, 1999).

1.3.7 The flagella connector

The flagella connector (FC) maintains the distal tip of the new flagellum in contact 

with the side of the old flagellum as the new flagellum grows (Moreira-Leite et al,

2001). There is no evidence for a similar structure at the tip of the old flagellum, this 

structure has not been observed in the BSF or any other flagellates (Moreira-Leite et 

al, 2001). The FC is produced early in G io f the cell cycle, it is found within the flagella 

pocket before the new flagellum emerges and proceeds to guide the new flagellum 

growth along the old flagellum throughout the cell cycle (Moreira-Leite et al, 2001; 

Briggs et al, 2004).

Very little is known about how this structure moves, the movement could be active 

as a result of + end directed MT motors such as kinesins (Briggs et al, 2004). Passive 

migration of the FC driven by new flagellum extension effectively pushing the FC 

along the old flagellum is unlikely. RNAi ablation of the IFT protein 7ftCHE2 inhibits 

axoneme extension, regardless of this the cells still form an FC and the flagellar 

membrane still extends from the flagellar pocket, apparently pulled up the length of 

the old flagellum by the FC (Davidge et al, 2006). The FC migrates along the old 

flagellum until it reaches a 'stop point' at approximately 60% the length of the old 

flagellum where its progression halts. Anchorage of the FC at this point results in 

translation of new flagellum growth into a force which drives migration of the basal
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bodies (Absalon et al, 2007). The connection between flagella is removed before the 

cell completes cytokinesis, the mechanism of FC disassembly is unknown, but the 

timing appears to be variable (Briggs et al, 2004).

1.4 The Trypanosome cell cycle

During the cell cycle single copy organelles such as the kinetoplast, mitochondrion, 

nucleus and flagellum are duplicated and segregated and the cytoskeleton is 

remodelled to produce two viable cells. The T. brucei cell cycle must be tightly 

regulated in both a temporal and spatial sense to enable faithful cell division. The 

following section describes the sequence of cytological changes observed during the 

cell cycle and the molecular mechanisms known to control progression through the 

division cycle.
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Figure 1.4 The major morphological events of the T. brucei cell cycle

Diagram describing the PCF cell cycle (a) the trypanosome cell cycle requires the co-ordination of 

nuclear and kinetoplast replication and segregation. This means Gi phase is followed by tw o S-phases 

kinetoplast replication (SK) and Nuclear S-phase (SN). SK starts before SN and is considerably shorter in 

duration. This means kinetoplasts segregate (D) before nuclear mitosis begins (M ). Kinetoplast 

segregation is followed by basal body separation, due to their physical attachment to  the basal bodies 

kinetoplasts are further separated during this phase, this is therefore term ed the 'apportioning' phase 

(A). Cell cycle duration for exponentially growing wild type PCF trypanosomes is 8.5 h. (b) Schematic 

representations of trypanosome cells at different stages of the cell cycle, i) a 1K1N1F cell from Gi, ii) a 

1K1N2F cell during SK/S N probasal body has matured and the new flagellum is extending, iii) a 2K1N2F 

cell in G2 phase for the nuclear cycle and is in the process of dividing the kinetoplasts, iv) A 2K1N2F cell 

undergoing nuclear mitosis, v) a 2K2N2F cell undergoing cytokinesis, the black arrow indicates the  

direction and position of the cleavage furrow (taken from McKean, 2003).
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1.5 Cytological changes T. brucei during the cell division cycle

As in all eukaryotes T. brucei has defined cell cycle stages, including G0 and Gi, S- 

phase, G2 and M phase. However, the T. brucei cell cycle is complicated by the fact 

that the cell has two distinct units of DNA contained within the kinetoplast (Figure 

1.2(2)) and the nucleus (Figure 1.2(8)), which must be replicated and segregated 

discretely. This means that completion of the trypanosome cell cycle requires co­

ordination of two periods of DNA replication in one cell division cycle. S phase for the 

kinetoplast genome is referred to as Sk and for the nucleus it is named SN. Sk begins 

before Sn and takes less time to complete and kinetoplasts segregate before the 

nucleus enters mitosis (Woodward & Gull, 1990). The timing and order of the cell 

cycle events are shown in Figure 1.4A. The highly regulated segregation of 

kinetoplast prior to nuclear division provides a useful marker for establishing the cell 

cycle stage of individual cells and a standard system of nomenclature is used to 

describe cells at different stages in the division cycle. Early in the cell cycle cells have 

a single nucleus and a single kinetoplast and are referred to as 1K1N. Once the 

kinetoplast DNA has duplicated and segregated to form a second kinetoplast, the 

cells are known as 2K1N, they then enter mitosis and once completed the cell is 

called a 2K2N. This cell undergoes cytokinesis forming two 1K1N daughter cells.

Figure 1.4B shows how cell morphology changes at each stage in the cell cycle. In Gi

the very first indication of cell cycle progression is the maturation of the pro-basal

body, when this structure is fully matured the cell is capable of building a new

flagellum alongside the old one, this new flagellum is physically attached to the old

flagellum by a transmembrane junction called the flagella connector (FC) (Briggs et

al, 2004). The FC guides flagellum growth along the path laid out by the old flagellum
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as the cell progresses through the cell cycle. Once the pro-basal body has elongated 

and matured and the growth of a new flagellum has initiated, new pro-basal bodies 

form alongside both of the mature basal bodies (Lacomble et al, 2010). As a result of 

this, when the cell eventually divides, both products of division inherit one mature 

basal body and one pro-basal body. Following basal body duplication the Golgi 

apparatus duplicates (He et al, 2004) and then S-phase begins with Sk commencing 

before SN (as described earlier).

Throughout the cell cycle the new flagellum extends and in the PCF new flagellum 

growth is accompanied by migration of the flagella connector (FC) towards the distal 

tip of the old flagellum (Moreira-Leite et al, 2001) (described in section 1.3.7). Upon 

reaching the 'stop point' basal bodies are driven apart by the force of the growing 

new flagellum (Absalon et al, 2007), the segregation of basal bodies is essential for 

kinetoplast segregation (Robinson & Gull, 1991) the two processes are coupled due 

to the physical connection between basal body and kinetoplast via the TAC (Figure 

1.2(3)) (Ogbadoyi et al, 2003). Once kinetoplasts have segregated the cell forms an 

intra-nuclear spindle and undergoes nuclear mitosis with the nuclear envelope 

remaining intact (closed mitosis) throughout the whole process (Ogbadoyi et al, 

2000). Once all organelles have been duplicated cleavage furrow ingression initiates 

at the anterior pole of the cell, its progress is unidirectional towards the posterior 

pole between the old and the new flagellum (cytokinesis is discussed in section 

1.5.2). The molecular controls which govern the cell cycle are discussed in the 

following section.
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1.5.1 Molecular control of the T. brucei cell division cycle

All eukaryotic systems rely on a tightly controlled cell cycle in order to maintain 

genomic stability and normal cell morphology. The cell cycle is driven by proteins 

called cyclin-dependent kinases (CDKs) and their binding partners the cyclins. In the 

fission yeast Schizosaccharomyces pombe there is a single CDK named Cdc2, the Cdc2 

homologue in the budding yeast Saccharomyces cerevisiae is named Cdc28. By 

binding to different cyclins this kinase controls progression from Gi to S phase and 

from G2 to M phase. The T. brucei genome encodes eleven Cdc2 related kinases 

(CRKs 1-4 and CRK6-12) and ten cyclins (CYC 2-11). This is an unusually large number 

for a unicellular organism; this may reflect (1) the challenges of co-ordinating the 

replication and segregation of two discrete units of DNA and/or (2) the requirement 

to alter cell cycle dynamics at different life cycle stages.

In support of the latter, fundamental differences between PCF and BSF cell cycle

regulation exist. For example, RNAi ablation of the cyclin CYC6 in the PCF blocks

mitosis but not cytokinesis resulting in a population of non-viable cells which consists

of anucleate cytoplasts termed zoids (IKON) and cells containing a single kinetoplast

and a single nucleus in which DNA is replicated but does not segregate (1K1N*).

However, in the BSF both mitosis and cytokinesis are inhibited (Hammarton et al,

2003a). Whilst confirming that differences in cell cycle regulation exist between life

cycle stages this experiment also shows that PCF trypanosomes are capable of

undergoing cytokinesis without successfully completing mitosis. A similar

observation has been made in studies using the drug aphidicolin, an inhibitor of

nuclear S-phase and the anti-MT agent rhizoxin which inhibits mitosis. Cells treated

with these agents do not complete mitosis but proceed through cytokinesis resulting
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in the production of zoids showing that PCF cytokinesis is not reliant upon nuclear 

DNA synthesis or mitosis (Ploubidou et al, 1999). In most eukaryotic systems 

important control mechanisms exist to prevent cells from undergoing cytokinesis 

when there is a failure in completion of mitosis. The importance of such a control is 

demonstrated by cut mutants in S. pombe in which cell separation becomes 

uncoupled from nuclear division and cytokinesis proceeds with lethal results (Hirano 

et al, 1986).

Trypanosome cyclins can be classified by their sequence similarity to known cyclins in 

other systems; these include (1) cyclin PH080, (2) B type cyclins and (3) 

transcriptional cyclins (Hammarton et al, 2004).

(1) The T. brucei CYC2 has homology to the cyclin PHO80 from the budding yeast 5. 

cerevisiae (Van Hellemond et al, 2000). Five other T. brucei cyclins are classed as 

/CYC2-like/ including, CYC4, CYC5, CYC7, CYC10 and CYC11. In S. cerevisiae the PHO80 

subfamily of cyclins complex with the CDK PH085 and primarily regulate responses 

to environmental conditions (Measday et al, 1997). For example, the Pho80p-Pho85p 

cyclin-CDK complex regulates the response to phosphate limitation (Kaffman et al, 

1994). Whilst a similar role in regulating nutrient metabolism cannot be ruled out for 

the T. brucei PHO80 homologues, RNA interference (RNAi) mediated ablation of CYC2 

shows that it has a role in cell cycle progression as it is essential for the Gi/S phase 

transition in both the BSF and PCF (Li & Wang, 2003; Hammarton et al, 2004). It is 

also worth noting that despite the homology of these cyclins, trypanosome PHO80- 

like cyclins could not complement the function of PHO80 in yeast (Gourguechon et 

al, 2007).
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In the PCF, RNAi depletion of CYC2 results in cell cycle arrest in Gi phase and a 

'nozzle' cellular morphology due to a MT mediated extension of the posterior end of 

the cell (Hammarton et al, 2004). CYC is suggested to play an auxiliary role in 

regulating cell cycle progression from Gi/S phase as RNAi ablation of this protein led 

to a -50% reduction in growth rate compared to wild type cells. Depletion of CYC5, 7, 

10 and 11 causes no apparent changes in growth rate so to date their function 

remains unknown (Li & Wang, 2003)

(2) In 5. cerevisiae the B-type cyclins drive the cell cycle from S-phase to mitosis 

(Kuntzel et al, 1996). Three B-type cyclins have been identified in T. brucei CYC3, 

CYC6 and CYC8 (or CYCB1-B3). A study carried out by Li et.al (2003) employed RNAi 

to investigate the function of the T. brucei B-type cyclins. They found that CYC6/B2 is 

essential for cell cycle progression, RNAi mediated knockdown lead to almost 90% of 

cells arresting in G2. CYC8/B3 accelerates progression through G2/M  but is not 

essential for cell cycle progression and no growth phenotype was observed upon 

RNAi ablation of CYC3/B1, suggesting this cyclin is not involved in cell cycle regulation 

(Li & Wang, 2003).

(3) The T. brucei CYC9 has homology to cyclin C, it has been suggested that CYC9 may 

play a role in transcriptional regulation. Functional characterisation is yet to be 

carried out for this cyclin (Hammarton eta l, 2003b).

RNAi has also been applied to the T. brucei CRKs and the outcomes of these 

experiments have implicated CRK1 in the Gi/S passage and CRK3 in the G2/M  

transition (Tu & Wang, 2004). In the PCF RNAi knockdown of CRK2, 4 and 6 had no 

effect on cell cycle progression; however, double knockdowns of CRK1 plus CRK2, 4
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or 6 resulted in an increase in Gi-arrested cells (Tu & Wang, 2004). This suggests 

CRK2, 4 and 6 function (along with CRK1) in regulation of the Gi/S transition (Tu & 

Wang, 2004). The CRK1+CRK2 RNAi double knockdown resulted in an abnormal 

cellular morphology where cells arrested in Gi had elongated posterior ends 

composed of newly synthesised MTs similar to the nozzle phenotype observed when 

the cyclin CYC2 is ablated by RNAi (Hammarton et al, 2004). Unusually, some of these 

elongated posterior ends were bifurcated (Tu & Wang, 2005). It has since been 

established that CRK2 plays the major role in morphological maintenance in a CYC2 

dependent manner (Tu & Wang, 2005). These results show that posterior end 

morphogenesis and cytoskeletal remodelling is coupled to the cell cycle at the Gi/S 

transition at least in the PCF (Tu & Wang, 2005).

Understanding of the functional interactions between cyclins and CDKs is far from 

complete. To summarise our current understanding, CYC2 interacts with CRK1 to 

control transition through the Gi/S checkpoint (Tu & Wang, 2004) and the CYC2- 

CRK2 complex functions at Gi/S to control cellular morphogenesis in the PCF (Van 

Hellemond et al, 2000; Hammarton et al, 2004; Gourguechon et al, 2007). The CYC6- 

CRK3 complex controls the passage through G2/M  in both BSF and PCF (Tu & Wang, 

2004). Recently CYC6 was shown to associate with CRK9 and regulate the G2/M  

phase transition in the PCF. In CRK9 depleted cells mitotic arrest is accompanied by a 

lack of basal body segregation and inhibition of cytokinesis. This is abnormal in the 

PCF as cells which fail to undergo mitosis often continue through the cell cycle and 

progress through cytokinesis to produce a population of anucleate zoids 

(Gourguechon & Wang, 2009). As described earlier with the CYC6 RNAi cell line

(Hammarton et al, 2003a) and rhizoxin treated cells (Ploubidou et al, 1999).
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Knockdown of CRK9 in the BSF has no effect on mitosis or cytokinesis reflecting once 

again that different controls function in different lifecycle stages.

1.5.2 Cytokinesis

Cytokinesis is the final stage of the cell cycle and involves the partitioning and 

separation of a mother cell to yield two viable daughters. Different organisms have 

evolved different approaches, in animal and fungal cells cytokinesis is driven by the 

centripetal contraction of an actomyosin ring (comprised of F-actin, class II myosin 

and numerous other proteins) that is embedded in the plasma membrane at the 

division site. Ring contraction generates the cleavage furrow and is coupled to new 

plasma membrane (and in yeast, cell wall) synthesis leading to a physical separation 

of mother and daughter cell cytoplasm (Balasubramanian et al, 2004). In plant cells a 

MT and F-actin-based structure called the phragmoplast forms between segregated 

chromosomes after mitosis. This structure recruits vesicles necessary for cell wall 

synthesis and expands centrifugally towards the cell cortex where it fuses to produce 

two cells (Barr & Gruneberg, 2007). Trypanosomes and plants lack an actomyosin 

ring as they diverged before cells had evolved this cytokinetic mechanism (Pollard & 

Wu, 2010). As such they lack homologues of septins, type-ll myosins, and IQGAP (Van 

Damme et al, 2004; Hammarton et al, 2007b) which are conserved in animal and 

fungal cells and function in regulating actomyosin ring assembly (Guertin et al, 2002). 

Despite the lack of an actomyosin ring plants still require actin for cytokinesis (Van 

Damme et al, 2004). In contrast division in T. brucei is unidirectional initiating near 

the anterior end of the cell and progressing longitudinally towards the posterior, and 

actin is not required for cytokinesis (Garcia-Salcedo eta l, 2004).
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Regardless of these different approaches cytokinesis in eukaryotes can be subdivided 

in to four major steps:

(1) Division site selection

(2) The initiation of cytokinesis

(3) Cleavage furrow progression

(4) Abscission

1.5.3 Division site selection

The mechanisms employed to select a division site for cytokinesis vary widely 

between organisms. Selection of the division site in animal cells takes place during 

anaphase and is directed by the mitotic apparatus. In S. pombe it is dependent upon 

the position of the pre-mitotic nucleus and as such it is selected during G2 phase of 

the cell cycle whereas in S. cerevisiae it is determined in Gi based on the positioning 

of the previous division site, the future site of cytokinesis is marked by the bud neck. 

In plants the division site is selected early in mitosis, the nucleus is positioned 

centrally in the cell in a MT based process and a ring structure of MTs and F-actin 

called the pre-prophase band (PPB) forms in the plasma membrane, with the PPB 

marking the future cleavage plane (Guertin et al, 2002).

In T. brucei the FAZ is believed to regulate the position and the direction of the 

cleavage plane (Robinson et al, 1995). Evidence to substantiate this idea comes from 

targeted depletion of specific proteins in the RNAi studies described below:

Intra-flagella transport (IFT) proteins - in the absence of IFT, cells are unable to build

a full length flagellum. In these cells the cleavage furrow initiates closer to the
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posterior end of the cell, resulting in a shortening of the overall cell length and 

implicating the anterior tip of the new flagellum as the site of cleavage furrow 

initiation. Intriguingly at later time points short rounded non-flagellated cells occur, 

the existence of such cells cannot be explained if the flagellum is responsible for 

determining the site of initiation. Upon further investigation these non flagellated 

cells were found to possess a short FAZ, suggesting that the FAZ normally associated 

with the new flagellum is the critical determinant for positioning of the division site 

(Kohl eto /, 2003).

FAZ1 - a component of the FAZ filament was discovered in a screen using L3B2 a FAZ 

filament specific monoclonal antibody (Kohl et al, 1999; Vaughan et al, 2008). FAZ1 is 

a large repeat containing protein which has orthologues in other trypanosome 

species. RNAi ablation of FAZ1 in the PCF leads to an increase in zoids due to a 

mispositioned cleavage furrow, supporting previous suggestions that the FAZ is the 

critical determinant for cleavage site selection (Sherwin & Gull, 1989b). At later time 

points the ability to divide is further compromised and multinucleate cells (>2K2N) 

accumulate. These defects are a result of disorganised FAZ formation leading to the 

production of an unstable FAZ rather than complete absence of the structure. The 

gap in the corset which normally accommodates the FAZ filament is unusually large 

and the association between the MtQ and the smooth endoplasmic reticulum is 

abnormal or completely absent. Flagellum growth is not affected but in most cases 

the flagellum loops' away from the mid region of the cell or becomes completely 

detached (Vaughan et al, 2008).
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The flagellum adhesion glycoprotein 1 (FLA1) - has also been localised by 

immunofluorescence to the FAZ region of T. brucei. Knockdown of FLA1 by RNAi in 

the PCF results in flagella detachment (Moreira-Leite et al, 2001; LaCount et al,

2002). These FLA1 depleted cells are also unable to initiate cytokinesis and become 

fat and rounded, they re-enter the cell cycle and eventually contain multiple nuclei 

and kinetoplasts (LaCount et al, 2002). In T. cruzi the homolog of FLA1 (GP72) 

localizes to the junction between the flagella and the cell body, 7. cruzi GP72 null 

mutants have completely detached flagella but are still capable of dividing (Cooper et 

al, 1993). In an attempt to rescue FLA1 knockdown cells through expression of T.cruzi 

GP72 this study rather unexpectedly found that expression of GP72 in the absence of 

FLA1 RNAi caused complete flagella detachment. The authors suggest this is because 

GP72 dominantly interferes with the 7. brucei flagellum attachment in the PCF 

(LaCount et al, 2002). Furthermore, the flagella detachment caused by GP72 

expression did not cause cytokinesis inhibition suggesting that flagella attachment is 

not essential for cell division (LaCount et al, 2002). This implicates FLA1 in two 

discrete processes in 7. brucei (1) flagella attachment and (2) initiation of cytokinesis.

1.5.4 Initiation of furrow ingression

All organisms must co-ordinate the initiation of cytokinesis with chromosome 

segregation. In 7. brucei the exact mechanisms orchestrating this are currently 

unknown. However, some conserved and other unique aspects of cytokinesis 

regulation have been discovered through studies targeting proteins that function in 

cytokinesis in other systems for RNAi ablation.
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Aurora kinases are highly conserved proteins amongst eukaryotes with essential 

roles in cytokinesis and chromosome/spindle dynamics during mitosis (Carmena & 

Earnshaw, 2003). Mammals have three Aurora kinases A, B, and C whilst S. cerevisiae 

has a single essential Aurora kinase, Ip ll (Carmena & Earnshaw, 2003). Three Aurora 

kinase homologues have been identified in the T. brucei genome (TbAUKl-3) but only 

TbAUKl is essential for cell growth (Tu et al, 2006). TbAUKl is closely related to Ip ll 

and the mammalian Aurora B kinase and is required for spindle formation, 

chromosome segregation and cytokinesis in both PCF and BSF (Li & Wang, 2006; Tu 

et al, 2006). The RNAi mediated depletion of TbAUKl in the PCF results in a G2/M  cell 

cycle arrest. Kinetoplasts/basa! bodies segregate as in wild type cells but mitosis and 

cytokinesis is blocked. Moreover, further rounds of kinetoplast/basal body 

duplication and segregation are inhibited (Tu et al, 2006). This is in contrast to cells 

treated with rhizoxin or depleted of the mitotic cyclin CYC6, which undergo 

kinetoplast duplication/segregation and cytokinesis in the absence of mitosis leading 

to the production of anucleate zoids (Ploubidou et al, 1999; Hammarton et al, 

2003a). This data suggests that kinetoplast duplication/segregation drives cytokinesis 

in the PCF and shows that TbAUKl has an essential role in initiating cytokinesis in T. 

brucei (Tu et al, 2006).

The phenotype resulting from TbAUKl RNAi ablation in the BSF differs to that 

observed in the PCF. In both cases mitosis and cytokinesis are inhibited, however in 

the BSF nuclear DNA synthesis continues despite a lack of chromosome segregation. 

The kinetoplast cycle continues and further rounds of organelle replication are 

completed producing polyploid cells with multiple kinetoplasts, basal bodies and

flagella (Li & Wang, 2006). This suggests that re-entry into S-phase is controlled
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differently between life cycle stages. TbAUKl also regulates posterior end 

morphology, in the BSF normal cellular architecture is lost upon RNAi mediated 

ablation of TbAUKl and excessive MT synthesis is observed at the posterior end (Li & 

Wang, 2006).

In mammalian cells aurora kinase B is the core enzymatic sub-unit of the 

chromosomal passenger complex (CPC) which consists of aurora kinase B and three 

non-enzymatic components (survivin, borealin and INCENP). The CPC has a dynamic 

localisation pattern and is involved in many functions related to chromosome and 

tubulin dynamics during mitosis, it is also essential for completion of cytokinesis in 

eukaryotes (Ruchaud et al, 2007). Similarly, TbAUKl functions in mitosis, is essential 

for cytokinesis and has a dynamic localisation pattern reflecting that of mammalian 

CPCs (Li & Wang, 2006). This suggests that TbAUKl also functions as part of a CPC. 

However, T. brucei lacks homologues of the characteristic eukaryotic CPC 

components. Instead the T. brucei genome encodes two novel CPC's, TbCPCl and 

TbCPC2. The complex of TbAUKl, TbCPCl and TbCPC2 localises to the nucleus in G2, 

then to the spindle mid-zone at anaphase. It then relocates to the mid-point of the 

cell on its dorsal side before moving to the position where the anterior end of the 

daughter cell is tethered to the mother cell (this is the site where division will begin) 

and then moving towards the posterior end of the cell at the head of the cleavage 

furrow (Li et al, 2008a; Li et al, 2008b). The authors suggest that this relocation to the 

division site is involved in initiating cleavage furrow ingression. Furthermore, 

movement of the CPC with the cleavage furrow towards the posterior pole of the cell 

suggests it may also function to guide and/or sustain cleavage furrow ingression 

(Kumar & Wang, 2006; Umeyama & Wang, 2008).
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Polo kinases are highly conserved serine/threonine kinases which are characterised 

by the presence of two C-terminal domains called polo box domains which mediate 

interactions with target proteins (Archambault & Glover, 2009). Polo kinases such as 

Cdc5p in 5. cerevisiae play a pivotal role at several cell cycle stages (Archambault & 

Glover, 2009) including:

(1) Entry into M phase

(2) The metaphase/anaphase transition

(3) Mitotic exit

(4) The initiation of cytokinesis

The T. brucei polo-like kinase (TbPLK) has structural and functional homology to the 

S. cerevisiae protein Cdc5p (Kumar & Wang, 2006). When the TbPLK gene was 

introduced into a temperature sensitive cdc5-l mutant it was capable of 

complementing lost functions (Kumar & Wang, 2006). However, in the PCF TbPLK has 

a more limited function as it only functions in initiation of cytokinesis. It is interesting 

to note that few homologues to substrates of Cdc5 in 5. pombe have been identified 

in the T. brucei genome (Umeyama & Wang, 2008).

Two independent studies have carried out RNAi ablation of TbPLK with differing 

results. Studies carried out in the Wang laboratory concluded that PLK is required for 

the initiation of cytokinesis in the PCF, as they recorded that upon TbPLK depletion 

nuclear divisions and multiplications of kinetoplast, basal body, and flagellum 

continued but cell division was blocked. The result was an increase in cells with 

multiple nuclei, kinetoplasts, basal bodies, and flagella (Kumar & Wang, 2006).
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However, studies by Hammarton demonstrated that a role for TbPLK in basal body 

duplication in the PCF rather than cytokinesis initiation (Hammarton et al, 2007a). 

This study also showed that TbPLK is required for cleavage furrow ingression but not 

initiation of cytokinesis in the BSF (Hammarton et al, 2007a). Although this study 

could not rule out a function in cytokinesis initiation, the authors suggest that the 

defect in cytokinesis initiation observed when TbPLK is ablated is a downstream 

effect of an initial defect in basal body duplication.

There are also conflicting reports for the localisation of TbPLK in the PCF, initially 

TbPLK was localised by C-terminal HA-epitope tagging at a midpoint on the dorsal 

side of the cell coinciding with the FAZ, and the anterior tip of the cell. The 

localisation of TbPLK-3HA was also observed on membrane extracted cytoskeletons 

(Kumar & Wang, 2006). A second independent study employing an N-terminal TY1 

tagged version of TbPLK, showed a punctate cytoplasmic localisation (Hammarton et 

al, 2007a). A third group used affinity-purified antibodies raised against TbPLK and 

found TbPLK localised at the growing tip of the new FAZ (de Graffenried et al, 2008), 

a similar localisation to the original observation made by Kumar and Wang (2006).

This controversy prompted the Wang laboratory to re-examine their previous 

localisation and confirm their initial observation showing that the HA-tagged TbPLK is 

found at a single localisation at the dorsal mid-point of the cell in association with 

the FAZ in both PCF and BSF trypanosomes (Umeyama & Wang, 2008). TbPLK is 

expressed late in S-phase and disappears rapidly before the initiation of cytokinesis 

(Umeyama & Wang, 2008). This coincides with the translocation of CPC to its position 

at the dorsal mid-point of the cell. It was postulated that recruitment of the CPC to
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the site of cleavage furrow initiation may depend on the T. brucei homologue of polo 

kinase (TbPLK) (Umeyama & Wang, 2008).

It has recently been shown that direct recruitment of the CPC by TbPLK is unlikely 

since TbPLK dissociates from the FAZ into the cytoplasm before the translocation of 

TbAUK from the dorsal mid-zone to its position at the FAZ (Li et al, 2010). Also 

inhibition of TbPLK in late S-phase allows cells to continue through one complete cell 

cycle. These cells accurately complete cytokinesis once before it is completely 

inhibited in the second cell cycle. However, cells treated with the same PLK inhibitor 

in G l, or prior to TbPLK expression in S-phase, do not undergo cytokinesis at all and 

essentially generate the same phenotype as seen in when TbPLK is depleted by RNAi. 

This suggests that TbPLK affects cell cycle progression indirectly most likely by 

phosphorylating an unknown substrate early in S-phase (Li eta l, 2010).

The GTPase Arl2 (ADP-ribosylation factor-like 2) regulates MT biogenesis in a variety 

of systems. Alp41 the Arl2 homologue in 5. pombe regulates MT architecture, when 

Alp41 is mutated cells possess short MTs and defects in cell division and cytokinesis 

are observed (Radcliffe eta l, 2000). RNAi mediated ablation of the Arl2 homologue in 

C. elegans causes defects in the organization of embryonic MTs (Antoshechkin & 

Han, 2002). A recent study has implicated the trypanosome homologue of Arl2 in 

cleavage furrow formation. When Arl2 is depleted by RNAi in the BSF, very few cells 

can be found with cleavage furrows. Where furrows are present their progression is 

attenuated in the early stages, and cells accumulate as multinucleates. The authors 

suggest that Arl2 effects cleavage furrow formation due to disruption of MT 

dynamics (Price et al, 2010b). TEM analysis showed that the FAZ and the
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subpellicular MTs were intact and organised as normal. However the study found 

that RNAi depletion of Arl2 leads to a loss of acetylated a-tubulin (a post 

translational modification which is discussed in section 1.6.3).

1.5.5 Progression of the cleavage furrow

The CPC complex described earlier is localised to the point of cleavage furrow 

initiation and is thought to play a role in directing the cleavage furrow ingression (Li 

et al, 2008a). Other proteins required for cleavage furrow ingression, have been 

identified through RNAi. Characteristically, upon depletion of these proteins the cell 

initiates cytokinesis but then fails to complete cell division as ingression of the 

cleavage furrow arrests. An example of this stalled cleavage phenotype is seen when 

the T. brucei polo kinase (TbPLK) is depleted in the BSF (Hammarton et al, 2007a). 

Other proteins implicated in cleavage furrow progression in T. brucei include MOB1, 

PK53, TRACK, SPT2 and DLP; these are discussed in detail below.

MOB1 - RNAi ablation of MOB1 in the BSF initially causes an increase in the number 

of post mitotic (2K2N) cells, followed by slow cleavage furrow ingression 

(Hammarton et al, 2005). The delay in cleavage furrow progression means that cells 

often re-enter the cell cycle and re-replicate their DNA before completing 

cytokinesis, at later time-points this leads to a general deregulation of the cell cycle. 

Unlike TbPLK no effects on basal body segregation were noted when MOB1 was 

depleted (Hammarton et al, 2005). Effects of MOB1 depletion in the PCF are more 

subtle, no increase in ploidy was detected but in some cases the furrow became 

mispositioned resulting in zoid production. Despite a conserved role for MOB1 in
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mitotic exit in other systems no function in mitosis was found in T. brucei 

(Hammarton et al, 2005).

MOB proteins in other eukaryotes are co-activators of NDR (nuclear Dbf2-related) 

kinases which are essential regulators of mitosis and growth/development in many 

organisms (Hergovich et al, 2008). TbMOBl was shown to form a complex with the 

NDR kinase TbPK50 in the PCF (Hammarton et al, 2005). PK50 is a functional 

homologue of Orb6 one of the two NDR kinases found in S. pombe, Orb6 is involved 

in regulation of cell morphology, polarity and division (Garcia-Salcedo eta l, 2002).

It is tempting to suggest that the coupling of MOB1 to a cell polarity controlling NDR 

kinase could regulate the positioning of the cleavage furrow and its polarised 

progression from anterior to posterior of the cell. However in a more recent study 

the interaction between PK50 and MOB1 could not be confirmed (Ma et al, 2010). 

The study showed that the two T. brucei NDR kinases (PK50 and PK53) were active in 

the absence of MOB1 in both life cycle stages and no interaction with MOB1 was 

detected in either case (Ma et al, 2010). It is possible that T. brucei NDR kinases are 

regulated by a different mechanism than in other eukaryotic systems.

The NDR kinases PK50 and PK53 - The effects of PK50 and PK53 depletion were 

studied in the BSF and each kinase was found to be essential for viability with growth 

defects quickly observed upon induction of RNAi (Ma et al, 2010). In both cases there 

was an initial increase in the number of 2K2N cells in the population indicating a 

defect in cytokinesis. Interestingly the proteins appear to function during different 

phases of cytokinesis; depletion of PK50 causes a delay in cytokinesis initiation 

whereas reduced PK53 expression causes a later cell cycle block during cleavage
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furrow ingression. This data suggests that the kinases may act in a cytokinesis 

signalling pathway in a sequential manner (Ma et al, 2010).

TRACK - The T.brucei Receptor for Activated C Kinase (TRACK) is also implicated in 

cleavage furrow progression. RACK proteins are important for recruiting signal 

proteins to specific sites in the cell, providing spatial organisation for many signalling 

processes including those involved in cell growth and morphology (McCahill et al, 

2002). TRACK is found in the cytoplasm and is expressed in all life cycle forms; its 

expression restores growth in 5. pombe cpc2- (RACK1 homologue) cells. In the PCF, 

TRACK is required for the progression of the cleavage furrow beyond the midpoint of 

the cell (Rothberg et al, 2006). When its expression is reduced cells undergo multiple 

rounds of partial cytokinesis, similar to the phenotype seen in the MOB1 depleted 

BSF (Hammarton et al, 2005). These partially cleaved cells re-enter the cell cycle and 

in many cases progress at different rates despite sharing cytoplasm (Rothberg et al,

2006). In some cases the cleavage furrow is mispositioned leading to zoid formation. 

In the BSF TRACK appears to be essential for the initiation of cytokinesis rather than 

cleavage furrow ingression, as RNAi depletion of TRACK causes cell division to stall in 

a post-mitotic stage. As seen in many other cell lines, stalled cytokinesis does not 

prevent re-entry into the cell cycle and leads to the formation of large polyploid cells 

(Rothberg et al, 2006).

SPT2 - A very similar phenotype is generated upon RNAi ablation of serine 

palmitoyltransferase 2 (SPT2). SPT2 functions in the sphingolipid biosynthesis 

pathway, SPT activity and sphingolipid biosynthesis is essential in humans and yeast. 

Sphingolipids play important roles in membrane architecture and
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endocytosis/exocytosis as well as being second messengers in the regulation of many 

processes including cell growth and cell cycle progression (Hannun & Obeid, 2008). In 

the PCF of T. brucei SPT2 ablation causes a block in cytokinesis, an increase in 2K2N 

cells which appear to be paused mid-way through cleavage ingression. In some cases 

the growing new flagellum becomes detached at the anterior tip or across partial/full 

length of the cell body; this in part may explain the cleavage furrow defect. In some 

cells cytokinesis does not initiate and the flagella pocket fails to divide after the new 

flagellum has been nucleated and although basal bodies duplicate they fail to 

segregate producing a cell with a 1K2N2F configuration (Fridberg eta l, 2008). Defects 

in vesicular trafficking only emerge after prolonged induction of the RNAi ablation of 

SPT2 and the effects seen are mild. The study showed that in the PCF sphingolipids 

are not essential for exocytosis or maintenance of lipid rafts. However, the BSF 

shows greater sensitivity to sphingolipid depletion, the integrity of lipid rafts is lost 

when SPT2 was depleted in this life cycle form (Fridberg eta l, 2008).

Dynamin like proteins (DLPs) -  DLPs are large modular GTPases which function in

organelle division, and endo/exocytosis. The T. brucei genome encodes a single DLP

which regulates mitochondrial membrane division (Morgan et al, 2004). RNAi

ablation of TbDLP leads to inhibition of mitochondrial fission and cells accumulate at

the 2K2N stage indicating a block of cytokinesis, 75% of the cells stalled at this cell

cycle stage had a nucleus-kinetoplast-kinetoplast-nucleus (NKKN) configuration

which is normally adopted by cells in the final stages of cytokinesis and corresponds

to two daughter cells laying opposed to one another attached at their posterior poles

(Chanez et al, 2006). These cells do not re-enter the cell cycle and large

multinucleate cells do not accumulate (Chanez et al, 2006). This study showed that
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RNAi depletion of TbDLP in the PCF caused deficient endocytosis but went on to 

prove that this is not the reason for the stall in cleavage furrow ingression. Clathrin 

and dynamin are the key components of the clathrin-mediated endocytosis pathway; 

RNAi depletion of clathrin in the PCF causes a reduction in endocytosis and reduced 

population growth as cells die as a result, however there was no evidence of a 

specific cytokinesis defect (Chanez et al, 2006). This suggests that the cytokinetic 

defect observed when dynamin is depleted by RNAi in the PCF is not related to the 

defect in endocytosis but may be linked to defective mitochondrial fission. The 

authors suggest the existence of a novel cell cycle checkpoint in the PCF which 

ensures cytokinesis is initiated only once the single mitochondrion has replicated and 

undergone fission.

1.5.6 Abscission

Once the cleavage furrow has traversed the length of the cell the two cells remain

attached at the posterior end and the final stage of cytokinesis is to sever this linkage

in a controlled manner to form two independent cells. Very little is known about the

molecular mechanisms of abscission in T. brucei, and no proteins which play a direct

role in this process have been identified. It appears that flagella motility is essential

for abscission in the PCF, four independent motility mutants resulting from RNAi

mediated ablation of axonemal proteins RSP3, PF16, and PF20 and the PFR protein

PFR2 caused a loss of flagellar motility followed by a cell division defect where cells

remain attached by their extreme posterior ends and form multinucleate 'clusters' in

culture (Ralston et al, 2006). Gentle agitation of cultures had a compensatory effect

on the cells which had lost motility, and prevented the formation of such clusters

suggesting the mechanical force provided by the beating flagellum is not essential for
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cell viability but is required for abscission to occur in the PCF (Ralston et al, 2006). In 

contrast to the PCF, compromised flagellar motility in the BSF is lethal and no 

cleavage furrow ingression is observed suggesting that flagellum function is essential 

in this life cycle stage (Broadhead et al, 2006).

For trypanosomes to successfully complete the four steps of cytokinesis described 

above it is fundamental that the elaborate array of subpellicular MTs is extensively 

remodelled. Before describing our current knowledge of how the trypanosome cell 

orchestrates this process. Some general aspects of MTs will be discussed in the 

following section.

1.6 Microtubules

Generally the eukaryotic cytoskeleton is divided into three filament classes, MTs, 

intermediate filaments and actin microfilaments. An interesting observation drawn 

from the Tritryp genome sequencing projects is the apparent lack of any homologues 

to known intermediate filament proteins (Berriman et al, 2005). Coupled with this, in 

silico studies show trypanosomes have a reduced dependence on the acto-myosin 

network in comparison to other eukaryotes (Berriman et al, 2005). Reduced 

dependence upon these two key cytoskeletal components means they are highly 

dependent upon a MT-based cytoskeleton.

Microtubules are hollow cylinders 25 nm in diameter, formed from heterodimers of 

a  and p tubulin (Weisenberg et al, 1968). a/p-tubulin subunits are incorporated 

longitudinally into protofilaments which associate laterally to form a MT. The head- 

to-tail organisation of a/P heterodimers in protofilaments confers a polarity to the 

MT; the a-tubulin monomer is exposed at the minus end of the MT and the p tubulin
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monomer at the plus end. Plus and minus refers to the growth rate of the MT which 

is fastest at the plus end.

A MT is a dynamic structure which elongates and shrinks, most growth takes place at 

the plus end of MTs as the minus end is often associated with a MTOC. Furthermore, 

polymerisation of free minus ends has never been observed in any cell type or in MTs 

which were assembled in cytoplasmic extracts (Dammermann et al, 2003) (the cycle 

of MT growth and shrinkage is shown in Figure 1.5). The energy required to drive MT 

elongation comes from the hydrolysis of GTP which occurs as part of a cycle (Howard 

& Hyman, 2003). Both a and 0 tubulin contain a GTP binding site, GTP binds to a  

tubulin irreversibly and is not hydrolysed, however, the GTP bound to the 0 tubulin is 

hydrolysed to GDP. This hydrolysis is coupled to MT polymerization, the GTP bound 0 

-subunit is exposed at the plus end of the MT and when the new a /0  tubulin dimer 

arrives at the plus end key residues in the incoming a -tubulin interact with the GTP 

bound to the receiving p-tubulin subunit and it is consequently hydrolysed (Nogales 

et al, 1999). The resulting GDP is then buried by the docking of the incoming a /0 - 

subunit and is therefore non-exchangeable (Nogales et al, 1999). Since MT growth is 

accompanied by the hydrolysis of GTP the majority of the MT possesses GDP bound 0 

-tubulin.

MTs with GTP bound subunits at their ends are stable and serve as primers for 

polymerisation, the loss of this 'GTP-cap' through dissociation or hydrolysis exposes 

underlying GDP subunits and results in destabilisation of the MT lattice often 

resulting in depolymerisation (Drechsel & Kirschner, 1994). Destabilisation is the 

result of a conformational change which occurs in the tubulin subunit when GTP is
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hydrolysed (Howard & Hyman, 2003). When p-tubulin is bound to GTP, the dimer has 

a straight conformation which aids MT extension, when incorporated into 

protofilament it becomes even straighter, whereas the GDP bound dimer has a 

curvature which weakens lateral interactions promoting depolymerisation (Rice et al,

2008). As a result the plus ends of MTs are structurally different when growing or 

shrinking. Growing plus ends of MTs possess a two-dimensional sheet of 

protofilaments with strong lateral interactions which eventually cause the sheet to 

fold round and form a MT (Chretien et al, 1995). When the sheet closes up it creates 

a seam in the MT lattice (Kikkawa et al, 1994). Shrinking plus ends of MTs appear 

frayed as protofilaments peel apart and curl away from the MT promoting the loss of 

tubulin subunits (Howard & Hyman, 2003).

Microtubules oscillate between growing and shrinking states in a process known as 

dynamic instability (Mitchison & Kirschner, 1984). This behaviour is essential for MT 

function and is modulated by the rate of polymerisation and GTP hydrolysis and an 

array of MAPs (Akhmanova & Steinmetz, 2008). MAPs will be discussed in detail in 

section 1.8.
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Figure 1.5 Microtubule structure and dynamic instability

Figure adapted from (Akhmanova & Steinmetz, 2008) a) Microtubules are composed a /p  tubulin 

heterodimers that align head-to-tail forming protofilaments (b) 13 protofilaments associate laterally 

to  form the wall of the microtubule. Microtubules are polar structures with 3 tubulin exposed at their 

plus ends and a- tubulin exposed at the minus end. A longitudinal seam forms in the lattice where a  

and 3 -  subunits interact laterally (red dashed line). (c)The polymerisation/depolymerisation cycle: 1) 

Polymerization is initiated from a pool of GTP-bound tubulin subunits. GTP hydrolysis occurs shortly 

after incorporation, promoted by the addition of the next incoming subunit. Growing microtubule 

sheets are maintained by a 'cap' of tubulin-GTP. 2) Closure of the sheet into a tube generates a

metastable microtubule, which can pause, undergo further growth or switch to the depolymerisation.

3) A shrinking microtubules are characterised by frayed protofilament structures at the plus end. 4) 

Soluble tubulin heterodimers are free to exchange GDP with GTP and the cycle can begin again.

Polymerization Depolymerization

Shrinking microtubule

Growing microtubule

41



Chapter 1 -  Introduction

1.6.1 Microtubule nudeation

Microtubules originate from MTOCs and are nucleated by y-tubulin which is 

associated with accessory proteins to form nucleation complexes. Nucleation 

complexes can take the form of a tetramer known as y-tubulin small complex (y- 

TuSC) which is composed of two molecules of y-tubulin and two additional proteins, 

or a ring structure composed of multiple copies of y-TuSC proteins and several 

additional proteins (y-TuRC) (Raynaud-Messina & Merdes, 2007; Wade, 2009). In 

mammals there are five y-tubulin complex proteins named GCP2-6 but in 

trypanosomes and yeast only homologues to GCP2 (Spc97p) and GCP3 (Spc98p) are 

found (Hammarton TC, 2007). These y-tubulin complexes are found in the cytoplasm 

as well as bound to MTOCs (Raynaud-Messina & Merdes, 2007).

Exactly how MTs are nucleated by y-tubulin complexes is unknown but two models 

have been proposed:

(1) The template model-proposes that the y-tubulins found in the nucleation 

complexes interact laterally and associate with the a-tubulin longitudinally at the 

minus end of the MT. Providing a platform so that elongation can occur, in this case 

the number of protofilaments in the MT is determined by the number of y-tubulin 

subunits in the nucleation complex (Zheng et al, 1995).

(2) The protofilament model, in which y-tubulins of the nucleation complex interact 

with each other longitudinally. The nucleation complex unwinds and forms the first 

protofilament of the MT and a/P-tubulins associate laterally forming a sheet which 

eventually closes into a MT (Erickson, 2000).
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A recent study employing cryo-electron microscopy in S. cerevisiae has shown when 

y-TuSC are stabilised by the protein SpcllO (normally found in the S. cerevisiae 

MTOC the spindle pole body) they assemble into well-ordered helical filaments with 

13 y-tubulins per turn. This correlates with the average number of protofilaments in 

a MT. The model also showed that y-tubulin and a -tubulin subunits are most likely 

to associate longitudinally. Taken together this data provides convincing evidence in 

favour of the template model for MT assembly (Kollman eta l, 2010).

In trypanosomes depletion of y-tubulin by RNAi impedes the formation of central 

pair MTs in the axoneme causing paralysis of the new flagellum. Formation of outer 

doublet MT is unaffected suggesting their nucleation is independent of y-tubulin and 

requires only the template provided by the basal body rather than de novo 

recruitment of y-tubulin (McKean et al, 2003). At later stages induced cells 

accumulated large nuclei indicating a failure of mitosis, possibly related to defects in 

the intranuclear spindle. This phenotype was not studied extensively and no 

comment was made about the effects of y-tubulin depletion on the structure of the 

subpellicular corset, as the primary focus of the experiment was to investigate 

effects of y-tubulin depletion on flagella biogenesis.

1.6.2 Other proteins implicated in microtubule nucleation

MAPs also play important roles in the nucleation of MTs. For example, the MAPs 

M to l and Mto2 play an important role in MT dependent MT nucleation in 5. pombe 

(Janson et al, 2005). M to lp  and mto2p form a complex and recruit y-tubulin 

complexes to existing MTs (Janson et al, 2005; Samejima et al, 2005). This is required 

for MT nucleation during interphase and results in the formation of MT bundles
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(Janson et al, 2005). MT dependent MT nucleation has also been observed in plant 

cells where MTs have been observed branching off pre-existing cortical MTs with y- 

tubulin found at the branch point (Murata et al, 2005). XMAP215 a highly conserved 

MAP first identified in Xenopus can nucleate MTs in pure a  and p-tubulin solutions, 

and depletion of this protein from Xenopus egg extracts impairs MT nucleation 

(Popov et al, 2002).

1.6.3 Microtubule post translational modifications

a  and p tubulin sub-units which form MTs are targets for multiple post-translational 

modifications (PTMs), and in T. brucei, which expresses identical a /p  tubulin 

isotypes, these modifications are the sole source of variation in MTs (McKean et al, 

2001). Differential modification of MTs through PTMs may be important in regulating 

MAP interactions. In eukaryotes PTMs can include acetylation, 

detyrosination/tyrosination, glutamylation and glycylation. Acetylation and 

detyrosination/tyrosination and their relevance in terms of protein-MT interactions 

are discussed below.

Acetylation - is a common PTM occurring on a-tubulin, it is the addition of an acetyl 

group to the lysine residue at position 40 (Hammond et al, 2008). This reversible 

modification is widespread and found on many different isotypes of a-tubulin in 

diverse organisms from protists such as Trypanosoma (Sasse & Gull, 1988) and 

Chlamydomonas (L'Hernault & Rosenbaum, 1983) to mammals (L'Hernault & 

Rosenbaum, 1983; Cambray-Deakin & Burgoyne, 1987; Sasse & Gull, 1988). 

Acetylation is carried out by the enzyme acetyltransferase after a-tubulin is 

assembled into the MT. As such the extent of acetylation on a MT reflects the length
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of time its sub-units have been available as substrates, acetylation is therefore 

generally associated with stable MTs such as those of the axoneme (Maruta et al, 

1986). However, in trypanosomes this PTM is detected on the short-lived MTs of the 

mitotic spindle proving an exception to this rule (Sasse & Gull, 1988). Little is known 

about how tubulin acetylation affects the function of MTs but in CAD cells which are 

used as a model of primary neurites in mammals Kinesin-1 (a motor protein involved 

in transporting cargo along MTs) appears to bind preferentially to acetylated tubulin 

(Reed et al, 2006). However it has recently been shown that hyper-acetylation of 

MTs does not cause mis-localisation of Kinesin-1 suggesting that other PTMs may 

have a role in selective localisation of this protein (Hammond eta l, 2010).

The detyrosination/tyrosination cycle - occurs in numerous eukaryotes including 

humans, plants and trypanosomes (Preston et al, 1979; Wehland et al, 1984; Sasse & 

Gull, 1988). The C-terminal tyrosine of a-tubulin is a targeted for removal by a 

carboxypeptidase enzyme once the a-tubulin has been incorporated into a MT. 

When the microtubule depolymerises and releases the detyrosinated a-tubulin, a 

tyrosine residue can be replaced by a tubulin tyrosine ligase, thus creating a tubulin 

tyrosination cycle (Idriss, 2000).

The detyrosination/tyrosination cycle functions in regulating the interaction between 

MTs and MT binding proteins (Hammond et al, 2008). The motor protein Kinesin-1 

binds preferentially to detyrosinated MTs rather than tyrosinated tubulin (Liao & 

Gundersen, 1998). Furthermore a study in S. cerevisiae has implicated tyrosinated 

tubulin in the recruitment of certain plus end binding proteins (+TIPs) to MTs (+TIPs 

are MT binding proteins which associate with the growing plus end of the MT, they
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are discussed in section 1.8). S. cerevisiae encode a C-terminal phenylalanine (Glu- 

Phe) which is analogous to the C-terminal tyrosine (Glu-Tyr) found in other 

eukaryotes (Badin-Larcon et al, 2004). Expression of an a-tubulin mutant lacking the 

C-terminal phenylalanine (resembling detyrosinated tubulin) led to the mis- 

localisation of Biklp, the yeast ortholog of the mammalian +TIP CLIP170 (Badin- 

Larcon et al, 2004). The antibody YL1/2 detects tyrosinated tubulin (Kilmartin et al, 

1982) and as such can be used as a robust marker for newly polymerised MTs. This 

antibody has been employed during the course of this thesis and has previously been 

used effectively to study MT assembly in the subpellicular corset of T. brucei through 

the cell cycle (Sherwin & Gull, 1989a).

1.7 Cytoskeletal remodelling during the cell cycle, visualised by YL1/2

Immunogold using YL1/2 labelling of whole mount cytoskeletons defined three broad 

patterns of MT assembly and insertion into the corset during the cell cycle (Sherwin 

& Gull, 1989a).

(1) Early in the cell cycle (Gi) 94% of the MT ends in the corset are positive for YL1/2 

and are therefore growing. The posterior end of the cell is heavily labelled with 

YL1/2; additionally new ends of MTs are seen invading the existing array in the 

central region of the cell. Raising the possibility that both ends of a single MT may be 

labelled with YL1/2 indicating that two end assembly of the MT polymer may be 

occurring at this stage (Sherwin & Gull, 1989a).

(2) In cells immediately prior to, and during, mitosis far fewer MT ends are YL1/2 

positive (20%) suggesting that MT growth is reduced compared to the cells in Gi.
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(3) Cells late in the cell cycle, from anaphase through to completion of cytokinesis 

had more YL1/2 labelled MT ends than the previous category (64%) but not as many 

as the cells in Gi. Moreover, these cells contained a new 'type' of MT not observed in 

earlier cytoskeletons. In the central portion of the cytoskeleton, short MTs labelled 

with YL1/2 over their whole length were observed. These short MTs were not 

associated with either end of the cell or any visible structure and are assembled 

laterally between older and longer MTs of the corset (Sherwin & Gull, 1989a).

Inter-digitation of these short MTs explains how the inter-MT distance of the 

subpellicular array can remain the same despite the cell being broader in the central 

portion and tapering towards either end. Exactly how these short MTs are nucleated 

and the mechanisms governing temporal and spatial control of MT growth through 

the cell cycle are unknown; however MAPs are highly likely to be involved in 

processes.

Lateral insertion of new MTs between older MTs of the corset suggests that the 

cytoskeleton of T. brucei is inherited in a semi-conservative manner (Sherwin & Gull, 

1989a). This process which demands extensive cytoskeletal remodelling including MT 

nucleation/outgrowth and coordinated severing/re-establishment of inter- MT (and 

inter-membrane) cross-links, processes which will be performed by MAPs.

1.8 Microtubule associated proteins

MAPs directly or indirectly regulate the organisation of MTs, their 

polymerisation/depolymerisation dynamics and transport along MTs. They are a 

diverse group of proteins whose activities cover a wide range of regulatory 

processes. MAPs can be classified into three distinct sub-groups:

47



Chapter 1 -  Introduction

(1) Microtubule motor proteins, kinesin and dynein motors move along MTs 

transporting cargo using the energy they produce from ATP hydrolysis (Hirokawa et 

al, 2009). They are employed by cells for many different processes e.g. the 

intraflagellar transport (IFT) system in T. brucei which is required for the formation of 

the flagellum (Absalon et al, 2008).

(2) Structural MAPs, bind along the length of the MT and are generally associated 

with stable MT populations e.g. the vertebrate proteins tau and MAP2 which are 

found in neurones and are characterized by their ability to bind and stabilize MTs 

(Dehmelt & Halpain, 2005).

(3) The +TIPs which are associated with the growing plus end of MTs, these proteins 

are described in the following section.

1.9 Plus end tracking proteins

Plus end tracking proteins (+TIPs) are a disparate group of evolutionarily conserved 

microtubule-associated proteins that specifically accumulate at the ends of growing 

MTs (reviewed in Akhmanova & Steinmetz, 2008). They are involved in mediating 

cellular architecture, chromosome segregation, cell polarization and migration, 

organelle transport, and intracellular signalling (Honnappa et al, 2009). CLIP170 was 

the first +TIP to be discovered; GFP-CLIP170 was described as a 'cellular firework' due 

to its comet-like appearance caused by a dynamic 'treadmilling' of the protein at MT 

plus ends (Rickard & Kreis, 1990; Perez et al, 1999). Since this discovery many more 

proteins with the same localisation pattern have been observed. Whilst most +TIPs 

can directly bind to MTs, there are many examples where interdependency 

interactions exist between +TIPs allowing complexes to form at MT plus ends (Su et
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al, 1995; Busch & Brunner, 2004; Akhmanova & Hoogenraad, 2005; Lansbergen & 

Akhmanova, 2006). +TIPs can be categorised into 4 discrete groups (Slep, 2010).

(1) EB1 family members

(2) CAP-Gly domain-containing proteins

(3) SxlP motif containing proteins

(4) TOG domain-containing proteins

1.9.1 EB1 family

End binding 1 (EB1) proteins are small (approximately 35 kDa) and are characterised 

by their domain architecture. The C-terminus contains an end-binding homology 

(EBH) motif which interacts with SxlP motif containing +TIPs (discussed later) 

(Honnappa et al, 2005; Slep et al, 2005) and a coiled-coil domain which allows EB1 

monomers to dimerise (Honnappa et al, 2005). At the C-terminus of EB1 is a EEY/F 

motif which is the target of the CAP-Gly family of +TIPS (Akhmanova & Steinmetz,

2008). The N-terminus contains a calponin homology (CH) domain which interacts 

with MTs (Gimona et al, 2002). Since its discovery many interactions between EB1 

and other +TIPs have been identified resulting in EB1 being deemed the 'master 

regulator of dynamic +TIP interaction networks at growing MT ends (Honnappa et al,

2009).

EB1 was first identified by a yeast two hybrid screen searching for proteins which 

interact with the human tumour suppressor protein, adenomatous polyposis coli 

(APC) (Su et al, 1995). EB1 homologues have since been identified in most organisms 

explored to date (Tirnauer & Bierer, 2000), the yeast homologues are Mal3p (S.
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pombe) (Beinhauer et al, 1997) and Bimlp (S. cerevisiae) (Tirnauer et al, 1999). In 

Arabidopsis thaliana there are three EB1 homologues AtEBla, AtEBlb and AtEBlc 

(Chan et al, 2003). An EB1 homologue is found in the T. brucei genome but it is not 

conserved in closely related Leishmania suggesting that +TIP interactions are 

mediated by an alternative protein/proteins in this organism (Hammarton TC, 2007).

EB1 influences dynamic instability in MTs, usually with a stabilising function which 

promotes growth (Akhmanova & Hoogenraad, 2005). Immuno-depletion and protein 

addition experiments in Xenopus egg extracts show that EB1 decreases catastrophes 

and increases rescues and polymerization rate (Tirnauer et al, 2002). Localisation 

experiments carried out in the same study show EB1 at the plus end of the MT and 

along the length of the MT wall. EB1 staining on the MT wall remained static ruling 

out the possibility that it is transported along MTs to the plus end, furthermore 

tubulin monomers did not co-immuno-precipitate with EB1 suggesting that it does 

not co-polymerise with tubulin, leading the authors to postulate that EB1 has two 

distinct binding patterns, one at the MT wall and the other at the plus end where EB1 

recognises some property of the polymerising MT (Tirnauer et al, 2002). A more 

recent study shows that Mal3p the EB1 homologue in 5. pombe aligns along the MT 

lattice seam as well as accumulating at the plus ends (Sandblad et al, 2006). The 

authors suggest that Mal3p is acting to re-enforce lateral protofilament interactions 

and "clamp7 the seam together. This work also showed that Mal3p promotes sheet 

closure into the tubular form in dynamic MTs. In Chlamydomonas reinhardtii EB1 

(CrEBl) localises to the flagella tip as well as at discrete spots in the cytoplasm where 

it is thought to be binding to cytoplasmic MT plus ends (Pedersen et al, 2003). In 

contrast to the studies described above CrEBl is seen associated to growing, stable
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and shrinking MTs showing that, at least in some organisms, EB1 is not just 

associated with polymerisation.

The interaction between EB1 and the tumour suppressor APC (Su et al, 1995) is 

required for APC localisation to the growing tip of MTs (Askham et al, 2000). This 

interaction plays an important role in MT-based cell polarity in mammalian cells (Slep 

et al, 2005). An analogous situation is observed in S. cerevisiae as the polarity 

determinant Kar9p associates with Bimlp (EB1 homologue) and as a consequence of 

this interaction MTs are targeted to the cell cortex (Miller et al, 2000). APC and Kar9p 

are SxlP motif containing proteins which interact with the EBH domain of EB1 this 

family are further discussed below.

1.9.2 SxlP motif containing proteins

A proline/serine-rich region containing a short conserved motif known as the SxlP 

motif has been identified in a large and diverse group of +TIPs. The SxlP motif 

interacts with the EBH domain at the C-terminus of EB proteins and targets proteins 

to the plus end of MTs in an EB1 dependent manner (Honnappa et al, 2009). 

Representatives of this diverse group include, mammalian APC and Kar9 in S. 

cerevisiae (discussed above), the mammalian spectraplakin MACF (microtubule-actin 

cross-linking factor), the drosophila homologue Shot (Slep et al, 2005), the human 

transmembrane protein STIM1 (stromal interaction molecule -1) (Grigoriev et al,

2008) and the human mitotic centromere associated kinesin (MCAK) (Honnappa et 

al, 2009), a recognised MT depolymerase known to destabilise the MT plus-ends 

(Desai eta l, 1999).
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1.9.3 CAP-Gly domain-containing proteins

CAP-Gly proteins contain a conserved domain of approximately 80 residues called 

the cytoskeletal associated protein-glycine rich (CAP-Gly) domain at their N-termini. 

CAP-Gly domains can be found in single or multiple copies and mediate interactions 

with tubulin and EB proteins (Steinmetz & Akhmanova, 2008). The CAP-Gly domain 

interacts with the C-terminal EEY/F motif of EB proteins (Weisbrich et al, 2007). 

Examples from this family include the mammalian cytoplasmic linker proteins (CLIPs), 

CLIP -170 and its neuronal paralog CLIP-115 (Schuyler & Pellman, 2001). A number of 

CAP-Gly proteins (including CLIP-170 and CLIP-115) bind more efficiently to 

tyrosinated MTs (Peris et al, 2006). However the tyrosination state does not 

influence the binding of EB1. This demonstrates that MT tyrosination, at least in part, 

regulates the interaction between CAP-Gly proteins and MTs. There is no evidence 

from the genome analysis that CLIPs or CLIP-associating proteins (CLASPs) are 

conserved in T. brucei (Hammarton TC, 2007).

1.9.4 TOG domain-containing proteins

TOG domains are a tubulin binding domain discovered in the human MAP chTOG

(colonic and hepatic tumour-over expressed gene) (Charrasse et al, 1995). chTOG is

homologous to XMAP215 (Charrasse et al, 1998), a 215kDa protein purified from

Xenopus eggs which promotes MT growth at the plus-end (Gard & Kirschner, 1987)

and tracks the tips of growing and shrinking MTs (Brouhard e ta l, 2008). Homologues

to XMAP215/chTOG have since been identified in a vast range of organisms.

XMAP215 family members have been implicated in organising cortical MTs in

Dictyostelium (Hestermann & Graf, 2004) and Arabodopsis (Whittington et al, 2001).

In S. cerevisiae Stu2p the XMAP215 homologue promotes spindle elongation during
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anaphase (Severin et al, 2001). Both XMAP215 (Al-Bassam et al, 2006) and Stu2p 

(Severin et al, 2001) bind tubulin dimers with 1:1 stoichiometry. In both cases the 

binding of tubulin induces a conformational change and XMAP215/Stu2p close up 

around the tubulin dimer. A model has been suggested based on results from in vitro 

studies, that XMAP215 is a 'processive polymerase' which catalyses multiple rounds 

of tubulin subunit addition (Brouhard et al, 2008). This is achieved without energy 

consumption by stabilizing an intermediate state, preventing tubulin diffusing away 

and increasing the probability that it will become bound and incorporated into the 

lattice. In the absence of soluble tubulin XMAP215 can act in reverse and catalyze 

depolymerisation (Brouhard et al, 2008). The activity of XMAP215 may differ in vivo 

as it is known to interact with other MAPs which may mediate its behaviour (van der 

Vaart et al, 2009).

Whilst the T. brucei genome encodes a homologue of the highly conserved MAP EB1 

and a member of the XMAP215/TOG family, there are few examples of other well 

characterised and conserved proteins from other systems. For example there is no 

evidence that T. brucei possesses a homologue to the MAP tau, or the cytoplasmic 

linker proteins (CLIPs) or their associated proteins (CLASPs) (Berriman et al, 2005). A 

number of trypanosome specific MAPs have been identified and these are discussed 

in the following section.

1.10 Microtubule associated proteins associated with the T. brucei subpellicular 

corset

The highly organised subpellicular corset of MTs is maintained by proteins which 

form inter-MT cross bridges and in some cases cross-link the MTs and the plasma
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membrane. To date a number of MAPs associated with the corset MTs have been 

identified in T. brucei, including GB4, WCB, MARP1 and 2, 1/6, CAP5.5, CAP17 and 

CAP15 (Rindisbacher et al, 1993; Affolter et al, 1994; Detmer et al, 1997; Hertz- 

Fowler et al, 2001; Vedrenne et al, 2002; Baines & Gull, 2008). These proteins are 

found exclusively in trypanosomes, they co-purify with tubulin and in some cases 

where RNAi cell lines have been generated, ablation leads to disruption of the 

normally highly organised subpellicular microtubules. Some of these proteins localise 

to specific poles of the cell and some are known to be expressed in specific life stages 

(Vedrenne et al, 2002; Olego-Fernandez et al, 2009). Studies of these critical proteins 

are limited mostly to the PCF and have generally been carried out in isolation leaving 

many questions unanswered regarding roles in other life cycle stages and also the 

existence of functional interactions between distinct proteins. This section describes 

the current knowledge available for T. brucei MAPs.

1.10.1 WCB

WCB so called as it is localised to the whole cell body of T. brucei is closely linked to

the MTs of the subpellicular corset but is excluded from the flagella and mitotic

spindle. Immunogold studies show that the protein is found on the exterior side of

the corset MTs in close proximity to the plasma membrane (Woods et al, 1992). It is

expressed in both the BSF and the PCF but characterisation of this protein has only

been carried out in the PCF. RNAi mediated ablation of WCB resulted in cells with

enlarged and rounded posterior ends and the generation of large numbers of

anucleate zoids and multinucleate cells indicative of problems during cytokinesis

(Baines & Gull, 2008). Indirect immunofluorescence experiments show that upon

RNAi mediated ablation WCB is lost initially from the more dynamic posterior end of
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the cell but is retained on MTs at the anterior, evidence of a stable association with 

MTs (Baines & Gull, 2008). Where WCB remains associated with MTs the corset is 

regularly organised. In contrast ultrastructural observations indicated that loss of 

WCB protein results in a loosening of the connection between the subpellicular MTs 

and the overlying plasma membrane, which leads to blebbing of plasma membrane 

from the cell surface. A loss of general overall integrity of the subpellicular corset is 

also observed with loss of regular spacing and organisation. During detergent 

extraction microtubules of the subpellicular corset splay apart at the posterior end 

indicating that the robust connection that previously held the posterior end of the 

cell together is lost following WCB ablation. WCB possesses a C2 domain at its N- 

terminus, and while many C2 domain containing proteins interact with membranes 

(Cho & Stahelin, 2006), it remains unknown whether WCB interacts directly or 

indirectly with the plasma membrane.

1.10.2 CAP5.5

CAP5.5 is expressed only in the PCF (Matthews & Gull, 1994b; Hertz-Fowler et al, 

2001) it localises to MTs of the subpellicular corset (Hertz-Fowler et al, 2001). Unlike 

many other MAPs, CAP5.5 does not contain any repetitive elements, however the N- 

terminus of CAP5.5 contains motifs that allow for modification by myristoylation and 

palmitoylation, both these modifications are known to target proteins to membranes 

(Resh, 1999), suggesting CAP5.5 may associate with the plasma membrane (Hertz- 

Fowler et al, 2001).

CAP5.5 is a member of a diverse family of calpain-like proteins found in T. brucei. 

Calpains are calcium-dependent cysteine proteases with essential roles in signal
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transduction, cytoskeletal remodelling and differentiation. In animals and plants 

calpains play important roles in development (Goll et al, 2003; Croall & Ersfeld,

2007). T. brucei has an extended calpain-related gene family, expressing more 

calpain related proteins (CALPs) than most other organisms. It is unlikely that all 

TbCALPs function as cysteine proteases as the putative active site in most cases lacks 

the essential catalytic triad (C-H-N) suggesting these proteins have evolved a species 

specific function (Ersfeld et al, 2005). In CAP5.5 only one of the amino acids of the 

catalytic triad is conserved (S-Y-N) (Hertz-Fowler et al, 2001) and the protein appears 

to have evolved an alternate function in regulation of cytoskeletal organisation 

(Olego-Fernandez eta l, 2009).

The first visible phenotype following RNAi depletion of CAP5.5 in the PCF is the loss 

of protein from the posterior end of the cell (similar to that seen in the WCB cell line 

described above) this corresponds temporally to nuclear mispositioning in 2K2N cells 

indicative of organelle segregation defects (Olego-Fernandez et al, 2009). There is an 

increase in zoids and 1K2N cells in the population, progeny resulting from an 

aberrant cytokinesis event. Whether zoid formation is a consequence of miss- 

localised organelles or a direct result of aberrant cleavage furrow ingression is 

unknown but after 48 hours of induction multinucleates possess multiple stalled 

cleavage furrows. TEM analysis shows inter-MT spacing in the subpellicular corset is 

disrupted and bundles of MTs are visible beneath the plasma membrane.

This study confirmed that CAP5.5 function is limited to the PCF but identified a 

paralog, CAP5.5V which plays an analogous role to CAP5.5 in the BSF (Olego- 

Fernandez et al, 2009). This study did not determine if CAP5.5/CAP5.5V function as
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proteases however the authors suggest these proteins may be required to severe 

inter-MT cross bridges and that CAP5.5/CAP5.5V ablation impedes the ability of new 

MTs to interdigitate into the existing subpellicular corset leading to a loss of 

organisation and resulting in severe cytokinetic defects (Olego-Fernandez et al,

2009).

1.10.3 CAP17 and CAP15

CAP17 and CAP15 are another example of related proteins with stage specific 

expression. CAP17 (a 17kDa protein) is found only in the PCF, whereas CAP15 

(15kDa) is constitutively expressed but is ten-fold more abundant in the BSF. The 

proteins are very closely related, they have 49% sequence identity, differing due to a 

hydrophobic domain at the C-terminus of CAP17. As with CAP5.5, these proteins do 

not contain repeat regions like many other MAPS but co-fraction ate with tubulin 

suggesting they associate with MTs. Immunofluorescence analysis has shown that 

CAP17 and CAP15 proteins localise specifically to the less dynamic anterior part of 

the subpellicular corset (Vedrenne et al, 2002). Over expression of the CAPs in the 

PCF results in the proteins being detected over the entire cytoskeleton rather than 

just the anterior end. This leads to organelle mispositioning and the formation of 

multinucleate cells and anucleate zoids. Cells also have difficulties in promoting 

kinetoplast segregation despite the presence of two flagella and two basal bodies 

(Vedrenne eta l, 2002).

Both proteins were independently expressed in CHO-K1 and HeLa cells and in all 

cases colocalised with MT networks. CAP15 expression in CHO-K1 cells caused MTs to 

become insensitive to nocodazole treatment (a drug which inhibits MT formation)
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suggesting reduced MT turnover in the presence of CAP15. Furthermore in HeLa cells 

both CAPs prevented MT depolymerisation in the presence of nocodazole and MT 

networks became resistant to cold where they would normally rapidly depolymerise. 

It is suggested that since CAP15 and 17 are MT stabilizers mis-localisation to the 

posterior end of the cell when over expressed prevents essential cytoskeletal 

remodelling during cytokinesis (Vedrenne eta l, 2002).

1.10.4 GB4

In contrast to CAP17 and CAP15, the MAP GB4 is localised specifically to the 

posterior end of the trypanosome cell. It is proposed to form a cap structure which 

stabilises MTs at the posterior pole (Rindisbacher et al, 1993). Sequence analysis 

predicted that the gene for GB4 encodes a very large, highly repetitive protein, with 

a predicted mass of 928.3 kDa (GeneDB accession number Tb09.160.1200). Each 

repeat is 200 amino acids long with a calculated molecular weight of 22.6 kDa 

(Rindisbacher et al, 1993). Immunoblotting experiments using an anti-GB4 antibody 

identified a 28kDa protein which corresponds roughly with the size of a single repeat 

unit from the protein suggesting that GB4 undergoes rapid proteolytic processing in 

vivo. GB4 is conserved in all T. brucei subspecies and orthologs have since been 

identified in T. cruzi and L major (Berriman et al, 2005) but it is not conserved 

amongst other eukaryotes. Immunofluorescence localised GB4 to a single narrowly 

defined spot at the posterior end of cells and in some cases a ring like structure was 

observed at the posterior pole of the cell. This localisation was not affected when 

cells were detergent extracted and so a role for GB4 in capping and stabilizing MT 

plus ends was suggested (Rindisbacher eta l, 1993).
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1.10.5 1/6

Immunogold electron microscopy localised the protein 1/6 to the MT cross links of 

the subpellicular corset (Detmer et al, 1997). In view of this, it has been suggested 

that 1/6 is a MT cross linker found in the PCF and BSF. 1/6 is a highly repetitive protein 

which is recognised by host autoimmune antibodies very early after infection 

(Detmer et al, 1997). Interestingly amongst the other prominent antigens detected 

early in an infection are the proteins MARP1 and 2 which are also MAPs (Affolter et 

al, 1994).

1.10.6 MARP1 and MARP2

Microtubule Associated Repetitive Proteins (MARP) 1 and 2 were first identified in 

the salt soluble fraction when purifying T. brucei cytoskeletons, as a 320kDa protein 

(p320) confirmation of cytoskeletal association came from the p320 specific antibody 

which localised the protein to the corset (Schneider et al, 1988). They are closely 

related proteins which share a repetitive region that consists of a highly conserved 

(50% sequence identity/similarity) 38 amino acid repeat unit (Affolter et al, 1994). 

The repetitive domains of MARP1 can bind pig brain MTs which are already saturated 

with endogenous MAPs, this suggests that MARP-1 binds to tubulin at an alternative 

domain to ones used by the major brain MAPs such as tau and MAP2 (Hemphill et al, 

1992). There is a gradient of identity between MARP 1 and 2 which is low at the N- 

terminus no-similarity) and increases towards the C-terminus (>95% similarity). The 

C-terminal domain is rich in S/T residues, contains many (putative) phosphorylation 

sites and can interact with MTs in a high affinity detergent resistant manner. Affolter 

et al. (1994) suggest that the globular C-terminal domain serves as an anchor which

can bind to MTs; this association is regulated by phosphorylation events. The central
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repeat domain then stabilizes MTs by interacting with up to 100 tubulin dimers over 

a 500 nm stretch along a protofilament (Affolter eta l, 1994).

1.10.7 p l5

A trypanosome specific MAP with a molecular weight of approximately 15kDa was 

isolated using a tubulin affinity column and named pl5A. Immuno-electron 

microscopy localised this protein exclusively to the MTs of the corset and the pl5A  

specific antibody co-localised with anti-tubulin antibodies (Balaban & Goldman,

1992). Sequence analysis shows that pl5A contains 16 almost identical tandem 

repeats containing positively charged and hydrophobic amino acids. The authors 

suggest that the protein contains hydrophobic domains capable of interacting with 

phospholipids whilst the positively charged amino acids interact with tubulin. The 

study confirms that pl5A  binds tubulin and phospholipids in vitro, implicating it in 

the formation of cross-links between MTs of the corset and the plasma membrane 

(Rasooly & Balaban, 2002).

1.10.8 P52

A 52kDa protein co-purifies with subpellicular microtubules and was shown to bind 

tubulin specifically. Addition of this protein to calf brain tubulin in the presence of 

taxol and GTP caused MT bundling. The MTs were held together by regular cross­

bridges at 7.2 nm apart which corresponds to one per tubulin dimer (Balaban et al, 

1989). The spacing between MTs within the bundles was reminiscent of that seen 

between corset MTs. This MT bundling only occurred if p52 was added before 

tubulin had polymerised, when added to MTs already formed in the presence of
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endogenous MAPs no bundling was observed. The explanation for this was that the 

site that p52 binds was occupied by an endogenous MAP.

1.11 Remaining questions relating to the T. brucei subpellicular corset and 

associated MAPs

The subpellicular corset is generated by an elaborate array of subpellicular 

microtubules and requires extensive remodelling, involving MT  

nucleation/outgrowth and coordinated severing/re-establishment of inter-MT cross­

links during cell growth and division. Cytoskeletal remodelling is fundamentally 

important for trypanosome cell survival, however little is understood about how the 

process is orchestrated. As such, several important questions remain to be 

answered:

Firstly, how are subpellicular MTs nucleated? In T. brucei the nucleation of MTs in the 

corset occurs in the absence of a defined MTOC such as the APR which nucleates the 

subpellicular corset of apicomplexans (Morrissette & Sibley, 2002) (see section 

1.3.1). y-tubulin, (which serves as a marker for MTOCs (Scott et al, 1997) discussed in 

section 1.6.1) is detected by immunofluorescence analysis as low level fluorescence 

in a punctate distribution over the whole cell body (Scott et al, 1997). It remains to 

be determined whether this y-tubulin is involved in nucleating new MTs in the corset 

(Scott et al, 1997).

Secondly, MAPs play critical roles in cytoskeletal remodelling, section 1.10 lists the 

MAPs currently know to associate with the T. brucei subpellicular corset. Little is 

known about the specific functions of individual MAPs or how they are targeted to 

MTs of the subpellicular corset.
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Thirdly, some MAPs have a restricted spatial distribution within the trypanosome 

cell, e.g. GB4 which is found only at the posterior pole in the PCF (Rindisbacher et al,

1993) and CAP15/17 which are restricted to the anterior end of the cell (Vedrenne et 

al, 2002). What influences the spatial distribution of MAPs? And does the distinct 

spatial distribution of MAPs play a role in establishing cellular polarity?

Fourthly, why are some MAPs expressed in a stage specific manner? CAP5.5 is only 

expressed in the PCF and its paralogue CAP5.5V which carries out an analogous role 

in the BSF (Olego-Fernandez et al, 2009) Also, CAP17 and CAP15 are differentially 

expressed in the PCF and BSF of the parasite (Vedrenne et al, 2002). The selectable 

advantage of differential protein expression between life cycle stages remains to be 

understood. Oleg-Fernandez et al. (2009) suggest it may reflect the parasites need to 

fine tune protein requirements between morphologically distinct life cycle forms.

Fifthly, Do MAPs interact to form functional complex(es)? To date MAPs have been 

studied in isolation, as such, much remains to be uncovered about the co-ordinated 

roles of MAPs on the cytoskeleton. How do these interactions occur, i.e. what 

domains are involved? Is there a defined temporal order for association? And, what 

is the functional significance of these interactions?

1.12 Initial aims and objectives of this thesis

The work described in this thesis aimed to advance the current knowledge of T. 

brucei MAPs and their role(s) in cytoskeletal remodelling specifically by:

(1) Identifying additional MAPs which may function in organising the MTs of 

subpellicular corset (Chapter 3).
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(2) Further characterising TCP86 a MAP recently identified in the McKean 

laboratory (Chapter 4).

(3) Investigating the function of previously published MAPs by applying RNAi 

techniques to proteins which were published before RNAi techniques were 

available (Chapter 5).

(4) To investigate interdependency between identified T. brucei MAPs, thus 

building towards a functional interactome (Chapter 5).

(5) To understand the role(s) of MAPs in remodelling the MTs of the subpellicular 

corset throughout the cell cycle (Chapter 6).
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Chapter 2 Materials and Methods

2.1 Chemicals and Reagents

Chemicals were bought from the following suppliers:

Melford Laboratories

Agarose, dithiothreitol (DTT), ethylenediaminetetraacetic acid (EDTA), glycerol, 

glycine, LB agar, LB broth, piperazine-N, N-bis-2-ethanesulfonic acid (Pipes), 

phleomycin, potassium chloride, sodium chloride, sodium dodecyl sulphate (SDS), 

Tris base and isopropyl-beta-D-thiogalactopyranoside (IPTG).

Sigma-Aldrich

Ampicillin, acetic acid, ammonium persulphate (APS), acetone, acrylamide, 

bromophenol blue, CHAPS, C7BZ0, coomassie brilliant blue G250 and R250, 

chloroform, deoxyribonuclease, doxycyclin, E64d protease inhibitor, heat inactivated 

foetal bovine serum, hemin, hydrochloric acid, imidazole, iodoacetamide, 

magnesium acetate, potassium hydrogen phosphate, poly-L-lysine, phleomycin, 

phosphoric acid, sodium carbonate, sodium citrate, sodium hydroxide, sodium 

fluoride, sodium orthovanadate, tween 20, triton X-100.

Duchefa Biochemica

LB broth and LB agar 

Biorad

Precision Plus (all blue) Pre-stained Protein Standards

64



Chapter 2 -  Materials and Methods

Fluka Biochemika

Nonidet P-40 (NP-40)

Invitrogen

Blasticidin, HMI-9, SDM-79, Trizol 

Fisher Scientific

Calcium acetate, ethanol, ethidium bromide, methanol, magnesium choloride, 

magnesium sulphate, propylene glycol, thiourea.

Fermentas

Restriction enzymes and their buffers

Agar Scientific

Gluteraldehyde

BDH

Bovine serum albumin (BSA), ethyleneglycol tetraacetic acid (EGTA) and 

paraformadehyde

PAA Laboratories

Foetal calf serum (FCS) and hygromycin B 

GIBCO

Geneticin G418

65



Chapter 2 -  Materials and Methods

Arcos Organics 

Orange G 

Formedium

Glucose

Vector Laboratories

Vectashield with 4, 6 diamidino-2-phenylindole (DAPI)

Promega

T4 DNA Ligase and buffer, pGEMT-Easy vector system 

Abgene

High fidelity PCR mix 

Scharfe systems 

Casyton solution and Casy clean 

Calibiochem

Focus protease inhibitors

2.2 Buffers and Media

2.2.1 Buffers and solutions

•  Blocking buffer for slides: 1% BSA in PBS-Tween 20 (0.05%)

•  Standard Blocking buffer for immunoblotting: 0.05% Tween 20 and 5% 

skimmed milk powder in TBS, pH7.4
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•  5x DNA loading buffer: 0.25% bromophenol blue, 50mM EDTA, 46% glycerol

•  EM fixative solution: 2.5% glutaraldehyde, 2% paraformadehyde and 0.1% 

picric acid in 100mM phosphate (pH 7.0)

•  LB media: 20g LB low salt broth containing lOg tryptone, 5g yeast extract and 

5g sodium chloride (Duchefa)

•  PEME buffer: 100 mM Pipes 2mM EGTA, 0.1 mM EDTA and 1 mM MgS04

•  PBS (lOx stock): 1.5 M NaCI, 25 mM KCI, 0.1 M of Na2HP04 and 17.5 mM

KH2PO4 pH to 7.4 with HCL

•  2x SDS gel loading buffer: 100 mM Tris-HCL (pH6.8), 200 mM DTT, 4% SDS, 

0.2% bromophenol blue, 20% glycerol

•  SDS running buffer: 3.02g Tris, 18.8g glycine and 5ml 20% SDS per litre

•  20xSSC 3 M sodium chloride and 300 mM trisodium citrate. pH to 7.0 with HCI

•  TAE buffer: 0.04M Tris-acetate, 0.001M EDTA, (pH8)

•  TBE (5x stock) 0.445 M Tris, 0.445 M boric acid and 0.01 M EDTA

•  TBS lOx stock 1.5 M NaCI, 25 mM KCI, 0.5 M Tris. pH to 7.4 with HCL

•  TGF1: 30 Mm KAc, 100 mM RbCI, lOmM CaCI2, 50 mM MnCI2 , 15% v/v  

glycerol, complete volume using dH20 and pH to 5.8 using Acetic acid before 

filter sterilizing

•  TGF2: 10 mM MOPs, 75 mM CaCI2, 10 mM RbCI, 15% v/v glycerol, complete

volume using dH20 and pH to 6.5 using Sodium Hydroxide before filter

sterilizing

•  Transfer buffer for Western blotting: 25 mM Tris base, 0.2M glycine and 20% 

methanol

•  Wash buffer for Western blotting: 0.05% Tween 20 in lx  TBS
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•  ZMG (Zimmerman's post fusion medium): 132 mM NaCI, 8 mM Na2 HP0 4 , 0.5

mM Mg Acetate, 0.09 mM Ca acetate, pH 7.0

2.2.2 Antibiotic solutions 

Table 2.1: Antibiotic solutions

Antibiotic
Working concentration 

(pg/ml)

Stock solution 

(mg/ml)

Ampicillin 100 100

Blasticidin 5 5

Doxycycl in 1 1

G418 2 2

Hygromycin 20 20

Phleomycin 7.5 7.5

2.2.3 Antibodies

Table 2.2: Primary antibodies used for western blotting

Antibody Specificity Animal Dilution

KMX1 P-tubulin Mouse IgG 1:500

TCP86 polyclonal TCP86 Rabbit 1:1000

WCB WCB Mouse 1:2

CAP5.5 CAP5.5 Mouse 1:50
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Table 2.3: Secondary antibodies used for western blotting

Antibody Animal Dilution

Anti-mouse HRP conjugate Goat 1:80,000

Anti-rabbit HRP conjugate Goat 1:3000

Table 2.4: Primary antibodies used for immunofluorescence

Antibody Specificity Animal Dilution

ROD1 PFR Mouse IgM 1:5

L6B3 FAZ filament Mouse IgM Neat

L8C4 PFR Mouse IgG 1:10

BBA4 T. brucei basal bodies Mouse IgM 1:50

YL1/2 Tyrosinated a-tubulin Rat IgG 1:50

CAP5.5 CAP5.5 Mouse IgG 1:10

TCP86 TCP86 Mouse IgG 1:100

WCB WCB Mouse IgG 1:2

TATI a-tubulin Mouse IgG 1:2000

NUP1 Nuclear membrane Mouse IgG 1:200

Table 2.5: Secondary antibodies used for immunofluorescence

Antibody Animal Dilution

Anti-rat IgG FITC conjugate Rabbit 1:200

Anti-mouse IgG FITC conjugate Goat 1:200

Anti-mouse IgG Rhodamine conjugate Goat 1:200

Anti-mouse IgM Rhodamine conjugate Goat 1:200
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2.3 Molecular Biology

2.3.1 Oligonucleotides

Primers were designed for the amplification of specific regions of T. brucei genes by 

PCR. Primers were designed to contain the relevant restriction enzyme sites for 

ligation into specific vectors (vector maps are shown in section 2.3.2) either p2T7- 

177 for RNAi (Wickstead et al 2002) or PET-GFP for GFP tagging (Kelly et al 2007).

2.3.1.1 RNAi primers

RNAi primers were designed using the website RNAIt (Redmond et al, 2003) and then 

ordered from Invitrogen. Each forward primer contains an Xhol site and each 

reverse primer contains a Bam H I site to allow for ligation into the p2T7-177 vector.
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Chapter 2 -  Materials and Methods

2.3.1.2 Primers designed to create GFP fusions of T. brucei MAPs

To epitope tag proteins at the C terminus, primer pairs were designed to amplify a 

200bp product located at the C-terminus end of the ORF. This product was designed 

to lack a stop codon and contain the appropriate restriction sites, each forward ORF 

primer contains a site for Xbal and the reverse ORF primer contains a site for Xhol. 

A second set of primers were designed to amplify the first 200bp of the 3' 

untranslated region (UTR) immediately following the ORF sequence the forward 

primer in this case contains an Xhol site and the reverse UTR primer contains a 

Bam H I.

To fuse GFP to the N terminus a pair of primers was designed to amplify a product 

corresponding to the last 200bp of the 5'UTR, the forward primer in this case 

contains a Hind\\\ restriction site and each reverse UTR primer contains an Xhol site. 

Another primer pair was designed to amplify 200bp located at the N terminus of the 

ORF in this case the forward primer contains an Xhol site and the reverse primer 

contains a site for Spel. This combination of restriction sites allows the products to 

be cloned into the plasmid vector. The primers described above allow proteins to be 

endogenously tagged with GFP and expressed at near physiological levels.
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Chapter 2 -  Materials and Methods

2.3.1.3 Sequencing primers

For sequencing PCR products that had been cloned into pGEMT-Easy vector M13F 

and M13R primers were used.

M13 Forward 5'-3' CGCCAGGGTTTTCCCAGTCACGAC

M13 Reverse 5'-3' TC AC AC AG G A A AC AG CTAT G AC

2.3.2 Plasmids

All PCR products were first cloned into Promega's pGEMT-Easy vector (Figure 2.1) 

this allowed for sequencing before being sub-cloning into either p2T7-177 (Figure 

2.2) or PEnT6B-G (Figure 2.3).

1? I

\  /  (Aar II

Amp1

109
118
127
141

Figure 2.1 The pGEMT-Easy cloning vector

(Promega technical manual 2009)
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£ *
T7 promoter

Figure 2.2 The P2T7-177 cloning vector

(Wickstead et al 2002)
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Hindlll (193)
Spel (232)

ColE1 origin GFP(noATG)

TY epitope
EcoRV (1143)

pEnT6B-G
— AmpR

5182 bp Aldolase 3' —

Actin 5'
Stul (1621)

BLAST Sphl (1714)

Actin 3'
EcoRI (1849)

BstZI (1965)

Pvull (2054)

Ncol (2248)
Xcml (2248)

Mscl (2260)

Xmnl (3510)

Aalll (3191)

Nael (2690)

Figure 2.3 The PEnT6B-G cloning vector used for endogenous GFP tagging

(Kelly etal .  2007)
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Hindlll (193)
Spel (232)

ColE1 origin YFP(noATG )

TY epitope

Xbal (952) 
BamHI (991)

EcoRV (1134)

Pvul (3940)

— AmpR
pEnT6P-Y

5380 bp
Aldolase 3’

Xmnl (3708)

Nael (2888)
Sail

Actin 5'

Sphl (1705)

PURO

EcoRI (1840)
Actin 3'

BstZI (2294)

"cml (2446)

Figure 2.4 The PEnT6P-Y cloning vector used for endogenous YFP tagging

(Kelly etal .  2007)
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2.3.3 Isolation of genomic DNA

Exponentially growing cells were harvested by centrifugation and DNA extracted 

using TRIZOL reagent (purchased from Invitrogen) following the manufacturer's 

protocol. The amount of DNA isolated in each preparation was quantified using the 

spectrophotometer and then stored at -20°C.

2.3.4 Polymerase chain reaction (PCR)

T. brucei genomic DNA was used as the template for PCR amplification, 50ng of 

genomic DNA and Im M  of specific primers were added to the PCR Reddymix 

(Abgene) containing a 2x mix of Mg2+ buffer, dNTPs and TAQ polymerase. The table 

below shows the standard conditions used for PCR amplification.

Table 2.9. The standard conditions used for PCR amplification

No of Cycles Process Temperature Time

1 Initial Denaturation 94°C 2 minutes

25

Denaturation 94°C 30 seconds

Annealing 55°C 30 seconds

Extension 72°C 30 seconds

1 Final Extension 72°C 5 minutes

The annealing temperature was altered at times to temperatures ranging from 50 to 

62°C to allow for the different melting temperature of the primers thus allowing 

optimal amplification of different genes.

2.3.5 Agarose Gel Electrophoresis

PCR products were loaded onto 0.8-2% (w/v) agarose gels made up in TAE buffer

containing 0.5 |ig/ml ethidium bromide, the percentage of the gel was altered
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according to the expected size of the DNA fragment. Also loaded onto the gel was 5pl 

of Trackit 1Kb DNA ladder (Promega). Gels were run at 70V for 40 minutes and 

visualised using a UV transilluminator.

2.3.6 Purification of PCR products

PCR products were then purified using a PCR purification kit (Qiagen) according to 

the manufacturer's instructions and quantified by absorbance at 260 and 280 nm 

using a UV spectrophotometer (Eppendorf).

2.3.7 Ligation of DNA inserts into pGEMT-Easy

All PCR products were ligated into pGEMT-Easy vector for sequencing before sub­

cloning into the desired final vector. The purified PCR product was mixed with 50ng 

of pGEMT-Easy in a 3:1 insert: vector ratio as directed by the Promega technical 

handbook the reaction also contained T4 DNA ligase and 2 x ligase buffer. A control 

was always prepared in exactly the same way where the PCR product was replaced 

with water. The reactions were left for one hour at room temperature before being 

transformed into DH5a competent cells.

2.3.8 Preparation of competent bacterial cells for transformations

All transformations were carried out using DH5a Escherichia coli cells; chemically 

competent cells were prepared as follows. -80°C glycerol stocks were streaked onto 

an LB agar plate and grown overnight at 37°C. Individual colonies were grown 

overnight in 5mls LB broth at 37°C in a shaking incubator at 225RPM, 50mls of LB 

broth was inoculated with 1ml of this overnight culture and incubated at 37°C 

shaking at 225RPM measuring the OD600 at regular intervals until the reading was 

between 0.4-0.5. The cells were transferred to pre-chilled falcon tubes, incubated on
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ice for 10 minutes and centrifuged at 2000g for 5 minutes at 4°C on the Sanyo Harrier 

18/80 centrifuge using a 43124-141 swing bucket rotor. Cells were then resuspended 

in 20mls of ice cold TFG1 buffer (see list of buffers) and incubated on ice for 15 

minutes before harvesting at 2000g for 5 minutes at 4°C. Cells were resuspended 

gently in 2mls of ice cold TFG2 and incubated on ice for between 15 and 60 minutes. 

Then cells were aliquoted into 1.5ml tubes and snap frozen in liquid nitrogen.

2.3.9 Bacterial transformation and screening of clones containing plasmid DNA

Transformation of DH5a cells with DNA was carried out by gently mixing ligation 

reactions with an aliquot of competent cells then incubating on ice for 30 minutes. 

Cells were heat shocked at 42°C for 40 seconds, then recovered on ice for 2 minutes. 

800pl of LB broth was added and the cells were incubated at 37°C and for 90 minutes 

shaking at 225RPM, before being spread onto agar plates containing ampicillin for 

plasmid selection and incubated overnight at 37°C.

Colonies were selected from the agar plates and grown overnight at 37°C in LB broth 

containing Ampicillin. The bacterial culture was harvested by centrifugation and 

plasmid DNA was isolated using Qiagen plasmid purification kits based on sodium 

acetate precipitation of plasmid DNA, in accordance with manufacturers' 

instructions. To check for the presence of the insert restriction digests were carried 

out.

2.3.10 Restriction digests

Restriction digests were set up with appropriate restriction enzymes following 

manufacturer's instructions for optimal conditions. Digests were loaded onto a 1%
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(w/v) agarose gel made up in TAE buffer containing 0.5 pg/ml ethidium bromide and 

visualised using a UV transilluminator.

2.3.11 Sequencing

DNA from colonies containing the correct sized DNA fragment was sent for 

sequencing at Geneservice (Nottingham) using M13 forward and reverse primers.

2.3.12 Gel extraction of DNA fragments

DNA fragments were separated on a 1% gel by agarose gel electrophoresis; the gel 

was stained with 0.5 pg/ml ethidium bromide solution for 10 minutes. The desired 

fragments were excised with single-edged razor blades (SLS) whilst observing the gel 

on a UV transilluminator. DNA was purified using a gel extraction kit (Qiagen) 

according to the manufacturers' instructions. Once purified the DNA concentration 

was quantified by absorbance at 260 and 280nm using a UV spectrophotometer 

(Eppendorf) before being ligated into the desired vector.

2.3.13 Ligation into p2T7-177

The purified DNA insert was added to a reaction mix containing 50ng of linearised 

vector, rapid ligase buffer and T4 DNA ligase, a 3:1 ratio of insert: vector was always 

used. This reaction was mixed and incubated for 5 minutes on the bench before 

being transformed into E.coli DH5a competent cells as described earlier.

2.3.14 Ligation into pEnT6B-G

Both the purified UTR and ORF sequences were simultaneously ligated into the 

pEnT6B-G vector in a 3-way reaction (see Figure 2.5). The orientation and the 

specificity of the overhangs ensured that both sequences were ligated into the vector 

in the correct orientation.
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A fusing GPP to the Cterm inus

5'

Clone 200bp of the C ORF and 2C*0bp of the 3’ UTR 
into pET-GFP{Blast) vector

B L A S T

5-3't«U>ll

Transfect into T.bmceiand select with Rlasticiriin

■   —

T i M  ■

B Fusing 6FP to the N' terminus

5 UTB «>«

Clone 200bp of the N ORF and 20Gbp of the S' UTR 
into pFT-GFP(Blast) vector

5 '-3'Pffiot I

I ransfect in to  J.bruttv and select with Blasticidin I
U
' r orfcaii 3-yu9to?)

UTR EBLAST mi

Figure 2.5 Diagram showing insertion of PEnT6B-GFP at either the N or C terminus

Position of the gene is shown in orange and the untranslated region is shown in blue, restriction sites 

used for ligation are shown.
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2.4 Trypanosome Cell Culture and Experimentation

In order to protect cells from contamination all cell culture was performed in a Class 

II Microbiological Safety Cabinet. Cells were regularly observed under a Leica DMIL 

inverted phase contrast light microscope.

Procyclic cells Trypanosoma brucei brucei strain 427 (Cross & Manning, 1973) and the 

29-13 cell line (Wirtz et at, 1999) were grown in SDM79 media with 10% foetal 

bovine serum and 7.5mg/L hemin at 28°C as described by (Brun et al, 1979). Cells 

were maintained at a density of between lx lO 6 and lx lO 7 cells ml'1 in 10ml cultures 

in 25cm3 closed vent flasks incubated at 28°C, 29-13 cells were cultured with 20\xg 

ml'1 hygromycin and 2p,g ml'1 G418 in order to maintain selection of the T7 promoter 

and the tetracycine repressor.

The 90-13 bloodstream form of Trypanosoma brucei brucei (Wirtz et al, 1999) was 

grown in HMI-9 media, supplemented with 15% heat inactivated foetal bovine 

serum. Cells were routinely cultured in 10ml volumes in 25cm3 vented flasks at 37°C 

maintained at a density between lx lO 4 and 2xl06 cells ml'1.

2.4.1 Harvesting cells

Cells were harvested by centrifugation at 2000g for 10 minutes using a Sanyo Harrier 

18/80 centrifuge with a 43124-141 swing bucket rotor, unless other conditions are 

specified.

2.4.2 Freezing and storage

Samples could be stored by freezing at -80°C for up to a month, for long term storage 

cell lines were transferred from -80°C storage into liquid nitrogen. A 'healthy7 10ml
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mid-log culture (approx 2x l06 cells ml"1) was harvested by centrifugation, all but 

0.5ml of the supernatant was removed, the cell pellet was resuspended and 0.5ml of 

freezing mix (consisting of the relevant media containing 14% glycerol) was added 

(total 1ml). The culture was then transferred to a cryotube (Corning) and frozen at - 

80°C. For longer term storage cells were transferred to liquid nitrogen after a period 

of a month at -80°C.

2.4.3 Cell counting

Trypanosome cells were counted using the Casy cell counter (Scharfe systems), 

which gives an accurate count of cell number, cell size and percentage of viable cells. 

20pl of cell culture was added to lOmls Casyton solution in a Casy cup; this was 

mixed by inversion and placed under the capillary for measurement. Cells were also 

counted using a haemocytometer on the Leica DMIL inverted phase contrast light 

microscope by settling lOjul of cells onto a haemocytometer slide.

2.4.4 Linearisation of plasmid DNA

3-10pg of plasmid containing the desired insert was digested using the enzyme N o tl 

(p2T7177, pEnT6B-Y) or Xhol (pEnT6B-G) for between 90 minutes and 4 hours at 

37°C, to check that linearization was complete, lp l of the restriction digest was run 

on a 1% agarose gel containing ethidium bromide. Digested DNA was purified using a 

Qiagen PCR purification kit according to the manufacturers' instructions and eluted 

from the purification column in 50pl of ddhhO.

2.4.5 Transfection of trypanosomes

In order to protect cells from contamination this procedure was performed in a class 

II microbiological safety cabinet with exception for the electroporation which took
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place outside of the microbiological safety cabinet but within sealed and sterile 

cuvettes.

T. brucei (29-13 or 90-13) cells were grown to a density of 5x l06 cells ml'1 for PCF and 

2x l06 cells ml"1 for BSF and harvested by centrifugation. The supernatant was 

carefully removed and approximately 3xl07 cells resuspended in 0.5mls of ZMG for 

each transfection. 3-lOpg of linearised DNA in 50pl of sterile ddH20 was added to a 

0.4cm electroporation cuvette; 0.5mls of cells were transferred into each 

electroporation cuvette and mixed carefully with the DNA (or 50pl of ddH20 as a 

negative control). Cells were subjected to one round of 3 unipolar pulses of 1700V 

for lOOps, 200ms interval in the ECM 830 Electro Square Porator (BTX). The cells 

were then placed in a flask containing pre-warmed media, PCF were recovered in 

10ml of SDM-79 and BSF were recovered in 25ml of HMI-9 overnight. A negative 

control was always set up; 50pl of sterile ddH20 was added to a cuvette in place of 

linearised DNA. This control was included to ensure that there was sufficient 

selection of trypanosomes containing the drug resistance marker.

The following day cells were put onto antibiotic selection using relevant antibiotics 

(20pg/ml hygromycin, 7.5pg/ml phleomycin and 2pg/ml G418 for RNAi cell lines or 

5pg/ml blasticidin for GFP cell lines and 5pg/ml puromycin). Antibiotic resistant cells 

became confluent after approximately 2 weeks, and resistant cultures were 

expanded until they were healthy and ready for experimentation.

2.4.6 Induction of RNA interference

T. brucei p2T7-177 cell lines were screened for a phenotype by adding doxycycline to 

a final concentration of lpg ml'1, to induce production of dsRNA and RNA
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interference. PCF cultures were diluted back to lx lO 6 ml'1 and fresh doxycycline was 

added daily, BSF cultures were diluted back to lx lO 5 m l1.

2.4.7 Growth curves

A healthy mid-log culture was counted using the Casy cell counter and 20 mis of cells 

at a concentration of lx  106 cells ml'1 for PCF and lx lO 5 ml'1 for BSF prepared. This 

was split to form two 10ml cultures which were counted again to ensure each was at 

lx  106 cells ml'1 (PCF) lx lO 5 ml'1 (BSF). lpg ml'1 of doxycycline was added to one of 

these cultures to start the expression of the inducible vector, the other remained un­

induced. Cultures were diluted to lx lO 6 (PCF) or lx lO 5 (BSF) cells m l1 every 24 hours. 

Cells were counted using the Casy© counter at the same time the next day and 

subsequently diluted to lx  106 (PCF) or lx lO 5 (BSF) cells ml'1. Growth curves were 

maintained for a maximum of 10 days.

2.4.8 Preparation of cells for flow cytometry

Between 5x 106 and lx  107 cells per sample to be analysed were harvested then 

washed in 1XPBS and the centrifugation step was repeated. The supernatant was 

removed and the cells were then resuspended in 10 ml of 70% methanol in PBS. Cells 

were fixed for either 2 hours at room temperature or overnight at 4°C (at this point 

cells could be stored for up to 4 weeks at 4°C). Immediately prior to analysis cells 

were harvested at 1500g for 10 minutes at 4°C then the supernatant was carefully 

removed by pipetting to avoid disturbing the pellet. The cells were washed in 5ml 

PBS and centrifuged at 1500g for 10 minutes at 4°C before removing the supernatant 

carefully. The remaining pellet was resuspended in 2mls of PBS containing propidium 

iodide and RNAse both at lOpg/ml. Samples were incubated for 1 hour at 37°C
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before being analysed on the BD Biosciences FACsCanto II flow cytometer using the 

BDFACsDiva software.

2.5 Microscopy

2.5.1 Preparing slides for immunofluorescence - procyclic form trypanosomes

To prepare slides for immunofluorescence 1ml of a healthy mid-log procyclic 

trypanosome culture was centrifuged at 800g for 5 minutes, the pellet was 

resuspended in 1ml of PBS and centrifuged at 800g for 5 minutes the supernatant 

was removed and cells were resuspended in PBS to a concentration of approximately 

8x l06 cells m l1 50pl of this suspension was placed onto an uncoated glass slide until 

the cells settled (approx 5 minutes); note that for Delta Vision microscopy cells were 

settled onto glass cover slips. Slides or cover slips were put into a copling jar 

containing ice-cold methanol for 20 minutes at -20°C, for storage slides could be 

placed in methanol and placed in the -20°C freezer.

2.5.2 Preparing slides for immunofluorescence - bloodstream form trypanosomes

Star Frost silan coated slides (Knittel Glaser) prepared immediately before use by 

treatment with 5% glutaradehyde in ddH20 for 15 minutes before being washed 

twice in ddH20 and air dried. 1ml of a healthy mid-log BSF trypanosome culture was 

centrifuged at 800g for 5 minutes; the pellet was resuspended in 1ml of PBS and 

centrifuged at 800g for 5 minutes then the supernatant was removed, the cells were 

washed in this way a total of three times to ensure all media was removed. Cells 

were resuspended in PBS to a concentration of approximately 8x l06 cells ml'1 and 

50|il of this suspension was placed onto the pre-treated slide until the cells settled 

(approx 10 minutes). Slides were put into a copling jar containing ice-cold methanol
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for 20 minutes at -20°C, for storage slides could be placed in methanol and placed in 

the -20°C freezer.

To prepare PCF or BSF cytoskeletons, once cells had settled onto the glass slide, PBS 

containing 0.05% NP-40 was applied to the slide for between 30-60 seconds before 

the slide was placed in methanol.

2.5.3 Immunofluorescence

Following incubation in methanol slides were rehydrated in PBS for 30 minutes and 

then placed in a humidity chamber. A blocking solution was applied for 1 hour; the 

primary antibody was diluted in blocking buffer and applied for 1 hour at room 

temperature. Slides were washed in wash buffer 3 times for 5 minutes. Following this 

the cells were exposed to the secondary antibody diluted in blocking buffer for 1 

hour at room temperature. Slides were washed 3 times for 5 minutes in wash buffer 

then mounted using Vectashield mounting medium (Vector laboratories) with DAPI. 

Slides were sealed with nail varnish and then viewed on either the Leica DM RXA2 

epifluorescence microscope with fluorescence (Leica Imaging) or the DeltaVision core 

epifluorescence microscope (Applied Precision). All images were captured using a 

charged coupled device (CCD) camera and the brightness/contrast adjustments were 

made using Adobe Photoshop© (Adobe Systems Inc.)

2.5.4 Double-labelling with antibodies of the same isotype

Following methanol fixation and rehydration in PBS as described earlier, slides were 

incubated with the first primary antibody (targeting the smaller or less abundant 

protein first) for 30 minutes, then washed 5 times for 5 minutes in PBS. Slides were 

then incubated with the FITC conjugated secondary antibody diluted in PBS for 30

89



Chapter 2 -  Materials and Methods

minutes. Slides were washed again 5 times for 5 minutes in PBS then incubated with 

a neat non-relevant monoclonal antibody of the same isotype as the two antibodies 

of interest. PBS washes were repeated then the cells were exposed to the second 

primary antibody diluted in PBS, for 30 minutes. The 5 minute washes in PBS were 

repeated and the slides were then incubated with the TRITC conjugated secondary 

antibody for 30 minutes, the washes were repeated for a final time before the slides 

were mounted using Vectashield mounting medium (Vector laboratories) with DAPI. 

Slides were sealed with nail varnish and then viewed on the Leica DM RXA2 light 

microscope with fluorescence (Leica Imaging). All images were taken using a charged 

coupled device (CCD) camera and brightness/contrast adjustments made using 

Adobe Photoshop© (Adobe Systems Inc.).

2.5.5 Scanning electron microscopy

lOmls trypanosomes at a density of ~2-6 xlO6 were centrifuged at 500g for 5 minutes

and washed in lOmls PBS. Live cells were allowed to settle for 10 minutes on 13mm

glass coverslips positioned in a 24 well plate. Cells were fixed using 1ml EM fixative

solution. After fixation the samples were rinsed three times with ddH20 and

dehydrated through a series containing 10, 20, 30, 50, 70, 90 and 95% ethanol for 15

minutes each time, then placed in 100% ethanol 3 times for 30 minutes each time.

Samples were critically point-dried and after drying the coverslips were mounted

onto stubs and sputter coated with a 20nm thick layer of gold. Alternatively, cells

were fixed by adding 0.5 ml of 25% glutaraldehyde to 5 ml of cells in culture media at

ambient temperature. The cells were fixed for 3-16 hours, washed twice with PBS

and aliquots deposited on clean 13 mm silane (3 aminopropyltriethoxysilane)-coated

coverslips (Buechi & Baechi, 1979). The cells were allowed 30 minutes to attach to
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the glass after which they were rinsed three times with ddH20, dehydrated through a 

series of 10, 20, 30, 50, 70, 90 and 95% ethanol for 15 minutes each time and then 

critically point-dried. After sputter coating with gold the samples were examined in a 

JOEL JSM 6390 scanning electron microscope. (Sample preparation was performed 

by Mike Shaw, University of Oxford).

2.5.6 Transmission electron microscopy

For TEM analysis cells were initially fixed by adding 1ml of 25% glutaraldehyde to 9ml 

of cells in culture media at ambient temperature. After 5 minutes the cells were 

gently centrifuged (500g for 3 minutes) and then transferred into EM fixative. The 

cells were centrifuged at 16000g in an Eppendorf microcentrifuge at room 

temperature. Fresh fixative was added and fixation continued for 2-24 hours at 4°C. 

The pellet was washed in 200 mM phosphate buffer before the samples were post­

fixed in 1% osmium in lOOmM phosphate (pH 7.0) for 1.5 hours at 4°C, the pellet was 

then washed five times in ddH20 and en bloc stained with 2% aqueous uranyl acetate 

for 2 hours at 4°C in the dark. The pellet was then washed briefly in ddH20 and 

dehydrated through 30, 50, 70 and 90% ethanol before being placed in 100% ethanol 

three times for 30 minutes each time. Samples were treated with propylene oxide 

twice for 15 minutes each time and then embedded in Agar 100 epoxy resin (Agar 

Scientific). This was achieved by treatment with a 2:1 mix of propylene oxide:resin 

for 1 hour then treatment with 1:1 propylene oxide:resin for 1 hour and finally 

treatment with a 1:2 mix of propylene oxide:resin for 1 hour. Resin blocks were 

polymerised for 12 -24 hours at 60-70°C then ultrathin (~70 nm thick) sections were 

cut. These sections were double stained with uranyl acetate and lead citrate and
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examined in a FEI Technai 12 electron microscope. (Sample preparation was 

performed by Mike Shaw, University of Oxford).

2.5.7 Protein preparation from 7. brucei cultures

2.5.7.1 Whole cell preparation

Cells were centrifuged and washed in PBS. Cells were centrifuged again and the 

pellet resuspended in hot (100°C) SDS loading buffer (50 pi of SDS loading buffer per 

2xl07 cells). The sample was then heated in a heat block (100°C) for 5 minutes before 

being loaded onto an acrylamide gel or stored at -80°C.

2.5.7.2 Cytoskeleton preparation

Cells were harvested as described above however once the cells had been washed in 

PBS, the pellet was resuspended in PEME containing 1% NP40. Following 

centrifugation at 1500g for 10 minutes and removal of the supernatant (containing 

the soluble fraction), the pellet was resupended in hot SDS loading buffer as 

described above.

2.5.7.3 Acetone precipitation for protein concentration

The supernatant resulting from the detergent extracted cells contains detergent 

soluble trypanosome proteins were concentrated by acetone precipitation. Acetone 

was cooled to -20°C and 4x the sample volume added directly to the sample and 

mixed thoroughly before being incubated for 60 minutes at -20°C then centrifuged at 

maximum speed in a microcentrifuge for 10 minutes. The supernatant was discarded 

and the tube left open under a fume hood to allow any remaining acetone to 

evaporate. The remaining pellet was resuspended in SDS loading buffer.
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2.5.8 Polyacrylamide Gel Electrophoresis (PAGE)

Protein samples were separated on polyacrylamide gels using the BioRad minigel 

system, using either 10%, 12% or 15% polyacrylamide minigels. Protein samples were 

heated for 5 minutes in a heat block (100°C) before pulse centrifuging then loaded 

alongside Precision Protein standards (Biorad). Electrophoresis was carried out at 

room temperature at 120V.

2.5.9 Western blotting

Protein samples separated by SDS-PAGE were transferred from the polyacrylamide 

gel onto Hybond P nitrocellulose membrane (Amersham Biosciences) for 40 minutes 

at 10V in transfer buffer using a semi-dry transfer cell (Biorad). The membrane was 

then washed in ddH20  before being incubated on a shaker in blocking buffer for 1 

hour. Membranes were then incubated with the primary antibody (diluted 

accordingly in blocking buffer see Table 2.2) for 2 hours at room temperature before 

being washed twice for 5 minutes in TBS. Secondary antibody (diluted in blocking 

buffer see Table 2.3) was washed over the membrane for 1 hour at room 

temperature and the membrane was then washed three more times with TBS. 

Results were visualised using the ECL-Plus western blotting detection reagent 

(Amersham Biosciences) and on the Compact x4 developer (Xograph Imaging 

Systems) using Hyperfilm ECL (Amersham Biosciences).

2.6 Bioinformatics

2.6.1 Hidden markov model

An iterative profile-based search was performed using the Trypanosoma brucei GB4 

(Accession number Tb09.160.1200) predicted protein sequence. To initiate this
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search, the protein sequence was converted to a hidden-Markov model using the 

hmmer program (Eddy et al 1998) built using the '-s' option which permits the 

identification of the single best local hit in any given sequence. This model was then 

used to search a set of 32 eukaryotic genomes listed in Table 2.10. The resultant hits 

were filtered based on an e-value threshold of 1X1010. The region of each sequence 

which was identified by the HMM was extracted and aligned using MAFFT E-INS-i 

(Katoh et al 2005) and columns within the alignment that contained more than 50% 

gaps were removed to prevent acid insertions biasing the models. These gap-parsed 

alignments were then further parsed for with > 95% identity to any other sequence 

within the alignment. This step was done to prevent biasing of the HMM towards any 

particular group of sequences which may be overrepresented in the alignment due 

to the presence of paralogues. This gap and identity-parsed alignment was then used 

to generate the HMM for the next round of searches. This search was terminated 

after 8 iterations when no further hits passing the e-value threshold could be 

identified.

To increase the diversity of the motif multiple local hits to any given sequence were 

permitted by taking the final alignment from the above search procedure and using it 

to build a HMM using the '-f  option. Using this method we identified 196 examples 

of this motif each passing an e-value threshold of 1X1010 after three iterations.
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Table 2.10: Genomes searched by HM M

Organism Source Version Web reference

Arabidopsis thaliana TIGR - www. arabidopsis org/

Aureococcus anophagefferens JGI - http://www.jgi doe.gov/

Batrachochytrium dendrobatidis Broad institute -
http://
www.broad.mit.edu/

Caenorhabditis elegans C. elegans Sequencing Consortium WS150 www.wormbase.org/

Chlamydomonas reinhardtii JGI v3.0 www chlamy.org/

Coprinus cinereus Broad institute 1 http://
www.broad.mit edu/

Cryptosporidium pan/urn MRC Laboratory of Molecular Biology 3.3 cryptodb org/cryptodb/

Cyanidioschyzon merolae National Institute of Genetics, Japan -
merolae. biol.s.u- 
tokyo.ac.jp/

Dictyostelium discoideum The Dictyostelium discoideum Sequencing Consortium Primary dictybase.org/

Drosophila melanogaster The FiyBase Consortium/Berkeley Drosophila Genome 
Project/Celera Genomics BDGP4.2 www.ebi.ac. uk/ 

ensembl/

Emiliania Huxleyi JGI - http://www.jgi.doe.gov/

Giardia lamblia Marine Biological Laboratory - www.mbl.edu/Giardia/

Homo sapiens ENSEMBL NCBI 36 www.ebi.ac.uk/
ensembl/

Leishmania major Friedlin Consortium v5 www.genedb.org/

Micromonas pusilla Micromonas Genome Consortium - http://www.jgi.doe.gov/

Naegleria gruberi JGI V1.0 http://www.jgi.doe.gov/

Phaeodactylum tricomutum JGI V2.0 http://www.jgi.doe.gov/

Phycomyces blakesleeanus JGI - http://www.jgi.doe.gov/

Phytophthora ramorum JGI - http://www.jgi.doe.gov/

Physcomitrella patens JGI - http://www.jgi.doe.gov/

Plasmodium falciparum geneDB 3D7v2.1.1 www.genedb.org/

Saccharomyces cerevisiae ENSEMBL SGD1 www.ebi.ac. uk/ 
ensembl/

Selaginella moellendorffii JGI - http://www.jgi.doe.gov/

Tetrahymena thermophila TGD
Predic-
tions_Aug_2004 www.ciliate.org/

Thalassiosira pseudonana JGI V3.0 http://www.jgi.doe.gov/

Theileria annulata Sanger Institute - www.genedb.org/

Toxoplasma gondii TIGR V4.1 http://www.toxodb.org/

Trichoplax adhaerens JGI - http://www.jgi.doe.gov/

Trichomonas vaginalis TIGR 20050331 http://www.tigr.org/

Trypanosoma brucei TIGR & Sanger Institute v4 www.genedb.org/

Ustilago maydis Broad institute, Bayer CropScience, Exelixis
http://
www. broad, mit. edu/
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Chapter 3 An RNAi screen identifies a protein 

essential for cytokinesis

3.1 Introduction

Trypanosome cortex protein 86 (TCP86) is a novel MAP recently identified in the 

McKean laboratory. TCP86 associates with subpellicular corset MTs over the entire 

cell body, and RNAi mediated ablation causes a cytokinetic defect where 

asymmetrical division leads to the production of non-viable anucleate zoids and 

multinucleate progeny (Shawcross, 2008). Bioinformatic analysis shows that TCP86 

shares a region of homology with GB4 (Shawcross, 2008) a T. brucei MAP which also 

localises to the subpellicular MTs (Rindisbacher et al, 1993). To investigate if the 

sequence homology between these MAPs is shared by any other proteins a Hidden 

Markov model (HMM) was built based upon this region of homologous sequence 

between GB4 and TCP86; for the purpose of this thesis this sequence has been 

named the GB4 motif. The HMM was employed to search 32 eukaryotic genomes 

and consequently identified thirty six proteins which possess the GB4 motif, all of 

these proteins were from trypanosomatid species, including 17 from T. brucei. To 

establish whether the GB4 motif proteins play a role in cellular morphogenesis an 

RNAi screen was carried out in T. brucei procyclic form (PCF) cells. RNAi mediated 

ablation of one of the proteins identified by the HMM, which we have designated 

GB4-Like (GB4L), causes a severe defect in cytokinesis. The phenotype observed 

upon RNAi mediated ablation of GB4L was further characterised and is described in 

detail in this chapter.
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Additionally, this chapter provides evidence that TCP86 and GB4L are essential for 

viability in the BSF, and that RNAi depletion of TCP86 and GB4L in this life cycle form 

leads to phenotypes similar to those seen in the PCF.

3.2 TCP86 shares homology with the microtubule associated protein GB4

Homology between TCP86 and GB4 was first identified in a BlastP search which 

defined two regions of homology between the proteins (Shawcross, 2008). Figure 3.1 

shows that one of these regions is approximately 350 amino acids in length and is 

positioned close to the N-terminus in both GB4 and TCP86. This region shares 21% 

identity and 41% similarity and has homology with dynein heavy chain proteins from 

many different organisms, including T. brucei, C. elegans and Homo sapiens. The 

second region is a shorter sequence of 110 amino acids found once in TCP86 close to  

the C-terminus. This sequence is repeated 38 times in GB4 and as such has been 

named the GB4 motif. The GB4 motif has 25% identity and 45% similarity to the 110 

amino acid sequence found in TCP86 and similar sequences of amino acids are found 

in a number of kinesin or putative kinesin-like proteins. When the GB4 motif amino 

acid sequence was analysed by BlastP, all hits with an e-value of less than 1 were 

trypanosomatid; this suggests that the GB4 motif is specific to trypanosomes.
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32-387
GB4

1131-1241 (repeated x38)
W
Jfe.

21-395 4 7 4 -5 8 4

TC P 86 c

i 21%  Identity with TCP86 

25%  Identity with TCP8 G (See alignment A)

Figure 3.1 The microtubule binding proteins GB4 and TCP86 share regions of 
homology.

A cartoon showing the regions in both proteins where amino acid sequence is conserved (Adapted 

from Shawcross, (2008).

3.3 Generation of a Hidden Markov Model (HM M ) for the GB4 motif

To establish if this sequence is trypanosomatid specific and identify any further 

proteins which share the GB4 motif the amino acid sequence was used to initiate an 

iterative profile based search. This bioinformatic analysis was carried out in 

collaboration with Dr Steven Kelly and Dr Bill Wickstead (Sir William Dunn School of 

Pathology, University of Oxford). The GB4 motif sequence was converted to a Hidden 

Markov model (HMM) using the HMMER program (Eddy et al 1998) this model was 

designed to identify the single best local hit in any given sequence. The HMM was 

used to search 32 eukaryotic genomes including, Arabidopsis thaliana, C. elegans, 

Drosophila melanogaster, H. sapiens, 5. cerevisiae, L. major and T. brucei genomes; 

for the full list of genomes see Materials and Methods
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The results from this search were filtered, based on an e-value threshold of 1x1010, 

then the region from each protein sequence identified by the HMM extracted and 

aligned using MAFFT E-INS-i (Katoh et al 2005). Precautions were taken to ensure 

amino acid insertions, and/or overrepresentation of a particular group of sequences 

due to the presence of paralogues did not bias the HMM (see Materials and 

Methods). The results of each search were used to generate the HMM for the next 

round of searches and therefore refine the motif, after 8 iterations the search was 

terminated as no further hits passed the set e-value threshold. This initial HMM  

search generated a list of 36 proteins all of which were found in either T. brucei or L. 

major, there were no hits from other organisms which passed the e-value threshold; 

this result indicated the identification a trypanosomatid specific motif (to view the 

alignment file for the 36 identified proteins see supplementary Figure 8.1).

To assess if any of the proteins identified by this search possess multiple motifs the 

final motif from the original search was taken and a new HMM built which allowed 

multiple local hits in any given sequence. This method identified 206 examples of the 

motif, all within the same 36 proteins identified in the first screen (to view these 

alignments see supplementary Figure 8.2). The results of this expanded HMM did not 

include any non-trypanosomatid sequences thus confirming the trypanosomatid- 

specific nature of this motif.

3.4 Conservation of amino acids in the GB4 motif

In order to visualise the result of the HMM screen the 206 examples of the GB4 motif 

were aligned and a sequence logo was plotted (Figure 3.2) this graphically represents 

the conservation of amino acids in each position (or column) of the multiple
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alignment. The total stack height represents the relative entropy and the height of 

each letter in the stack is proportional to its frequency at the position. Apart from a 

very highly conserved tryptophan residue at position 15 of the motif the sequence 

logo shows that the 196 motifs identified by the HMM are quite variable. The motif 

has a hydrophobic nature, there are numerous hydrophobic residues such as valine, 

leucine, and phenylalanine which are reasonably well conserved along the length of 

the sequence. Conservation of amino acids is reduced near the end of the sequence 

from amino acid 91 onwards so the logo was trimmed down to the tyrosine at 

position 90. The trimmed logo is shown in Figure 8.3. The HMM was run again using 

this logo, and the same 36 proteins were identified.

The 36 proteins identified by the HMM are listed in Table 3.1; if the protein is 

annotated in GeneDB it is highlighted (yellow - L  major, blue-7”. brucei) and the name 

is given in brackets. Also shown is the number of repeats identified in each protein; 

the majority of the proteins have a single copy of the motif. However, 77 repeats 

were identified in GB4, this is more than the 38 repeats originally identified by 

BlastP; these additions are truncated versions of the repeat.
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Table 3.1 GB4 M otif containing proteins identified by the H M M  search

Accession numbers from GeneDB of the proteins identified and the number of motifs found within  

each of the proteins. Proteins which are annotated on GeneDB are highlighted L. major (yellow) T. 

brucei (blue) and listed with their name.

Accession Number Number of 
motifs

Tb09.160.1200 (GB4) 77
LmjF33.3070 34

LmjF26.1950 (GB4) 21
Tb927.2.5760 17
Tb927.5.1120 10
LmjF34.2530 5
LmjF33.3060 5
Tb927.7.3330 4
LmjF18.0770 3
LmjF22.1320 2

Tb927.4.3740 (FAZ1) 2
LmjF34.0690 2

Tb09.211.1910 1
Tb927.4.2060 1

LmjF14.1120 (Kinesin k39) 1
LmjF09.0800 (Kinetoplast associated ■i

protein -like protein)_
LmjF21.1240 1
Tb10.70.7320 1
LmjF26.1990 1
LmjF22.1330 1
LmjF26.2160 1

Tb09.160.1160 (TCP86) 1
Tb09.160.1180 (TCF>66) 1

LmjF26.1980 1
Tb10.70.7280 1
LmjF26.1960 1

Tb10.389.0100 1
Tb09.160.1110 1
Tb09.160.1100 1
LmjF25.1060 1
LmjF34.2570 1
LmjF34.0680 1

Tb927.7.4270 1

Tb927.2.5860 1

Tb927.2.5870 1

LmjF21.1220 1
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Of the seven GB4 motif proteins annotated in GeneDB, three are from L. major.

These include; (1) The GB4 homolog (LmjF26.1950) with 21 repeats of the motif, (2) 

A putative kinesin (K39, accession number LmjF14.1120) which has a single GB4 

motif, (note that the function of this protein as a kinesin has not been experimentally 

proven but is inferred from its homology to K39 in L. chagasi), (3) An uncharacterised 

protein, LmjF09.0800 which is annotated as a hypothetical kinetoplast associated 

protein due to its homology to an annotated protein in T. cruzi (GeneDB).

As expected the GB4 motif is identified in the T. brucei proteins TCP86

(Tb09.11.1160) and a closely related protein, TCP66 (Tb09.160.1180); a shorter 

isoform of TCP86 previously described by Shawcross (2008). Additionally the HMM  

identified 2 copies of the GB4 motif in the protein FAZ1 (Tb927.4.3740); a highly 

repetitive protein required for the assembly of the FAZ. A complete GB4 motif is 

located towards the C terminus of the protein and a more degenerate 50 amino acid 

sequence close to the N terminus (see Figure 3.4). Upon RNAi mediated ablation of 

FAZ1 in the PCF, FAZ assembly is compromised and flagellum detachment occurs, 

resulting in cytokinetic defects (Vaughan et al, 2008). All the other proteins identified 

by the HMM search are novel and uncharacterised.

Figure 3.3 and Figure 3.4 are schematic diagrams showing the relative length of each 

GB4 motif containing protein (grey line) and the position of the GB4 motifs (purple 

boxes). In many cases proteins contain a truncated version of the motif; these are 

represented by incomplete boxes.
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Many of the GB4 motif-containing proteins are novel and so their function(s) have 

yet to be established. The identification of conserved domains (in addition to the 

GB4 motif) may point towards the role of these proteins and so all proteins were 

screened against the Pfam database using a program designed by Dr Bill Wickstead 

(Sir William Dunn School of Pathology, University of Oxford). The results of this 

search are shown in Figure 3.5 (L. major proteins) and in Figure 3.6 (7. brucei 

proteins).

Additional conserved domains with diverse functions were identified in 7 out of the 

36 GB4 motif containing proteins. In L. major, 4 of the 19 proteins have additional 

domains defined by Pfam (Figure 3.5). Two proteins contain multiple repeats of a 

CAST (cytomatrix at the active zone (CAZ)- associated structural protein) domain 

which is implicated in determining the site of synaptic vesicle fusion in mammals. 

Intriguingly one of these CAST domain containing proteins (LmjF34.0690) also 

contains an ERM domain (ezrin, moesin, and radixin domain) which is found in a 

number of cytoskeletal associated proteins and is believed to function in 

cytoskeleton-plasma membrane cross-linking. This suggests that Lmj34.0690 may 

function as a MT binding protein which functions at the subpellicular corset-plasma 

membrane interface. The same protein also has a Cenp-F_leu_zip domain, Cenp-F is 

a MT-binding protein that associates with the centromere-kinetochore complex. 

LmjF14.1120 is the putative kinesin (K39) described earlier, this search identified a 

kinesin domain, shared by MT-based kinesin motors as well as multiple repeats of 

the CAST domain. Finally, LmjF21.1240 contains two truncated WD40 domains, 

repeats of this domain often serve as a platform for protein-protein interactions and 

are found in proteins with a variety of functions (Li & Roberts, 2001).
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In T. brucei 3 proteins have additional conserved domains Tbl0.70.7320 has two  

truncated WD40 repeats and Tb927.5.1120 has 10 regularly spaced truncated 

repeats of the GB4 motif each repeat is associated with a truncated phage fiber-2 

domain. Tb927.7.4270 has a Tweety domain close to the C-terminus; Tweety 

domains are associated with transmembrane proteins (Campbell eta l, 2000).
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Chapter 3-An RNAi screen identifies a protein essential for cytokinesis

3.5 RNAi screening of H M M  identified proteins

Many of the proteins containing GB4 motifs are uncharacterised and so to gain 

insight into their possible functional roles an RNAi screen was undertaken in the PCF 

(no further work was carried out on the subset of proteins identified in L. major). 

GB4 itself was also included in the RNAi screen as functional characterisation of this 

protein has not previously been undertaken. RNAi constructs were prepared and 

transfected into PCF cells for knockdown of the specific GB4 domain containing 

proteins. Once the transfected cells were growing well on drug selection, RNAi was 

induced and the population monitored for growth, morphology and/or motility 

defects.

Upon induction of RNAi the majority of the cell lines (including GB4) grew normally 

and showed no obvious growth or motility phenotypes (see growth curves in Figure 

3.7). However, RNAi mediated ablation of Tb927.2.5760 led to a significant decrease 

in population growth rate. 24 hours post induction cell doubling time is reduced to 

approximately 50% compared to the non-induced control. After 72 hours population 

growth is reduced to approximately 20% compared to the non-induced control. 

Observations were stopped at 96 hours post induction as no further population 

growth was observed. As these preliminary results suggested that there was no 

growth or motility phenotype for the other proteins included in the screen, analysis 

of these cell lines ceased. All further investigation focused on characterising 

Tb927.2.5760.
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Chapter 3-An RNAi screen identifies a protein essential for cytokinesis

3.6 Further investigation of Tb927.2.5760 (GB4L)

Bioinformatic analysis shows that the Tb927.2.5760 protein contains 17 GB4 motifs; 

no additional conserved domains were detected in the Pfam screen. This protein 

shares 23% amino acid identity and 37% amino acid similarity with the T. brucei MAP 

GB4; due to this level of homology it was designated GB4-Like (GB4L). Gb4L is a 330 

kDa protein that proteomic analysis reported on GeneDB suggests is expressed in the 

PCF and BSF of T. brucei (Jones et al, 2006; Bridges et al, 2008). It is not found in the 

T. brucei flagella proteome (TbFP) but it is detected in an unpublished PCF T. brucei 

cytoskeleton proteome (K. Gull, University of Oxford personal communication). 

Orthologues of GB4Lcan be detected by BlastP analysis in L braziiiensis, L. infantum, 

L. major, L mexicana, T. b. gambiense, T. congolense, T. cruzi and T. vivax; all of the 

GB4L genes are syntenic (for synteny map see supplementary Figure 8.5).

3.6.1 Analysis of cell cycle progression in the GB4L RNAi cell line using flow 

cytometry

GB4L depletion leads to a severe cytokinetic defect which is evident when directly 

observing induced cells in culture. 24 hours after induction of RNAi, aberrant cells 

can be observed with two anterior ends pointing in opposing directions; other cells 

have multiple anterior ends and large cell bodies and swim erratically. To further 

investigate the effect of GB4L ablation on cell cycle progression, cells were harvested 

over the course of an RNAi induction experiment and stained with propidium iodide; 

this allows the DNA content of a cell to be measured by flow cytometry. The flow 

cytometer was set to measure the DNA content of 10,000 cells from the following 

cultures, non-induced population of cells (which would act as a control to determine
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Chapter 3-An RNAi screen identifies a protein essential for cytokinesis

the normal distribution of cells before GB4L ablation), and 12, 24 and 48 hours post 

RNAi induction. The results of this analysis are shown in Figure 3.8.

560

2C

0 1000FL2-A

560-1

4C

FL2-Ao 1000

560-1
Induced
t=24hrs

8C

1000FL2-A

560-1 Induced
t=48hrs

Zoid

8C

0 FL2-A

Figure 3.8 Flow cytometry analysis of the GB4L RNAi cell line

Cells from a GB4L RNAi induction tim e course were harvested and stained with propidium iodide in 

preparation for analysis by flow cytometry as described in section 2.4.8. Changes in ploidy were  

recorded over tim e, non-induced control (Nl), 12, 24 and 48 hours post induction. The x  axis shows 

fluorescence intensity in the FL2-A channel (propidium iodide). Ploidy of peaks is indicated. Analysis 

shows an increase in 2K2N cells and the development of subpopulations of anucleate zoids and 

multinucleates at 24 and 48 hours.
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In the non-induced control cells, the flow cytometry profile shows that the majority 

of cells have a 2C (1K1N) DNA content, the second peak (4C) represents the 2K2N 

cells. After 12 hours of induction the number of 2C cells is reduced and there is a 

corresponding increase in the number of 4C cells, signifying that 2K2N cells are 

accumulating. After 24 hours of GB4L ablation the majority of cells have a 4C (2K2N) 

DNA content, this suggests that the process of mitosis or cytokinesis is stalled. 4C 

cells accumulate as these cells do not initially divide to form 2C cells (hence the 

reduction in the 2C population). At 24 hours two additional peaks can also be seen in 

the profile, these represent subpopulations of anucleate zoids (IKON cell) and 

multinucleates. Zoids are represented by the first peak closest to the y axis and 

multinucleates are represented in the fourth peak (8C). A comparison between the 

non-induced profile and t=48 hours shows the 2C and 4C peaks of DNA content are 

greatly reduced. There is an increase in the number of zoids and an additional peak 

at 8C; these two peaks represent the accumulation of polyploid multinucleates, 

showing that when cytokinesis is stalled, trypanosome cells repeatedly re-enter the 

cell cycle and re-replicate their DNA.

3.6.2 Morphological examination of GB4L depleted cells

Flow cytometry analysis established that depletion of GB4L leads to a cytokinetic

defect resulting in the production of multinucleates and zoids. These effects occur

rapidly upon RNAi induction as the phenotype can be detected in live culture as early

as 12 hours after the addition of doxycycline to the media. To investigate the

consequences of GB4L depletion at a cellular level, cells were harvested every 12

hours over the course of an RNAi induction experiment and settled on to slides. Cell

morphology was examined and the number, and intracellular positioning, of nuclei
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and kinetoplasts assessed by DAPI staining. Cells were also examined by indirect 

immunofluorescence using antibodies against the basal bodies, FAZ and PFR to 

identify if there were any problems in organelle positioning.

3.6.3 Visualisation of kinetoplast and nuclear configuration using DAPI

Figure 3.9 shows the results of DAPI counts carried out on non-induced cells and cells 

from cultures at 24 and 48 hours post RNAi induction. As with the flow cytometry 

data, the most abundant sub-population of cells in the non-induced control are the 

1K1N cells (which make up 80% of the population) this is followed by 2K1N (12%) and 

finally 2K2N (7%) at this time point there were no multinucleate or anucleate zoids 

observed. After 24 hours of GB4L depletion the observed cell types changed with the 

population of 2K2N cells increasing dramatically, consistent with the flow cytometry 

data shown in Figure 3.8. The largest sub-population is the 2K2N cells (47%) there are 

fewer 1K1N cells (19%) and there are additional sub-populations of multinucleates 

and zoids (6 and 18% respectively). The significant increase in the 2K2N sub­

population, and the reduction in the number of cells at G1 (1K1N), points towards a 

stall in cytokinesis. After 48 hours of GB4L depletion the population of 1K1N shows a 

100-fold reduction (from 80% in the non-induced culture to 0.8% after 48 hours), 

showing that very few cells successfully complete cytokinesis to produce viable 

daughter cells. At this time point 65% of the populations are multinucleated cells and 

33% are zoids.
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Oh 24h

1K1N
l l 2K1N

2K2N

1--------j Multinucleate

Zoid (anucleate)

Figure 3.9 Pie charts showing kinetoplast and nuclear content in the GB4L RNAi cell 
line

Samples of non-induced cells and cells from cultures 24 and 48 hours post induction of GB4L RNAi 

ablation were settled onto slides (as described in section 2.5.1) and stained with DAPI to  allow  

visualisation of the nuclei and kinetoplast configuration. 500 cells were counted for each time-point. 

Pie charts show the percentages of different cell types present at each tim e point. At 24 hours post­

induction there is an increase in the number of cells with 2K2N content, a large reduction in the  

number of 1K1N cells and tw o sub-populations not observed in the non-induced culture have 

appeared, these populations represent multinucleate cells and anucleate zoids. At 48 hours the  

number of multinucleate and zoids has increased and these sub-populations account for the majority 

of the cells counted. Very few  cells are observed with a normal nuclei/kinetoplast configuration.
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3.6.4 Cleavage furrow ingression stalls as a result of GB4L ablation

The flow cytometry and DAPI count analysis show that 2K2N cells accumulate upon 

depletion of GB4L; suggesting a defect in progression through cytokinesis. To 

complete cytokinesis, T. brucei cells must first initiate cleavage furrow ingression, the 

furrow must then progress longitudinally from the anterior to the posterior pole of 

the cell and finally cells undergo abscission. To establish if GB4L ablation disrupts a 

specific stage of cytokinesis (e.g. initiation of cytokinesis, cleavage furrow 

progression or abscission) 2K2N cells from populations of non-induced, 12 hours and 

24 hours post RNAi induction were counted and characterised into three distinct 

groups:

(1) No visible cleavage furrow (cells which have not yet initiated cytokinesis)

(2) Visible cleavage furrow and

(3) Undergoing abscission

Figure 3.10 shows that when GB4L is depleted cells accumulate with visible cleavage 

furrows: 50% more cells are observed with a cleavage furrow at 24 hours when 

compared to the non-induced control. This analysis shows that initiation of 

cytokinesis is not prevented by the ablation of GB4L and moreover that cells are 

capable of commencing cleavage furrow ingression. However, progression of the 

cleavage furrow is clearly disrupted and cells stall mid-way through cytokinesis with 

fewer cells reaching abscission.
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Figure 3.10 Characterisation of cytokinesis stage of 2K2N cells from GB4L RNAi cell 
line

Samples of non-induced (Nl) cells and cells from cultures 12 and 24 hours post induction of GB4L RNAi 

ablation were settled onto slides (as described in section 2.5.1), stained with DAPI to  allow 

visualisation of the nuclei and kinetoplast configuration. 200 2K2N cells from each tim e point were 

counted and classified into three distinct groups, those with no furrow, those with a visible furrow  and 

those undergoing abscission. The graph shows that GB4L depleted cells are capable of initiating 

cytokinesis but cleavage furrow ingression is disrupted.

3.6.5 The formation of the flagellum, FAZ and basal bodies are not affected by 

GB4L ablation

Key organelles such as the basal bodies and the FAZ must be correctly formed and 

positioned to allow faithful cytokinesis. To investigate the possible cause of the 

cytokinetic defect observed in GB4L depleted cells, the PFR, which serves as a marker 

for the flagellum, and the FAZ and basal bodies were labelled with specific 

antibodies. The results of these indirect immunofluorescence assays are shown in 

Figure 3.11 and Figure 3.12. Although cells become progressively more abnormal 

with respect to morphology at later time points the immunofluorescence analysis 

shows that basal bodies have segregated and have nucleated new flagella of a
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'normal' length (Figure 3.11) and the FAZ filament is not affected by the depletion of 

GB4L (Figure 3.12). This indicates that the formation of these critical organelles is not 

affected by the RNAi ablation of GB4L.

PHASE DAPI BASAL BODIES PFR MERGE

Figure 3.11 Immunofluorescence images showing the basal body and paraflagellar 
rod in the GB4L RNAi cell line

Samples of non-induced cells and cells from cultures 12, 24 and 48 hours after induction of GB4L RNAi 

ablation were settled onto slides (as described in section 2.5.1), and labelled with the antibodies L8C4 

(green) and BBA4 (red) specific for the PFR and basal bodies respectively (dilutions used are given in 

section 2.2.3) and DAPI (blue). RNAi ablation of GB4L appears to have no affect on the positioning or 

formation of the PFR and basal bodies, even in cells with grossly abnormal morphology (scale bar = 10 

pm).
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PHASE MERGE

48

Figure 3.12 Immunofluorescence images showing the flagellum attachment zone in 
the GB4L RNAi cell line

Samples of non-induced cells and cells from cultures 24 and 48 hours after induction of GB4L RNAi 

ablation were settled onto slides (as described in section 2.5.1), and labelled with the antibody L6B3 

specific for the FAZ filament (red) and DAPI (blue). RNAi ablation of GB4L appears to have no affect on 

the positioning or formation of the FAZ filament, even in cells with grossly abnormal morphology 

(scale bar = 10  pm).

3.7 Visualisation of new microtubule growth in GB4L depleted cells

After 12 hours of GB4L ablation cells are observed with two normal anterior ends

which remain attached due to a stalling of cleavage furrow ingression. The presence

of anterior ends which are apparently normal suggests that the cleavage furrow

initiates correctly and makes accurate progress in the early stages of cytokinesis. It is

upon reaching the posterior end of the cell that the cleavage furrow encounters
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difficulties and is stalled. The consequence of this is the generation of characteristic 

cells referred to hereafter as 'push me-pull you' cells (by reference to the fictional 

creature in Dr Doolittle stories which has two heads at opposite ends of the body).

It is possible to visualise new MTs at the posterior pole of the cell using the antibody 

YL1/2 which detects tyrosinated a-tubulin. Once tyrosinated a-tubulin has been 

recruited to the MT polymer the C terminal tyrosine residue on a-tubulin is a target 

for removal, this process is time dependent and once the tyrosine residue is removed 

the YL1/2 signal is lost; this makes YL1/2 a useful marker for new MT formation. 

Since most tubulin growth occurs at the more dynamic posterior end of the cell, 

YL1/2 is a useful posterior end marker. The characteristic YL1/2 staining pattern 

includes a bright dot associated with the mature basal body. This is because YL1/2 

detects a pool of unpolymerised tyrosinated a-tubulin waiting to be transported into 

the flagellum by IFT (Stephan et al, 2007). The a-tubulin detected by YL1/2 in this 

position is associated with transitional fibres of the mature basal body and is seen as 

either one or two bright dots depending on the stage of the cell cycle.

In wild type (Sherwin & Gull, 1989a) and GB4L non-induced populations YL1/2 has a 

distinctive staining pattern, 1K1N cells in Gi have strong YL1/2 staining at the 

posterior end indicating that new MT growth is taking place at this stage. In 2K1N 

cells the staining of the posterior end is still present but has a reduced intensity and 

more staining is seen over the cell body as new MTs are intercalated into the existing 

corset to allow for an expansion in the cell diameter to accommodate duplicated 

organelles. Finally in 2K2N cells just prior to cytokinesis YL1/2 staining can be seen at 

the existing posterior end and in the region between the two separated nuclei which
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will form a new posterior end (Figure 3.13). Thus YL1/2 labelling shows that new MTs 

are formed and grow in a manner which organises the subpellicular corset in 

preparation for cytokinesis.

In the GB4L RNAi induced cells YL1/2 staining is also evident in 1K1N and 2K1N cells 

indicating that new MTs are forming and being intercalated into the pre-existing 

corset. In the characteristic 'push-me-pull-you' 2K2N cells the YL1/2 staining pattern 

is different from that observed in a non-induced cell, a region of YL1/2 staining can 

be detected in between the two adjoined anterior ends in what appears to be a 

"ridge' across the cell body; this is shown in Figure 3.13. This suggests that MT growth 

at the posterior end in these cells is disorganised and may explain why cleavage 

furrow progression has stalled.
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Figure 3.13 Immunofluorescence images showing sites of new microtubule 
formation in the GB4L RNAi cell line

Cells from a non-induced sample and a sample 24 hours after induction of GB4L RNAi were prepared 

for immunofluorescence as described in section 2.5.1, labelled with the antibody YL1/2 (for dilutions 

used see section 2.2.3) which detects tyrosinated a-tubulin and acts as a marker for new MTs. Top 

images show representative cells from a non-induced population; YL1/2 is detected at the posterior 

end and shows organised microtubule growth leading to the formation of tw o distinct posterior ends. 

Bottom, after 24 hours of GB4L depletion YL1/2 staining is concentrated in the region where the  

cleavage furrow has stalled (scale bar = 1 0 pm).

3.8 Organelle positioning in GB4L depleted cells

Preliminary immunofluorescence experiments suggest that defective cytokinesis is 

not explained by aberrant formation of the FAZ filament, PFR (and therefore length 

of the flagella) or the basal bodies. There is evidence from the YL1/2 staining pattern 

to suggest that MT formation at the posterior end of the cell is disorganised.
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Extension of the posterior end early in the cell cycle and intercalation of new MTs 

into the existing corset throughout the cell cycle are essential processes which 

enable the cell to grow and accommodate newly formed organelles. The relative 

positioning of organelles to one another and to the posterior end must adapt 

consistently throughout the cell cycle to ensure the cleavage furrow accurately 

divides the cell and faithfully partition duplicated organelles. The positioning of 

organelles within the cell and in relation to one another is highly co-ordinated and is 

in turn temporally and spatially co-ordinated with cytokinesis. To establish if there 

are abnormalities in spatial arrangement of organelles within GB4L depleted cells 

specific measurements were taken in non-induced cells and at 12 hours post RNAi 

induction; these measurements are shown in Figure 3.14.

Basal body 

Old Fiagellum 

New Flagellum

I  Flagella Connector 

Nucleus

Figure 3.14 Cartoon showing the measurements taken for examining organelle 
positioning in RNAi cell lines

Cells were prepared for immunofluorescence (as described in section 2.5.1) and labelled with an anti- 

PFR antibody (L8C4) and an anti-basal body antibody (BBA4) (dilutions are shown in section 2.2.3) and 

stained with DAPI. This allows the following measurements to be carried out : A -  length of old 

flagellum, B -  length of new flagellum, C -  FC migration, D -  Inter-basal body distance, E distance from  

new basal body to posterior end of the cell and F -  Inter-nuclear distance.
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The 12 hour time point was selected in order to try and visualise the initial effects of 

reducing GB4L expression. To allow for variation in cell size the data is expressed as a 

ratio of old flagellum length as the old flagellum length is the only measurement 

which remains consistent through the cell cycle changing only due to variation in 

individual cell size rather than due to cell cycle events. As the new flagellum extends 

progressively throughout the cell cycle it is used as a temporal marker for cell cycle 

progression.

126



C
h

ap
te

r 
3-

An
 

R
N

A
i 

sc
re

en
 

id
en

ti
fie

s 
a 

pr
ot

ei
n 

es
se

n
ti

al
 f

or
 

cy
to

ki
n

es
is

CL)"O

-O
CD

I d O  u o h b j 6 ! ^  q j z _ U O  pua jouajsod - ggN

d
o

m
csi

<uU
<
Zcc
_J

CQ
O
a>

o  bo
ai Cu
S £</) o
> *  • —1 s
s ?■(0
ai "gj
£  Cro 

bo

-yO'saueiSjQ jBspnujejui IdOHdN

u(/>0)
■a
to-C
Q.ro
i _

in
H
fO
<D
3
bo

3
■a
c

aj
ro

T 3
c

~a
CL)

3
■a

o>
Q.
E

— to

bO
c
5  ~

T 3
C

X )
CD<_>3T3
C
CD

CD
5
CD
C

<
cc
_I
*d-co
O
CDsz
+->

Eo

CD
C_> de

sc
rib

ed
 

in 
se

ct
io

n 
2.

5.
1.

 T
he

se
 

ce
lls

 
w

er
e 

la
be

lle
d 

fo
r 

im
m

un
of

lu
or

es
ce

nc
e 

wi
th

 
an 

an
ti-

PF
R 

an
tib

od
y 

(L
8C

4)
 a

nd
 

an 
an

ti-
ba

sa
l 

bo
dy

 
an

tib
od

y 
(B

B
A4

) 
an

d 
st

ai
ne

d 

wi
th

 
DA

PI
. 

Th
e 

po
si

tio
n 

of 
ke

y 
or

ga
ne

lle
s 

wa
s 

m
ea

su
re

d 
in 

re
la

tio
n 

to 
on

e 
an

ot
he

r 
in 

20
0 

ce
lls

 
fro

m 
ea

ch
 

sa
m

pl
e,

 a
s 

de
sc

rib
ed

 
in 

se
ct

io
n 

3.
8.

 T
he

 
as

te
ris

k 
in 

G
ra

ph
 

A 
re

pr
es

en
ts

 
a 

su
bp

op
ul

at
io

n 
of 

in
du

ce
d 

ce
lls

 
w

he
re

 
in

te
rn

uc
le

ar
 

di
st

an
ce

 
is 

hig
h 

an
d 

th
e 

ne
w 

fla
ge

llu
m

 
is 

sh
or

t 
th

is 
m

ay
 

re
pr

es
en

t 
a 

po
pu

la
tio

n 
of 

1K
2IM

 
ce

lls
. 

Th
e 

ar
ro

w 
in 

G
ra

ph
 

B 
in

di
ca

te
s 

th
e 

in
fle

xi
on

 
po

in
t 

in 
th

e 
gr

ap
h 

w
he

re
 

FC 
m

ig
ra

tio
n 

re
ac

he
s 

th
e 

's
to

p'
 

po
in

t.



Chapter 3-An RNAi screen identifies a protein essential for cytokinesis

Nuclear separation - The most intriguing observation arising from the measurement 

data is seen in Figure 3.15A which shows inter-nuclear distance plotted in relation to 

new flagellum growth. In the non-induced sample (black circles) as the new flagellum 

extends nuclear separation remains consistent this is because these measurement 

represent 1K1N cells which have not yet entered mitosis. Upon entering mitosis the 

nuclear diameter increases and eventually two nuclei form which move apart. The 

inflection point in the non-induced graph at approximately 0.6 (on the X-axis) 

indicates where nuclei have begun to move apart during mitosis. The induced cell 

line (white triangles) appears to lack a distinct inflection point. In some cells nuclei 

separate and have a normal internuclear distance at later stages in the cell cycle, 

however the general trend is for the internuclear distance to remain the same, nuclei 

separation may be restricted meaning they remain in closer proximity to one another 

than in non-induced cells. There is a subpopulation of cells shown top left of the 

graph (indicated with a blue asterix) which may represent 1K2N cells which have 

under gone cytokinesis and re-entered the cell cycle, these cells will have a large 

internuclear distance and a short or non-existent new flagellum.

New flagellum growth - Figure 3.15B describes the relationship between the 

migration of the FC along the old flagellum and the growth of the new flagellum; in 

both the induced and non-induced cells migration of the FC along the old flagellum 

and extension of the new flagellum is biphasic starting out as a linear relationship 

each extending progressively until reaching the 'stop' point (Davidge et al, 2006). The 

'stop' point indicates where the FC migration along the old flagellum halts this is at 

approximately 0.5 on the y axis meaning the FC migrates approximately half way

along the old flagellum before stopping (indicated on the graph by a blue arrow).
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Once the FC has stopped migrating the new flagellum continues to grow to between 

80-100% the length of the old flagellum, this growth is slower, approximately half the 

rate of that seen in cells earlier in the cell cycle. RNAi mediated ablation of GB4Ldoes 

not appear to effect the growth of the new flagellum or the migration of the FC.

Basal body separation - Figure 3.15C shows basal body separation in relation to new 

flagellum growth. The non-induced cell measurements show that as the new 

flagellum extends and the cell progresses through the cell cycle, the interbasal body 

distance increases. This relationship is also biphasic, as initially interbasal body 

distance changes very little until the new flagellum has reached approximately half 

its final length (0.5) then basal body separation occurs. This shows that further 

growth of the new flagellum is translated into basal body migration. The non-induced 

cells show the same general trend.

Distance from the new basal body to the posterior end - Figure 3.15D describes the 

position of the new basal body in relation to the posterior as the new flagellum 

extends. The distance from new basal body to the posterior end of the cell is reduced 

slightly in the induced culture. However this reduction is consistent in all cell types 

and so suggests it is not cell cycle related.

Conclusions - the measurement data for the GB4L cell line shows that organelle 

positioning in the non-induced cells is as expected for wild type. The induced cell line 

follows the same general trend as the non-induced cells in most cases. However, 

points for the induced population are slightly more dispersed and nuclear separation 

appears to be restricted in some cells.
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3.8.1 Effect of GB4L and TCP86 RNAi mediated ablation on growth of bloodstream 

form T. brucei.

Expression of TCP86 in BSF of T. brucei has been demonstrated experimentally by 

immunofluorescence and immunoblot analysis using a TCP86 specific polyclonal 

antibody (Shawcross, 2008). Immunofluorescence experiments showed TCP86 is 

found over the entire subpellicular corset, matching the localisation pattern seen in 

the PCF (Shawcross, 2008). Proteomic data also shows that GB4L and the previously 

published trypanosome MAP GB4 are expressed in the BSF (Bridges et al, 2008) and 

so to study the role of these proteins in the BSF of T. brucei, RNAi constructs were 

transfected into the 90-13 cell line (Wirtz et al, 1999) to enable inducible ablation in 

this life cycle stage.

Growth curves for these three RNAi cell lines are presented in Figure 3.16 and show 

that both GB4L and TCP86 are essential in the BSF since their ablation results in a 

marked reduction in population growth. GB4 is not essential in the BSF as the growth 

curve shows no effect on doubling time when this protein is ablated.
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Figure 3.16 Growth curves showing effects of RNAi mediated ablation of GB4L, GB4 
and TCP86 in the bloodstream form

RNAi ablation was induced by the addition of doxycyclin to culture medium containing RNAi cell lines 

at a concentration of lx l0 5cells/ml (methods described in section 2.4.6). The induced and non- 

induced populations were measured every 24 hours and diluted back to lx l0 5cells/ml, counts were 

continued for 48 hours GB4L and TCP86 show a growth defect when compared to the non-induced 

control, GB4 ablation has no affect on population growth over 48 hours.
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Ablation of GB4L causes reduced growth from as early as 8 hours post induction, 16 

hours after induction of GB4L RNAi the doubling time for the population is less than 

half that of the non-induced control, between 16 and 24 hours there is very little 

growth observed. The population showed no significant growth between 24 and 48 

hours so analysis was stopped. Reduction of TCP86 expression has similar effects on 

the population, 8 hours after the induction of TCP86 RNAi cells grow at 

approximately half the rate of the non-induced control, there is still growth after 24 

hours but it is severely reduced, a small amount of growth was recorded at the time 

points beyond 24 hours when compared with the non-induced cells but this growth 

was not significant and so measurements were stopped at 48 hours. The growth of 

the GB4 RNAi cell line varied little when compared to the non-induced control over 

the 48 hour time course; this suggests that GB4 is not essential for viability in the 

BSF.

To further investigate the effects that GB4L and TCP86 depletion have on the BSF, 

DAPI counts were carried out. DAPI counts allow the number of nuclei and 

kinetoplasts to be counted within each cell, the DNA content of the cell is a reliable 

indicator of the cell cycle stage and any abnormalities in kinetoplast or nuclei 

segregation or cytokinesis are easily detected by this method.

3.8.2 Visualisation of kinetoplast and nuclear configuration in the bloodstream 

GB4L RNAi cell line

DAPI counts for the GB4L BSF RNAi cell line are shown in Figure 3.17; counts were 

carried out on cells from cultures which were non-induced, 12, 24 and 48 hours post 

induction of RNAi. The counts reveal that at the 12 hour time point there is an
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increase in the 2K2N sub-population coupled with a reduction in the number of 1K1N 

cells (Figure 3.17). This is similar to the observations in the PCF RNAi cell line and 

suggests a blockage in mitosis and/or cytokinesis. After 24 hours there is a profound 

increase in the number of multinucleates and zoids and by 48 hours the majority of 

the cells counted were multinucleates followed by zoids. Very few cells appear to be 

progressing through the cell cycle as normal this was expected after the results of 

the growth curve which showed no population growth at 48 hours post induction.
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Figure 3.17 Pie charts showing the kinetoplast and nuclear content of the BSF GB4L 
RNAi cell line

The BSF GB4L RNAi cell line was induced and cells were harvested, settled onto slides and labelled 

with DAPI as described in section 2.2.3. 500 cells were classified by the number of kinetoplasts and 

nuclei they possessed. Samples were taken from a non-induced culture and cells which w ere 12, 24 

and 48 hours post induction. Pie charts show a reduction of cells progressing through the cell cycle 

'normally' and an initial increase in the 2K2N population (12 hours) before the majority of the  

population become multinucleates or zoids (24 -  48 hours).
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3.8.3 Visualisation of kinetoplast and nuclear configuration in the bloodstream 

TCP86 RNAi cell line

DAPI counts for the TCP86 BSF RNAi cell line are shown in Figure 3.18 counts were 

carried out on cells from cultures which were non-induced, 12, 24 and 48 hours post 

induction of RNAi. After 12 hours of TCP86 ablation there is a reduction in 1K1N cells 

compared to the non-induced control and the multinucleate and zoid subpopulations 

have grown, this shows that cytokinesis is not faithfully producing two viable 

daughter cells. By 24 hours the largest subpopulation is the multinucleates and the 

number of zoids has doubled from that seen at 12 hours post induction. At the 48 

hour time point the majority of cells are either multinucleates or zoids and very few  

cells are progressing normally through the cell cycle.

Whist the end result of the GB4L and TCP86 BSF RNAi is a population consisting 

mainly of multinucleates and zoids, the DAPI counts show some important 

differences between the two phenotypes. At 12 hours there is an increase in 2K2N 

cells in the GB4L cell line which is not seen in TCP86. This suggests that GB4L RNAi 

results in a stalled cell cycle at the 2K2N stage; this is seen in the PCF GB4L RNAi cell 

line where the cleavage furrow stalls and forms the 'push-me-pull-you' phenotype 

(see Figure 3.10 and Figure 3.13). The fact that this increase in 2K2N cells is not 

observed in either the PCF or the BSF TCP86 RNAi cell lines indicates that cells 

complete cytokinesis however the presence of zoids and multinucleates suggests 

there is a problem with cytokinesis.
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Figure 3.18 Pie charts showing the kinetoplast and nuclear content of the BSF 
TCP86 RNAi cell line

The BSF TCP86 RNAi cell line was induced and cells were harvested, settled onto slides and labelled 

with DAPI as described in section 2.2.3. 500 cells were classified by the number of kinetoplasts and 

nuclei they possessed. Samples were taken from a non-induced culture and cells which w ere 12, 24  

and 48 hours post induction. Pie charts show a reduction of cells progressing through the cell cycle 

'normally' and an increase in multinucleates and zoids overtim e.
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3.8.4 Phenotypic analysis of GB4L and TCP86 depletion in the bloodstream form

To analyse the morphogenetic phenotypes resulting from the targeted ablation of 

GB4L and TCP86 in BSF, cells were settled on to slides for immunofluorescence 

analysis. Cells from a non-induced population were used as a control to compare the 

effects of protein depletion 24 hours post induction. Cells from the GB4L RNAi cell 

line were stained with YL1/2 this allowed the pattern of new MT growth and 

organisation to be observed at the same time as examining the morphology of cells.

Figure 3.19 shows non-induced cells at different stages of the cell cycle, these cells

display normal morphology for this life cycle form. Figure 3.19A a 1K1N cell at the

beginning of the cell cycle, this cell has strong YL1/2 labelling at the posterior end

where new MT growth is occurring and a single pool of tyrosinated tubulin is

detected, a previous study has shown that this pool of tyrosinated tubulin is found in

proximity to a basal body (Stephan et al, 2007). Figure 3.19B shows a cell with a

dividing kinetoplast and one nucleus, this cell has two distinct pools of tyrosinated

tubulin indicating that there are two basal bodies; YL1/2 staining in this cell is

present at the posterior end but is less intense. Figure 3.19C a 2K cell in mitosis;

YL1/2 staining is reduced at the posterior end suggesting there is less new MT growth

occurring in this region. YL1/2 staining is now seen diffusely over the entire cell body

indicating that new MTs are being inserted into the corset to allow for

circumferential growth of the cell. The next stage of the cell cycle is shown in Figure

3.19D this is a 2K2N cell, YL1/2 staining is still seen diffusely over the entire cell body

but is more intense in the region between the two nuclei. In the BSF the new basal

body is found much closer to the posterior end when compared to its position in the

PCF; in the PCF cells adopt a K-N-K-N configuration of kinetoplast and nuclei before
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they undergo cytokinesis. In the BSF cells maintains a K-K-N-N distribution of 

organelles (see Figure 3.19D and E). Cytokinesis in the BSF initiates at the anterior as 

in the PCF, in Figure 3.19E the cleavage furrow mid way through ingression and a 

patch of YL1/2 staining can be seen between the nuclei suggesting new MTs are 

being incorporated in this region as the cleavage furrow progresses.
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DAPI M_l/2 Composite

Figure 3.19 Immunofluorescence images of YL1/2 staining in non-induced cells from  
the BSF GB4L RNAi cell line

Non-induced cells from the BSF GB4L RNAi cell line were harvested for immunofluorescence analysis; 

slides were prepared as described in section 2.5.2. Cells were labelled with the antibody YL1/2 

(orange) (dilutions used are shown in section 2.2.3) and DAPI (blue). Cells at progressively later stages 

of the cell cycle (A-E), from (A) 1K1N to (E) 2K2N cell undergoing cytokinesis, YL1/2 staining indicates 

where new MTs are growing. In the BSF the cell adopts a K-K-N-N configuration of kinetoplasts and 

nuclei rather than the K-N-K-N organisation seen in the PCF. The morphology of the cells at all cell 

cycle stages appears as wild type (scale bar = 10 pm).
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After 24 hours of GB4L ablation the phenotype seen in the BSF is reminiscent of that 

observed in the PCF. Figure 3.20 shows the morphological abnormal cells which were 

observed at this time point. Figure 3.20A shows a 1K1N cell with a rounded and 

stumpy posterior end, this type of cell is often observed in the PCF RNAi cell line after 

12 hours of RNAi ablation (see Figure 4.2F). The YL1/2 staining in Figure 3.20A 

suggests there is little new MT growth at the posterior end of this cell. Figure 3.20B 

shows a 1K1N cell with a longer more 'normal' cone shaped posterior end which is 

positive for YL1/2. Images C and D YL1/2 staining is seen more strongly on the cell 

body. This suggests that MT growth is disorganised as it is occurring all over the cell 

rather than being targeted to specific regions such as the area between the nuclei as 

it is in the non-induced cells seen in Figure 3.19E.

The most striking effect of the RNAi ablation in the PCF was the stalling of the 

cleavage furrow mid way through its progression leading to the formation of a cell 

with two normal anterior ends connected by a large cell body, such cells were named 

'push-me-pull-you' cells and they are also seen as a result of GB4L ablation in the 

BSF. Examples of BSF 'push-me-pull-you' cells are shown in Figure 3.20C and D.
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DAPI YL1/2 Composite

Multinucleate

Figure 3.20 Immunofluorescence images of the BSF GB4L RNAi cell line 24 hours 
after induction of RNAi labelled with YL1/2

Cells from the BSF GB4L RNAi cell line were induced and harvested for immunofluorescence analysis 

24 hours after induction slides were prepared as described in section 2.5.2. Cells were labelled with 

the antibody YL1/2 (orange) (dilutions used are shown in section 2.2.3) and DAPI (blue). A shows a 

1K1N cell with a rounded posterior end, YL1/2 staining is not detected at the posterior end as in wild 

type. B is a 1K1N cell with a longer tapering posterior end which is YL1/2 positive. C and D show cells 

with a stalled cleavage furrow like those observed in the PCF. C shows a 2K2N 'push-me-pull-you' cell 

and a zoid (black arrow) and the cell in D is a multinucleate cell with a large cell body, some nuclei 

have not segregated and it is difficult to determine the number of nuclei by eye, tw o anterior ends are 

visible (scale bar = 10 pm).
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To confirm TCP86 ablation by RNAi and to study the morphology of cells when TCP86 

is depleted RNAi was induced and cells were settled onto slides from a non-induced 

culture, 12 and 24 hours post induction. These cells were labelled with the polyclonal 

antibody raised specifically against TCP86. Figure 3.21 shows the non-induced cells; 

TCP86 can be seen over the entire cell body in all cell cycle stages (Figure 3.21A 

shows an example of a 1K1N cell; Figure 3.21B shows a 2K2N cell). This labelling 

pattern seen in the BSF is identical to that seen in the PCF (Shawcross, 2008).

Phase DAPI TCP86 Composite

Figure 3.21 Immunofluorescence images of the BSF TCP86 RNAi cell line showing 
TCP86 localises over the whole cell in non-induced cells

Non-induced cells from the BSF TCP86 RNAi cell line were harvested for immunofluorescence analysis 

and slides were prepared as described in section 2.5.2. Cells were labelled with the anti TCP86 (green) 

antibody (dilutions used are shown in section 2.2.3) and DAPI (blue). A shows a 1K1N cell and B shows 

a 2K2N cell, both cells are positive for TCP86 over the entire cell body (scale bar = 10 pm).

Figure 3.22 shows the effects of TCP86 RNAi ablation 12 and 24 hours after induction 

of RNAi. Figure 3.22A - C show cells 12 hours post induction, A) a 1K1N cell B) a 2K1N 

cell and C) a 2K2N cell, none of these cells have TCP86 labelling on the new MTs of 

the posterior end. These results are in line with the observations made in the PCF
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and suggest that TCP86 forms a stable association with MTs in the corset. When the 

cytoplasmic reserves of TCP86 are depleted there is little protein available to 

decorate new MTs and so the loss is most apparent at the posterior end which is 

where most new MT growth takes place.

Figure 3.22D - F are cells from a population 24 hours post induction of TCP86 

ablation; these cells have reduced expression of TCP86 at the posterior end. All the 

cells shown are multinucleates, these cells have large nuclei and it is difficult to 

determine the number of individual nuclei contained within each cell, this may 

reflect a defect in mitosis. In all cases a cleavage furrow is present; in Figure 3.22D 

positioning of the cleavage furrow appears aberrant as the anterior ends produced 

from this furrow ingression are disproportionate. This sort of asymmetrical division is 

a characteristic of TCP86 ablation in the PCF and is implicated in the production of 

anucleate zoids and multinucleates (Shawcross, 2008). Figure 3.22E and F show two 

very abnormal cells, the cell in E has a number of nuclei positioned in the path of the 

cleavage furrow. The cell in F is close to abscission, if successful this will produce two 

cells of unequal size and abnormal morphology. The phenotype shown here in this 

BSF cell line is similar to that observed in the PCF by Shawcross (2008). In both cases 

TCP86 is lost initially from the posterior end of the cell and leads to aberrant 

asymmetrical cytokinesis.
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Phase DAPI TCP86 Composite

D Multinucleate

E Multinucleate

F Multinucleate

Figure 3.22 Immunofluorescence images of BSF cells showing reduction in 
expression of TCP86 12 and 24 hours after induction of RNAi

Cells from the BSF TCP86 RNAi cell line, at 12 and 24 hours post induction were harvested for 

immunofluorescence analysis and slides were prepared as described in section 2.5.2. Cells were  

labelled with the anti TCP86 (green) antibody (dilutions used are shown in section 2.2.3) and DAPI 

(blue). After RNAi mediated ablation TCP86 remains localised at the anterior end of the cell but is lost 

from the posterior end. Cells in D -  F are multinucleated and show cytokinetic defects. Cells are 

undergoing asymmetrical division similar to that seen in the PCF (scale bar = 10pm).
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We further confirmed the ablation of TCP86 by immunoblotting using the polyclonal 

antibody raised specifically against TCP86 (Figure 3.23). This antibody detects 2 

bands at the molecular weights HOkDa and 86kDa in whole cell protein extracts. The 

86kDa version of the protein is reduced over the RNAi time course but the HOkDa 

band is not affected. A similar observation was made when TCP86 was ablated in the 

PCF (Shawcross, 2008).

150 

100

75

Figure 3.23 Immunoblot showing the reduction in TCP86 expression after induction 
of TCP86 RNAi in the BSF

The TCP86 RNAi cell line was induced and protein samples were collected from a non-induced culture 

(Nl) and cultures at 24 and 48 hours post RNAi mediated ablation (as described in section 2.5.7.1). 

W hole cell extracts were separated by SDS-PAGE (whole cell protein extracts from 5 x l0 6 cells loaded 

per lane), transferred to nitrocellulose membranes then probed with the TCP86 antibody (for dilution 

used see section 2.2.3). Membranes were then incubated with polyclonal-goat anti-rabbit HRP 

conjugated secondary antibody and the immobilised TCP86 antigens were detected by 

chemiluminescence. Immunoblots show the HOkDa band is stable whilst the 86kDa band appears 

reduced. The anti (3-tubulin antibody KMX1 was used as a loading control.

TCP86
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3.9 Summary

Chapter 3 describes bioinformatics analysis which led to the identification of a 

trypanosomatid specific motif (GB4 motif) (the amino acid sequence logo is shown in 

Figure 8.3). This sequence is found in a total of 35 proteins, 17 of which are from T. 

brucei. Included in this family of T. brucei GB4 motif containing proteins are the 

MAPs GB4, TCP86 and TCP66 along with the flagellum attachment zone protein FAZ1. 

Two recent and independent studies have shown that TCP86 (Shawcross, 2008) and 

FAZ1 (Vaughan et al, 2008) are essential for accurate cytokinesis in PCF 

trypanosomes.

The function of T. brucei GB4 motif containing proteins was investigated through 

RNAi screening in PCF trypanosomes. This screen identified a protein with an 

essential function which has been named GB4-Like (GB4L) whose ablation leads to 

stalled cytokinesis. In the absence of cytokinesis GB4L depleted cells re-replicate 

their DNA and form multinucleate cells (Figure 3.8, Figure 3.9), as is well documented 

for many other PCF RNAi cell lines (Hammarton et al, 2005; Kumar & Wang, 2006; 

Rothberg et al, 2006). Intriguingly these cells successfully initiate cleavage furrow 

ingression but the furrow stalls mid-way through progression (Figure 3.10) resulting 

in a characteristic cell which possesses two apparently normal anterior ends 

associated with flagella, this cell type has been called a 'push-me-pull-you' cell. 

Repeated attempts at furrowing are made by these cells leading to the formation of 

cells with multiple anterior ends which project from a central cell body. Ablation of 

GB4L does not appear to affect the formation or organisation of key organelles such 

as the PFR, basal bodies (Figure 3.11) or the FAZ (Figure 3.12) however new MT 

growth at the posterior end appears to be disorganised (Figure 3.13)
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Since GB4, GB4L and TCP86 are known to be expressed in the BSF from proteomic 

analysis (Bridges et al, 2008) RNAi cell lines were raised in the BSF to examine the 

function of these proteins in this life cycle stage. GB4 depletion did not affect growth 

of the BSF (Figure 3.16), showing that this protein is not essential in this life cycle 

stage and ruling out one hypothesis that GB4 and GB4L may exhibit stage specificity.

RNAi depletion of GB4L and TCP86 in the BSF caused growth defects (Figure 3.16) 

and the phenotypes observed when both GB4L and TCP86 were depleted in the BSF 

are similar to those seen in the PCF. DAPI counts in the BSF GB4L cell line show an 

accumulation of 2K2N cells which is followed by an increase in the number of 

multinucleates and zoids (Figure 3.17). GB4L ablation in the BSF leads to the 

accumulation of 'push-me-pull-you' cells with a stalled cleavage furrow (Figure 3.19) 

and YL1/2 staining suggests that this may be related to disorganisation of new MT 

growth (Figure 3.20).

When TCP86 is depleted by RNAi in the BSF it is initially lost from the posterior end of 

the cell (Figure 3.22) as observed in the PCF (Shawcross, 2008). This may be 

explained by the fact that the posterior end of the cell is composed of more new MTs 

which were formed after the reserve of TCP86 protein in the cytoplasm has been 

depleted, meaning no TCP86 is available to decorate these MTs. The fact that TCP86 

remains associated with the MTs at the anterior end suggests that it associates stably 

with MTs with little turnover (as observed in the PCF) (Figure 3.22). DAPI counts 

show an increase in the number of zoids and multinucleates in equal numbers after 

12 hours of depletion (Figure 3.18); this is due to asymmetrical division which 

produces IKON zoids and 1K2N multinucleate progeny parallel to that seen in the
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PCF (Shawcross, 2008). Multinucleates then re-enter the cell cycle resulting in a 

population mainly consisting of multinucleates and zoids by 24 hours (Figure 3.18).

The next chapter looks at the PCF GB4L and TCP86 RNAi cell lines in greater detail 

employing electron microscopy to investigate cellular morphology and ultrastructure 

in an attempt to further understand the distinct cytokinetic defects observed in both 

of these cell lines.
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Chapter 4 Further investigation of GB4L and 

TCP86

4.1 Introduction

This chapter describes further functional characterisation of the GB4L and TCP86 

RNAi cell lines by scanning and transmission electron microscopy (SEM and TEM) 

approaches. SEM analysis, which allows the visualisation of cellular morphology at a 

high resolution, shows that RNAi ablation of GB4L or TCP86 causes distinct 

morphological abnormalities; particularly with respect to posterior end formation 

which ultimately leads to distinct cytokinetic defects. TEM analysis of intracellular 

ultrastructure shows that GB4L depletion results in aberrant FAZ formation and cells 

with supernumerary MTs within the cytoplasm. In contrast, RNAi ablation of TCP86 

has no discernable effects on the organisation of the FAZ and/or subpellicular corset 

MTs.

4.2 Analysis of the GB4L RNAi cell line using scanning electron microscopy

4.2.1 Non-induced

Figure 4.1 shows non-induced cells with wild type morphologies; with panels A-E 

showing cells at progressively later stages in the cell cycle. For instance, the cells in 

Figure 4.1A are in Gi of the cell cycle, as they each possess a single flagellum while in 

panel B a new flagellum has emerged from the flagella pocket (white arrow) 

revealing this cell to be further advanced through the cell division cycle. Figure 4.1C 

and D also show examples of cells with two flagella; the length of the new flagellum
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indicates that these cells are at a later stage in the cell cycle. The cell shown in Figure 

4 .IE  is in cytokinesis and the path of cleavage furrow ingression is clearly defined; 

the position of the cleavage furrow suggests that upon completion of cytokinesis 

both daughter cells will be of equal size with clearly defined posterior ends. In this 

cell the FC is no longer attaching the new flagellum to the old and there are two 

distinguishable anterior ends (white arrows).
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Figure 4.1 Scanning electron micrographs of the non-induced GB4L RNAi cell line at 
different stages of the cell cycle

Cells w ere prepared for SEM analysis as detailed in section 2.5.5, examples shown are representative 

cells from a non-induced culture. Cells did not show abnormal morphology at any cell cycle stage, A-E 

show cells at progressively later cell cycle stages from Gx (A) to cytokinesis (E). W hite arrow in (B) 

indicates new flagellum; white arrows in (E) indicate two distinct anterior ends.
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4.2.2 12 Hours post-induction

In contrast to the normal cell morphologies seen in non-induced cells (Figure 4.1A-E), 

cells taken from cultures 12 hours after the induction of GB4L RNAi show abnormal 

morphologies. The heterogeneity of morphological phenotype observed is likely to 

be a reflection of the fact that RNAi is induced in a population that is heterogeneous 

with respect to cell cycle stage; and so the output from an individual cell is 

dependent upon the stage in the cell cycle when GB4L protein expression is ablated. 

However, as the doubling time of this cell line exceeds 12 hours; it is safe to assume 

that the cells shown here have not completed more than one cell cycle under 

conditions of GB4L depletion. Representative cell types from the 12 hour induced 

sample are shown in Figure 4.2; a feature common to all these cell types is an 

apparent defect in posterior end formation. Figure 4.2A - D show cells at 

progressively later cell cycle stages, Figure 4.2E - H show some examples of cells with 

gross morphological defects. In some cases the posterior pole is very long (Figure 

4.2E) while in others it is short and rounded (Figure 4.2F). A number of cells are 

found attached by their posterior ends (Figure 4.2G,H), this attachment can take two 

forms; (i) a 'plate' or 'ridge' structure between two anterior ends (Figure 4.2G) (this is 

the characteristic 'push-me-pull-you' phenotype described in the previous chapter) 

or (ii) cells can remain attached by a thin 'bridge' (Figure 4.2H). Cells which have 

failed to complete cytokinesis re-enter the cell cycle and appear as multiflagellated 

cells (Figure 4.2H). In all cases formation of the anterior end appears normal.
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Figure 4.2 Scanning electron micrographs of the GB4L RNAi cell line 12 hours post 
induction

Cells w ere prepared for SEM analysis as detailed in section 2.5.5, examples shown are representative 

cells from a culture 12 hours post induction. A-D cells at progressively later stages of the cell cycle. 

Images E-H abnormal cell morphologies observed. Cell in image E has an elongated posterior end; cell 

in image F has a rounded posterior end. Cells shown in G and H are stalled in cytokinesis.
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4.2.3 24 Hours post-induction

24 hours after the induction of GB4L RNAi very few cells progress through the cell 

cycle with a normal cell morphology. A large proportion of the cells appear to be 

stalled in cytokinesis with a 'push-me-pull-you7 phenotype characterised by a 'ridge7 

between two apparently normal anterior ends (Figure 4.3A-C). These cells remain 

attached and re-enter the cell cycle; the product of this cell cycle is often a 

multinucleate cell with multiple anterior ends protruding from a large cell body 

(Figure 4.3D and E).

4.2.4 48 Hours post-induction

After 48 hours of GB4L depletion the majority of cells are multinucleates, shown in 

Figure 4.4. Cells at this time point are still unable to resolve the posterior end and 

have re-entered the cell cycle multiple times. Numerous attempts of cleavage furrow 

ingression have been made and reasonably normal anterior ends are still visible 

protruding from a large cell body.
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Figure 4.3 Scanning electron micrographs of the GB4L RNAi cell line 24 hours post 
induction

Cells were prepared for SEM analysis as detailed in section 2.5.5, examples shown are cells from a 

culture 24 hours post induction. Cells in A-C show the characteristic 'push-me-pull-you' phenotype 

with a ridge structure between the two joined posterior ends. Cells in D and E are multinucleates with 

multiple anterior ends protruding from a single cell body.
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Figure 4.4 Scanning electron micrographs of the GB4L RNAi cell line 48 hours post 
induction

Cells were prepared for SEM analysis as detailed in section 2.5.5, examples shown are cells from a 

culture 48 hours post induction. The majority of cells are large multinucleates with multiple anterior 

ends projecting from a central 'cell body'.
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4.3 Analysis of the GB4L RNAi cell line by transmission electron microscopy

Having used SEM to visualise the grossly abnormal cellular morphologies resulting 

from RNAi ablation of GB4L, transmission electron microscopy (TEM) analysis was 

undertaken to investigate any defects in ultrastructural organisation. The sections 

below present images of TEM cross-sections through non-induced cells and cells 

from cultures 12, 24 and 48 hours post induction of GB4L RNAi. The position of cross 

sections within the cell was established as follows (see Figure 4.5):

(i) Anterior - if they were small in diameter and possessed an axoneme 

associated with a PFR

(ii) Mid-region - if they were distinguished by a wider diameter, the presence 

of a nucleus and one or two axonemes

(iii) Posterior - if they were of small diameter and a flagellum was either 

absent (extreme posterior) or the section contained a kinetoplast and/or 

flagella pocket
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Mid-region sections

Anterior sections

Posterior sections

Figure 4.5 Cartoon to show how TEM sections were classified

TEM cross-sections presented are classified as the anterior end, the mid region and the posterior end 

of the cell. The cartoon shows how these regions were defined. Anterior sections can be identified by 

the presence of an external flagellum/flagella and a comparatively small diameter, mid-regions are 

identified by a larger diameter, external flagellum/flagella and/or the presence of a nucleus, and 

posterior end sections can easily be identified due to the smaller diameter, no associated flagellum  

and/or presence of a flagella pocket, basal body or kinetoplast.

Sections are viewed from the posterior end of the cell, with polarity determined by 

reference to the axial polarity of the outer MT doublets and associated dynein arms. 

This orientation of sections ensures that in biflagellate cells the new flagellum is 

always located to the left-hand side of the old flagellum (Davidge et al, 2006).

4.3.1 Non-induced

TEM analysis confirmed cells were normal prior to the induction of GB4L RNAi, with 

no discernable morphological abnormalities. However, given the ultrastructural 

abnormalities that are observed following GB4L RNAi induction (discussed in the 

following sections) it is particularly worth noting the following: (i) The organisation of 

the FAZ, which consists of a microtubule quartet (MtQ) and associated smooth
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endoplasmic reticulum (Figure 4.6 blue bracket), and (ii) the gap in the corset to 

accommodate the FAZ filament (Figure 4.6 white arrow) appear to be normal, (iii) 

The highly ordered array of subpellicular corset MTs are regularly spaced and in close 

apposition to the plasma membrane (Figure 4.6 red bracket).

lOOnm

100 nm

Figure 4.6 Transmission electron micrograph of a transverse section through a non­
induced GB4L cell

Cells from a non-induced culture of the GB4L RNAi cell line were prepared as described in section 

2.5.6. This is a section through the mid-region of a cell from a non-induced GB4L culture. Left, black 

box indicates the region magnified on the right. Blue bracket shows where the M tQ  is located; 

microtubules are associated with smooth ER. W hite arrow, shows the wide space in between corset 

microtubules where the filament resides. Red brackets show the subpellicular corset microtubules 

which are located just beneath the plasma membrane with regular spacing as in wild type cells.

4.3.2 12 Hours post-induction

After 12 hours of GB4L ablation abnormities in FAZ formation were detected 

examples of this are shown in Figure 4.7. Figure 4.7A shows a transverse section 

through the anterior region of a cell, showing that axoneme and PFR morphology
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appears normal, and moreover that MTs of the subpellicular corset are regularly 

spaced. However, it is noticeable that the smooth endoplasmic reticulum (ER), which 

normally associates with the MtQ of the FAZ, appears only to associate with two  

MTs. Figure 4.7B, shows another example of FAZ disruption, in this case in a section 

through a mid region of a cell. The smooth ER can be seen on both sides of the FAZ 

filament; an unusual configuration as it would normally be located only on the left 

side of the FAZ filament. Figure 4.7C, is another example of a section through the 

mid-region of a cell, the FAZ associated with the new flagellum (on the left) is 

abnormal, the arrow points to the FAZ filament and to the right of this is the gap in 

the corset MTs which is abnormally wide and filled with electron dense material 

(blue brackets).
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50nm

500nm

50nm

SOOnm

50nm

• =>^. ->S00nm

Figure 4.7 Transmission electron micrographs of transverse sections through cells 
12 hours post induction of GB4L RNAi ablation

Cells from a culture 12 hours post induction of GB4L RNAi were prepared as described in section 2.5.6. 

Cells in A-C have a disrupted FAZ architecture. Boxed regions are zoomed in on the left. C, blue arrow  

indicates the FAZ filament; bracket indicates an abnormally large space in subpellicular MTs filled with 

electron dense material.
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4.3.3 24 Hours post-induction

Anterior - Figure 4.8 shows a selection of TEM cross sections taken close to the 

anterior end of GB4L RNAi induced cells 24 hours post induction. Whilst the MTs of 

the subpellicular corset maintain an even spacing and remains closely apposed to the 

plasma membrane, in some regions additional MTs are present within the cytoplasm 

immediately beneath the subpellicular corset; indicated by blue arrows in images on 

the left. The boxed regions are shown at a higher magnification on the right with 

additional MTs highlighted with a blue asterisk. As seen in cells 12 hour post 

induction (Figure 4.7), the smooth ER associated with the MtQ is also disrupted at 24 

hours (Figure 4.8A-C). However this phenotype appears more severe at 24 hours post 

induction, the smooth ER is seen associating with one, or a maximum of two, MTs 

compared to four MTs in wild-type and non-induced samples. Figure 4.8B shows that 

membrane also appears to have invaded the space in the MT corset where the FAZ 

filament is normally found. It is important to note that disruption of the FAZ 

architecture does not interfere with flagellum attachment as there was no increase 

in cells with detached flagella within the induced population compared with non- 

induced cells. Furthermore, the disrupted FAZ is clearly still capable of defining the 

plane of cleavage as cells initiate cleavage furrow ingression forming morphologically 

normal anterior ends before ingression stalls closer to the posterior end (Figure 3.11, 

Figure 3.12, and Figure 4.3).
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Figure 4.8 Transmission electron micrographs of transverse sections through cells 
24 hours post induction of GB4L RNAi ablation (anterior)

Cells from a culture 24 hours post induction of GB4L RNAi were prepared as described in section 2.5.6. 

Sections taken through the anterior end of cells, black boxed regions are shown magnified on the  

right, sections have additional microtubules (indicated with blue arrows/asterisks) and the smooth ER 

associated with the M tQ  is disrupted.
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Mid-region - is shown in Figure 4.9, similarly to the 24 hour anterior sections (Figure 

4.8) these sections taken through the mid-region of cells at 24 hours show some 

additional MTs and disruption of the smooth ER of the FAZ. Figure 4.9A, a IF  cell, the 

spacing of the MTs in the corset is maintained however a small number of additional 

MTs are apparent, the most obvious abnormality is seen in the FAZ where a MT 

associated with membrane is found within the cytoplasm, this is boxed off and 

shown at a higher magnification to the right.

Figure 4.9B is a 2F cell, the old flagellum is on the right and indicated with an O, the 

FAZ region appears normal and is magnified on the right. The new flagellum (N) is to 

the left of the old and has an abnormal FAZ. The normal organised subpellicular array 

of MTs in this region is disrupted and the smooth ER is not associated with the MtQ, 

there is only a small amount of smooth ER which is only loosely associated with MTs. 

This shows that when the old flagellum was forming (before the ablation of GB4L) 

the cell was capable of building a normal FAZ. In contrast, when the new flagellum 

was being built in GB4L depleted conditions; an abnormal FAZ was formed, 

supporting a role for GB4L in FAZ formation.
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Figure 4.9 Transmission electron micrographs of transverse sections through cells 
24 hours post induction of GB4L RNAi ablation (mid-region)

Cells from a culture 24 hours post induction of GB4L RNAi were prepared as described in section 2.5.6. 

Cell in A, has one flagellum and FAZ region shows a microtubule associated with the smooth ER within 

the cytoplasm. Cell in B, has two flagella, the smooth ER associated with FAZ of the old flagellum  

appears normal (O). In contrast the smooth ER associated with the FAZ of the new flagellum (N) is 

disrupted suggesting this phenotype occurs when cells attem pt to build a new FAZ in the absence of 

GB4L.
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Posterior - The SEM analysis described in section 4.2 confirmed that ablation of GB4L 

results in a cytokinetic defect and that in many cases cleavage furrow ingression 

stalls and cells take on a 'push-me-pull-you' phenotype (Figure 3.13). The region 

between the two joined cells (which would normally form the posterior ends) forms 

a ridge structure (see Figure 4.3A-C). In TEM cross-sections it is impossible to 

distinguish between a cross-section through a 'normal' posterior end and a cross- 

section through the 'ridge' structure. However, since many of the cells after 24 hours 

of GB4L RNAi induction have adopted a 'push-me-pull-you' phenotype some of the 

TEM cross-sections which represent 'posterior' ends of cells (defined by the 

possession of a flagella pocket or the absence of a flagellum see Figure 4.5) are likely 

to represent the ultrastructure of the 'ridge' region. Examples of these TEM cross- 

sections are shown in Figure 4.10A-C in each section there are a large number of 

supernumerary MTs which are disorganised in terms of orientation as some can be 

seen in transverse section whilst others are viewed in longitudinal section (circled 

red).This confirms earlier observations made by immunofluorescence analysis using 

YL1/2 (see Figure 3.13) which indicated that disorganised growth of new MTs was 

occurring in the ridge region. The TEM images show that the MTs of the subpellicular 

MTs remain in close apposition to the plasma membrane.
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Figure 4.10 Transmission electron micrographs of sections through cells 24 hours 
post induction of GB4L RNAi ablation (posterior)

Cells from a culture 24 hours post induction of GB4L RNAi were prepared as described in section 2.5.6. 

Cell in A, possibly the 'ridge' region with many additional MTs seen in the cytoplasm (some of which 

are circled in red). Section B is through the flagella pocket (FP) there are many additional MTs in the  

cytoplasm (circled in red). Section C, a longitudinal section of the flagella pocket (FP), circled in red is a 

region of disorganised subpellicular MTs.
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4.3.4 48 Hours post-induction

48 hours after the induction of GB4L ablation supernumerary MTs are present in the 

cytoplasm throughout the cell, this is a more severe phenotype than observed at 24 

hours in which supernumerary cytoplasmic MTs were restricted to the sections taken 

through the posterior end of cells (Figure 4.10).

Anterior - Figure 4.11A and B shows transverse sections through the anterior end of 

two cells and in both images although spacing between subpellicular MTs remains 

uniform there are additional MTs present in the cytoplasm. In Figure 4.11B, the 

orientation of many supernumerary MTs is not uniform as while some clearly appear 

in transverse section others are blurred and appear to be in longitudinal section.

f  y.
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Figure 4.11 Transmission electron micrographs of transverse sections through cells 
48 hours post induction of GB4L RNAi ablation (anterior)

Cells from a culture 48 hours post induction of GB4L RNAi were prepared as described in section 2.5.6. 

A and B are two examples of sections through the anterior end of cells which show many 

supernumerary microtubules in the cytoplasm, the cell in B shows supernumerary MTs are 

disorganised in terms of their orientation.
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Mid-region - Figure 4.12A-C shows sections through the mid-region of cells 48 hours 

post GB4L ablation. As in earlier time points, cells exhibit abnormal FAZ architecture 

(Figure 4.12A-C boxed regions magnified on the right). Supernumerary MTs can be 

seen in the cytoplasm of all three cells this is especially pronounced in the cell shown 

in Figure 4.12B. Moreover, smooth ER was observed aberrantly associated with 

cytoplasmic MTs; normally in wild type/non-induced cells it is located just below the 

plasma membrane in association with the M tQ o f the FAZ (Figure 1.3 and Figure 4.6). 

This phenotype is similar to the FAZ defects observed at 24 hours but appears more 

severe in cells at 48 hours after the induction of GB4L RNAi.
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Figure 4.12 Transmission electron micrographs of transverse sections through cells 
48 hours post induction of GB4L RNAi ablation (mid-region)

Cells from a culture 48 hours post induction of GB4L RNAi were prepared as described in section 2.5.6. 

Sections A-C show cells with disrupted FAZ regions (see magnified images on the right) also additional 

MTs can be seen beneath those of the subpellicular corset.
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Conclusions - The TEM study on the GB4L RNAi cell line shows that at increasing time 

points post induction there is a progressive increase in the number and extent of 

supernumerary MTs. Initially these MTs are most apparent at the posterior end of 

the cell suggesting that the organisation and regulation of new MT growth is lost 

following GB4L ablation. TEM analysis suggests that GB4L may also play a role in the 

structural organisation of the FAZ. However, RNAi mediated ablation of GB4L does 

not disrupt the formation of the FAZ filament as this structure is often seen clearly at 

all time points in sections from anterior through to posterior of the cell. In some 

cases cells which possess two flagella have an old flagellum with a normal FAZ 

morphology (formed pre-induction), and a new flagellum with an abnormal FAZ 

(formed post-induction) this observation corroborates the hypothesis that GB4L is 

required for normal FAZ formation. Intriguingly, despite these apparent disturbances 

the two main functions of the FAZ (1) flagella attachment and (2) definition of the 

cleavage plane are unaffected. No flagella detachment is observed in induced 

cultures and cleavage furrow ingression initiates and produces two morphologically 

normal anterior ends.

4.4 Analysis of the TCP86 RNAi cell line by scanning electron microscopy

Measurements of organelle positioning and immunofluorescence experiments 

carried out on the TCP86 RNAi cell line suggest that the initial effect of TCP86 

depletion is an elongation of the posterior end of the cell, which ultimately leads to a 

defect in cytokinesis. Cells undergo asymmetrical division resulting in the production 

of anucleate zoids and multinucleate 1K2N cells (Shawcross, 2008). To further 

investigate the effects of TCP86 ablation SEM analysis was carried out; the results of 

this analysis are presented below.
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Non-induced cells from the TCP86 RNAi cell line were initially examined and shown 

to have wild type morphology (see supplementary Figure 8.6).

4.4.1 12 Hours post-induction

After 12 hours of TCP86 RNAi induction, cells early in the cell cycle have an elongated 

posterior end indicated by the white arrows in Figure 4.13A-C. Later in the cell cycle, 

cells undergo aberrant cytokinesis in which cells divide asymmetrically resulting in a 

much smaller daughter cell indicated with asterisks in Figure 4.13E and F. DAPI 

counts indicate that these smaller cells are often an anucleate zoid, and the larger 

cells have a 1K2N DNA content (Shawcross, 2008).
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Figure 4.13 Scanning electron micrographs of the TCP86 RNAi cell line 12 hours post 
induction

Cells prepared for SEM analysis as detailed in section 2.5.5, examples shown are from a population 12 

hours after induction of TCP86 RNAi. Cells in A-C show early stages of the cell cycle with abnormally 

long posterior ends (indicated with arrows), cell in D a later cell cycle stage (possibly mitosis). Cells in E 

and F have a cleavage furrow, these cells are undergoing aberrant cytokinesis; this asymmetrical 

division will result in progeny of unequal size. The small daughter cell is indicated with an asterisk and 

probably represents a zoid containing only a kinetoplast. The large daughter cell is likely to represent a 

multinucleate containing 1K2N.
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4.5 24 Hours post-induction

After 24 hours, TCP86 RNAi induced cells can still be seen with elongated posterior 

ends (Figure 4.14A and B), and most cytokinetic events are asymmetric. Figure 4.14C- 

F show examples of cells in which the cleavage furrow has sufficiently progressed to 

indicate that the products of cytokinesis will be asymmetric. Whilst it is impossible to 

ascertain the DNA content of these cells from the SEM data, previous DAPI counts 

(Shawcross, 2008), show there is a large increase in zoids and multinucleates at this 

time point. This suggests that the asymmetrical division observed by SEM results in a 

smaller cell which contains a kinetoplast but does not possess a nucleus (a zoid) and 

a larger cell which contains two nuclei and a kinetoplast (a multinucleate). The small 

cells shown in Figure 4.14G and H are also likely to represent zoids; it is noticeable 

that some of these zoids have extremely long posterior ends (Figure 4.14H).
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Figure 4.14 Scanning electron micrographs of the TCP86 RNAi cell line 24 hours post 
induction

Cells prepared for SEM analysis as detailed in section 2.5.5, examples shown are representative cells 

from a population 24 hours after induction of TCP86 RNAi. Cells shown in A and B have an elongated 

posterior end, cells in C-F are undergoing asymmetrical division, and cells in G and H probably 

represent zoids.
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4.5.1 48 Hours post-induction

After 48 hours the majority of TCP86 ablated cells are multinucleates or zoids, and 

very few cells progress through the cell cycle with a normal morphology (Shawcross,

2008). Figure 4.15 shows a large multinucleate (A) and two smaller cells which likely 

represent zoids (B and C).

H  2|jm

Figure 4.15 Scanning electron micrographs of the TCP86 RNAi cell line 48 hours post 
induction

Cells were prepared for SEM analysis as detailed in section 2.5.5, examples shown are cells from a 

population 48 hours post induction of TCP86 RNAi. Cell in (A) is a multinucleate, (B) and (C) are zoids.
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Whilst the effects of TCP86 ablation have been extensively studied, and the 

phenotype observed upon RNAi ablation characterised (Shawcross, 2008), the reason 

why TCP86 depletion leads to asymmetric division is unknown. TCP86 is localised to  

the subpellicular corset, including the MTQ of the FAZ (Shawcross, 2008). 

Immunofluorescence experiments to investigate the integrity of the FAZ in TCP86 

depleted cells indicated that FAZ formation is apparently normal and ruled out mis- 

positioned or defective FAZ formation as the cause of asymmetric division 

(Shawcross, 2008). To further investigate the TCP86 RNAi phenotype TEM analysis 

was undertaken on the TCP86 RNAi cell line.

4.6 Analysis of the TCP86 RNAi cell line by transmission electron microscopy

The TEM analysis particularly focused on (1) the organisation of the subpellicular 

corset, and (2) the organisation of the FAZ. However, since an independent study 

localised TCP86 (known to this group as NOP86) to the nucleolus and suggested that 

RNAi mediated ablation of TCP86 causes a defect in mitotic progression (Boucher et 

al, 2007); TEM analysis also focussed on the ultrastructure of the nucleus and mitotic 

spindle. Cells were harvested for TEM analysis from a non-induced culture and from 

cultures 12, 24 and 48 hours post induction. The results of this investigation are 

presented below.

Before examining the effects of TCP86 depletion, the ultrastructure of non-induced 

cells was examined. All sections examined indicated that the non-induced cells were 

normal with regards to cellular ultrastructure (see supplementary Figure 8.7 and 

Figure 8.8)
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4.6.1 12 and 24 hours post induction

After 12 hours of TCP86 RNAi induction, the organisation of the subpellicular corset 

and FAZ appears unaffected. The ultrastructure of nuclei at different stages of the 

cell cycle appears normal and cells were observed in different stages of mitosis 

(supplementary Figure 8.9, Figure 8.10).

By 24 hours of RNAi mediated ablation DAPI counts show a large increase in the 

number of multinucleates and zoids (Shawcross, 2008) this would suggest that at this 

time point any abnormalities should be apparent in the TEM sections. No 

abnormalities were observed in the organisation of the subpellicular corset or of the 

FAZ (Figure 4.16). In all cases the nuclear architecture appeared normal 

(supplementary Figure 8.11). Nuclei at different stages of mitosis were observed but 

there did seem to be an increase in the number of cells possessing mitotic spindles 

suggesting there may be a defect in mitotic progression (examples of cells with 

mitotic spindles at 24 hours are shown in supplementary Figure 8.10).
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200nm

500nm

Figure 4.16 Transmission electron micrograph of a transverse section through a cell 
24 hours post induction of TCP86 RNAi ablation

Cells from a culture 24 hours post induction of TCP86 RNAi were prepared as described in section

2.5.6. 24 hours after induction of RNAi, TCP86 depleted cells maintain a highly ordered subpellicular 

corset. The boxed region is enlarged (inset) and shows the FAZ region appears normal, the MTQ. are 

associated with smooth ER (blue bracket) and the FAZ filament (blue arrow).

4.6.2 48 hours post induction

After 48 hours of TCP86 ablation most cells are either multinucleate or zoids. Despite 

these gross morphological defects spacing and organisation of MTs in the 

subpellicular corset is unaffected and the FAZ also appears normal (Figure 4.17A). In 

Figure 4.17B the corset appears uniformly spaced as in non-induced cells; although 

there are a number of additional MTs circled in red. However, this is occasionally 

observed in wild type cells when new MTs are being inserted into the corset (S. 

Vaughan personal communication).
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500nm500nm

Figure 4.17 Transmission electron micrographs of transverse sections through cells 
48 hours post induction of TCP86 RNAi ablation

Cells from a culture 48 hours post induction of TCP86 RNAi were prepared as described in section

2.5.6. Cell in section A shows FAZ formation is not affected by TCP86 ablation and subpellicular corset 

microtubules remain organised. Cell in section B shows some additional microtubules (circled in red) 

this is occasionally seen in non-induced cells, subpellicular corset organisation is unaffected.

To summarise, TEM analysis of the TCP86 RNAi cell line shows the uniform and

regular distribution of MTs in the subpellicular corset is not disrupted when the

expression of TCP86 is reduced (Figure 4.16 and Figure 4.17). Even in cases where the 

cells are grossly morphologically abnormal such as after 48 hours of RNAi induction 

(Figure 4.17). Unlike the results seen for the TEM analysis of GB4L, additional MTs 

are not present in the cytoplasm and FAZ formation appears to be unaffected by the 

depletion of TCP86. The only unusual observation was an apparent increase in the 

number of cells possessing a mitotic spindle at 24 and 48 hours post induction of 

TCP86 RNAi, indicating that there may be a mitotic defect in these cells.

4.7 Mitotic progression in the TCP86 RNAi cell line

An independent study reported that RNAi ablation of TCP86 (a protein designated by 

this group as Nop86) activates a specific cell cycle checkpoint which blocks mitosis in
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late anaphase/telophase (Boucher et al, 2007). Whilst analysing the TEM data 

collected for the TCP86 RNAi cell line, it was noted that mitotic spindles appeared 

more frequently in TEM cross-sections of cells at 12 and 24 hours post induction than 

non-induced cells. To quantify this observation, 200 TEM cross-sections containing 

nuclei from each culture (non-induced, 12 and 24 hours post RNAi induction) were 

examined. Nuclei were categorised into those with (i) no MTs contained within the 

nuclear membrane, (ii) short MTs contained within the nuclear membrane (for an 

example see Figure 8.11B) or (iii) long MTs of the mitotic spindle which connect the 

two emerging daughter nuclei (for an example see Figure 8.11E). Figure 4.18 shows 

the results of these counts which indicate that the number of nuclei with short MTs 

contained within the nucleus and those with an elongated mitotic spindle increase 

when TCP86 is ablated by RNAi which may suggest that cells are delayed in mitotic 

progression.
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Figure 4.18: Quantification of the percentage of cells possessing a mitotic spindle 
from TEM sections through the nuclei of cells in the TCP86 RNAi cell line

The TCP86 RNAi cell line was induced; samples were collected from a non-induced culture and from  

12 and 24 hours post RNAi induction. Cells were prepared for TEM analysis as described in section

2.5.6. Whilst undertaking TEM analysis 200 sections which showed nuclei were split into three distinct 

categories, nuclei with; (i) no MTs, (ii) short MTs, (iii) elongated spindle MTs for each tim e point (see 

key). The graph shows an increase in the number of cells with short MTs and elongated spindle MTs 

and a reduction in the number of nuclei which contain no MTs over the tim e course of TCP86 RNAi 

ablation.

4.7.1 Immunofluorescence analysis of nuclei in the TCP86 RNAi cell line using the 

nuclear membrane marker NUP-1

To investigate the possibility that TCP86 depletion by RNAi may delay mitotic

progression, immunofluorescence studies were carried out using the monoclonal

antibody NUP-1 which labels the nuclear envelope throughout the cell cycle

(Ogbadoyi et al, 2000; Rout & Field, 2001). Previous immunofluorescence analysis

has described a distinctive NUP-1 staining pattern at different stages of the cell cycle,

and shows that NUP-1 can act as a marker for nuclear progression through mitosis
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(Ogbadoyi et al, 2000). In interphase cells NUP-1 defines a spherically shaped 

nucleus, this elongates during early mitosis and at later stages NUP-1 is detected as 

an isthmus between the two developing daughter nuclei (Ogbadoyi et al, 2000). This 

isthmus must be resolved to generate two separate nuclei prior to cytokinesis 

(although Ogbadoyi et. al (2000) did not show this). Cells from a non-induced 

population of the TCP86 RNAi cell line were probed with NUP-1 and the pattern of 

NUP-1 staining previously described confirmed (Figure 4.19). Additionally, the 

isthmus connecting the two emerging daughter cells was shown to disappear prior to 

cytokinesis (Figure 4.19H).
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A

Figure 4.19: Immunofluorescence analysis of mitotic progression in non-induced 
cells from the TCP86 RNAi cell line

Trypanosomes prepared for immunofluorescence as described in section 2.5.1 and probed with the 

anti-nuclear envelope monoclonal antibody NUP-1 (green) (for dilutions used see section 2.2.3) and 

stained with DAPI (blue). Images A-E show cells at progressively later stages of the cell cycle. A, B 

interphase; C, D mitosis, E late mitosis; F, G karyokinesis; H no NUP detected between nuclei in a cell 

prior to cytokinesis (scale bar = 10pm).

The NUP-1 staining pattern in cells 24 hours after the induction of TCP86 ablation is 

shown in Figure 4.20. In these TCP86 RNAi induced cells the NUP-1 staining pattern is 

the same as in non-induced cells through mitosis, however NUP-1 was still detected 

between the nuclei of 1K2N cells (Figure 4.20E-FI). This is unusual as these cells must
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have completed cytokinesis (producing the 1K2N progeny and an anucleate zoid) and 

as such NUP-1 should not be detectable between the two daughter nuclei. Residual 

NUP-1 staining in this region at a post cytokinetic time point may suggest that mitosis 

(or at least separation of the nuclear membrane) was not complete when the cell 

underwent division.

Figure 4.20 Immunofluorescence analysis of mitotic progression in the TCP86 RNAi 
cell line 24 hours post induction of RNAi

The TCP86 RNAi cell line was induced and cells were harvested at 24 hours post induction. 

Trypanosomes were prepared for immunofluorescence as described in section 2.5.1 and probed with 

the anti-nuclear envelope monoclonal antibody NUP-1 (green) and stained with DAPI (blue). Images A- 

D show cells at progressively later stages of the cell cycle. Images E-H show 1K2N cells after an 

aberrant cytokinetic event, NUP-1 staining can still be visualised between the nuclei.
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To establish if this abnormal NUP-1 localisation is common within the induced 

population, NUP-1 labelled cells from cultures of non-induced and 24 hours post 

induction were counted. Only cells possessing two nuclei were included in the counts 

and NUP-1 labelling was categorised as follows (i) no NUP-1 labelling between 

daughter nuclei (mitosis is complete), (ii) a bridge of NUP-1 labelling extending 

between emerging daughter nuclei (late mitosis), (iii) discontinuous NUP-1 labelling 

in the region between daughter nuclei.

Figure 4.21 shows the result of these counts, in the non-induced population all 2N 

cells counted were 2K2N, 20% of these 2K2N cells have no NUP-1 labelling between 

nuclei suggesting that the spindle and the nuclear envelope no longer attach the 

daughter nuclei. 30% of non-induced 2K2N cells have a NUP-1 bridge between 

emerging daughter nuclei and are therefore in late mitosis and 50% of cells have 

retained some discontinuous NUP-1 labelling between daughter nuclei showing that 

nuclear membrane is still present between divided nuclei.

After 24 hours of TCP86 RNAi ablation some of the cells have undergone aberrant 

division to produce a zoid meaning that 2N cells fall into two subgroups; 2K2N cells 

and 1K2N cells. In the 2K2N population there is an increase in the percentage of 

NUP-1 bridges between daughter nuclei, and a reduction in the number of cells with 

discontinuous NUP-1 staining; suggesting more of these cells are in anaphase. The 

1K2N population of cells should, in theory, be completely negative for NUP-1 

labelling between daughter nuclei because these cells have completed cytokinesis. 

However, over 50% of 1K2N cells still have some residual NUP-1 staining between
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the daughter nuclei and 5% of these cells still have a NUP-1 bridge between daughter 

nuclei.

This shows that when TCP86 is ablated by RNAi the nuclear envelope is still found 

between cells post-cytokinesis, suggesting that cytokinesis initiates before mitosis is 

complete. This provides evidence for a delay in late mitosis; however cells must 

eventually complete the process as multinucleates with 'normal7 interphase nuclei 

are observed at later time points (i.e. nuclei which lack NUP1 staining between each 

other).
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Figure 4.21 Quantification of NUP1 staining pattern observed in 2N cells in the 
TCP86 RNAi cell line

Cells from a non-induced population and 24 hours after induction of TCP86 RNAi ablation were  

categorised by the NUP-1 staining pattern observed between daughter nuclei. In total 50 2N cells from  

each culture were counted. In the non-induced population these cells are all 2K2N, in the induced 

population there are 2 subgroups of 2N cells, 2K2N and 1K2N cells the latter which have undergone 

cytokinesis. Percentages of cells in each NUP-1 category are shown. The graph suggests that 

completion of mitosis is delayed in TCP86 ablated cells.
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4.8 Summary

This chapter describes the results of further investigation by SEM and TEM analysis 

on the GB4L and TCP86 RNAi cell lines. SEM analysis allowed the cellular morphology 

to be studied at high resolution and shows that in both cases the non-induced 

cultures appear 'normal'. Following induction of GB4L RNAi, posterior end formation 

is disrupted (Figure 4.2) supporting the observation made with YL1/2 staining in 

Chapter 3, that MT growth and organisation in this region is disrupted (Figure 3.13). 

Additionally, this analysis shows that in some cases the 'push-me-pull-you' cells are 

attached by a 'plate' or 'ridge' like structure (Figure 4.2G) and in others are attached 

by a thin bridge (Figure 4.2H). In both cases the anterior ends of these cells appears 

morphologically normal. These cells can re-enter the cell cycle and re-initiate 

cytokinesis multiple times, resulting in multinucleates with multiple stalled cleavage 

furrows (Figure 4.4).

The FAZ defines the path of cleavage furrow ingression which is initiated at the 

anterior end of the cell and progresses longitudinally towards the posterior pole 

during cytokinesis. Disorganisation of the FAZ structure is known to cause aberrant 

cytokinesis (Vaughan et al, 2008). It is tempting to speculate that disruption of the 

FAZ structure caused by GB4L depletion is the reason behind the stalling of 

cytokinesis. However, the TEM analysis in this chapter shows that the FAZ structure 

is disrupted in most of the sections taken, including those which cut through the 

anterior end of cells. Despite disruption of FAZ structure at the cells anterior end the 

cleavage furrow is capable of initiating and progressing some way before stalling. 

This suggests that whilst the FAZ defect may contribute to the cytokinetic 

abnormalities observed in these cells, it is not the sole cause.
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The MTs of the subpellicular corset in GB4L depleted cells are, for the majority, 

uniformly distributed beneath the plasma membrane (Figure 4.7 - Figure 4.12). 

However, a striking observation is the appearance supernumerary MTs in the 

cytoplasm of the cell, these can be found in large numbers in some cells, especially at 

the later time points of 24 and 48 hours (Figure 4.10 - Figure 4.12). The inter-MT 

spacing appears to be regular, however in some cells MTs in the same section were 

seen in different orientations (transverse and longitudinal) (Figure 4.10). This data 

suggests that GB4L plays a role in regulating new MT growth and/or organisation.

SEM analysis of the TCP86 RNAi cell line 12 hours post ablation shows that cells have 

an elongated posterior end (Figure 4.13A-C). These cells undergo asymmetrical 

division leading to the production of smaller cells likely to represent zoids and their 

larger partner cell probably a multinucleate (Figure 4.13E and F and Figure 4.14C-H). 

Confirming previous observations made by immunofluorescence analysis (Shawcross,

2008).

The TEM analysis of TCP86 depleted cells showed no obvious defects in terms of MT 

organisation, the subpellicular corset appeared normal at all time points and FAZ 

formation also appears normal (Figure 4.16 and Figure 4.17). This confirms earlier 

immunofluorescence studies which suggested that the aberrant, asymmetrical 

cytokinesis occurring when TCP86 is ablated is not a result of FAZ disruption 

(Shawcross, 2008). TEM analysis of TCP86 depleted cells at 12 and 24 hours post 

induction shows cells at various stages of mitosis (see supplementary Figure 8.10), 

and after 48 hours of induction large multinucleate cells are seen, these cells possess 

numerous interphase nuclei suggesting cells are capable of progressing through
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mitosis. An independent study reported that TCP86 ablation causes a block in mitosis 

(Boucher et al, 2007). Boucher et al (2007) argue that PCF cells can overcome this 

mitosis block to re-enter successive S-phases resulting in the accumulation of 

multinucleate cells. Counts carried out on TEM sections through nuclei showed an 

increase in the occurrence of mitotic spindles in TCP86 RNAi induced cells (Figure 

4.18). Immunofluorescence studies using the anti-nuclear envelope antibody NUP-1 

show that a large number of induced cells retain the nuclear envelope between the 

nuclei in 1K2N cells, showing that the nuclear envelope is not resolved before 

cytokinesis in these cells, suggesting that these cells may well have initiated 

cytokinesis before the completion of mitosis (Figure 4.21).
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Chapter 5 Microtubule associated proteins and 

their functional interdependency

5.1 Introduction

Previous studies in the McKean laboratory have provided valuable insight into the 

potential interactions between trypanosome MAPs and MTs of the subpellicular 

corset (Shawcross, 2008). The study by Shawcross used indirect immunofluorescence 

approaches to show that depletion of TCP86 leads to the loss of CAP5.5 localisation 

but does not affect WCB (T. brucei MAPs previously described in section 1.10.1). 

These experiments provided the first evidence for complex interdependency 

relationships between MAPs on the subpellicular corset. We were interested in how 

MAPs function and their localisation dependencies in T. brucei. To investigate this, 

RNAi cell lines for other published T. brucei MAPs were generated including GB4 

(Rindisbacher et al, 1993), WCB (Baines & Gull, 2008), CAP5.5 (Olego-Fernandez et al,

2009), 16 (a/b) (Detmer et al, 1997), CAP15 (Vedrenne et al, 2002) and MARP1&2 

(Affolter et al, 1994). RNAi depletion phenotypes were characterised and then the 

WCB, CAP5.5, GB4L and TCP86 RNAi cell lines were used to explore localisation 

dependencies by immunofluorescence.

5.2 Characterisation of growth defects arising from the RNAi ablation of T. 

brucei microtubule associated proteins.

To investigate the effects of RNAi mediated depletion of the T. brucei MAPs listed 

above, RNAi was induced and cells were monitored for growth and division defects.
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The growth curves for these cell lines are presented in Figure 5.1. Cell lines were 

routinely monitored for 96 hours unless population growth stopped before this time. 

Figure 5.1 shows that RNAi ablation of CAP15, 16, GB4 and MARP1/2 caused no 

population growth defect and while both induced and non-induced populations of 

the 16 RNAi cell line showed erratic growth over 96 hours, extending growth analysis 

to 168 hours revealed no significant reduction in the growth of the 16 induced 

population. In contrast, depletion of WCB and CAP5.5 causes a reduction in cell 

growth as early as 24 hours post induction; this is in agreement with published data 

(Baines & Gull, 2008; Olego-Fernandez et al, 2009). The RNAi depletion phenotype 

for WCB has been previously described (Baines & Gull, 2008). However, before using 

our WCB RNAi cell line to study MAP interdependency relationships we conducted 

phenotypic characterisation to confirm reproducibility of the WCB ablation 

phenotypes. We also characterised the CAP5.5 RNAi depletion phenotype which at 

the time of conducting these experiments was unpublished but has since been 

reported by Oleg-Fernandez et al, (2009).

WCB - The targeted ablation of WCB leads to a marked reduction in cell number after 

24 hours. Between 24 and 48 hours post induction population growth is reduced by 

almost 50%, then between 48 and 72 hours only marginal growth is seen in the 

induced population. Induced cells exhibit a morphological phenotype that can be 

observed in culture by light microscopy. After 24 hours of RNAi induction the 

posterior end of cells appears swollen, and thin cells, possibly representing zoids, 

appear in the population. Cells in culture also formed large clumps, which were 

visible in the culture flask by the naked eye; this was most obvious 72 hours post

192



Chapter 5 - Microtubule associated proteins and their functional interdependency

induction. However RNAi mediated ablation of WCB does not appear to affect 

flagellar motility.

CAP5.5 - At 24 hours post RNAi induction cells in the induced population grew at half 

the rate of the non-induced cell line. This reduction in growth is maintained between 

24 and 48 hours, after 72 hours of induction very little growth occurred. Examination 

of the induced culture by light microscopy shows that cells have a profound 

morphological phenotype. After 48 hours of induction there are two distinct 

populations visible in culture, (i) cells which appear larger and more rounded than 

normal, and (ii) very slim tapering cells (probably zoids). In some cases cells have 

initiated cytokinesis but have failed to complete abscission forming cells reminiscent 

of the GB4L 'push-me-pull-you' phenotype. Depletion of CAP5.5 also does not appear 

to affect flagellar motility.
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Figure 5.1 Growth curves showing effects of RNAi mediated ablation of specific 
MAPs in the procyclic form

Ablation of the indicated T. b ru c e i MAPs was induced by the addition of doxycyclin to  culture medium  

containing the respective RNAi cell lines at a concentration of l x l0 6cells/ml (methods described in 

section 2.4.6). The induced and non-induced populations were measured every 24 hours and diluted 

back to l x l0 6cells/ml, counts generally continued for 96 hours unless a longer or shorter tim e course 

was appropriate. CAP15, 16 a/b, GB4 and MARP1/2 cell lines do not give a growth phenotype upon 

RNAi ablation. However, ablation of WCB and CAP5.5 results in a clear growth defect that is 

detectable as early as 24 hours post induction.
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5.3 Phenotypic analysis of the WCB and CAP5.5 RNAi cell lines

As both the WCB and CAP5.5 RNAi induced cell lines showed clear growth and 

morphological phenotypes in culture these cell lines were subjected to further 

analysis. The other cell lines generated in this study were not examined further 

because no population growth defects were demonstrated after RNAi induction and 

cells showed normal motility and morphology.

5.3.1 Verification of CAP5.5 and WCB ablation by immunoblot analysis

The reduction in protein expression for CAP5.5 and WCB cell lines was shown by 

immunoblot analysis. Figure 5.2 shows that both WCB and CAP5.5 expression is 

markedly reduced by 24 hours after induction of RNAi mediated ablation, and further 

reduction is seen in both cell lines at 48 hours with very little CAP5.5 protein 

remaining by this time point.

Nl 24 48

Anti-WCB 150 ——  _  Anti-CAP5.5
100 — ■

50 KMX1 50 —  KMX1

Figure 5.2 Immunoblots showing reduction in protein expression after induction of 
WCB and CAP5.5 RNAi mediated ablation

RNAi cell lines were induced and cells were harvested at the specified time points (for methods see 

section 2.5.7.1). Whole cell protein extracts from 5X106 cells were loaded/lane and separated by SDS- 

PAGE, transferred to nitrocellulose membranes (see section 2.5.9) then probed with specified 

antibodies (dilutions used are shown in section 2.2.3). Membranes were then incubated with 

polyclonal-goat anti-mouse HRP-conjugated secondary antibody and immobilised specific antigens 

detected by chemiluminescence. Immunoblots show a marked reduction in WCB and CAP5.5 

expression over the time course. The anti 3-tubulin antibody KMX1 was used as a loading control.
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5.3.2 Analysis of the WCB and CAP5.5 RNAi cell lines by immunofluorescence 

analysis

To further validate the efficacy of WCB and CAP5.5 RNAi, cells were taken from a 

non-induced culture and from 12 and 24 hours post induction and protein reduction 

was visualised by immunofluorescence analysis (performed as described in section 

2.5.3).

WCB - Figure 5.3A-C shows representative immunofluorescence images of the non- 

induced WCB RNAi cell line revealing that the WCB protein (shown in red) is located 

over the entire cell body at all stages of the cell cycle which is in agreement with 

previous observations (Woods et al, 1992; Baines & Gull, 2008). In contrast, 12 hours 

post induction of RNAi WCB is not found at the posterior end of the cell but can still 

be seen on the anterior portion of the cell (Figure 5.3D-F). This localisation pattern 

indicates the absence of WCB decorating new MTs which form at the posterior end 

of the cell. After 12 hours of WCB RNAi induction, cellular morphology becomes 

abnormal. Figure 5.3E shows a cell with a rounded posterior end which is a 

characteristic phenotype seen in WCB depleted cells (Baines & Gull, 2008).
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Nl
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Figure 5.3 Immunofluorescence images of the WCB RNAi cell line, comparing non- 
induced cells to cells 12 hours after induction of RNAi

Cells w ere prepared for immunofluorescence analysis as described in section 2.5.1. Representative 

cells at progressively later stages of the cell cycle from a non-induced (Nl) culture (A-C) and 12 hours 

post RNAi induction (D-F), labelled with WCB antibody (red) and DAPI (blue). In non-induced cells WCB 

labelling is present over the entire cell body. In cells 12 hours post induction, WCB expression is 

reduced at the posterior end of the cell. E shows a cell with a rounded posterior end characteristic of 

the phenotype seen in this RNAi cell line (scale bar = 10pm).

CAP5.5 - Figure 5.4 shows cells from the CAP5.5 RNAi cell line before and 12 hours 

after induction of RNAi. In non-induced cells the CAP5.5 protein is distributed evenly 

over the entire cell body at all stages of the cell cycle (Figure 5.4A-D). In contrast, 

after 12 hours of RNAi mediated ablation CAP5.5 expression/localisation is reduced 

at the posterior end of the cell (Figure 5.4E-FI). Figure 5.4E shows a 1K1N cell which 

lacks CAP5.5 staining at the posterior end. While Figure 5.4F shows a 2K1N cell with 

an elongated and thin posterior end which is CAP5.5 negative: CAP5.5 expression 

over the anterior portion of the cell body also appears to be reduced. Figure 5.4G 

and FI also have abnormal posterior ends which appear more 'cone' shaped than 

non-induced cells. In these cells CAP5.5 staining is absent from the posterior end and 

also appears reduced over the anterior portion of the cell.
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HHH

Figure 5.4 Immunofluorescence images of the CAP5.5 RNAi cell line, comparing 
non-induced cells to cells 12 hours after induction of RNAi

Cells w ere prepared for immunofluorescence analysis as described in section 2.5.1. Representative 

cells at progressively later stages of the cell cycle from a non-induced (Nl) culture (A-D) and 12 hours 

post RNAi induction (E-H) were labelled with CAP5.5 antibody (green) and DAPI (blue). In non-induced 

cells CAP5.5 labelling is present over the entire cell body (A-D). In cells 12 hours post induction CAP5.5 

expression is clearly reduced; E and F show this reduction is seen mostly at the posterior end of the 

cell. Later in the cell cycle (G and H) CAP5.5 is reduced from both the posterior end and the anterior 

end of the cell (scale bar = 10pm).

5.3.3 Prolonged ablation of CAP5.5 or WCB causes further gross morphological 

changes

Figure 5.5A and B show fields of cells taken from cultures 24 hours after the 

induction of WCB and CAP5.5 RNAi respectively; after 24 hours of RNAi induction 

gross changes in cellular morphology are observed and in both cases multinucleates 

(Figure 5.5, asterisks) and zoids (Figure 5.5, labelled with Z) are produced. This is 

consistent with the published data (Baines & Gull, 2008; Olego-Fernandez et al,

2009). In Figure 5.5B a cell from the CAP5.5 RNAi cell line can be seen undergoing 

abnormal cytokinesis which upon abscission will result in multinucleate and 

anucleate progeny (arrow).
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Figure 5.5 Immunofluorescence images showing cells 24 hours post induction of 
WCB and CAP5.5 RNAi

Cells from the WCB and CAP5.5 RNAi cell lines were induced and samples were prepared for 

immunofluorescence analysis as described in section 2.5.1. Cells were labelled with the relevant 

antibodies (diluted as described in section 2.2.3). (A) WCB RNAi cell line labelled with WCB antibody 

(red) and (B) CAP5.5 RNAi cell line labelled with the CAP5.5 antibody (green). Images show severe 

morphological abnormalities occurring 24 hours post induction in both cell lines. Multinucleate cells 

are indicated with an asterisk, zoids are labelled with a Z, the arrow in B shows a cell undergoing 

aberrant cytokinesis (scale bar = 10pm).

The immunofluorescence analysis in Figure 5.5 clearly shows that some WCB and 

CAP5.5 protein remains after 24 hours of RNAi ablation. This confirms the earlier 

result of the immunoblot analysis shown in Figure 5.2. After 24 hours of RNAi 

induction the WCB protein is still associated with the old MTs located towards the 

anterior end of the cell. In comparison, CAP5.5 localisation is reduced overall when 

compared to the non-induced control and CAP5.5 is lost (in many cases) from both 

the anterior and posterior ends of cells, suggesting that CAP5.5 may be more labile 

than WCB.
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5.3.4 WCB may play a role in cross-linking microtubules of the subpellicular corset

Baines et.al (2008) noted that ablation of WCB appeared to affect the integrity of 

inter-MT cross-links at the posterior pole of the cell. When cells were extracted with 

1% NP40 to form cytoskeleton preparations, subpellicular MTs at the posterior end 

of the cells were observed to splay apart. This phenotype was also observed in our 

independently raised WCB RNAi cell line (Figure 5.6).

Figure 5.6 Immunofluorescence image showing microtubule splaying in the WCB 
RNAi cell line 24 hours post RNAi induction

The WCB RNAi cell line 24 hours post induction were harvested and prepared for immunofluorescence 

as described in section 2.5.1. Cytoskeletons were extracted as described in section 2.5.7.2. In wild type 

preparations the corset maintains a normal morphology (data not shown) however in the WCB 

ablated cells, as a result of this treatm ent microtubules splay open at the posterior end suggesting 

that the intermicrotubule cross links are weakened in the absence of WCB (scale bar = 10pm).
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5.3.5 Flow cytometry analysis on the WCB and CAP5.5 RNAi cell lines

To further assess the consequences of RNAi mediated ablation on these cell lines, 

cells were fixed in solution and stained with propidium iodide in order to assess cell 

cycle progression by flow cytometry.

WCB - Figure 5.7 shows the flow cytometry profiles for the WCB cell line before 

induction and after 24 and 48 hours of RNAi induction; the ploidy of cells 

represented by the each peak is indicated on the profiles. The profile of the non­

induced population is normal. After 24 hours of WCB ablation fewer cells are found 

in the 2C peak and two additional peaks can be seen in the profile; one of these 

represents the IKON (zoid) population, these cells contain a small amount of 

kinetoplast DNA but lack a nucleus, as such the peak is close to 0 on the x axis. The 

second additional peak (8C) on the 24 hour profile represents multinucleates. The 

appearance of zoids and multinucleates is indicative of aberrant cytokinesis and 

supports the immunofluorescence data presented in the previous section (see Figure 

5.5). After 48 hours of ablation there is an increase in zoids and less cells appear in 

the 2C and 4C peaks showing that fewer cells are completing cytokinesis accurately 

and going on to progress normally through the cell cycle.

CAP5.5 - The profile for the non-induced (Nl) sample in Figure 5.8 shows a normal 

distribution of cells. After 24 hours post induction of CAP5.5 RNAi the cells 

accumulate with 4C DNA content, this suggests a delay in mitosis or cytokinesis. 

Alternatively, growth of the 4C peak may be due to an increase in the number of 

1K2N cells, which are known to accumulate upon CAP5.5 ablation (Olego-Fernandez 

et al, 2009). 1K2N cells are the result of aberrant cytokinesis, and are partners to
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anucleate zoids (IKON). The flow cytometry profile shows a small peak of low 

fluorescence signifying the production of zoids and supporting the existence of a 

1K2N population giving rise to the 4C peak. Additionally, cells with 8C DNA content 

were also detected, this peak represents multinucleates and shows that (similar to 

the situation seen with WCB ablated cells) CAP5.5 RNAi induced cells have a mitotic 

or cytokinetic defect but can re-enter the cell cycle and re-replicate their kinetoplast 

and nuclear DNA. After 48 hours of induction the zoid population has grown 

significantly and the number of multinucleates (8C) has also increased.
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Figure 5.7 Flow cytometry profiles for the WCB RNAi cell line

Cells from the WCB RNAi cell line were fixed and stained with propidium iodide (as detailed in section 

2.4.8), samples of cells were prepared from a non-induced (Nl) culture and from 24 and 48 hours post 

induction. The X-axis shows fluorescence intensity in the FLA-2 channel, ploidy of peaks is shown on 

graphs. Analysis shows an increase in multinucleates which coincides with anucleate zoid production.
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Figure 5.8 Flow cytometry profiles for the CAP5.5 RNAi cell line

Cells from the CAP5.5 RNAi cell line were fixed and stained with propidium iodide (as detailed in 

section 2.4.8); cells were prepared from a non-induced (Nl) culture and from 24 and 48 hours post 

induction. The X-axis shows fluorescence intensity in the FLA-2 channel, ploidy of peaks is shown on 

graphs. Analysis shows an increase in the 4C peak followed by a progressive increase in the number of 

multinucleates (8C) which is accompanied by anucleate zoid production.
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5.3.6 Visualisation of kinetoplast and nuclear configuration in the WCB and 

CAP5.5 RNAi cell lines

To investigate whether RNAi ablation of WCB or CAP5.5 affected the intracellular 

positioning of the kinetoplasts and/or nuclei, trypanosome cells were settled on to 

slides and labelled with DAPI. The number of kinetoplasts and nuclei in individual 

cells was counted in 500 non-induced cells and 500 induced cells (taken at 24 and 48 

hours post induction).

WCB - Figure 5.9 shows that in a non-induced population the majority of cells are 

1K1N (72%) followed by 2K1N (18%) and then 2K2N (9%) and very few cells are 

multinucleates or zoids (1%). After 24 hours of induction the distribution of these cell 

types changes dramatically as only 14% of the population presented as 1K1N; there is 

also a reduction in 2K1N cells (from 18% in the non-induced culture down to 3% after 

24 hours of RNAi induction). This reduction in the abundance of 1K1N and 2K1N cells 

is partially accounted for by the increase in 2K2N cells (now at 14%) which suggests 

that in some cases cytokinesis is delayed. However, there is a large increase in the 

number of multinucleate cells and anucleate zoids which now make up 69% of the 

population. Taken together with the flow cytometry data this suggests that in most 

cases cells undergo and complete an aberrant cytokinesis event leading to the 

production of multinucleate (which includes 1K2N) cells and zoids (IKON). After 48 

hours the majority of cells are multinucleated, these cells are accompanied by a large 

population of zoids, showing that cells re-enter the cell cycle and continue to 

attempt cytokinesis resulting in further aberrant cell divisions which produce 

anucleate zoids.
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CAP5.5 - Figure 5.10, shows that in the non-induced sample the majority of cells are 

1K1N (80%) followed by 2K1N (12%) and then 2K2N (8%) as expected. After 24 hours 

of RNAi depletion there are less 1K1N (27%) and 2K1N (4%) cells, a slight increase in 

2K2N cells (15%) and a large increase in the number of multinucleate cells (which 

includes 1K2N cells, 34%) accompanied by the presence of a subpopulation of zoids 

(20%). This confirms the flow cytometry analysis and shows that the CAP5.5 cells 

complete cytokinesis but that the process is defective leading to the incorrect 

apportioning of nuclei (as represented by IKON and 1K2N (multinucleate progeny). 

After 48 hours of ablation the largest subpopulation of cells are the multinucleates 

(63%) followed by zoids (28%), very few 'normal' cell types were observed.

Conclusions - The flow cytometry (section 5.3.5) and DAPI count (section 5.3.6) 

analysis show that ablation of both WCB and CAP5.5 leads to aberrant cytokinetic 

events and the generation of multinucleate cells and non-viable zoids. This explains 

why no significant population growth was observed after 48 hours of induction 

during the population growth analysis. Any increase in cell density observed at 48 

hours is most likely due to the ability of multinucleate cells to undergo cytokinesis 

and abscission producing multiple non-viable zoids.
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Figure 5.9 Pie charts showing the kinetoplast and nuclear content of the WCB RNAi 
cell line

Cells from a non-induced WCB RNAi culture and cells from 24 and 48 hours post induction were  

harvested, settled onto slides and labelled with DAPI as described in section 2.5.1. 500 cells were 

classified by the number of kinetoplasts and nuclei they possessed. Pie charts show a reduction of 

cells progressing through the cell cycle 'normally' and an increase in multinucleates and zoids over 

tim e.
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Figure 5.10 Pie charts showing the kinetoplast and nuclear content of the CAP5.5 
RNAi cell line

Cells fro m  a n o n -in d u ced  CAP5.5 RNAi c u ltu re  and cells fro m  2 4  and 4 8  hours post in d u c tio n  w e re  

h a rv e s te d , s e ttle d  o n to  slides and lab e lled  w ith  DAPI as described  in section  2 .5 .1 . 5 0 0  cells w e re  

classified by th e  n u m b e r o f k in eto p lasts  and nuclei th e y  possessed. Pie charts s h o w  a re d u c tio n  o f  

cells progressing th ro u g h  th e  cell cycle 'n o rm a lly ' and an in crease in m u ltin u c le a te s  and zoids o v e r  

t im e .
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5.4 Organelle segregation in the CAP5.5 RNAi cell line

At the time of carrying out this study the effect of CAP5.5 RNAi ablation had not been 

explored. As shown in the previous experiments, depletion of CAP5.5 ultimately 

leads to aberrant cytokinesis. To explore the initial effects of CAP5.5 depletion on 

cellular morphology and organelle positioning, cells from a non-induced culture and 

a culture from 12 hours post induction were settled onto slides. Measurements were 

carried out on these cells to establish if basal body segregation, new flagellum 

elongation and nuclear separation occur as normal after RNAi mediated ablation of 

CAP5.5. The measurements which were taken are described in section 3.8 where the 

same experiment was undertaken for the GB4L RNAi cell line.

The measurement data collected is shown in Figure 5.11, all data is plotted as a ratio 

of the old flagellum length which accounts for any small variation in overall cell 

length between individual cells.

Nuclear separation - Figure 5.11A shows the relationship between new flagellum 

length and internuclear distance. The new flagellum extends as the cell progresses 

through the cell cycle, therefore the length of the new flagellum can be used as a 

temporal marker for cell cycle progression. Cells with a new flagellum: old flagellum 

ratio of 0.1 are in the Gi phase of the cell cycle whereas cells with a new flagellum: 

old flagellum ratio close to 1 (and thus with a long new flagellum) are at a late cell 

cycle stage just before or during cytokinesis. At the start of the cell cycle the new 

flagellum extends but the inter-nuclear distance does not change. This is because 

cells have not entered mitosis; at this stage the measurement of inter-nuclear 

distance is simply a reflection of the nuclear diameter, this remains relatively
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constant at the start of the cell cycle. When cells enter mitosis nuclear diameter 

increases and then nuclei separate this creates an inflection point on the graph. In 

this case the inflection point is at approximately 0.7 on the x-axis. This shows that 

nuclear separation begins when the new flagellum has reached 70% of the length of 

the old flagellum. There is no difference between non-induced and induced cells in 

this regard, showing that nuclear separation occurs normally when CAP5.5 is ablated. 

Olego-Fernandez et.al reported aberrant positioning of the post mitotic nuclei in the 

CAP5.5 RNAi ablated cells (Olego-Fernandez et al, 2009). The data presented here 

suggests that this is not a result of defective nuclear separation.

New flagellum growth - Figure 5.11B shows the relationship between the migration 

of the FC along the old flagellum and the growth of the new flagellum. The graph 

produced is biphasic, in the first phase, migration of the FC along the old flagellum 

and extension of the new flagellum is a linear relationship. FC migration and new 

flagellum growth measurements both increase progressively until reaching a 'stop' 

point at approximately 0.6 on the x-axis, this is when FC migration stops and new 

flagellum growth continues. 0.6 on the x-axis means the new flagellum has reached 

roughly 60% the length of the old flagellum. In the second phase new flagellum 

growth continues at a slower rate without the FC migrating. This characteristic graph 

is described in detail in section 3.8. RNAi mediated ablation of CAP5.5 does not 

appear to effect the growth of the new flagellum or the migration of the FC.

Basal body separation - Figure 5.11C describes the process of basal body separation 

throughout the cell cycle. Measurements made on non-induced cells show that as
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the new flagellum extends the interbasal body distance increases. The induced cells 

show the same general trend.

Distance from the new basal body to the posterior end - although this measurement 

remains relatively constant in both non-induced and induced cells as they progress 

through the cell cycle, this distance is reduced in a small number of induced cells 

(circled in red on Figure 5.11D). This shows that the new basal body is positioned 

closer to the posterior end than is 'normal' in these cells. However, this is only seen 

in a small proportion of the overall population. Since basal body separation in the 

induced population is normal (see Figure 5.11C) this result suggests that posterior 

end elongation may be disrupted in some of the induced cells.
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5.5 Demonstration of functional MAP Interdependency relationships

Previous studies using the TCP86 RNAi cell line gave the first insight into 

interdependency relationships between MAPs on the subpellicular corset. 

Immunofluorescence assays have shown that ablation of TCP86 affects the 

localisation of CAP5.5 but not WCB (Shawcross, 2008). Upon RNAi mediated ablation 

of TCP86 localisation to the subpellicular corset is initially lost at the posterior end of 

the cell where new MTs are nucleated. The same pattern is observed when TCP86 

ablated cells are probed with an antibody specific for CAP5.5. CAP5.5 localisation is 

restricted to regions where TCP86 remains bound to MTs. Therefore TCP86 must 

associate with the MTs either directly or via a complex before CAP5.5 is able to 

localise to the corset. This dependency is not demonstrated by WCB which is capable 

of associating with MTs in the absence of TCP86 (Shawcross, 2008).

5.5.1 TCP86 does not require CAP5.5 for localisation to the subpellicular corset

These preliminary studies show that CAP5.5 requires TCP86 for normal localisation, 

to determine if the reciprocal is true, CAP5.5 depleted cells were probed with a 

specific antibody for TCP86. The results of this investigation are shown in Figure 5.12. 

Representative cells from the CAP5.5 RNAi cell line before induction are shown in 

Figure 5.12A and B, A shows a 1K1N cell and B is a 2K2N cell, in both cases TCP86 

(green) and CAP5.5 (red) are associated with the corset MTs over the entire cell 

body. After 24 hours of depletion, CAP5.5 expression at the posterior end of the cell 

is reduced (this can be clearly seen in Figure 5.12C which shows a 2K1N cell with 

TCP86 labelling over the whole cell body but CAP5.5 labelling restricted to the 

anterior end of the cell). Figure 5.12D shows a cell which has made several attempts
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to complete cytokinesis and has failed to do so, this cell has 4 anterior ends joined to 

a large cell body. In this image only one of these anterior ends possesses CAP5.5 

labelling suggesting that this anterior end belongs to the original cell. TCP86 labelling 

is present all over the cell body (including each anterior end) with the same intensity. 

In conclusion, TCP86 does not require CAP5.5 for localisation to the subpellicular 

MTs.
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PHASE DAPI TCP86 CAP5.5 MERGE

D 24h MultiN

Figure 5.12 Immunofluorescence images showing the localisation of CAP5.5 and 
TCP86 before and after RNAi ablation of CAP5.5

Cells from the CAP5.5 RNAi cell line, non-induced (Nl) and 24 hours post induction were harvested for 

immunofluorescence analysis and slides were prepared as described in section 2.5.1. Cells were  

labelled using anti-TCP86 (green) and anti-CAP5.5 (red) primary antibodies (dilutions used are shown 

in section 2.2.3) and then stained with DAPI (blue). In Nl cells antibodies localise to their target 

proteins over the entire subpellicular corset throughout the cell cycle, examples show a 1K1N cell (A) 

and a 2K2N cell (B). After 24 hours CAP5.5 expression is reduced but TCP86 expression is unaffected (C 

and D) (scale bar = 10pm).
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5.5.2 Localisation of TCP86 to the subpellicular corset is independent of WCB

Previous experiments show that TCP86 ablation does not affect the localisation of 

WCB (Shawcross, 2008). The reciprocal experiment was carried out here to see if 

WCB RNAi ablation effects the localisation of TCP86; the results are shown in Figure 

5.13. Figure 5.13A shows that TCP86 and WCB localise to the whole subpellicular 

corset in non-induced cells. After 24 hours of induction, WCB expression is reduced 

at the posterior end of the cell, yet TCP86 can still be seen over the entire corset and 

this can be clearly seen in Figure 5.13B, C and D. The data presented here shows that 

when WCB is ablated TCP86 can still localise to microtubules, proving that the 

localisation of TCP86 and WCB to the subpellicular MTs are independent of one 

another.
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PHASE DAPI TCP86 WCB MERGE

Figure 5.13 Immunofluorescence images showing the localisation of WCB and 
TCP86 before and after RNAi ablation of WCB

Cells from the WCB RNAi cell line, a non-induced (Nl) culture and 24 hours post induction were 

harvested for immunofluorescence analysis and slides were prepared as described in section 2.5.1. 

Cells were labelled with anti TCP86 (green) and anti-WCB (red) antibodies (dilutions used are shown in 

section 2.2.3) and DAPI (blue). In non-induced cells both antibodies localise to protein over the entire 

subpellicular corset throughout the cell cycle (A). After 24 hours WCB expression is reduced but TCP86 

expression is unaffected (B-D) (scale bar lOpm).

Figure 5.14 summarises the immunofluorescence data presented above. Showing 

that CAP5.5 localisation to the MTs is dependent on TCP86 but all other potential 

interactions investigated do not show dependency. The blue arrows on the diagram 

show the focus of the next set of experiments. These were carried out using the 

same cell lines and the same antibodies to investigate if interdependency 

relationships exist between CAP5.5 and WCB.
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TCP86

WCB

Figure 5.14 Summary of immunofluorescence show in Figure 5.12- Figure 5.13

Diagram shows that when TCP86 is ablated CAP5.5 is unable to localise to the microtubules (red 

arrow) but WCB localisation is unaffected (green arrows). When CAP5.5 or WCB are ablated TCP86 

localisation is unaffected. Blue arrows show the interactions which need to be investigated to  

complete this study.

5.5.3 WCB localisation to the subpellicular corset is independent of CAP5.5

To investigate whether the localisation of WCB is dependent upon CAP5.5, the 

CAP5.5 RNAi cell line was induced and probed with an antibody specific for WCB. 

Figure 5.15A and B show cells from the non-induced culture of the CAP5.5 RNAi cell 

line, both CAP5.5 and WCB are present over the whole subpellicular corset. After 24 

hours of ablation new MTs at the posterior end of the cell are negative for CAP5.5 as 

expected, but are positive for WCB, showing that WCB localises independently of 

CAP5.5 (Figure 5.15C and D).
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PHASE DAPI WCB CAP5.5 MERGE
A  Nl «UK1N

B Nl 2K2N

Figure 5.15 Immunofluorescence images showing the localisation of WCB and 
CAP5.5 before and after RNAi ablation of CAP5.5

Cells from a non-induced (Nl) culture and 24 hours post induction of the CAP5.5 RNAi cell line were 

harvested for immunofluorescence analysis and slides were prepared as described in section 2.5.1. 

Cells were labelled with anti-WCB (green) and anti-CAP5.5 (red) primary antibodies (dilutions used are 

shown in section 2.2.3) and then stained with DAPI (blue). In non-induced cells WCB and CAP5.5 

localised over the entire cell body (A) a Nl 1K1N cell and (B) a Nl 2K2N cell. C and D show cells 24 

hours post induction, CAP5.5 is reduced but WCB localisation remains unaffected (scale bar = 10pm).
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5.5.4 CAP5.5 localisation to the subpellicular corset requires WCB

The previous experiment shows that WCB localisation is independent of CAP5.5, to 

check the reciprocal the WCB RNAi cell line was induced and probed with a CAP5.5 

specific antibody. In the non-induced cells both proteins are seen over the entire cell 

body (Figure 5.16A). After 24 hours of WCB ablation the MTs at the posterior end of 

the cell become negative for WCB as expected due to the targeted ablation of this 

protein by RNAi. A reduction in CAP5.5 localisation is also observed and MTs become 

negative for CAP5.5 at the posterior end (Figure 5.16C). Data presented here shows 

that WCB expression/localisation is essential for CAP5.5 localisation to the 

subpellicular corset MTs but WCB does not require the expression of CAP5.5 for its 

localisation (Figure 5.15).
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PHASE DAPI WCB CAP5.5 MERGE

Figure 5.16 Immunofluorescence images showing the localisation of WCB and 
CAP5.5 before and after RNAi ablation of WCB

Cells from a non-induced (Nl) culture and 24 hours post induction of the WCB RNAi cell line w ere  

harvested for immunofluorescence analysis and slides were prepared as described in section 2.5.1. 

Cells w ere labelled with anti-WCB (green) and anti-CAP5.5 (red) primary antibodies (dilutions used are 

shown in section 2.2.3) and then stained with DAPI (blue). In non-induced cells WCB and CAP5.5 

localised over the entire cell body (A) a Nl 1K1N cell and 2K2N cell. B-D cells 24 hours post induction; 

WCB and CAP5.5 are reduced (scale bar = 10pm).

A summary of the immunofluorescence data described above is shown in Figure 

5.17. This model shows that CAP5.5 localisation to the subpellicular corset is 

dependent upon expression of TCP86 and WCB. When TCP86 or WCB are 

independently knocked down through RNAi ablation they are no longer detected on 

new MTs at the posterior end of the cell, the same MTs also become negative for
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CAP5.5 staining. The green arrows in this illustration show where the localisation of 

one MAP is unaffected by the RNAi mediated depletion of the other.

TCP86

Figure 5.17 Illustration summarising the interactions between TCP86, CAP5.5 and 
WCB at the subpellicular corset

The model represents the findings of the immunofluorescence experiments shown in Figure 5.12, 

Figure 5.13, Figure 5.15 and Figure 5.16. Arrows represent what happens to MAP localisation when 

the protein in question is reduced by RNAi. Red lines indicate conditions where another MAP does not 

associate with the subpellicular corset as a result of RNAi ablation of the MAP in question. Green 

arrows represent where localisation of the other MAP is unaffected by depletion of the MAP in 

question. When TCP86 expression is knocked down by RNAi CAP5.5 is no longer able to associate with 

the subpellicular corset, this is also the case for WCB ablation. Localisation of TCP86 and WCB is 

unaffected by the knockdown of other MAPs in this study.

5.6 GB4L expression is essential for CAP5.5 localisation to the subpellicular 

corset but not for TCP86 or WCB

Whilst there is no evidence proving conclusively that GB4L is a MAP, the disorganised 

growth of MTs which occurs upon RNAi mediated ablation of this protein (Figure 4.10
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- Figure 4.12) suggests that it may function in a role associated with MTs or with 

other MAPs. For this reason the cell line was included in the interdependency study.

To investigate whether TCP86 or CAP5.5 localisation is affected upon GB4L depletion 

the GB4L cell line was induced and labelled with specific antibodies against TCP86 

and CAP5.5. In the non-induced cells (Figure 5.18A and B) both TCP86 and CAP5.5 

can be seen over the whole of the subpellicular corset evenly distributed from 

anterior to posterior end of the cell. After 24 hours of GB4L depletion TCP86 

localisation is unaffected but MTs appear to be negative for CAP5.5 at the posterior 

end of the cell, this can be seen in Figure 5.18C and D which show examples of the 

characteristic 'push-me-pull-you' cells. In these cells the anterior end belonging to 

the mother cell is positive for CAP5.5 but the anterior end of the daughter cell is 

negative. This experiment shows that GB4L expression is required for CAPS.5 but not 

TCP86 localisation to the subpellicular corset. Moreover, this supports the previous 

data shown in section 5.5.1 (Figure 5.12) that TCP86 localisation is independent of 

CAP5.5.
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PHASE DAPI TCP86 CAP5.5 MERGE
Nl 1K1N

Figure 5.18 Immunofluorescence images showing the localisation of TCP86 and 
CAP5.5 before and after RNAi ablation of GB4L

Cells from a non-induced (Nl) culture and 24 hours post induction of the GB4L RNAi cell line were 

harvested for immunofluorescence analysis and slides were prepared as described in section 2.5.1. 

Cells were labelled with anti-TCP86 (green) and anti-CAP5.5 (red) antibodies (dilutions used are shown 

in section 2.2.3) and stained with DAPI (blue). In non-induced cells, TCP86 and CAP5.5 localised over 

the entire cell (A and B). After 24 hours of induction (C and D) TCP86 localisation is not affected but 

CAP5.5 is reduced (scale bar = 10pm).

To explore if GB4L ablation affects the localisation of WCB, the GB4L RNAi cell line 

was probed with an antibody specific for WCB, at the same time CAP5.5 labelling was 

repeated to verify the previous result. In non-induced cells, WCB and CAP5.5 can be 

seen over the entire subpellicular corset (Figure 5.19A). Knockdown of GB4L by RNAi 

does not affect localisation WCB as the protein can still be seen over the entire cell
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body. However, as previously observed, CAP5.5 is reduced on the new MTs at the 

posterior end of the cell (Figure 5.19B and C); this confirms that CAP5.5 requires 

GB4L expression for localisation. Moreover, this data supports previous data shown 

in section 5.5.3 (Figure 5.15) that WCB localisation is independent of CAP5.5.

PHASE DAPI WCB CAP5.5 MERGE

Figure 5.19 Immunofluorescence images showing the localisation of WCB and 
CAP5.5 before and after RNAi ablation of GB4L

Cells from  a non-induced (Nl) culture and 24 hours post induction of the GB4L RNAi cell line were  

harvested for immunofluorescence analysis and slides were prepared as described in section 2.5.1. 

Cells were labelled with anti-WCB (green) and anti-CAP5.5 (red) antibodies (dilutions used are shown 

in section 2.2.3) and then stained with DAPI (blue). In non-induced cells WCB and CAP5.5 localised 

over the entire cell (A). After 24 hours of induction (B and C) WCB localisation is not affected but 

CAP5.5 is reduced (scale bar = 10pm).

MAP localisation to  the subpellicular corset was also examined by immunoblot 

analysis. Figure 5.20 shows immunoblots which confirm that WCB and TCP86
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localisation to the cytoskeleton is not affected by GB4L ablation, however after 48 

hours of induction CAP5.5 localisation is reduced beyond detectable levels.

Nl 24 48

250

150

100

100

75

50

Figure 5.20 Immunobiots showing that GB4L depletion affects the cytoskeletal 
localisation of CAP5.5 but not TCP86 or WCB

RNAi cells were induced and cells were harvested at specified time points, and cells from a non­

induced culture were also harvested. Cytoskeletons were extracted using NP40 as described in section 

2.5.7.2. Protein extracts from 5X106 cells were loaded per lane and separated by SDS-PAGE, 

transferred to nitrocellulose membranes then probed with the specified antibodies (dilutions used are 

shown in section 2.2.3). Membranes were incubated with the relevant HRP-conjugated secondary 

antibody and immobilised specific antigens detected by chemiluminescence. Immunobiots show that 

WCB and TCP86 protein levels on the cytoskeleton are not affected by GB4L ablation. However, there  

is a marked reduction in CAP5.5 on the subpellicular corset over the time course. KMX1 the anti 0- 

tubulin antibody was used as a control for equal loading.

TCP86

KMX1-(p TUBULIN)
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To investigate if CAP5.5 becomes mis-localised into the cytoplasm the GB4L RNAi cell 

line was induced and cells harvested from a non-induced culture and at 24 and 48 

hours post induction. These cells were then extracted to give a cytoskeletal fraction 

(see section 2.5.7.2), and a soluble fraction (see section 2.5.7.3). These fractions 

were then subjected to immunoblot analysis; the result of this is shown in Figure 

5.21. It is evident that CAP5.5 is present in both the cytoskeletal and the soluble 

fraction in non-induced samples. However, after 24 hours of GB4L RNAi induction, 

while CAP5.5 is still associated with the cytoskeleton (Figure 5.21 lane 3), its 

abundance is dramatically reduced in the soluble fraction (Figure 5.21 lane 7). This 

observation is surprising since it was expected that if CAP5.5 was not able to 

associate with the MTs then its abundance would increase in the soluble fraction. 

This is not the case and suggests that the cell is either rapidly degrading the 

cytoplasmic pool of CAP5.5 or that CAP5.5 protein expression has stopped. After 48 

hours of GB4L RNAi depletion very little CAP5.5 is found associated with the 

cytoskeleton and no CAP5.5 is detected in the soluble fraction.
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Cytoskeleton
Nl 24  48

Soluble
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Figure 5.21 Immunoblot analysis shows that CAP5.5 protein levels are reduced 
after GB4L RNAi depletion

Cells from the non-induced (Nl) GB4L RNAi cell line were harvested then a culture was induced and 

cells were harvested at specified time points. Cytoskeletons from 5X106 cells were extracted using 

NP40 to give a cytoskeleton extract (as described in section 2.5.7.2), the soluble fraction was 

concentrated by acetone precipitation (method described in section 2.5.7.3). Both the cytoskeletal 

and soluble protein extracts were separated by SDS-PAGE, transferred to nitrocellulose membranes 

then probed with the CAP5.5 specific antibody (for dilution used see section 2.2.3), membranes were  

then incubated with polyclonal-goat anti-mouse HRP-conjugated secondary antibody and the  

immobilised CAP5.5 antigens were detected by chemiluminescence. Immunobiots show there is a 

marked reduction in CAP5.5 on the subpellicular corset and in the soluble fraction over the time  

course. The anti (3-tubulin antibody KMX1 was used as a loading control.

5.7 l6a/b-GFP localises to the subpellicular corset in T. brucei

Unfortunately repeated attempts to acquire antibodies to other published T. brucei 

MAPs were unsuccessful, and so attempts were made to create gene fusions in 

which specific MAPs were fused to GFP; thus allowing further study of MAP 

functional interdependency relationships. Constructs were made to fuse GFP to 

either the N and/or C terminus of MARP1/2, 16, CAP15, CAP17, GB4 and GB4L. While 

constructs and cell lines were generated for all these MAP-GFP combinations, 

localisation was only successful for the 16 construct. In whole cells the 16-GFP fusion 

protein localises over the entire cell, excluding the flagellum this is shown in Figure
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5.22A. When cytoskeletons are prepared by NP40 detergent extraction, 16-GFP still 

localises over the entire cell (Figure 5.22B and C). Proving that this protein is 

specifically associated with the subpellicular corset.

PHASE DAPI 1/6 GFP MERGEplj
E

E
Figure 5.22 Fluorescence images showing that 16-GFP localises to the subpellicular 
corset in T. brucei

T. brucei cells w ere transfected with the 16-GFP plasmid which was integrated allowing expression of a 

fusion protein (for methods see section 2.4.5). Cells were harvested and settled on to  slides (as 

described in section 2.5.1) and labelled with DAPI (blue). The 16-GFP fusion protein (green) localises 

over the entire cell body in whole cells (WC) (A) and in NP40 extracted cytoskeletons (CS) (B and C) at 

all cell cycle stages (method for extracting cytoskeletons is described in section 2.5.1) (scale bar = 

10pm).
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5.7.1 I6a/b localisation to the subpellicular corset is independent of GB4L

To investigate whether the localisation of 16 is affected when GB4L is depleted, the 

16-GFP construct was transfected into the GB4L RNAi cell line and RNAi induced. 

Figure 5.23 demonstrates that in GB4L non-induced cells the 16-GFP fusion protein is 

also located over the entire cell body in both whole cells (Figure 5.23A and B) and 

cytoskeletons (Figure 5.23C); reflecting the result seen in the wild type cells (Figure 

5.22). However, in this cell line there was also intense 16-GFP fluorescence which 

appeared to be near to the basal bodies along with other patches of intense 

fluorescence in the posterior region of the cell. The intense staining corresponding to 

the basal body regions is indicated by a green arrow on Figure 5.23 and was present 

in both whole cells and cytoskeleton preparations.
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PHASE DAPI 1/6 GFP MERGE

Figure 5.23 Fluorescence images showing the localisation of the 16-GFP fusion 
protein in the non-induced GB4L RNAi cell line

The GB4L RNAi cell line was transfected with a construct to allow expression of 16-GFP, cells were 

settled on to slides (as described in section 2.5.1) and labelled with DAPI (blue). Images show non- 

induced cells from the GB4L cell line expressing 16-GFP (green), (A) shows a 1K1N cell, (B) shows a 

2K2N cell and both these images are of whole cells (WC) showing 16 localisation over the whole cell 

body. (C) Shows a cytoskeleton, 16 localisation remains over the entire cell as seen in wild type cells. 

These images were taken on the Leica DMRX microscope. Green arrows indicate areas of intense 

signal which appear to be located in proximity to the basal bodies (scale bar = 10 pm).

Following on from this, the GB4L cell line containing the 16-GFP gene fusion was 

induced and cells labelled with CAP5.5 and visualised by fluorescence microscopy. 

CAP5.5 has previously been shown to reduce following RNAi ablation of GB4L (Figure 

5.18 and Figure 5.19) so this antibody was used as a marker to show that induction of 

GB4L RNAi is effective. This experiment showed that 16-GFP localisation to the 

subpellicular corset does not require GB4L. An example is shown in Figure 5.24 which 

shows a characteristic GB4L push-me-pull-you cell 24 hours post induction. The 16-
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GFP fusion protein is seen over the entire corset; however CAP5.5 is reduced and can 

only be seen on one anterior end.

PHASE 1/6 GFP CAP5.5 MERGE

Figure 5.24 Immunofluorescence images showing the localisation of the 16-GFP 
fusion protein in the GB4L RNAi cell line at 24 hours post induction

Cells from  the GB4L RNAi cell line expressing the 16-GFP fusion protein (green) were harvested at 24 

hours post induction. Cells were settled on to slides (as described in section 2.5.1) labelled with anti- 

CAP5.5 antibody (red) to  show the efficacy of GB4L RNAi (CAP5.5 localisation is reduced upon GB4L 

depletion see Figure 5.18) and DAPI (blue). Cells were visualised by Deltavision microscopy, the  

images shows a characteristic push-me-pull-you cell, CAP5.5 is reduced, 16-GFP localisation appears 

unaffected by GB4L RNAi depletion.

5.8 Summary

This chapter explores T. brucei MAPs, initially describing the results of an RNAi screen 

carried out to investigate proteins which are published as MAPs but have not been 

extensively characterised or subjected to RNAi mediated ablation. Shortly after 

initiating this screen the RNAi phenotype for WCB was published (Baines & Gull, 

2008), followed by that of CAP5.5 (Olego-Fernandez et at, 2009). This chapter 

confirms the findings of these studies showing that RNAi depletion of WCB and 

CAP5.5 results in growth (Figure 5.1) and morphology defects (Figure 5.5A and B). 

The data presented here shows that ablation of CAP15, 16, GB4 and MARP1/2 does 

not result in any observable phenotype and as such these cell lines were not studied 

further (Figure 5.1). RNAi depletion of WCB and CAP5.5 was verified by immunoblot
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analysis (see Figure 5.2) and immunofluorescence studies show that both proteins 

are initially lost from the posterior end of the cell (Figure 5.3 and Figure 5.4). 

Depletion of both WCB and CAP5.5 results in disruption of cell cycle progression 

(Figure 5.8) and leads to aberrant cytokinesis resulting in the production of zoids and 

multinucleates (see Figure 5.8, Figure 5.9 and Figure 5.10). Measurements taken of 

organelle positioning in the CAP5.5 cell line show that flagella growth and basal body 

segregation is normal. However, in a small number of induced cells the new basal 

body was positioned closer to the posterior end than in the non-induced controls 

suggesting that posterior end elongation may be affected (Figure 5.11D). 

Interestingly no defects in nuclear segregation were measured despite nuclear mis- 

positioning reported by Olego-Fernandez et al (Olego-Fernandez et al, 2009). This 

suggests that aberrent positioning of the nuclei during cytokinesis described in this 

publication is not a result of defects in nuclear seperation, rather gross 

morphological changes to the cell structure (e.g the lack of posterior end extension) 

might explain this phenotype.

This chapter then moves towards building an interactome for MAPs on the 

subpellicular corset (section 5.5). Figure 5.25 summerises the flourescence data 

collected in this chapter and shows the affects of depleting a given protein on the 

localisation of other MAPs. Green arrows show where no effect was observed, red 

arrows indicate where localisation was disrupted, blue dashed arrows show where 

further work is required.
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TCP86

GB4L

Figure 5.25 Summary of the immunofluorescence results for the MAP interactome

The cartoon represents the results of the immunofluorescence carried out thus far on the available 

RNAi cell lines, arrows show what happens when the protein in question is reduced by RNAi. Red 

arrows represent where localisation of another protein reduced, green arrows show where RNAi has 

no affect on the other protein. Blue dashed arrows show where interactions have not yet been 

studied.

Specific RNAi mediated ablation of WCB, TCP86 and GB4L prevents the localisation of 

CAP5.5 to the posterior end of the subpellicular corset. It is interesting to note that 

ablation of these specific MAPs results in distinct phenotypes despite the fact that 

they all affect CAP5.5 localisation. This suggests that the growth and morphological 

phenotypes observed in these cell lines are not explained solely by loss of CAP5.5,

235



Chapter 5 - Microtubule associated proteins and their functional interdependency

and indicates that these MAPs are likely to have concerted (but distinct) roles in the 

organisation and remodelling of the cytoskeleton during cell division.

The phenotypes observed when CAP5.5, WCB, TCP86 and GB4L were depleted by 

RNAi all point towards defects in MT organisation at the posterior end of the cell. In 

the next chapter attention turns to attempts to advance our understanding of how 

MT growth is orchestrated at the posterior end. With specific focus on how MT 

organisation and therefore cytoskeletal remodelling is disrupted upon GB4L and 

TCP86 RNAi ablation. To help with this investigation we employ the conserved MT 

binding +TIPs, EB1 and XMAP215 as markers for the plus ends of MTs.
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Chapter 6 Microtubule plus ends and posterior 

end formation

6.1 Introduction

The data presented in this chapter describes the localisation of a T. brucei 

homologue of EB1 (TbEBl) through GFP epitope tagging and demonstrates that 

TbEBl is not essential in PCF trypanosomes. GFP-TbEBl was also expressed in both 

the GB4L and TCP86 RNAi cell lines to act as a marker for MT plus ends. This allowed 

the effects of GB4L and TCP86 depletion on MT plus end organisation to be 

visualised. In non-induced cells a subset of MTs are organised into a discrete region 

of the cell where the new posterior end will form, once cytokinesis is complete; this 

organisation is disrupted when either GB4L or TCP86 are ablated. In a separate series 

of experiments the GB4L or TCP86 RNAi cell lines were also transfected with a 

construct allowing expression of YFP-TbXMAP215; these experiments confirmed that 

posterior end formation is disrupted following GB4L or TCP86 ablation.

6.2 The T. brucei EB1 homologue (T6EB1)

The T. brucei protein Tb09.160.1440 has an EB1 motif at its C-terminus; this motif is 

found at the C-terminus of proteins related to the human EB1 protein. Additionally, 

Tb09.160.1440 has a calponin homology (CH) domain at its N-terminus, in common 

with other eukaryotic EB1 proteins (Galjart, 2010). Tb09.160.1440 is annotated on 

GeneDB as having a MT binding function due to its homology with characterised EB1 

proteins in other systems. A BlastP search using the amino acid sequence of
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Tb09.160.1440 as the query returns EB1 homologues from many species; including 

BIM1, the EB1 homologue in 5. cerevisiae.

To investigate the function of TbEBl an RNAi cell line was raised in the PCF. In this 

RNAi cell line GFP was fused to TbEBl at its N-terminus to enable expression of GFP- 

TbEBl at near physiological levels thus allowing (1) visualisation of protein 

localisation and (2) confirmation of TbEBl ablation in knockdown experiments.

6.2.1 Localisation of TbEBl visualised by GFP epitope tagging

Figure 6.1 shows the localisation pattern observed in cells positive for GFP-TbEBl 

expression. GFP-TbEBl localises strongly and consistently throughout the cell cycle to 

the posterior end of the cell demonstrating that subpellicular MT plus ends are 

concentrated in this region. This data is consistent with observations made when 

cells are labelled with the antibody YL1/2, which detects tyrosinated a-tubulin that is 

found in new MTs at the polymerising plus ends and is seen mainly at the posterior 

end of the cell in immunofluorescence (see Figure 6.2). It is interesting to note that in 

some cells the GFP-TbEBl signal defines a ring at the posterior end of the cell; see 

Figure 6.1A which shows an example of a 1K1N cell at an early stage in the cell cycle. 

Figure 6.1B-D shows that the GFP signal is maintained at the posterior end 

throughout the cell cycle. Figure 6.1D shows that in a 2K2N cell, which has yet to 

initiate cytokinesis, GFP-TbEBl is also detected in a distinct region between the 

nuclei (indicated with an arrow). YL1/2 staining also provides further evidence of new 

MT growth between divided nuclei (Figure 6.2C and D); confirming observations 

made with the GFP-TbEBl.
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A consistent observation made throughout the cell cycle is the detection of a distinct 

dot of GFP signal at the anterior tip of the cell body (Figure 6.1 hashes); this may 

represent GFP-TbEBl localising to the plus ends of the 4 specialised MTs of the FAZ 

which have opposite polarity to the MTs of the subpellicular corset. GFP-TbEBl is 

also seen associated with the growth of the new flagellum; this is indicated by 

asterisks in Figure 6.1A-D. In Figure 6.1A, GFP-TbEBl can be seen close to the 

kinetoplast in proximity to the flagella pocket, as cells progress through the cell cycle 

and the new flagellum extends this signal extends from the flagella pocket towards 

the anterior end of the cell (Figure 6.1B-D). From these images it is not possible to 

tell if this GFP-TbEBl association is with the new FAZ, PFR or flagellum axoneme, this 

is further investigated in section 6.4.1 and 6.4.2.
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H
Figure 6.1 Fluorescence images showing the localisation of GFP-rbEBl

Transgenic procyclic form cells expressing GFP-TbEBl were settled onto slides and detergent 

extracted to leave cytoskeletons, as described in section 2.5.1. Images A-D show cells at progressively 

later cell cycle stages. GFP-TbEBl localises to (1) the posterior end of the cell (2) the anterior tip of the  

cell body, (3) the new flagellum region and (4) the site of formation of a new posterior end (D). Diffuse 

and faint labelling is also seen over the cell body at all cell cycle stages (scale bar = 10pm).

Figure 6.2 Immunofluorescence images showing new microtubule formation as 
visualised by YL1/2

Procyclic form trypanosomes were settled onto slides in preparation for immunofluorescence as 

described in section 2.5.1. Images A-D cells at progressively later stages in the cell cycle stained with 

the antibody YL1/2 (red) and DAPI (blue). YL1/2 detects tyrosinated a-tubulin and therefore acts as a 

marker for new MT growth (described in section 1.7). New MTs form at the posterior end of the cell 

and between separated nuclei (arrow in D) (scale bar = 10pm).
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6.3 The GFP-TbEBl signal reduces upon RNAi mediated ablation of TbEBl

To validate the localisation of GFP-TbEBl shown in Figure 6.1 a TbEBl RNAi cell line 

expressing GFP-TbEBl was generated and RNAi was induced and the GFP signal was 

monitored over the course of TbEBl ablation. 200 cells were counted making note of 

the number of cells which were expressing GFP-TbEBl at each 24 hour interval (the 

cells were monitored for a total of 96 hours). Figure 6.3 shows the results of this 

experiment, cells positive for GFP-TbEBl expression are represented by the black 

portion of the bar, cells negative for GFP-TbEBl expression are represented by the 

grey portion of the bar. In non-induced cells the GFP-TbEBl expression was 

heterogeneous, the signal was observed in approximately 50% of cells within the 

population; the number of cells expressing GFP-TbEBl reduced progressively at each 

time point and by 96 hours post-induction only 5% of cells had a detectable 

fluorescence signal.
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Figure 6.3 GFP-TbEBl expression is reduced when TbEBl is targeted for depletion 
by RNAi

The 7'bEBl RNAi cell line expressing GFP-TbEBl was induced and GFP-TbEBl fluorescent signal was 

monitored over time. Cells positive for GFP-TbEBl expression are represented by the black portion of 

the bar, cells negative for GFP-TbEBl expression are represented by the grey portion of the bar. 200 

cells in total were counted for each time point. The percentage of cells expressing GFP-TbEBl reduces 

over tim e from ~50% in the non-induced population to ~5% after 96 hours of TbEBl RNAi mediated 

ablation.

The intensity of the signal is reduced over the time course, cells counted as positive 

for GFP-TbEBl at 96 hours post induction possessed a weaker GFP-TbEBl signal 

when compared to examples from the non-induced culture. Figure 6.4 presents 

representative fields of cells from each time point; cells marked with an asterisk 

were classified as positive for GFP-TbEBl signal. These images demonstrate the 

qualitative change observed in GFP-TbEBl signal intensity and also show that normal 

cell morphology is maintained over the time course of RNAi induction.
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OH 124H

Figure 6.4 Fluorescence images showing GFP-7MB1 expression reduces over time 
in cells targeted for TbEBl RNAi mediated depletion

Cells from the TbEBl RNAi cell line expressing GFP-TbEBl were induced and settled onto slides for 

fluorescence analysis as described in section 2.5.1. GFP-TbEBl signal is reduced over time showing 

that RNAi ablation is effective, no morphological phenotype is observed upon the loss of EB1 

expression, cells marked with an asterisk are positive for GFP expression (scale bar = 10pm).
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6.4 TbEBl is not essential for viability in the procyclic form

To investigate the effects of TbEBl depletion on viability, RNAi was induced and the 

population growth was measured every 24 hours. Cells were also observed in culture 

to assess motility and general morphology. Over the time course of 96 hours no 

discernable growth defect was observed (see Figure 6.5) and cells appeared to be 

normal in terms of motility and morphology (see Figure 6.4).
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Figure 6.5 Growth curve for the TbEBl RNAi cell line

The RNAi mediated ablation of TbEBl was induced by addition of doxycyclin to the culture medium  

containing a concentration of lx lO -6 cell/ml (methods described in section 2.4.6). Induced and non- 

induced populations were measured every 24 hours then diluted back to lx lO '6 cell/ml and allowed to  

grow further. Counts continued for 96 hours, no effect on population growth was observed in this 

tim e.
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6.4.1 GFP-TbEBl does not localise to the paraflagellar rod (PFR)

GFP-TbEBl is seen in a region close to the growing new flagellum (see asterisks in 

Figure 6.1). To determine whether this localisation pattern is associated with the 

PFR, immunofluorescence experiments were carried out using an antibody specific 

for this structure.

Figure 6.6 shows cells expressing the GFP-TbEBl that were also labelled with the anti 

PFR antibody L8C4 (Kohl et al, 1999). Figures 6.6A/B shows an early 2K1N cell; the 

PFR of a new flagellum is not detected by L8C4 suggesting that the new flagellum has 

not yet emerged from the flagella pocket. GFP-TbEBl expression can be seen 

anterior to the kinetoplasts (arrow), in the flagella pocket region, closer to the 

posterior end of the cell than the PFR labelling. Figure 6.6C/D show a 2K2N cell with a 

new flagellum, as indicated by L8C4 staining. In this cell GFP-TbEBl is localised 

between the old and new PFR structures rather than associating with either one (see 

asterisks). GFP-TbEBl expression can also be seen anterior to the kinetoplasts (see 

arrow).

6.4.2 GFP-TbEBl does not localise to the FAZ filament

Figure 6.7 shows that GFP-TbEBl signal does not co-localise with the antibody ROD-1 

which detects the FAZ filament; that the GFP-TbEBl signal extends from a position 

closer to the posterior end of the cell (see bracket) than the FAZ.
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Figure 6.6 Fluorescence/immunofluorescence images showing that GFP-TbEBl does 
not co-localise with the PFR

Cells expressing GFP-TbEBl (green) were settled onto slides and membranes were extracted with 

NP40 as described in section 2.5.1. In preparation for immunofluorescence analysis these 

cytoskeletons were labelled with the L8C4 antibody to detect the PFR (red) (for dilutions used see 

section 2.2.3) and stained with DAPI (blue). Images were captured on a Deltavision microscope. The 

figure shows that the GFP-TbEBl signal does not co-localise with the PFR (indicated by arrows and 

asterisks) (scale bar = 10 pm).
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Figure 6.7 Fluorescence/immunofluorescence images showing that GFP-TbEBl does 
not co-localise with the FAZ filament

Cells expressing GFP-TbEBl (green) were settled onto slides and membranes were extracted with 

NP40 as described in section 2.5.1. In preparation for immunofluorescence analysis these 

cytoskeletons were labelled with ROD1 to detect the FAZ filament (red) (for dilutions used see section 

2.2.3) and stained with DAPI (blue). Images were captured on the Deltavision microscope. The figure 

shows that the GFP-TbEBl signal does not co-localise with the FAZ filament, instead it is found in a 

more posterior position (indicated by bracket) (scale bar = 10 pm).

In summary, the GFP-TbEBl signal that is observed in a region close to the growing 

new flagellum, does not co-localise with either the PFR (Figure 6.6) or the FAZ 

filament (Figure 6.7) therefore the precise structure that GFP-TbEBl is localising to in 

this region is unknown. Although the localisation pattern of GFP-TbEBl has this 

complexity, it still provides a useful marker for the plus ends of MTs. As such, it was 

employed to study cytoskeletal remodelling and posterior end formation in the 

TCP86 and GB4L RNAi cell lines; this is described in the following sections.
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6.5 Organisation of microtubule plus ends in the GB4L and TCP86 RNAi cell lines

The GFP-TbEBl construct was transfected into the pre-existing TCP86 and GB4L RNAi 

cell lines to investigate whether RNAi mediated ablation of these proteins results in 

MT organisation defects. In parallel with these experiments, the GB4L and TCP86 

RNAi cell lines were also transfected with a construct allowing expression of a YFP 

epitope-tagged version of XMAP215 (another +TIP binding protein, accession 

number Tb927.6.3090). This construct was a kind gift from Nicole Scheumann and 

Keith Gull, University of Oxford. These experiments provided further insight into how 

MTs are organised to form the posterior end of the trypanosome cell during 

cytokinesis, and demonstrated that GB4L and TCP86 expression is essential for this 

process.

6.5.1 Organisation of microtubule plus ends in the GB4L RNAi cell line as 

visualised by GFP-TbEBl

Figure 6.8 shows representative cells at different cell cycle stages from the GB4L

RNAi cell line which is expressing the GFP-TbEBl fusion protein. In non-induced cells,

GFP-TbEBl localises to the posterior end at all cell cycle stages (Figure 6.8A-F) and

the anterior end of the cell body is often labelled with a distinct dot (as described

earlier in section 6.2.1; shown in Figure 6.1). However, of particular interest is the

localisation of GFP-TbEBl to the region between divided nuclei; indicated in Figure

6.8D by a green arrow. This localisation corresponds both temporally and spatially to

the pattern of staining seen when using the antibody YL1/2 which detects new MT

formation, suggesting that MT growth and organisation is taking place in this region

(described in section 6.2.1). This increased MT activity may be required in this part of

the cell at this time to define a new posterior end for the forming anterior daughter
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cell. Figure 6.8E and F show that GFP-TbEBl localisation is maintained at this position 

as the cell undergoes cytokinesis.

Figure 6.8G-L show representative cells 12 hours post GB4L RNAi induction. The 

localisation of GFP-TbEBl appears normal at the beginning of the cell cycle (examples 

of 1K1N and 2K1N cells are shown in Figure 6.8G and H respectively). However, later 

in the cell cycle the GFP-TbEBl localisation pattern changes, in that GFP-TbEBl signal 

is not detected between divided nuclei, but appears positioned much closer to the 

old posterior end; indicated by green arrows in Figure 6.81 and J. Figure 6.8K shows a 

cell late in cytokinesis, the cleavage furrow has reached the posterior end, however 

bisection is aberrant as one cell possesses two nuclei and the other none. Where the 

cells remain joined two discrete regions of GFP-TbEBl localisation can be seen in 

close proximity to one another. Figure 6.8L shows the characteristic 'push-me-pull- 

you' phenotype observed upon GB4L ablation, this cell is stalled in cytokinesis and 

cells remain attached by their posterior ends, GFP-TbEBl can be seen in the region 

between the two joined cells.
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Chapter 6 - Microtubule plus ends and posterior end formation

6.6 Organisation of microtubule plus ends in the GB4L RNAi cell line as 

visualised by YFP-7MMAP215

Figure 6.9 shows representative cells expressing YFP-TbXMAP215 from a non- 

induced population and 12 hours post induction of GB4L RNAi. In non-induced cells 

XMAP215 localises to the plus ends of the subpellicular corset MTs at the posterior 

end of the cell; analogous to the localisation seen with GFP-TbEBl (Figure 6.1). YFP- 

TbXMAP215 also localises to the mitotic spindle (Figure 6.9C) but not the growing 

flagellum and so differs from GFP-TbEBl localisation. The protein can be seen in the 

nucleus of 2K1N cells where a spindle is forming (Figure 6.9B) and on the spindle MTs 

between dividing nuclei throughout mitosis (Figure 6.9C). During mitosis the 

posterior YFP-TbXMAP215 signal extends from the posterior pole of the cell towards 

the anterior of the cell (Figure 6.9C), but stops just anterior to the most posterior 

positioned nucleus. The line of YFP-TbXMAP215 expression progresses to form a 

discrete patch between the divided nuclei in 2K2N cells post mitosis (Figure 6.9D). 

The positioning of this YFP-TbXMAP215 signal is similar to that observed with GFP- 

TbEBl and marks the region of the cell which will form a new posterior end when the 

cell divides. The YFP-TbXMAP215 signal remains in this position as the cell progresses 

through cytokinesis (Figure 6.9E and F).

12 hours after the induction of GB4L ablation, YFP-TbXMAP215 localisation is still 

observed at the posterior end of the cell (Figure 6.9G-K) and the mitotic spindle 

(Figure 6.91), however it does not track from the posterior end of the cell towards the 

anterior (Figure 6.91) and no YFP-TbXMAP215 localisation is observed between the 

divided nuclei in 2K2N cells post mitosis (Figure 6.9K). However, a patch of YFP-
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7jbXMAP215 forms much closer to the posterior end of the cell (Figure 6.9J and K); 

this is consistent with the observations made with GFP-TbEBl (Figure 6.81 and J 

arrows). When cytokinesis is stalled, YFP-76XMAP215 is found in the region between 

the two joined cells (Figure 6.9L).
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Chapter 6 - Microtubule plus ends and posterior end formation

In summary this data suggests that T. brucei PCF cells organise the growth and 

formation of MTs to a region between the divided nuclei to define a new posterior 

end prior to cytokinesis. Upon RNAi mediated ablation of GB4L the organisation of 

new MTs is disrupted leading to aberrant positioning/formation of the new posterior 

end; this ultimately manifests itself as a problem in completing cytokinesis.

6.6.1 Microtubule plus ends form a discontinuous ring in the mid-region of 'push- 

me-pull-you' cells

When GB4L is ablated, cells stall in cytokinesis resulting in the characteristic 'push- 

me-pull-you' cell phenotype. In these cells both GFP-TbEBl and YFP-7bXMAP215 

localise to the region between adjoining cells in a distinct band (Figure 6.8L and 

Figure 6.9L respectively). This mid-region corresponds to the position of the original 

posterior end of the cell and as such is the most dynamic part of the cell in terms of 

MT growth and formation. GFP-7MB1 and YFP-TbXMAP215 localisation can be used 

to investigate the organisation of MTs in this region. Cells from 24 hours post GB4L 

RNAi induction were settled onto slides and imaged on the Deltavision microscope; 

images were then rotated to visualise 3D architecture. In many cases rotating the 

image reveals that the ridge of staining observed in the original image actually 

represents a discontinuous band around the circumference of the cell. Figure 6.10 

shows examples of cells expressing GFP-TbEBl or YFP-7feXMAP215 which have been 

rotated in order to visualise the organisation of the MT plus ends. Figure 6.10A-C 

shows that GFP-TbEBl localises to a discontinuous ring in the mid-region between 

the two adjoined cells. Figure 6.10D shows the same result with cells expressing the 

YFP-7£XMAP215 fusion protein.
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DAPI/GFP ROTATION

EB1

Figure 6.10 Fluorescence images showing 'push-me-puil-you' cells with a ring of 
GFP-7MB1 or YFP-T6XMAP215 between divided nuclei

The GB4L RNAi cell lines expressing GFP-TbEBl or YFP-7MMAP215 were induced and after 24 hours 

cells were settled on to slides and treated with NP40 to give cytoskeletons as described in section 

2.5.1. Cells were then labelled with DAPI (blue) and images were acquired on a Deltavision 

microscope. Cells which have failed to complete cytokinesis forming the characteristic 'push-me-pull- 

you' phenotype were processed using the volume viewer function in SoftWorx Explorer, a 360° 

rotation was carried out and the 3D architecture was revealed (screen shots are shown on the right). 

GFP-TbEBl (images A-C) and YFP-7MMAP215 (image D) localise to a discontinuous ring between 

adjoined cells.
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The observation that MT +TIPs TbEBl and TbXMAP215 form a discontinuous ring in 

'push-me-pull-you' cells was confirmed by labelling cells with the antibody YL1/2. 

YL1/2 staining shows new MTs formed in this mid region between the adjoined cells 

forms a defined band around the circumference of the cell (Figure 6.11). The band 

visualised by YL1/2 staining is broader and more diffuse than that observed for GFP- 

TjbEBl or YFP-T6XMAP215. This might be explained by the fact that the +TIPS define 

the very tip of the MT whereas YL1/2 detects tyrosinated a-tubulin which is 

incorporated into MTs at the plus end. However, the process of detyrosination does 

not occur immediately, meaning tyrosinated a-tubulin will be detected as a gradient 

high at the plus end getting less toward the minus end of the MT (YL1/2 is discussed 

in section 1.7).

PHASE

Figure 6.11 Immunofluorescence image showing new microtubules in a band/ring 
at the mid-region of a 'push-me-pull-you' cell, 24 hours post induction of GB4L 
RNAi

The GB4L RNAi cell line was induced and after 24 hours cells were settled onto slides and treated with 

NP40 to give cytoskeletons as described in section 2.5.1. Cells were labelled with the antibody VL1/2 

(red) (as described in section 2.2.3) and stained with DAPI (blue). Immunofluorescence analysis was 

carried out on the Deltavision microscope. YL1/2 staining is seen between the two nuclei, the image 

was rotated (using the volume viewer function in SoftWorx Explorer) and a band/ring of new  

microtubules was revealed.
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6.7 Organisation of microtubule plus ends in the TCP86 cell line

Measurements of organelle positioning in TCP86 ablated cells were taken by 

Shawcross (2008), these measurements showed that cells early in the division cycle 

possess an elongated posterior end. This extension can be labelled with YL1/2 

indicating that this abnormal morphology is due to aberrant new MT growth 

(Shawcross, 2008). These observations led to the hypothesis that TCP86 may play a 

role in regulating new MT growth during the cell cycle. To investigate this in more 

detail constructs for expression of GFP-TbEBl and YFP-7fcXMAP215 were transfected 

into the TCP86 RNAi cell line to investigate MT growth and organisation following 

TCP86 depletion.

6.7.1 GFP-TbEBl localisation in the TCP86 RNAi cell line

The localisation of GFP-TbEBl in the non-induced TCP86 RNAi cell line is the same as 

described for wild type (Figure 6.1) and GB4L non-induced cells (Figure 6.8A-F). 12 

hours after induction of TCP86 RNAi, plus ends of subpellicular corset MTs at the 

posterior end are strongly GFP-TbEBl positive, however the organisation of MTs to 

form the new posterior end is apparently disrupted as no GFP-TbEBl signal is 

detected between divided nuclei. This is particularly evident when comparing E and 

F, which show 2K2N cells from a non-induced population, with J and K which show 

2K2N cells 12 hours post induction. L shows a cell undergoing cytokinesis, in this cell 

the cleavage furrow is mispositioned and the result of this division will most likely be 

an anucleate zoid and a 1K2N multinucleate. This is the characteristic defect 

observed when TCP86 expression is reduced (Shawcross, 2008) and possibly results 

from an inability to organise MTs correctly into two discrete posterior ends prior to 

division.
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6.7.2 YFP-76XMAP215 localisation in the TCP86 RNAi cell line

The localisation of YFP-T6XMAP215 in the non-induced TCP86 RNAi cell line (Figure 

6.13A-E) is the same as described for both the wild type (Figure 6.1) and GB4L non­

induced cells (Figure 6.8A-F).

12 hours after induction of TCP86 ablation, YFP-TbXMAP215 localises to the posterior 

pole of the cell throughout the cell cycle (Figure 6.13F-J). However, YFP-T6XMAP215 

does not appear to track from the posterior pole towards the anterior end of the cell 

during mitosis; this is particularly clear when comparing Figure 6.13C (non-induced) 

with Figure 6.131 (induced). No signal is seen in the region between the separated 

nuclei in post mitotic cells (Figure 6.131 and J). As with the observations made in the 

previous experiments, this suggests that plus ends of MTs are not being organised in 

this region. As such the cytoskeletal remodelling which may be required to define a 

new posterior end prior to cytokinesis is not occurring. Figure 6.13J shows a cell 

undergoing aberrant cytokinesis, with a mispositioned cleavage furrow, the progeny 

of such defective cell division will most likely be a zoid and a 1K2N multinucleate.
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6.8 Summary

In this chapter I show that GFP-71bEBl localises to the posterior end of the cell in PCF 

trypanosomes as well as associating with the anterior tip of the cell body (Figure 6.1). 

RNAi ablation of TbEBl suggests that expression of TbEBl is not essential as there 

was no observable growth or morphological phenotype upon its depletion (Figure 

6.5).

GFP-rbEBl and YFP-7ibXMAP215 were expressed in GB4L and TCP86 RNAi cell lines to 

investigate the behaviour of MT plus ends. Intriguingly, in non-induced cells, MT plus 

ends appear to be organised into a discrete region between the two divided nuclei 

before cytokinesis initiates (Figure 6.8D-F, Figure 6.9D-F, Figure 6.12D-F and Figure 

6.13D and E). This region is where a new posterior end will form for the anterior 

daughter cell (the cell which inherits the old flagellum). In GB4L and TCP86 depleted 

cells GFP-TbEBl and YFP-T6XMAP215 localisation is absent from this region (Figure 

6.81-K, Figure 6.9J and K, Figure 6.121-K, Figure 6.131 and J ) and these cells fail to 

define and form a 'normal7 posterior end. This suggests that the +TIP localisation 

visualised in these experiments represents a critical remodelling event in which 

subpellicular MTs are organised to form a new posterior end for the anterior 

daughter cell before cytokinesis.

How the trypanosome orchestrates cytoskeletal remodelling during cytokinesis is 

poorly understood and little is known about the molecular mechanisms which 

control the process of cleavage furrow ingression. Data presented in this chapter 

identifies that TCP86 and GB4L are involved in the process of cytoskeletal 

remodelling, and that this remodelling occurs before initiation of cytokinesis.
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Furthermore when cytoskeletal remodelling is disrupted, severe problems are 

encountered during cytokinesis (Figure 6.8K and L, Figure 6.9L, L and Figure 6.13J). In 

the case of GB4L RNAi, cleavage furrow ingression stalls and cells remain attached. 

Interestingly, in these cells the plus ends of MTs are seen in a discontinuous ring 

around the circumference of the cell (Figure 6.10).
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Chapter 7 Discussion

The work presented in this thesis provides important new insights into cytokinetic 

events in T. brucei and identifies a novel trypanosomatid specific protein required for 

successful cytoskeletal remodelling.

The trypanosome subpellicular corset is expanded throughout the cell cycle to allow 

for cellular growth and to accommodate replicating organelles. During cytokinesis 

the subpellicular corset remains in place but must be re-organised so that both 

daughter cells inherit a complete microtubule array. For this process to occur 

successfully, new MTs must be formed and incorporated into the existing corset in an 

organised manner. Cytoskeletal remodelling can be viewed in three distinct stages:

(1) Early in the cell cycle there is polar extension of microtubules at the posterior end 

of the cell. When cells are arrested in Gi they develop an extended posterior end, 

this 'nozzle' phenotype is positive for tyrosinated a-tubulin and therefore newly 

formed MTs (as observed using the YL1/2 antibody) (Hendriks eta l, 2001; Li & Wang, 

2003; Tu & Wang, 2005).

(2) In mitotic/post mitotic cells new microtubules are interdigitated in between old 

ones allowing the corset to expand in diameter (Sherwin & Gull, 1989b).
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(3) During cleavage furrow progression as the furrow bisects the cell, new 

microtubules must be inserted into the array in order for each daughter cell to 

inherit a complete corset of microtubules (Shawcross, 2008).

Although the precise functions of most trypanosome MAPs have yet to be defined, 

they are likely to play essential roles in one or more of these cytoskeletal remodelling 

events. In the few cases where T. brucei MAPs have been investigated by RNAi, 

protein depletion has resulted in morphology defects, organelle mispositioning and 

cytokinesis defects.

7.1 The GB4 motif

Prior to the work carried out in this thesis the MAPs designated GB4 and TCP86 were 

shown to interact with the subpellicular microtubules and share a short region of 

amino acid sequence homology (Rindisbacher et al, 1993; Shawcross, 2008). The 

working hypothesis developed in this thesis was that this amino acid sequence may 

regulate MAP-microtubule interactions. To investigate whether this motif was 

present in other trypanosome proteins, or indeed represented a more widely 

eukaryotic conserved motif, a Hidden Markov Model was developed to analyse the 

occurrence of this motif in 32 eukaryotic genomes. This bioinformatic analysis 

revealed that the GB4 motif was found in other trypanosomatid proteins but that its 

occurrence was restricted to trypanosomatid species; including 17 T. brucei proteins 

(section 3.3, Table 3.1).

The functionality of the GB4 motif containing proteins was explored using an RNAi 

screen in 7. brucei PCF cells. Disappointingly, no discernable phenotype was detected
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for the majority of the proteins investigated. However, one of the proteins that 

emerged from this screen (a previously uncharacterised protein which contains 17 

repeats of the GB4 motif (Table 3.1) and so designated GB4L) had a striking RNAi 

depletion phenotype (section 3.6 and Figure 4.2, Figure 4.3 and Figure 4.4) 

implicating it in a critical role in cytoskeletal remodelling.

Before considering the potential role of GB4L in more detail it is worth deliberating 

on the lack of any discernable phenotype observed following the RNAi mediated 

ablation of the other proteins identified by the HMM based screen. Firstly, it should 

be noted that in all instances the efficacy of RNAi was not verified by monitoring 

either mRNA abundance or determining protein expression levels. This is of course a 

major caveat to the study and so before dismissing these proteins as unimportant in 

cell division, the efficacy of RNAi should be validated by quantitative PCR. 

Alternatively, specific antibodies should be raised, or proteins epitope tagged, so that 

protein depletion could be visualised through fluorescence and/or immunoblotting 

studies.

Secondly, it is evident from the literature that MAPs can be regulated by differential 

life cycle stage expression; as demonstrated by CAP5.5/CAP5.5\/ (Olego-Fernandez et 

al, 2009) and CAP15/CAP17 (Vedrenne et al, 2002). Work in this thesis has focused 

mainly on the role of GB4 motif containing proteins in the PCF. Function of these 

proteins should also be examined in the BSF; particularly as there is proteomic data 

to suggest that 13 out of the 17 T. brucei GB4 motif containing proteins are 

expressed in this life cycle stage (see supplementary Table 8.1).
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7.2 RNAi ablation of GB4L causes cleavage furrow ingression to stall

RNAi depletion of GB4L causes a severe growth defect and, 12 hours after induction 

of GB4L RNAi, many cells accumulate with a 2K2N configuration (see Chapter 3) 

indicative of a cytokinetic failure. The number of 2K2N cells with a visible cleavage 

furrow was observed to increase over time because cleavage furrow progression 

stalls at the midpoint region of the cell (section 3.6.4, Figure 3.10 ). This phenotype is 

not unprecedented, RNAi depletion of a number of proteins in T. brucei including 

MOB1, PK53, TbRACK, TbDLP and SPT2, have been shown to cause a defect in 

cleavage furrow ingression similar to that observed in the GB4L RNAi cell line 

(Hammarton et al, 2005; Chanez et al, 2006; Rothberg et at, 2006; Fridberg et al, 

2008; Ma et al, 2010). Why depletion of these proteins, with diverse cellular 

functions, yield a common phenotype is yet to be established. In the case of the 

dynamin TbDLP, RNAi depletion is suggested to activate a novel cell cycle checkpoint 

which monitors mitochondrial fission. Activation of this checkpoint leads to a stall in 

cytokinesis and a complete block in cell cycle progression. However, whilst MOB1, 

PK53, 7ibRACK, and SPT2 exhibit a stalled cleavage furrow, cells re-enter the cell cycle 

and form multinucleates, as is the case for GB4L. In light of this, and the fact that a 

cytokinesis checkpoint remains poorly defined, other possible explanations for this 

phenotype are more plausible, several possibilities are described below.

Firstly, supernumerary MTs which accumulate in the cytoplasm (observed 24 hours

after induction of GB4L RNAi; see TEM data in section Figure 4.11 and Figure 4.12)

could constitute a physical blockage which prevents furrow ingression. However,

cells stalled in cytokinesis with a visible cleavage furrow are present 12 hours post

induction (See Figure 3.10) but excessive supernumerary MTs are only observed at
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the later time points i.e. 24 and 48 hours (Figure 4.8-Figure 4.12). Whilst this will 

certainly cause problems for completion of cytokinesis at later time points, the initial 

reason for an accumulation of 2K2N cells is not as easily explained.

Secondly, the FAZ is thought to guide cleavage furrow ingression from the anterior 

end of the cell (Kohl et al, 2003) and disruptions to FAZ formation lead to defects in 

cytokinesis (Vaughan et al, 2008). TEM analysis following RNAi ablation of GB4L 

shows defects in FAZ formation (Figure 4.7-Figure 4.12). However, the structure of 

the FAZ is affected along the length of the cell including at the anterior where furrow 

ingression proceeds normally. Thus, these FAZ defects cannot fully explain the 

stalling of the cleavage furrow when GB4L is depleted.

Thirdly, an alternative explanation for the stalling of furrow ingression in the GB4L 

depleted cells may be that furrow ingression is biphasic, and may have different 

protein requirements at different stages of progression. Perhaps ingression proceeds 

initially at the anterior end by a GB4L independent mechanism, then a GB4L 

dependent mechanism is required for furrow ingression beyond the midpoint of the 

cell. The same scenario has been suggested for the receptor for activated C kinase 1 

(TRACK1) which is not required to initiate cytokinesis but is believed to regulate 

cytokinesis from the midpoint to completion (Rothberg et al, 2006). Furthermore, 

the FAZ which is critical for the process of cytokinesis and is implicated in defining 

the path of the furrow (Robinson et al, 1995; Davidge et al, 2006) is not found in the 

cell posterior to the flagella pocket. The mechanism by which furrow ingression is 

directed from this point to completion is unknown. This suggests that the process of
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cytokinesis may require different proteins at later stages of cleavage furrow 

ingression.

Fourthly, perhaps the most likely explanation for the 'push-me-pull-you' phenotype 

in GB4L depleted cells can be derived from a comparison with coronin (CRN12) 

depleted cells in Leishmania donovani (Sahasrabuddhe et al, 2009). In these cells, 

bipolar cells form which is reminiscent of the GB4L 'push-me-pull-you' phenotype. 

These bipolar cells are fused at their posterior ends but have successfully completed 

kinetoplast and nuclear division and have an active flagellum at either pole. This 

phenotype forms as a result of invasion of persistently growing corset microtubules 

into the other daughter cell corset. The number of MTs in the corset of the bipolar 

cells increases significantly, but despite this and the anti-parallel arrangement of 

these MTs the spacing of MTs in the corset remains similar to wild type. The authors 

suggest that CRN12 is part of a novel mechanism for capping and controlling MT 

growth at the posterior end of the cell, and that this mechanism is important since 

the Leishmania genome does not encode the MT +TIP EB1 (Sahasrabuddhe et al, 

2009).

GB4L may play a similar role in capping MTs at the posterior end of cells; this 

hypothesis is not just based on the similarities with the CRN12 depleted cells in L. 

donovani. GB4L shares homology with the MT capping protein GB4 which has been 

localised specifically to the posterior end of the cell (Rindisbacher et al, 1993). 

Furthermore, work carried out in the course of this thesis showed that although 

TbEBl localises to MT +TIPs, RNAi ablation of TbEBl in the PCF did not cause any 

observable phenotype. This is a surprising observation given the important role this
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protein plays in other systems and suggests alternative mechanisms may also exist in 

T. brucei. Whilst it is possible that deregulated growth of MTs similar to that 

observed in CRN12 depleted cells in L. donovani may be occurring upon GB4L 

depletion in T. brucei. It is worth bearing in mind that +TIP localisation (Figure 6.10) 

and YL1/2 staining (Figure 6.11) in the GB4L 'push-me-pull-you' cells clearly defines a 

ring in the mid region of the cell, this would not be expected if MT plus ends were 

extending into the opposite daughter cells subpellicular array. Immunofluorescence 

analysis using YL1/2 on the bipolar cells in the CRN12 cell line showed a punctate 

distribution of tyrosinated a-tubulin which showed positive ends of microtubules 

were located throughout the bipolar cell (Sahasrabuddhe et al, 2009).

Localisation data for GB4L is essential to provide insights and further understanding 

of the RNAi depletion phenotype. In addition, electron microscopy on whole mount 

cytoskeletons could be employed to study the organisation of microtubules in the 

subpellicular array in the 'push-me-pull-you' cells.

7.3 Zoid formation in the TCP86 RNAi cell line is a result of a mispositioned 

cleavage furrow

A mispositioning of cleavage furrow ingression is responsible for asymmetrical 

division leading to zoid formation in the TCP86 RNAi cell line. After observing that the 

nucleus in TCP86 depleted cells sits in the path of the cleavage furrow, Shawcross 

(2008) postulated that TCP86 may form part of a complex of MAPs which link the 

corset and the nucleus, effectively tethering the nucleus in place post anaphase 

preventing it from drifting into the plane of cleavage (Shawcross, 2008). This theory 

suggests that in the absence of TCP86 the nucleus becomes mis-positioned into the
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path of the cleavage furrow which must then deviate and upon abscission a zoid and 

a 1K2N cell results (Shawcross, 2008). An independent study raised an RNAi cell line 

to target depletion of TCP86 (known to this group as NOP86) and produced the same 

phenotype. In this case they proposed that zoid production was a result of a defect in 

mitosis (Boucher et al, 2007). However, no evidence for a mitotic defect was 

presented; in fact cells were shown to progress through mitosis to produce 

multinucleated cells.

TEM analysis undertaken for this thesis shows no obvious ultrastructural defects to 

explain the zoid production in the TCP86 RNAi cell line (Figure 4.17). However, 

immunofluorescence analysis using the NUP-1 antibody (Ogbadoyi et al, 2000) may 

provide an alternative to the nuclear tethering theory proposed by Shawcross (2008). 

NUP-1 staining shows that the nuclear membrane between daughter nuclei is still 

attached in some 1K2N cells which have undergone cytokinesis. If the membrane 

system which exists between daughter nuclei during mitosis persists as the cell 

undergoes cytokinesis it could cause a blockage leading to the mis-routing of the 

cleavage furrow and therefore zoid production. Alternatively, maintenance of a 

connection between nuclei could cause the nucleus to be mis-positioned in the path 

of the cleavage furrow as observed by Shawcross (2008).

7.4 MAP functional interdependency

An important consideration to make when interpreting phenotypes is the fact that 

targeted ablation of one protein often has effects on others. This is especially 

important when considering MAPs which may work in complexes and have 

concerted roles. Previous work has shown that TCP86 expression is essential for the
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localisation of the calpain-like cysteine protease CAP5.5 but not WCB (Shawcross, 

2008). Work presented in this thesis expands our understanding of these 

interdependencies showing that CAP5.5 localisation also requires WCB (Figure 5.16). 

Conversely, when CAP5.5 is reduced by RNAi ablation, TCP86 and WCB localisation to 

the subpellicular corset is not affected (Figure 5.12 and Figure 5.15). WCB localisation 

is independent of TCP86 and vice-versa (Figure 5.13). This suggests that if these 

proteins act in a complex then WCB and TCP86 must associate independently of one 

another but before CAP5.5, they may then act to recruit CAP5.5 to the complex.

An intriguing finding presented in this thesis is that RNAi mediated ablation of GB4L 

leads to a loss of CAP5.5 expression (Figure 5.21). This may reflect rapid degradation 

of mislocalised CAP5.5 which is no longer targeted to microtubules in the absence of 

GB4L. Alternatively if CAP5.5 is unable to localise to microtubules in the absence of 

GB4L then there would be an increase in the cytoplasmic pool of CAP5.5, this may 

trigger an autoregulatory feedback mechanism which reduces the stability of CAP5.5 

mRNA, preventing the translation of the protein. This type of autoregulatory control 

is not unprecedented; in mammalian cells an increase in cytoplasmic tubulin subunits 

through treatment with the anti-microtubule drugs colchicines or nocodazole results 

in repression of new tubulin synthesis. This is also observed when the intracellular 

tubulin content is increase by micro injection of tubulin subunits (Cleveland et al, 

1983). The down regulation of tubulin synthesis is accompanied by a rapid loss of 

tubulin mRNAs (Cleveland et al, 1981).

Further work is required to discern if either the rapid protein degradation and/or 

mRNA degradation model are the cause of the reduction of CAP5.5 expression. The
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abundance of CAP5.5 mRNA could be measured using QRT-PCR before and after 

induction of GB4L RNAi to determine the stability of CAP5.5 mRNA.

Are the phenotypes observed in GB4L, TCP86 and WCB RNAi cell lines simply a result 

of CAP5.5 mislocalisation? Table 7.1 compares the RNAi phenotypes for GB4L, TCP86, 

WCB and CAP5.5 RNAi cell lines. Ascertaining the commonalities and distinctions 

between each cell line shows that each cell line has some distinct phenotypes. This 

suggests that the effects of RNAi ablation relate to protein specific functions rather 

than simply reflecting the effects of CAP5.5 mislocalisation. Table 7.1 shows 

depletion of CAP5.5 and GB4L but not WCB or TCP86 leads to accumulation of 

supernumerary microtubules; it is worth noting that this is far more severe in the 

GB4L cell line. The spacing of microtubules in the array is disrupted when WCB is 

depleted but this is not obviously affected when CAP5.5, GB4L or TCP86 are ablated. 

Only WCB depletion affects the association of MT with the plasma membrane and 

this is the only cell line in which MTs are observed to splay apart when cells are 

detergent extracted to give cytoskeletons (section 5.3.4 and Figure 5.6 and (Baines & 

Gull, 2008). This suggests that WCB functions in establishing inter-MT cross bridges 

and MT-plasma membrane interactions and that these functions can occur in the 

absence of CAP5.5, TCP86 and GB4L. Only GB4L affects FAZ formation but both 

CAP5.5 and WCB ablation have effects on flagella pocket biogenesis.

In terms of similarities, all the MAP RNAi cell lines produce zoids due to an aberrant 

cytokinGsis event however distinctions can be made between the timing of zoid 

production. In WCB and TCP86 zoids occur early in the induction time course and 

rapidly accumulate, whereas for GB4L and CAP5.5 zoid production is a later
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phenotype. Another commonality is a disruption to posterior end formation 

suggesting that new microtubule growth in all these cell lines is disorganised.

Table 7.1 Comparison of MAP RNAi depletion phenotypes

A table summarising the phenotypes resulting from RNAi ablation of specific MAPs drawn from data 

presented in this thesis and in the published literature

WCB

(Baines & Gull, 2008) 

and this thesis 

(section 5.3)

CAP5.5

(Olego-Fernandez et al, 

2009) and this thesis 

(section 5.3)

TCP86

(Shawcross, 2008) 

and this thesis 

(section 4.6)

GB4L

(This thesis)

Zoid production

Yes

(Figure 5.7 and 

Figure 5.9)

Yes

(Figure 5.8 and Figure 

5.10)

Yes

Yes

(Figure 3.8 and Figure 

3.9)

Abnormal 
posterior end 

formation

Yes

(Figure 5.3)

Yes

(Figure 5.4)
Yes

Yes

(Figure 4.2 and Figure 

4.3)

Supernumerary
MTs

No Yes No

Yes

(Figure 4.7 to Figure 

4.12)

Abnormal MT 
spacing in array

Yes Yes No No

Disruption of PM- 
MT association

Yes No No No

FAZ disruption No No No

Yes

(Figure 4 .7  and 

Figure 4.12)

MT splaying upon 
detergent 
extraction

Yes

(Figure 5.6)
No No No

Abnormalities in 
flagellar pocket 

biogenesis

Yes Yes No No
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7.5 Formation of the new posterior end before cytokinesis

Although abnormalities in posterior end formation are a common feature of MAP 

depletion, in most cases the defect observed is very distinct. For example, when WCB 

is ablated cells appear swollen and rounded at the posterior end (Figure 5.3 and 

(Baines & Gull, 2008), in contrast when TCP86 is ablated the posterior end of cells is 

elongated (Shawcross, 2008). For CAP5.5 and GB4L, posterior end abnormalities are 

less easy to characterise as many different defects are observed, but in the GB4L cell 

line many cells remain attached by their posterior ends.

It is no surprise that initial effects of MAP ablation are seen at the posterior end of 

the cell, this is where most MT plus ends are located and as such is the most dynamic 

region of the cell in terms of MT growth (Sherwin & Gull, 1989a). To investigate 

posterior end morphogenesis and explore how this may be affected in GB4L and 

TCP86 depleted cells, the localisation of +TIPs TbEBl and TbXMAP215 was visualised 

in cells at all stages of the cell cycle in non-induced cells and 12 hour post induction 

of RNAi.

Data presented in this thesis shows that MT plus ends are organised in a cell cycle 

dependent pattern and that the new posterior end begins to form in late mitotic cells 

before the onset of cytokinesis. The model in Figure 7.1 shows how MTs in the 

subpellicular corset are remodelled in preparation for cell division.
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1K1N

CYTOKINESIS

2KDIVN
2K2N

2KDIVN

Figure 7.1 Model for microtubule +TIP binding protein localisation at the posterior 
end of the cell throughout the PCF T. brucei cell cycle

The EB1 and XMAP215 epitope tagged fusion proteins were expressed in the GB4L and TCP86 RNAi 

cell lines. The posterior end labelling with GFP-TbEBl and YFP-7MMAP215 was identical in both cell 

lines when non-induced. The cartoon shows the pattern of posterior end labelling in green and the 

number of nuclei/kinetoplasts are shown. Inset are images of the GB4L non-induced cells labelled with 

GFP-TbEBl (green) to provide examples of the pattern depicted by the cartoon. This data is described 

in more detail in section 6.5.1 and shown in Figure 6.8.

Figure 7.1 shows a cartoon representing immunofluorescence images (shown inset) 

of the GFP-76EB1 fusion protein. The pattern of fluorescence at the posterior end is 

the same as that observed with the YFP-7MMAP215 fusion protein (see section 6.6, 

Figure 6.9 and Figure 6.13). In mitotic cells the appearance of a second, strong +TIP
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localisation signal between dividing nuclei suggests that MT plus ends accumulate in 

this area. This could occur in two possible ways;

(i) Existing MTs are re-organised so that their plus ends are now located at a position 

between the two daughter nuclei rather than at the existing posterior end.

(ii) New MTs are nucleated in this area with their plus ends located in this region.

In favour of the first hypothesis, cells early in the cell cycle appear to have a ring 

pattern of +TIP localisation at the extreme posterior end, similar to the ring structure 

visualised by immunogold labelling of GB4 which is also suggested to cap MT plus 

ends (Rindisbacher et al, 1993). This ring structure becomes progressively more 

difficult to resolve at later cell cycle stages, before it begins to resemble a line (in two 

dimensions) in mitotic cells. This line may represent the migration of MT plus ends 

from the extreme posterior in an anterior direction. However if this was the case 

then this subset of mature MTs should be visible in TEM sections through the mid 

region of the cell, there is no evidence for migration of mature MTs from TEM 

analysis or EM analysis of whole mount cytoskeletons.

In support of the second hypothesis, very short newly formed MTs have been 

visualised by electron microscopy in MT sheets taken from the central portion of 

cytoskeletons. Intriguingly these short MTs are not visualised in cells before mitosis 

(Sherwin & Gull, 1989a), this correlates with the +TIP localisation signal in the mid 

portion of the cell, suggesting that the signal may occur upon nucleation of these 

short new MTs.
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It is possible that MT remodelling at the old and new posterior end might rely upon 

both the processes described above, to understand this corset remodelling in more 

detail whole mount cytoskeletons could be examined using electron microscopy in 

combination with immunogold labelling of+TIPs.

RNAi ablation of TCP86 and GB4L changes the +TIP localisation pattern and indicates 

that new posterior end formation is disrupted in these cell lines, undoubtedly 

contributing to the cytokinetic defects and abnormal morphologies observed in these 

cell lines. Figure 7.2 is a model describing the pattern of localisation of both GFP- 

TbEBl and YFP-71bXMAP215 in the GB4L cell line 12 hours post induction and Figure 

7.3 is a model describing the localisation of GFP-7MB1 and YFP-7MMAP215 in the 

TCP86 RNAi cell line 12 hours post induction. The eventual outcome from disrupting 

MT organisation is different for each cell line. GB4L RNAi induced cells stall in 

cytokinesis and form the 'push-me-pull-you' phenotype (Figure 4.2 and Figure 4.3) 

whereas the TCP86 RNAi induced cells complete cytokinesis albeit aberrantly to 

produce a 1K2N multinucleate and a zoid (Figure 4.13 and Figure 4.14).

Despite the apparent complexities in MAP-MAP interactions (discussed in section 

7.4), interrogating microtubule organisation through +TIP localisation provides clear 

insight into the defects in MT remodelling upon GB4L and TCP86 RNAi ablation. The 

challenge remains to define the specific functions of individual MAPs within an 

interactome of MAP interdependency relationships.
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—  EB1

—  XMAP215 

—i BOTH

XMAP215

Figure 7.2 Cartoon showing the localisation of GFP-fhEBl and YFP-rhXMAP215 in 
the GB4L RNAi cell line 12 hours post induction

A model depicting the GFP-7MB1 and YFP-7MMAP215 fluorescence pattern at different cell cycle 

stages 12 hours after the induction of RNAi mediated GB4L ablation. The areas where both proteins 

localise are shown in blue, GFP-76EB1 specific labelling is indicated in green, and YFP-76XMAP215 in 

red. Representative images of trypanosome cells at each cell cycle stage are shown (inset).
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XMAP215
XMAP215
l i i i S f

XMAP21S

EBl

Figure 7.3 Cartoon showing the localisation of GFP-rbEBl and YFP-76XMAP215 in 
the TCP86 RNAi cell line 12 hours post induction

A model describing the fluorescence pattern observed when GFP-TbEBl and YFP-7MMAP215 are 

visualised at different cell cycle stages in the TCP86 cell line 12 hours post RNAi ablation. The areas 

where both proteins localise are shown in blue, GFP-TbEBl specific labelling patterns (green), YFP- 

76XMAP215 (red). Example images of trypanosome cells at each cell cycle stage are shown (inset).
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7.6 Future work

To unravel the complexities of MAP functions and dependency relationships analysis 

will require many more reagents than the pool available for use in this thesis. 

Antibodies are published for the MAPs 1/6, MARP 1/2, GB4 and CAP15/17 however 

all are polyclonal antibody reagents and none were made available when requested 

for use in this study. Whilst GFP fusion proteins were generated for CAP15, CAP17, 

MARP1/2, GB4 and GB4L during the course of this study, these MAP-GFP fusion 

proteins did not localise properly. This means further attempts to generate epitope 

tagged fusion proteins (perhaps by using short epitope tags such as TY) are required 

or alternatively new antibodies could be raised. This would enable 

immunofluorescence analysis and immunoblotting to be carried out on RNAi cell 

lines. Establishing the basic repertoire of cell lines and epitope tagged fusion proteins 

and/or antibodies for MAPs is paramount to provide a platform for future 

experiments including;

1) Immunogold electron microscopy experiments to visualise the spatial distribution 

of specific MAPs during the cell cycle at high resolution. The methodology developed 

by Sherwin and Gull (1989) would allow the precise localisation of MAPs on 

individual MTs to be visualised during cytoskeletal remodelling.

2) Double labelling experiments mirroring the immunofluorescence experiments 

presented in this thesis could be carried out using immunogold electron microscopy; 

allowing observations of MAP interdependencies to be made at the resolution of 

individual MTs.
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3) Protein turnover and residency time can be examined by monitoring fluorescence 

recovery after photobleaching (FRAP). RNAi ablation of TCP86, WCB and CAP5.5 

results in the loss of protein localisation initially from the posterior end of the cell 

(see Figure 5.3, Figure 5.4). The association of these MAPs with old MTs appears to 

be very stable, MAPs are still associated with the anterior of cells 48 hours post RNAi 

induced ablation. FRAP could be employed to study rates of protein 

recruitment/turnover in distinct regions of the subpellicular corset in both non­

induced and induced cells.

4) Where interactions between proteins are suspected due to localisation data, 

protein-protein interactions could be explored using fluorescence resonance energy 

transfer (FRET) assays. FRET is based on the transfer of excitation energy between 

two fluorophores that are in close spatial proximity. Transfer of energy between the 

donor and acceptor fluorophores is only detected when the two molecules are very 

close together (up to 10 nm), a good indication of direct protein-protein interaction 

(reviewed by Kerppola, 2006).

5) The experiments described above would provide evidence of functional 

interactions between trypanosome MAPs. These interactions could be confirmed by 

carrying out, a pair wise yeast 2-hybrid interaction screen and/or co- 

immunoprecipitation of proteins.

Given that this is an area of T. brucei biology which is yet to be fully investigated, 

there is scope for future studies utilising many varied techniques to fully explore 

MAP interactions with one another and the subpellicular corset. Interactions 

between MAPs are critical for maintaining parasite morphology and survival,
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targeted disruption of these interactions may provide an opportunity for combating 

the disease. In order to develop successful chemotherapeutic approaches the 

complexities of these protein-protein interactions should be fully understood.
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8.1 Supplementary Figures

Supplementary Figures
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Supplementary Figures
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Figure 8.5 Gene synteny map for GB4L

The gene encoding GB4L (Tb927.2.5760) is highlighted in yellow and is conserved in T 

congolense, T. b gambiense, T. vivax, T. cruzi and L. major.
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Figure 8.6 Scanning electron microscopy images of the non-induced TCP86 RNAi cell 
line

Cells prepared for SEM analysis as detailed in section 2.5.5, examples shown are representative cells 

from a non-induced culture. These cells have the same morphology as wild type cells at all stages of 

the cell cycle, A-E show cells at progressively later cell cycle stages from Gi (A) to cytokinesis (E).
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A
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K 600nm

600nm

Figure 8.7 Transmission electron microscopy sections showing the ultrastructure of 
the subpellicular corset, the FAZ and the flagellum in cells from a non-induced 
population of the TCP86 RNAi cell line

Cells from a non induction culture of the TCP86 RNAi cell line were prepared as described in section

2.5.6. A) Section through the posterior end of a cell, showing the microtubules of the corset uniformly 

spaced beneath the plasma membrane. B) A section through the mid-region of a cell showing the  

highly organised corset microtubules, inset, magnification of the boxed area in B, showing flagellum 

and FAZ organisation.
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600nm

Figure 8.8 Transmission electron microscopy sections showing the nuclei of non- 
induced cells from the TCP86 cell line

Cells from a non-induced culture of the TCP86 RNAi cell line were prepared as described in section 

2.5.6 TEM section showing tw o cells, A) a cell in interphase, nucleolus indicated with an asterisk. B) A 

cell with microtubules of the mitotic spindle (blue brackets) contained within the nuclear membrane.
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Figure 8.9 Transmission electron microscopy sections of the TCP86 RNAi cell line 12 
hours post RNAi induction

Cells from a culture 12 hours post induction of TCP86 RNAi were prepared as described in section

2.5.6. A) a section through the anterior end of the cell, A, inset, magnified boxed area showing the 

M TQ  associated with the smooth ER (red brackets) and the FAZ filament (red arrow) B) section 

through mid-region of a cell, C) and D) sections through the posterior end of a cell. The organisation of 

subpellicular corset does not appear to be affected by RNAi ablation of TCP86 and no supernumerary 

microtubules can be seen in the cytoplasm.
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Figure 8.10 Transmission electron microscopy sections showing nuclei of cells at 
different stages of the cell cycle 12 hours post induction of TCP86 RNAi

Cells from a culture 12 hours post induction of TCP86 RNAi were prepared as described in section

2.5.6. A) A nucleus in metaphase, B) a later stage, and spindle microtubules can be seen clearly and 

nuclear envelope begins to constrict, nuclear material is divided. C) Nuclear constriction along the  

central spindle forming an isthmus between the daughter nuclei, there is a nucleolus apparent at 

either end of the spindle. D) Nucleolus has taken a rounded shape, arrow points to the spindle which 

may still connect nuclei or be a remnant of the isthmus.
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Figure 8.11 Transmission electron microscopy sections showing nuclei of ceils at 
different stages of the cell cycle 24 hours post induction of TCP86 RNAi

Cells from a culture 24 hours post induction of TCP86 RNAi were prepared as described in section

2.5.6. A) An interphase nucleus, B) a metaphase nucleus, spindle microtubules can be seen clearly, C) 

a cell at a later stage, nuclear envelope begins to constrict. D) Nuclear constriction along the central 

spindle forming an isthmus between the daughter nuclei, there is a nucleolus apparent at either end 

of the spindle. E) A daughter nuclei undergoing karyokinesis the spindle microtubules enveloped by 

the nuclear membrane can be seen this may still connect nuclei or be a remnant of the isthmus.
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Figure 8.12 Immunofluorescence images showing the localisation of the GB4L anti­
peptide antibodies

Anti-peptide antibodies raised by Eurogentec tested on non- induced and 24 hour induced GB4L RNAi 

cell line. A- Anti-peptide antibody 1 on Nl cells, B-anti-peptide antibody 1 on cells 24 hours post 

induction of GB4L RNAi, C anti-peptide antibody 2 on Nl cells and D anti-peptide antibody 2 on cells 24 

hours post induction of GB4L ablation (scale bar = 10pm).
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Accession Number PCF BSF

GB4 1

GB4L 2 1

Tb927.5.1120 2 1

Tb927.7.3330 3 1 & 3

FAZ1 1

Tb09.211.1910 2 1

Tb927.4.2060 1

Tbl0.70.7320 1

TCP86 2 & 3 1, 3 & 4

TCP66 1

Tbl0.70.7280

Tbl0.389.0100 3

Tb09.160.1110 1

Tb09.160.1100

Tb927.7.4270

Tb927.2.5860

Tb927.2.5860 1

Table 8.1 Proteomic data available for the GB4 motif containing proteins

The table lists the accession number/name of each protein and identifies whether the protein is found 

in any of the PCF or BSF proteomes annotated on GeneDB. Green boxes indicate where proteomic 

analysis has identified the protein. Numbers refer to specific proteomic data sets as followsrl BSF 

plasma membrane and pellicular cytoskeleton subproteomes (Bridges et al, 2008), 2 PCF proteome 

(Jones et al, 2006), 3 The glycosomal and mitochondrial proteomes of PCF and BSF (Vertommen et al, 

2008) and 4 The flagellar proteome (Broadhead et al, 2006).
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