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Abstract 33 

Helminths are highly prevalent metazoan parasites that infect over a billion of the world’s 34 

population. Hosts have evolved numerous mechanisms to drive the expulsion of these 35 

parasites via Th2-driven immunity, but these responses must be tightly controlled to prevent 36 

equally devastating immunopathology. However, mechanisms that regulate this balance are 37 

still unclear. Here we show that the vigorous Th2 immune response driven by the small 38 

intestinal helminth Trichinella spiralis, is associated with increased TGFβ signalling 39 

responses in CD4+ T-cells. Mechanistically, enhanced TGFβ signalling in CD4+ T-cells is 40 

dependent on dendritic cell-mediated TGFβ activation which requires expression of the 41 

integrin αvβ8. Importantly, mice lacking integrin αvβ8 on DCs had a delayed ability to expel a 42 

T. spiralis infection, indicating an important functional role for integrin αvβ8-mediated TGFβ 43 

activation in promoting parasite expulsion. In addition to maintaining regulatory T-cell 44 

responses, the CD4+ T-cell signalling of this pleiotropic cytokine induces a Th17 response 45 

which is crucial in promoting the intestinal muscle hypercontractility that drives worm 46 
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expulsion. Collectively, these results provide novel insights into intestinal helminth expulsion 47 

beyond that of classical Th2 driven immunity, and highlight the importance of IL-17 in 48 

intestinal contraction which may aid therapeutics to numerous diseases of the intestine.  49 

 50 

Author Summary 51 

Infection with intestinal parasitic worms is a major global health problem. We have therefore 52 

evolved means to drive the expulsion of these worms (known as helminths), based on 53 

protective (type 2) immune responses. However, if these immune responses are not 54 

regulated they can result in more harm than good. One protein that can be key in controlling 55 

immune responses is transforming growth factor beta (TGFβ). Using a model helminth which 56 

infects mice, we found that TGFβ was indeed signalling to the immune cells which can 57 

initiate the type 2 response, but rather than increasing the regulation of these T-cells it was 58 

driving a different inflammatory immune response (termed Th17). Interestingly, this Th17 59 

response was important in expelling the parasite, as mice lacking the ability to activate the 60 

TGFβ protein, lacked Th17 responses and the ability to contract intestinal muscles and flush 61 

out the parasite. Our findings therefore provide new insights into how helminths are expelled 62 

and identify potential molecular targets for the prevention of helminth infection which affects 63 

billions of the world’s population in deprived communities. 64 

 65 

Introduction 66 

 67 

Human intestinal helminths infect more than 1 billion of the world’s population, often affecting 68 

the most deprived communities[1]. These parasites are one of the most prevalent Neglected 69 

Tropical Diseases worldwide bringing huge morbidities to the host population; sub-Saharan 70 

Africa alone is estimated to lose 2.3 million disability-adjusted life-years annually[2]. 71 
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Notwithstanding this hugely successful colonisation, we have evolved numerous Th2-driven 72 

mechanisms of parasite expulsion[3-8], which must be tightly regulated to avoid potential 73 

immunopathology, such as uncontrolled fibrosis and barrier dysfunction, as seen in ulcerative 74 

colitis[9].  75 

 76 

The small intestinal helminth Trichinella spiralis is the leading causative agent of trichinosis, 77 

which globally exhibits burdens of around 12 million[10], equivalent to kinetoplastid-caused 78 

infections such as Leishmania sp. and Trypanosoma cruzi[11]. The life cycle consists of the 79 

release of larvae from nurse cells following pepsin digestion of contaminated meat in the 80 

stomach, prior to migration and swift development into adults in the small intestine. Male and 81 

female adults mate to produce new born larvae which migrate via the blood and lymph to the 82 

striated muscle where they form new nurse cells. Mouse models have demonstrated that 83 

infection produces a strong CD4+ T-cell[12,13] and type 2 cytokine[14-16] driven transient 84 

inflammation culminating in worm expulsion around day 15 post-infection (p.i.) in C57BL/6 85 

mice. IL-9 driven mastocytosis[17] is key in T. spiralis expulsion[18-20], driving the 86 

degradation of epithelial tight junctions via the release of mast cell proteases during 87 

degranulation[21,22]. The resulting increase in luminal fluid, works in combination with Th2 88 

driven alterations of enhanced intestinal propulsive activity. IL-13 and IL-4, signalling via 89 

signal transducer and activator of transcription factor 6 (STAT6)[23] on smooth muscle 90 

cells[24], allow jejunal muscle hypercontractility[23-25]. Despite the potential for 91 

immunopathology in terms of intestinal barrier weakening and exposure to luminal 92 

commensals, in combination these pathways produce the “weep and sweep’ 93 

mechanism[26], to drive out the enteric stage of infection with only short-lived pathology.  94 

 95 

In comparison to other helminths, T. spiralis infection produces a robust Th2 response with 96 

evident pathology in terms of weight loss prior to intestinal worm expulsion[27], while the 97 

following encapsulation of new born larvae within the striated muscle is associated with a 98 

general malaise. Previous work has demonstrated the importance of the pluripotent cytokine 99 
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TGFβ in the chronic muscular phase of the parasite life cycle[28], but the role of this 100 

complex cytokine during the intestinal phase remains unclear. Given the fundamental 101 

importance of TGFβ in regulating many aspects of T-cell biology[29] we chose to investigate 102 

the mechanistic function of TGFβ signalling in regulating the potential pathological immune 103 

response during T. spiralis enteric infection.  104 

 105 

Here, we demonstrate that mice infected with T. spiralis, display enhanced TGFβ signalling 106 

in intestinal CD4+ T-cells which drives Th17 induction, as opposed to an increased 107 

regulatory T-cell (Treg) response. We find that the expression of integrin αvβ8 on dendritic 108 

cells (DCs), previously shown to be key in activating TGFβ and maintaining Tregs during 109 

intestinal homeostasis[30,31], is essential for the induction of TGFβ signalling in CD4+ T-110 

cells and the generation of Th17 cells during infection. Importantly, mice lacking integrin 111 

αvβ8 on DCs (Itgb8 (Cd11c-cre)) have a delayed ability to expel the intestinal stage of the 112 

infection, despite an equivalent Th2 response to wild-type controls. Utilising the DEREG 113 

system for Treg ablation[32] demonstrates an essential requirement of Tregs for parasite 114 

expulsion, yet the adoptive transfer of Tregs into Itgb8 (Cd11c-cre) mice suggests that the 115 

reduced Treg level seen is not responsible for the delayed parasite expulsion in this model. 116 

Instead, we show that the Th17 response promotes intestinal contractility and the “sweep” 117 

mechanism of parasite expulsion. Our results therefore provide novel insights into the role of 118 

TGFβ during intestinal helminth infection, contributing greater understanding to mechanisms 119 

of helminth expulsion and potentially enteric diseases encompassing muscle 120 

hypercontractility. 121 

 122 

Results 123 
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Small intestinal helminth infection with Trichinella spiralis results in increased 124 

TGFβ signalling in CD4+ T-cells, inducing Th17 rather than Foxp3+ regulatory 125 

T-cells. 126 

Expulsion of the small intestinal helminth T. spiralis is associated with a strong and acute T-127 

helper 2 (Th2) CD4+ T-cell response, around one week p.i. in mice ([12-16] and S1A Fig). 128 

Mice develop a biphasic morbidity in parallel to the enteritis and myositis of infection[27], 129 

indicating a need to regulate this strong inflammatory response. We investigated the 130 

mechanistic role of the pluripotent cytokine TGFβ, which regulates many aspects of innate 131 

and adaptive immunity including T-cells[29], during the potential pathological immune 132 

response during T. spiralis enteric infection.    133 

Wild-type C57BL/6 mice were infected with 300 T. spiralis larvae and followed throughout 134 

the time course of infection. We analysed parasite-specific cytokine production from 135 

mesenteric lymph node (mLN) cell preparations and saw a significant increase in TGFβ 136 

secretion in parallel to enhanced Th2 responses (IL-13, IL-9 and IL-4 production) at day 6 137 

p.i. (Fig 1A and S1A Fig). Interestingly, in contrast to the reduction in IL-4, IL-9 and IL-13 138 

cytokine release later in infection (S1A Fig), we saw a stronger, secondary peak of TGFβ at 139 

day 12 p.i. (Fig 1A). As TGFβ is produced as a latent cytokine requiring activation, we 140 

examined phosphorylation of Smad 2/3 (p-Smad2/3), which is the initial signalling event 141 

triggered by engagement of active TGFβ with its receptor. We saw significantly increased p-142 

Smad2/3 levels in CD4+ T cells at day 13 p.i. in the small intestinal lamina propria (SILP) 143 

intestinal niche of the parasite (Fig 1B and C), indicating enhanced activation of TGFβ.  144 

TGFβ signalling in CD4+ T-cells can result in the induction of Th17[33-35], Th9 [36,37] or 145 

peripheral Treg subsets[38], depending on co-stimulatory signals and the surrounding 146 

cytokine milieu. Although we did not see any significant increase in IL-9 secretion at day 12 147 

p.i. (S1A Fig), nor increase in the percentage of IL-9 expressing mLN CD4+ T-cells (S1B 148 

Fig) or Foxp3 expression in small intestinal CD4+ T-cells around this time-point (S1C and D 149 
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Fig), we did see a significant increase in IL-17 secretion at day 12 p.i.in parallel to the 150 

secondary peak of TGFβ production (Fig 1D). This increase in IL-17 production was also 151 

concomitant with a significant increase in IL-6 (S1A Fig), which can synergise with TGFβ to 152 

drive Th17 cell induction[39]. Indeed, on performing intracellular flow cytometry we identified 153 

CD4+ cells as the source of the IL-17 produced during this infection (Fig 1E), with additional 154 

gating showing significant increases in IL-17 seen within the CD4+CD3+ T-cell gated 155 

population during infection (Fig 1F).     156 

These data indicate that TGFβ signalling in CD4+ T-cells is induced during the enteric stage 157 

of T. spiralis infection and is associated with Th17 cell induction subsequent to the classical 158 

Th2 response. 159 

 160 

Expression of the TGFβ-activating integrin αvβ8 by DCs propagates TGFβ 161 

signalling in CD4+ T-cells and expulsion of enteric T. spiralis infection. 162 

We next sought to determine the mechanisms responsible for enhanced TGFβ signalling 163 

during T. spiralis infection. The requirement for the activation of latent TGFβ prior to 164 

function[40] led us to investigate the potential for integrin αvβ8, a key activator of latent 165 

TGFβ in the intestine expressed by dendritic cells (DCs)[30,31,41], to be responsible for the 166 

enhanced signalling seen in CD4+ T-cells. To this end, we analysed T-cell responses 167 

following infection with 300 T. spiralis larvae in mice lacking integrin αvβ8 on DCs (Itgb8 168 

(CD11c-Cre) mice[30]) and wild type littermate controls. We found that the increase in TGFβ 169 

signalling observed in CD4+ T-cells during T.spiralis infection was significantly reduced in 170 

Itgb8 (CD11c-Cre) mice, with pSmad2/3 levels remaining similar to those observed in 171 

uninfected mice (Fig 2A). Interestingly, this lack of TGFβ signalling in CD4+ T-cells did not 172 

affect the classical Th2, Th9 nor Th1 immune cytokine responses during the time-course of 173 

infection, with no significant difference observed in parasite specific IL-13, 4, 9 (Fig 2B) and 174 

IFNγ (S2A Fig) production from mLN antigen restimulation. This was also reflected in the 175 
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similar IgG response seen at day 18 post-infection (S2B Fig), which is a key indicator of 176 

Th1/2 balance, and IL-9 expression in mLN CD4+ T-cells at day 13 post-infection (S2C Fig). 177 

However, IL-17 production was significantly reduced at day 13 p.i., in both mLN 178 

restimulations (Fig 2B) as well as from small intestinal lamina propria CD4+ T-cells (Fig 2C), 179 

which were also observed to produce similar IL-13 levels (Fig 2C). Indeed, beyond the 180 

previously reported initial baseline differences in intestinal Th17 cells in Itgb8 (CD11c-Cre) 181 

mice ([30] and (Fig.3D)), total small intestinal lamina propria IL-17+ CD4+ T-cell numbers 182 

failed to significantly increase following infection at day 13 p.i. in Itgb8 (CD11c-Cre) mice as 183 

compared to wild-types (Fig 2D). Interestingly, we also observed a significant reduction in 184 

small intestinal lamina propria Foxp3+ regulatory T-cells at rest in the Itgb8 (CD11c-Cre) 185 

mice, with neither wild-type or Itgb8 (CD11c-Cre) mice Treg numbers altering during enteric 186 

T. spiralis infection (Fig 2E). Thus, during enteric T. spiralis infection, enhanced TGFβ 187 

activation by integrin αvβ8 on DCs is important in triggering infection-induced TGFβ 188 

signalling pathways in CD4+ T-cells, driving Th17 cells, and maintaining Treg numbers 189 

during homeostasis.  190 

Strikingly, and despite the maintained Th2 and Th9 response in Itgb8 (CD11c-Cre) mice, we 191 

observed a significant delay in worm expulsion and exacerbated weight loss (Fig 2F and G) 192 

following infection, as compared to wild-type mice. This delay was not associated with 193 

differences in other proposed mechanisms involved in helminth expulsion, with no significant 194 

difference in crypt/villus architecture (S2D Fig), goblet cell hyperplasia[42] (S2E Fig), 195 

mastocytosis[18-20] and associated MMCP-1 production[21,22] (S2F and G Fig) or RELMβ 196 

expression[43] (S2H Fig) between wild-type and Itgb8 (CD11c-Cre) mice.  Collectively these 197 

data indicate that despite the maintenance of a Th2 response in Itgb8 (CD11c-Cre) mice, 198 

TGFβ activation by integrin αvβ8 on DCs is essential for triggering TGFβ signalling pathways 199 

in CD4+ T-cells and promoting parasite expulsion.  200 

 201 
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Foxp3+ Tregs are required for efficient T. spiralis worm expulsion, but their 202 

adoptive transfer does not rescue Th17 cell numbers or helminth expulsion in 203 

mice lacking the TGFβ-activating integrin αvβ8 on DCs.   204 

We next focussed on uncovering the mechanisms responsible for the delayed expulsion of 205 

the small intestinal helminth T. spiralis from mice lacking the TGFβ activating integrin αvβ8 206 

on DCs. Given the stark baseline reduction in small intestinal Foxp3+ Tregs in Itgb8 (CD11c-207 

Cre) mice (Fig 2E), we utilised the DEREG mouse model, which allows specific ablation of 208 

Foxp3+ Tregs by injection of diphtheria toxin[32], to directly test the functional role of Foxp3+ 209 

Tregs during infection. DEREG mice treated with diphtheria toxin had successful complete 210 

depletion of Foxp3-GFP+ cells during the time course of the experiment, although we did 211 

see grow back of non-GFP Foxp3+ cells (S3A Fig), which have previously been 212 

demonstrated to possess no inhibitory function[44]. We found that worm burdens in DEREG 213 

mice recapitulated the delayed expulsion seen in Itgb8 (CD11c-Cre) mice, with significantly 214 

increased worm burdens observed at day 7 and 15 p.i. (Fig 3A). Furthermore, as in Itgb8 215 

(CD11c-Cre) mice, a heightened weight loss was apparent, but this took on differing kinetics, 216 

with mice presenting with sustained significant weight loss from day 4 p.i. in DEREG mice 217 

versus day 13 p.i. in Itgb8 (CD11c-Cre) mice (Fig 3B versus Fig 2G). Moreover, this weight 218 

loss in infected DEREG mice did not recede, despite attempts to rehydrate the animals with 219 

saline, resulting in mice reaching the threshold for humane end-point and the cessation of 220 

the experiments at day 15 p.i.(Fig 3B).  221 

To try and decipher reasons behind this extreme morbidity, we examined parasite-specific 222 

cytokine responses following mLN antigen restimulation. In stark contrast to Itgb8 (CD11c-223 

Cre) mice, we observed significant increases in IL-4 production at day 7 p.i.; while IL-13 and 224 

IFNγ increased at day 15 p.i. (Fig 3C). Interestingly no differences were seen in parasite–225 

specific IgG antibody nor MMCP-1 production, as compared to untreated control mice, 226 

indicating no overall imbalance in the Th1/Th2 paradigm (S3B and C Fig). Recent 227 

publications have discovered an essential role for Foxp3+ Tregs in eliminating the small 228 
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intestinal helminth Heligmosoides polygyrus, with Treg depletion associated with delayed 229 

worm expulsion following an uncontrolled “cytokine storm”[45]. We therefore looked at other 230 

pro-inflammatory cytokines and we did indeed see a significant increase in IL-6 at day 15 p.i. 231 

(Fig 3C). Importantly, we did not see the reduction in IL-17 later in infection in DEREG mice, 232 

as seen in Itgb8 (CD11c-Cre) mice (Fig 2B vs. Fig 3C).  233 

Despite the clear evidence demonstrating a complete lack of Tregs could mediate worm 234 

expulsion and weight loss during T. spiralis infection, we next asked if the adoptive transfer 235 

of Tregs to Itgb8 (CD11c-Cre) mice was sufficient to rescue worm expulsion kinetics. 236 

Despite the successful restoration of small intestinal lamina propria Foxp3+ cells (S3D and E 237 

Fig) resulting in augmented percentage weight (Fig 3D), we saw no alteration in IL-13 or IL-238 

17 production in Treg treated Itgb8 (CD11c-Cre) mice (Fig 3E and F), culminating in similar 239 

delayed expulsion as in untreated Itgb8 (CD11c-Cre) mice (Fig 3G).  240 

Collectively, these data suggest Foxp3+ Tregs are an important cell type in the context of T. 241 

spiralis infection and are required for efficient expulsion of small intestinal helminths via 242 

inhibiting runaway inflammation, as well as modulating weight loss pathology. However, 243 

given the increased Th1 and Th2 cytokines but maintenance of IL-17 production in the 244 

DEREG system and the failure of Treg adoptive transfer to rescue Itgb8 (CD11c-Cre) 245 

delayed worm expulsion,  this mechanism seems not to be solely responsible for the 246 

phenotype displayed in T. spiralis infected Itgb8 (CD11c-Cre) mice. 247 

  248 

IL-17 drives intestinal muscle hypercontractility during T. spiralis infection  249 

Given that the adoptive transfer of Tregs into Itgb8 (CD11c-Cre) mice restored weight loss 250 

kinetics but not worm expulsion, coupled with the  strong Th2 response and accompanying 251 

effector mechanisms seen in infected Itgb8 (CD11c-Cre) mice, we next examined a role for 252 

the altered Th17 cell population during this infection. We hypothesised that IL-17 may 253 

influence muscle hypercontractility rather than mastocytosis induced luminal fluid increases, 254 
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hence the “sweep” but not the “weep” aspect during expulsion of the enteric phase of T. 255 

spiralis.  256 

To investigate the individual importance of IL-17 in T. spiralis infection, we blocked IL-17 257 

from day 7 p.i. in C57BL/6 mice via antibody depletion. Although we saw no significant 258 

difference in weight or worm burdens when IL-17 was depleted from day 7 p.i. (Fig 4A and 259 

B), we did see a significant reduction in in vivo transit time in the small intestine, as 260 

measured by the transit of orally gavaged carmine dye (Fig 4C and D). Importantly, the 261 

depletion of IL-17 did not impinge on the CD4+ mLN T-cell production of IL-13 (or IFNγ) 262 

(S4A and B Fig), suggesting that alterations in transit time were possibly due to the absence 263 

of IL-17, rather than a follow-on effect of reduced Th2 cytokines known to induce small 264 

intestinal hypercontractility[23,24]. We next isolated jejunal smooth muscle and confirmed 265 

the expression of the IL-17ra via qPCR both at rest and following infection with T. spiralis 266 

(Fig 4E). This suggested the potential for IL-17 to directly influence intestinal smooth muscle 267 

contraction.   268 

To investigate this hypothesis, we first incubated isolated jejunal strips of intestine from wild-269 

type mice with or without rIL-17 prior to assessing longitudinal muscular tension ex vivo 270 

generated in response to stimulation with carbachol. Treatment with rIL-17 produced a 271 

significant increase in tension (Fig 4F), indicating IL-17 could promote tension and therefore 272 

potentially drive parasite expulsion. We next asked what downstream pathways could be 273 

responsible for transposing the IL-17 signal, with COX-2 and STAT6 pathways previously 274 

being shown to drive TGFβ and IL-4/13 intestinal contraction respectively, following 275 

T.spiralis infection[24,46]. To this end, we repeated ex vivo contraction experiments with 276 

prior exposure to inhibitors for both pathways, but detected no alteration in the 277 

hypercontraction response to carbachol following rIL-17 incubation (Fig 4G). Previous 278 

studies have demonstrated that Rho kinase signalling is emerging as an important mediator 279 

of intestinal smooth muscle contraction [47], with IL-13 and TNFα driving smooth muscle 280 

contraction via the small GTPase, RhoA via STAT6 and NF-κβ signalling respectively[48]. 281 
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We therefore targeted the RhoA downstream effector kinases via prior exposure to a ROCK 282 

pathway inhibitor, and observed an inhibition of the ability of IL-17 to produce significant 283 

hypercontraction in response to carbachol (Fig 4G).   284 

Collectively, these data show that, although not solely sufficient for worm expulsion or 285 

altered weight loss, IL-17 has direct effects on small intestinal hypercontractility, acting via 286 

the ROCK signalling pathway, and could potentially be responsible for the delayed expulsion 287 

seen in T. spiralis infected Itgb8 (CD11c-Cre) mice. 288 

 289 

rIL-17 treatment following T. spiralis infection rescues intestinal muscle 290 

hypercontractility and worm expulsion in mice lacking the TGFβ-activating 291 

integrin αvβ8 on DCs. 292 

Given the role of IL-17 in driving small intestinal contraction, we tested whether the reduced 293 

levels of parasite specific IL-17 production seen in Itgb8 (CD11c-Cre) mice were responsible 294 

for delayed worm expulsion via a reduced small intestinal hypercontractility. To this end, we 295 

examined if we could rescue delayed expulsion in these mice via treatment with recombinant 296 

IL-17. Treatment with rIL-17 from day 9 p.i. completely restored the weight loss kinetics (Fig 297 

5A) to levels seen in wild-type mice. This rescue of weight loss following rIL-17 treatment 298 

was not associated with any changes in parasite-specific IL-4, IL-13 or IFNγ cytokine 299 

production (Fig 5B), nor in parasite specific IgG responses (S5A Fig).  300 

Next, we examined isolated longitudinal muscle tension between jejunal samples from wild-301 

type and Itgb8 (CD11c-Cre) mice. Although there was no differences in tension either at 302 

baseline nor following carbachol treatment in naïve mice (S5B Fig and Fig 5C), following 303 

infection Itgb8 (CD11c-Cre) mice failed to significantly increase jejunal tension in response 304 

to stimulation with carbachol at day 13 p.i., as seen in in wild-type infected mice (Fig 5C and 305 

[23-25]). Moreover, the treatment of infected Itgb8 (CD11c-Cre) mice with rIL-17 rescued this 306 
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muscular tension to wild-type levels ex vivo (Fig 5C). Next, we examined in vivo contraction 307 

in the small intestine and despite no alteration at base line (Fig 5E and S5C Fig), we saw 308 

significantly delayed transit time following infection in Itgb8 (CD11c-Cre) mice, which was 309 

again rescued via the addition of rIL-17, but could not be restored by the adoptive transfer of 310 

Tregs  (Fig 5D and E).  Strikingly, in parallel to this recued small intestinal contraction, 311 

treatment with rIL-17 from day 9 p.i. completely restored the worm burden kinetics in infected 312 

Itgb8 (CD11c-Cre) mice (Fig 5F) to levels seen in wild-type mice. 313 

In sum, these data indicate that TGFβ activation by integrin αvβ8 on DCs is essential for 314 

triggering TGFβ signalling pathways in CD4+ T-cells allowing the maintenance of Tregs and 315 

induction of Th17 cells during T. spiralis infection. Tregs play a key role in mediating weight 316 

loss and aiding helminth expulsion via inhibiting runaway inflammation, while Th17 produced 317 

IL-17 contributes to enhanced muscular “sweep” tension promoting parasite expulsion.  318 

   319 

Discussion 320 

We have evolved immune driven mechanisms to allow the expulsion of intestinal helminths, 321 

with the “weep and sweep” supplied by increased intestinal epithelial permeability and 322 

muscle contraction[21-25] essential during T. spiralis infection. In most cases these 323 

expulsion mechanisms rely on Th2 cytokines resulting in minimal host damage indicating an 324 

essential role for regulation to avoid immunopathology; however the pathways and 325 

mechanisms involved remain unclear. Our data now indicate an essential role for TGFβ, 326 

activated via DC expressed integrin αvβ8, in parasite expulsion via the maintenance of 327 

Tregs and induction of Th17 cells, as opposed to simply immuno-regulation. Using the small 328 

intestinal dwelling helminth T. spiralis, we observed increased TGFβ signalling in CD4+ T-329 

cells and production of Th17 cells late in infection. Mechanistically, we find that enhanced 330 

TGFβ signalling in T-cells occurs via expression of the TGFβ-activating integrin αvβ8 on 331 

DCs and that DC-specific lack of this integrin results in increased weight loss and delayed 332 
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worm expulsion, despite the occurrence of the “classical” Th2 response. The total ablation of 333 

Tregs, in the DEREG model, demonstrates a role for this cell in aiding helminth expulsion via 334 

inhibiting runaway inflammation, while their adoptive transfer into Itgb8 (CD11c-Cre) mice 335 

indicates a key role in mediating infection induced weight loss. Moreover, Itgb8 (CD11c-Cre) 336 

mice lack intestinal hypercontractility that can be rescued via treatment with recombinant IL-337 

17, fully restoring both weight loss and worm expulsion kinetics.  We have therefore 338 

identified a novel, non-Th2 based, mechanistic pathway that could potentially be targeted to 339 

treat helminth infection and contractile diseases of the intestine.  340 

Previously, TGFβ signalling within T-cells has been shown to play an important role in 341 

downregulating Th2 responses via downregulation of the key transcription factor GATA-342 

3[49,50]. Indeed, we have previously shown that enhanced TGFβ signalling in T-cells during 343 

chronic Th1-induced Trichuris muris infection also occurs via expression of the TGFβ-344 

activating integrin αvβ8 on DCs. Moreover the lack of this integrin on DCs completely 345 

protects mice from T. muris infection due to an enhanced protective Th2 response in this 346 

model of large intestinal infection[51]. However, here, we did not see any alteration in 347 

parasite-specific Th2 responses associated with delayed parasite expulsion, nor any 348 

increase in IFNγ production in T. spiralis infected Itgb8 (CD11c-Cre) mice. These data may 349 

represent tissue-specific effects of TGFβ activation in the small and large intestine, or more 350 

likely that it is mechanistically difficult to surpass the robust Th2 driven cytokine response 351 

seen during a normal T. spiralis infection.  352 

Instead we saw a lack of IL-17 production at day 13p.i. in mice lacking the TGFβ-activating 353 

integrin αvβ8 on DCs, accompanying an unaltered Th1/Th2 balance. ILC3s are known as 354 

important producers of IL-17 at mucosal barriers[52]; however, it appeared that the IL-17+ 355 

population was found within the CD3/CD4+ T-cell pool, therefore likely bona-fide Th17 cells. 356 

Increased TGFβ release is seen in human DCs following treatment with T. spiralis 357 

antigen[53], although these DCs go on to favour a Th2 rather than a Th17 response, 358 



15 
 

indicating that other cellular populations or subsets are producing cytokines which favour 359 

Th17 induction during in vivo infection.  360 

Along with TGFβ, numerous cytokines are involved in Th17 induction, including IL-6, IL-21, 361 

IL-1β and IL-23 (reviewed in[39]). The production of IL-6 specifically at day 13p.i. is likely to 362 

be driving the Th17 induction[54] and possibly explains why we saw minimal IL-17 363 

production corresponding with the initial peak of TGFβ at day 6 p.i. The source of IL-6 364 

remains elusive, but Th17 induction via DC produced TGFβ relies on IL-6 production from a 365 

CD301b DC population during intranasal infection[55], indicating a possible DC source. 366 

Overall, it will be interesting to define what cytokines and from which cells are involved in 367 

inducing the Th17 seen during T. spiralis infection. Furthermore, it is interesting to postulate 368 

the antigen specificity in the system. The data displayed are based on parasite-specific 369 

cytokine responses as well as PMA/ionomycin re-stimulation and, given helminths directly 370 

influence the intestinal microbiome[56,57], it remains to be seen if Th17 responses to 371 

bacterial antigens would influence the outcome to T. spiralis infection.   372 

Our initial hypothesis to explain the delayed parasite expulsion was based on the previous 373 

finding that TGFβ-activating integrin αvβ8 is key in Treg development, as mice lacking the 374 

integrin on DCs have reduced Foxp3+ Tregs within the colonic lamina propria[30]. We 375 

therefore predicted that a possible reduction in Tregs in the small intestine of Itgb8 (CD11c-376 

Cre) mice could be playing a role in the delayed expulsion seen during T. spiralis infection. 377 

Indeed, recent publications have demonstrated a requirement for Tregs for efficient helminth 378 

expulsion in the small intestinal H. polygyrus model[45]. Of note previous findings have 379 

demonstrated that H. polygyrus produces a TGFβ mimic which acts as an 380 

immunomodulatory agent aiding chronicity[58], while our results suggest host TGFβ 381 

promotes expulsion of T. spiralis, as in our hands T. spiralis antigens have no TGFβ like 382 

properties[59]. This disparity could possibly be explained by the differing tissue localisation 383 

of the helminths during establishment, sub-mucosal versus epithelial niches or the local 384 

cytokine milieu, as H. polygyrus infection suppresses IL17 production[60]. However, the 385 
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demonstration of reduced Tregs within the small intestinal lamina propria of Itgb8 (CD11c-386 

Cre) mice, coupled with the delayed expulsion and increased weight loss in Treg depleted 387 

DEREG mice was initially indicative that reduced Treg numbers were solely responsible for 388 

the phenotype seen in Itgb8 (CD11c-Cre) mice. However, the extreme morbidity and mixed 389 

cytokine production observed, with no difference in IL-17 production, supported the previous 390 

hypothesise of “immunological chaos” in these mice. These results, coupled with the failure 391 

to rescue intestinal hypercontractility and worm expulsion kinetics when Itgb8 (CD11c-Cre) 392 

had been successfully adoptively transferred with Tregs, pointed towards additional 393 

mechanisms involved in T. spiralis delayed expulsion in Itgb8 (CD11c-Cre) mice. Adoptive 394 

transfer of Tregs was sufficient to return weight loss to wild-type levels, which has previously 395 

been shown to be mediated by the peptide hormone cholecystokinin[27]. It will therefore be 396 

of interest to examine any potential for Tregs to interact with production of cholecystokinin 397 

from enteroendocrine cells, given the recent interest in the immunoendocrine axis[61]. 398 

We have recently identified activated Tregs as expressing the TGFβ-activating integrin 399 

αvβ8[62] which in the presence of IL-6 allows Tregs to induce Th17 cells in a GARP-400 

dependent process[63]. It was therefore possible that the reduced small intestinal Treg 401 

numbers seen in Itgb8 (CD11c-Cre) mice were also responsible for the reduction in Th17 402 

induction during T. spiralis infection. However, given that Treg depleted DEREG mice still 403 

mounted similar IL-17 responses as infected controls and the adoptive transfer of Tregs into 404 

Itgb8 (CD11c-Cre) mice failed to rescue Th17 numbers, the delayed parasite expulsion and 405 

reduced Th17 induction appears independent of Treg activation of TGFβ, and directly 406 

dependent on DCs. 407 

We began to examine several other mechanisms of helminth expulsion, and saw no 408 

changes in goblet cell kinetics or mastocytosis. Mucosal mast cells are also under the 409 

control of TGFβ, with the cytokine controlling mast cell expression of the gut homing integrin 410 

alphaE and MMCP-1[64], essential for the weep aspect of T. spiralis expulsion20, 21. It is 411 

therefore surprising that both mastocytosis and release of MMCP-1 appeared normal in 412 
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Itgb8 (CD11c-Cre) mice. This may reflect alternative cell-specific mechanisms for the 413 

activation of TGFβ, with the active cytokine signalling within the local cellular environment, 414 

such as the T cell synapse via DC expressed αvβ8. This hypothesised high level of control is 415 

perhaps unsurprising given the multiple pathways that TGFβ drives. Indeed, previous 416 

studies have demonstrated that epithelial expression of the TGFβ –activating integrin αvβ6 417 

is essential for mast cell hyperplasia and MMCP-1 release during small intestinal helminth 418 

infection[65]. Moreover, epithelial cell specific αvβ6 null mice demonstrated abnormal 419 

mastocytosis and MMCP-1 expression[66]  linked with reduced expression of the intestinal 420 

homing integrin alphaE[67]. Collectively, this supports the context specific integrin activation 421 

of TGFβ, allowing distinct and tight control of this pleiotropic cytokine.   422 

Finally, after we observed rIL-17 treatment was able to rescue weight loss and expulsion 423 

kinetics in T. spiralis infected Itgb8 (CD11c-Cre) mice, we investigated the possibility for IL-424 

17 driving parasite expulsion. Indeed, late acting Th17 cells would prove beneficial in 425 

aspects of immunity and repair to helminth infection, with IL-17 driving Paneth cell 426 

antimicrobial peptide production[68] and IgA secretion[69]. This may be another important 427 

role of Th17 induction during T. spiralis infection, as microbial dysbiosis is a hallmark of 428 

intestinal helminth infection[57]  and the microbiota also plays important roles in Th17 cell 429 

induction[39]. Although the data presented here was gained from co-housed littermate 430 

controls, it is interesting to speculate on how the microbiome may alter intestinal contraction 431 

via the induction of Th17 cells. Alternatively, IL-17 can have direct effects on nematode 432 

behaviour [70] and epithelial permeability; TGFβ activation by αvβ8 integrin has been shown 433 

to be important for increased alveolar permeability in acute respiratory distress syndrome 434 

[71]. Although we saw no changes at the microscopic level in infected Itgb8 (CD11c-Cre) 435 

mice, including  goblet cells and RELMβ expression, Th17 production of IL-22 is related to 436 

goblet cell hyperplasia and enhanced worm expulsion[72]. Taking these potential 437 

mechanisms into account, and given the minimal effect of extra-intestinal larvae on muscle 438 

function at this timepoint[73], we  examined the possibility of alterations in jejunal contractility 439 
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as a possible role for the delayed expulsion, concentrating on a possible role for IL-17 as an 440 

expulsion mechanism.  441 

Gut contraction during T. spiralis infection has previously been shown to be driven by Th2 442 

cytokines and TGFβ, acting via STAT6 and COX-2 respectively [24,46]. Although we saw no 443 

changes in Th2 responses in our model, the reduced gut levels of active TGFβ seen in 444 

infected Itgb8 (CD11c-Cre) mice, could be involved directly in the reduced contraction seen. 445 

However, we observed a significant effect of rIL-17 on baseline gut contraction, reinforcing 446 

data from other investigators[74], that was independent of COX-2, as well as a complete 447 

rescue during infection by the addition of rIL-17, but not Tregs; making it unlikely that TGFβ 448 

was directly responsible for contractility differences. Previous studies have demonstrated 449 

that Rho kinase signalling is emerging as an important mediator of intestinal smooth muscle 450 

contraction [47], and may play a role during pathophysiology[75]. Moreover, there is 451 

precedent within the mucosal barrier of the lung, for αvβ8 dependent Th17 induction driving 452 

smooth muscle contraction via NF-κβ and the ROCK2 signalling cascade, with Itgb8 453 

(CD11c-Cre) mice protected from airway hyper-responsiveness in response to house dust 454 

mite and ovalbumin sensitization and challenge[76]. Indeed, inhibiting the ROCK pathway, 455 

rather than STAT6, prevented hypercontractility of small intestinal muscle in response to IL-456 

17 indicating a potential similar mechanism ex vivo. However, it remains likely that Th2 457 

cytokines and IL-17 may interact during the intestinal hypercontractility response to T. 458 

spiralis infection in vivo, with IL-17 previously shown to enhance IL-13 driven STAT6 459 

intracellular responses in mouse and human lung epithelial cells [77].   460 

Collectively, these data support a novel role for IL-17 in driving the intestinal contraction and 461 

augmenting the expulsion of T. spiralis. The inhibition of IL-17 during T. spiralis infection in 462 

wild-type mice further supports a key role for this cytokine in infection induced 463 

hypercontractility, but it must be noted that worm expulsion was unaltered when compared to 464 

vehicle treated animals. These data, when coupled with the complete rescue of weight, 465 

contractility and worm expulsion seen in IL-17 treated Itgb8 (CD11c-Cre) mice, suggests an 466 
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additional facet, possibly reduced intestinal Tregs, that further promotes the key role of IL-17 467 

within the Itgb8 (CD11c-Cre) model. An important question remains as to what regulates the 468 

strong Th2 response seen during T. spiralis infection. Although we did see some increased 469 

morbidity in terms of weight loss during the infection of Itgb8 (CD11c-Cre) mice, our adoptive 470 

transfer experiments suggest this is most likely due to the decreased Treg population and 471 

possibly the increased worm burden phenotype seen. As discussed earlier, activation of 472 

TGFβ via other mechanisms in a cell specific context may be responsible, or it may be a 473 

combination of several factors; as seen by the dual roles of IL-10 and TGFβ seen in T. 474 

spiralis nurse cell immunopathology[28]. Indeed IL-10 has previously been shown to be 475 

essential in avoiding fatal immunopathology in response to the microbiota during another 476 

epithelial dwelling helminth, Trichuris muris[78]. Tregs are likely to play a role, and are often 477 

associated with helminth infection, but we are reliant on more subtle approaches to remove 478 

distinct Treg subsets, as our results confirm global depletion as being detrimental to mouse 479 

survival by failing to regulate the majority of inflammatory pathways[45].  480 

In summary, we have highlighted an important cellular and molecular pathway by which the 481 

DC expressed TGFβ-activating integrin αvβ8, maintains intestinal Tregs and drives the 482 

induction of Th17 cells late during infection with the small intestinal helminth T. spiralis. 483 

Tregs are essential for mediating infection induced weight loss, while the resulting Th17 484 

produced IL-17 mediates the contraction of jejunal muscle via ROCK signalling aiding the 485 

“weep and sweep” mechanism of helminth expulsion. Thus, we have identified the molecular 486 

mechanism maintaining Tregs and driving Th17 induction and helminth expulsion, beyond 487 

the classical Th2 responses. Additionally, whether the Th17 pathway can be harnessed 488 

therapeutically in other parasitic diseases or pathologies encompassing muscle 489 

hypercontractility should be a focus of further studies. 490 

 491 

Materials and Methods 492 
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Animals 493 

C57BL/6 mice were purchased from Harlan Laboratories. Mice lacking integrin αvβ8 on DCs 494 

via expression of a conditional floxed allele of β8 integrin in combination with CD11c-Cre 495 

(Itgb8 (CD11c-Cre) mice)[30] and DEREG mice[32], all on a C57BL/6 background, have 496 

been previously described and were bred in house. For Itgb8 (CD11c-Cre) mice transgene 497 

negative littermate controls were used in all experiments. For DEREG mice transgene 498 

positive littermates were treated with PBS for controls. All experiments were on male, age-499 

matched mice maintained in specific pathogen-free conditions at the University of 500 

Manchester and used at 6 to 12 weeks of age. 501 

 502 

Ethics Statement 503 

All animal experiments were performed under the regulations of the Home Office Scientific 504 

Procedures Act (1986), specifically under the project licence PPL 40/3633. The project 505 

licence was approved by both the Home Office and the local ethics committee of the 506 

University of Manchester. Animal euthanasia occurred using approved schedule 1 methods. 507 

 508 

Trichinella spiralis infection 509 

The maintenance, infection and recovery of T. spiralis were carried out as previously 510 

described[79]. Mice were orally infected with 300 larvae and individually weighed on a daily 511 

basis. Worm burdens were assessed by counting the number of worms present in the small 512 

intestine as described previously[79]. 513 

 514 

Treg and IL-17 depletion and treatment 515 

Foxp3+ Tregs were depleted in DEREG mice as described[32], via i.p. injection of 200 ng 516 

diphtheria toxin (Merck) every 2 days from 2 days prior to infection. IL-17 was blocked via 517 

i.p. injection of 100μgs of anti-IL-17α (17F3) or IgG1 isotype control (MOPC-21) (BioXCell) 518 

from day 7 p.i. and every 3 days following. For Treg treatment, cells were isolated via Treg 519 
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isolation kit (Miltenyi) according to manufacturer’s instructions. Cells were assessed as 520 

>95% Foxp3+ and mice were adoptively transferred with 1x106 Tregs prior to infection. For 521 

IL-17 treatment, 2ug of recombinant IL-17 (Peprotech) was injected i.p. every 3 days from 522 

day 9 post-infection. In both gain of function treatments control animals received PBS 523 

vehicle injections at identical time points. 524 

 525 

Flow cytometry staining 526 

Spleens and mesenteric lymph nodes (mLNs) were removed from mice and disaggregated 527 

through a 100 µm sieve. Small intestines were excised and lamina propria lymphocytes 528 

(SILP) were prepared essentially as described[80] with slight modification in the tissue 529 

digestion step (digestion medium used was RPMI with 10% Foetal calf serum, 0.1% w/v 530 

collagenase type I and Dispase II (both Invitrogen), and tissue was digested for 30 min at 531 

37°C). Cell suspensions were blocked with anti-FcγR antibody (clone 24G2; eBioscience) 532 

before labelling with antibodies specific for CD3 (eBio500A2), CD4 (clone GK1.5; 533 

eBioscience), Foxp3 (clone FJK-16s; eBioscience), IL-13 (clone eBiol13A; eBioscience), 534 

IFNγ (clone XMG1.2; eBioscience), IL-17(eBio17B7; eBioscience), IL-9 (RM9A4e; 535 

Biolegend) or p-Smad 2/3 (Santa Cruz). For intracellular cytokine analysis cells were 536 

incubated for 12 hours with 1x Cell stimulation cocktail (plus protein inhibitors) (ebioscience). 537 

Cells were then stained with antibodies using the eBioscience Foxp3 permibilization kit 538 

according to the manufacturer's instructions. For pSmad2/3 staining, an Alexa Fluor 594-539 

labelled donkey anti-goat secondary antibody was used (Invitrogen). All samples were 540 

analysed on a FACS LSRII. 541 

 542 

Cell re-stimulation 543 

mLN and SILP cells were prepared as described above before incubating with 50μg/ml T. 544 

spiralis antigen for 24 hours in media (RPMI-1640, 10% FCS, 100U/ml Pen/strp, 5%NEAA, 545 

L-glutamine and HEPES, 0.05 mM β-mercaptoethanol (SIGMA)). Cell-free supernatants 546 
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were analysed for cytokine production via cytometric bead array (BD) or paired ELISA 547 

antibodies (anti-IFNγ, clone XMG1.2 and R4-6A2; anti-IL-13, clone eBio13A and eBio1316H; 548 

anti-IL-4, clone 11B1and BVD6-2462, anti-IL-17 clone eBio17CK15A5 and eBio17B7; 549 

(eBioscience)). For TGFβ analysis samples were acid-activated prior to detection on a 550 

mouse TGF-beta 1 DuoSet ELISA (R and D Systems).  551 

 552 

Histology 553 

Intestinal tissue was fixed in Carnoy’s solution and embedded in wax prior to mast or goblet 554 

cell staining via toludine blue or Schiff's reagent, respectively. Following antigen retrieval, 555 

RELMβ was labelled via primary antibody 1:400 (Abcam-ab11429) followed by detection 556 

with an Elite ABC HRP Kit (Vectastain) according to manufacturer’s instructions. After 557 

mounting, positive cells were enumerated in 20 randomly selected villus crypt units (VCU) 558 

and results presented as mean number of positive cells/20 VCU (± S.D.). Lengths of 559 

villus/crypts were enumerated via image J.  560 

 561 

Serum antibody and MMCP-1  562 

Serum was obtained from blood at the time of sacrifice via centrifugation at 15000×g. 563 

Parasite specific IgG1 and IgG2a assessed via 5 μg/ml T. spiralis antigen coated ELISA 564 

plates in 0.05 M carbonate/bicarbonate buffer, pH 9.6. IgG1 and IgG2a were detected using 565 

biotinylated rat-anti mouse antibodies (Pharmingen, UK and Serotec, UK respectively) 566 

diluted in PBS-Tween and visulaised using streptavidin peroxidase and ABTS substrate prior 567 

to being read 405nm on a VersaMax microplate reader (Molecular devices, UK). Mouse 568 

mast cell protease-1 assessed via ELISA according to manufacturer’s instructions 569 

(Moredun). 570 

 571 

Intestinal Contraction 572 
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Ex vivo intestinal contraction was measured as previously described[81]. Briefly, 3cm 573 

isolated jejunal strips were placed in oxygenated (95%O2-5%CO2) Krebs solution and 574 

surgical silk was used to hang the tissue longitudinally in an isolated tissue bath (Radnoti). 575 

Tissues were equilibrated for 30mins at 37oC under tension (1g), prior to baseline and 576 

carbachol (10-6M) response readouts being measured. The maximum force generated by the 577 

tissue was assessed (AD Instruments and Labchart Reader 8) and expressed in milligrams 578 

after normalising for cross sectional area[81]. In some cases, jejunal tissue was incubated in 579 

10ng/ml rIL-17 for 6 hours in medium (Leibovitz’s L-15, 10% FCS, 100 U/ml Pen/strep, 580 

50mg/ml gentamicin, 5% NEAA, L-glutamine and HEPES, 0.05 mM β-581 

mercaptoethanol),following 2 hour treatment with 10μM celecoxib (COX-2 inhibitor), 100nM 582 

AS1517499 (STAT6 inhibitor) or 10uM Y-27632 (ROCK inhibitor) (Sigma) prior to measuring 583 

longitudinal muscle tension generated in response to carbachol (10-6M). 584 

In vivo intestinal contraction was assessed via a 12 hour fast prior to gavage of 200μl of 6% 585 

carmine red dye (Sigma) in 0.5% methylcellulose 400c.p. (Sigma) before measuring 586 

distance of dye front, confirmed via tissue blotting, and gut length precisely 20mins later. 587 

Quantitative Polymerase Chain Reaction 588 

Total RNA was purified from small intestinal isolated jejunal muscle strips using Trizol 589 

reagent according to the manufacturer’s instructions (ThermoFischer). RNA was reverse 590 

transcribed using oligo(dT) primers and complementary DNA for specific genes detected 591 

using a SYBR Green qPCR Kit (Roche). Gene expression was normalized to HPRT levels. 592 

IL-17ra Forward-5’ CAAGTTTCACTGGTGCTGCC; IL-17ra Reverse-5’ 593 

TAGTCTGCAACTGGCTTGGG; HPRT Forward-5’ GCGTCGTGATTAGCGATGATGAAC; 594 

HRPT Reverse-5’ GAGCAAGTCTTTCAGTCCTGTCCA. 595 

Statistics 596 

Results are expressed as mean ± S.D.. Where statistics are quoted, two experimental 597 

groups were compared via the Student’s t test for non-parametric data. Three or more 598 



24 
 

groups were compared with ANOVA, with Dunnett’s or Bonferroni’s post-test as indicated. A 599 

p value of <0.05 was considered statistically significant. *, P<0.05; **, P<0.01; or ***, 600 

P<0.005 for indicated comparisons, error bars represent SD of means. 601 

 602 
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 827 

Figure and supporting information captions  828 

Figure 1. Infection with the small intestinal helminth T. spiralis increases TGFβ signalling in CD4+ T-829 

cells producing late Th17 cell induction. Wild-type C57BL/6 mice were infected with 300 T. spiralis 830 

larvae and examined at the indicated time points. (A) Total TGFβ cytokine levels from T. spiralis 831 

antigen-stimulated mLN cells across the time-course of intestinal infection, determined via ELISA. (B) 832 

Representative flow cytometry plots and (C) mean fluorescence intensities for p-Smad 2/3 staining in 833 

small intestinal lamina propria CD4+ T-cells from uninfected and day 13 post-infected mice. (D) IL-17 834 

cytokine levels from T. spiralis antigen-stimulated mLN cells across the time-course of intestinal 835 
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infection, determined via cytometric bead array. (E) Representative flow cytometry plots of total 836 

CD45+ small intestinal lamina propria cells and (F) percentage IL-17 expression in small intestinal 837 

lamina propria CD4-CD3-, CD4+CD3- and CD4+CD3+ gated cells from uninfected and day 13 post-838 

infected mice. Data (n=3-5 mice per group) are from two independent experiments performed.*, 839 

P<0.05; **, P<0.01; ***, P<0.005; N.S. , not significant via Dunnett’s multiple comparison following 840 

ANOVA (A) and (D) or student’s t-test (C) and (F) for the indicated comparisons between groups. 841 

 842 

Figure 2. Mice lacking the TGFβ-activating integrin αvβ8 on DCs have delayed expulsion of the 843 

small intestinal helminth T. spiralis. Wild-type and Itgb8 (CD11c-cre) mice were infected with 300 T. 844 

spiralis larvae and examined at the indicated time-points post-infection. (A) Representative flow 845 

cytometry plots for p-Smad 2/3 staining in small intestinal lamina propria CD4+ T-cells. (B) IL-13, IL-4, 846 

IL-9, and IL-17 cytokine levels from T. spiralis antigen-stimulated mLN cells from wild-type and Itgb8 847 

(CD11c-cre) mice, determined via ELISA. (C) Representative flow cytometry plots for intracellular IL-848 

17 and IL-13 expression in small intestinal lamina propria CD4+ T-cells isolated from wild-type and 849 

Itgb8 (CD11c-cre) mice at day 13 post-infection. Number of (D) IL-17+ and (E) Foxp3+ CD4 T-cells in 850 

the small intestinal lamina propria of wild-type and Itgb8 (CD11c-cre) mice, assessed via flow 851 

cytometry. (F) Worm burdens from wild-type and Itgb8 (CD11c-cre) mice at days 7, 13 and 18 p.i. (G) 852 

Percentage change in basal start weight in wild-type and Itgb8 (CD11c-cre) mice over the course of 853 

infection. Data (n=6-10 mice per group) are from two independent experiments performed. *, 854 

P<0.05; ***, P<0.005; N.S. , not significant via Bonferonni’s multiple comparison following ANOVA 855 

(B), (D), and (E) or student’s t-test (F)and (G) for the indicated comparisons between groups. 856 

 857 

Figure 3. Depletion of Foxp3+ Tregs during T. spiralis infection results in extreme morbidity and 858 

delayed helminth expulsion, but the immune kinetics and delayed expulsion seen in mice lacking 859 
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the TGFβ-activating integrin αvβ8 on DCs are independent of Tregs. DEREG mice were treated 860 

every 2 days with 200 ng diphtheria toxin or PBS (Control) 2 days prior to infection with 300 T. 861 

spiralis larvae and examined at the indicated time-points post-infection. (A) Worm burdens from 862 

control and DEREG mice at days 7 and 15 following infection. (B) Percentage change in basal start 863 

weight in control and DEREG mice during time course of infection, dashed line indicates point of 864 

morbidity sacrifice threshold. (C) IL-4, IL-13, IFNγ, IL-6 and IL-17 cytokine levels from T. spiralis 865 

antigen-stimulated mLN cells from control and DEREG mice at different time-points post-infection, 866 

determined via CBA. Data (n=4-11 mice per group) are from two independent experiments 867 

performed. Wild-type, Itgb8 (CD11c-cre) and Itgb8 (CD11c-cre) mice adoptively transferred with 868 

1x106 Tregs were infected with 300 T. spiralis larvae 2 days following cell transfer and examined at 869 

the indicated time-points post-infection. (D) Percentage change in basal start weight in wild-type, 870 

Itgb8 (CD11c-cre) and Itgb8 (CD11c-cre) mice adoptively transferred with Tregs during time course of 871 

infection. (E) Representative flow cytometry plots for intracellular IL-17 and IL-13 expression in mLN 872 

CD4+ T-cells isolated from wild-type, Itgb8 (CD11c-cre) and Itgb8 (CD11c-cre) mice adoptively 873 

transferred with Tregs, at day 13 post-infection. (F) Number of IL-17+ CD4 T-cells in the mLN of wild-874 

type, Itgb8 (CD11c-cre) and Itgb8 (CD11c-cre) mice adoptively transferred with Tregs, at day 13 post-875 

infection, assessed via flow cytometry. (G) Worm burdens from wild-type, Itgb8 (CD11c-cre) and 876 

Itgb8 (CD11c-cre) mice adoptively transferred with Tregs, at day 13 following infection. Data (n=4 877 

mice per group) are from two independent experiments performed.*, P<0.05; **, P<0.01; ***, 878 

P<0.005; N.S. , not significant via Bonferonni’s multiple comparison following ANOVA (C), (F) and (G), 879 

and student’s t-test (A), (B) and (D) for indicated comparisons between groups. 880 

 881 

Figure 4. IL-17 drives intestinal muscle hypercontractility during T. spiralis infection and ex vivo via 882 

the ROCK signalling pathway. C57BL/6 mice were infected with 300 T. spiralis larvae and treated 883 

with 100μg of anti-IL-17 or control antibody (Bio-X-Cell) every 3 days from day 7 post-infection. (A) 884 
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Percentage change in basal start weight in control and α-IL-17 treated mice over the course of 885 

infection. (B) Worm burdens from control and α-IL-17 treated mice at days 13 and 18 p.i. Chow was 886 

removed 12 hrs prior to sacrifice at day 13 and mice received 200μls carmine red in methylcellulose 887 

20 minutes before sacrifice. (C) Representative macroscopic images, arrow indicates front of dye and 888 

scale bar=1 cm, and combined data (D). Data (n=5 mice per group) are from two independent 889 

experiments performed. (E) Expression of IL-17ra in isolated jejunal muscle layer at rest and day 13 890 

p.i, via qPCR relative to HPRT housekeeping gene. (F) Isolated jejunal strips from C57BL/6 wild-type 891 

mice were incubated in media with/without the addition of 10ng/ml rIL-17 for 6 hours prior to 892 

measuring longitudinal muscle tension generated in response to carbachol (10-6M) in an isolated 893 

tissue bath and (G) with/without the prior addition of the COX-2 and ROCK inhibitors celecoxib 894 

(10μM) and Y-27632 (10μM) and STAT6 inhibitor AS1517499 (100nm). Data (n=3-5 mice per group) 895 

are from two independent experiments performed. *, P<0.05; **, P<0.01; ***, P<0.005; N.S. , not 896 

significant via Bonferonni’s multiple comparison following ANOVA (G) and student’s t-test (A), (B), 897 

(D), (E)  and (F) for indicated comparisons between groups. 898 

 899 

  900 

Figure 5. rIL-17 treatment following T. spiralis infection restores worm expulsion in mice lacking 901 

the TGFβ-activating integrin αvβ8 on DCs via rescuing intestinal muscle hypercontractility. Wild-902 

type and Itgb8 (CD11c-cre) mice were infected with 300 T. spiralis larvae and treated with PBS or 2ug 903 

of recombinant IL-17 every 3 days from day 9 post-infection and examined at the indicated time-904 

points post-infection. (A) Percentage change in basal start weight in wild-type and Itgb8 (CD11c-cre) 905 

PBS or rIL-17 treated mice over the course of infection. (B) IL-4, 13 and IFNγ cytokine levels from T. 906 

spiralis antigen-stimulated mLN cells at day 13 post-infection, determined via ELISA. (C) Jejunal 907 

longitudinal muscle tension generated in response to carbachol (10-6M) from wild-type and Itgb8 908 

(CD11c-cre) mice PBS or rIL-17 treated, intestinal contraction was examined in an isolated tissue 909 
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bath at time points indicated. Wild-type and Itgb8 (CD11c-cre) mice were infected with 300 T. 910 

spiralis larvae and treated with PBS, 2ug of recombinant IL-17 every 3 days from day 9 post-infection 911 

or adoptively transferred with 1x106 Tregs 2 days prior to infection and examined at the indicated 912 

time-points post-infection. Chow was removed 12 hrs prior to sacrifice at day 13 and mice received 913 

200μls carmine red in methylcellulose 20 minutes before sacrifice. (D) Representative macroscopic 914 

images, arrow indicates front of dye and scale bar=1 cm, and combined mean data of dye front (E). 915 

(F) Worm burdens from wild-type and Itgb8 (CD11c-cre) PBS or rIL-17 treated mice at days 13 and 18 916 

following infection. Data (n=4-8 mice per group) are from two-three independent experiments 917 

performed. *, P<0.05; **, P<0.01; ***, P<0.005; N.S. , not significant via Bonferonni’s multiple 918 

comparison following ANOVA (B), (C), (E) and (F) and student’s t-test (A) for indicated comparisons 919 

between groups. 920 

 921 

Supplementary Figure 1. Infection with the small intestinal helminth T. spiralis does not increase 922 

Th9 or Foxp3+ regulatory T-cells at day 13 post-infection. Wild-type C57BL/6 mice were infected 923 

with 300 T. spiralis larvae and examined at the indicated time points. (A) IL-4, 13, 6 and 9 cytokine 924 

levels from T. spiralis antigen-stimulated mLN cells across the time-course of intestinal infection, 925 

determined via cytometric bead array. (B) Representative flow cytometry plots of percentage IL-9 926 

expression in mLN CD4+ T-cells from uninfected and day 13 post-infected mice. (C) Representative 927 

flow cytometry plots and (D) Percentage Foxp3 expression in small intestinal lamina propria CD4+ T-928 

cells from uninfected and day 13 post-infected mice. Data (n=3-5 mice per group) are from two 929 

independent experiments performed. *, P<0.05; **, P<0.01; ***, P<0.005; N.S. , not significant via 930 

Dunnet’s multiple comparison following ANOVA (A) or student’s t-test (D) for the indicated 931 

comparisons between groups. 932 

 933 
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Supplementary Figure 2. Mice lacking the TGFβ-activating integrin αvβ8 on DCs demonstrate no 934 

alterations in parasite specific antibody, small intestinal goblet or mast cell kinetics following 935 

infection with the helminth T. spiralis. Wild-type and Itgb8 (CD11c-cre) mice were infected with 300 936 

T. spiralis larvae and examined at the indicated time-points post-infection. (A) IFNγ cytokine levels 937 

from T. spiralis antigen-stimulated mLN cells from wild-type and Itgb8 (CD11c-cre) mice, determined 938 

via ELISA. (B) Parasite-specific serum IgG1 and IgG2a levels in wild-type and Itgb8 (CD11c-cre) mice 939 

at day 18 post-infection. (C) Number of IL-9+ CD4 T-cells in the mLN of wild-type and Itgb8 (CD11c-940 

cre) mice at day 13 p.i., assessed via flow cytometry. (D) Villus/crypt lengths assessed via 941 

examination of 20 randomly selected VCU in wild-type and Itgb8 (CD11c-cre) mice following 942 

infection, quantified via ImageJ software. Number of (E) goblet and (F) mast cells/20 VCU accessed 943 

via periodic acid-Schiff’s and toluidine blue histology staining respectively from wild-type and Itgb8 944 

(CD11c-cre) mice. (G) Serum MMCP-1 levels from wild-type and Itgb8 (CD11c-cre) mice following 945 

infection, obtained via ELISA. (H) RELMβ+ cells/20VCU from wild-type and Itgb8 (CD11c-cre) mice 946 

assessed via immunohistochemistry. All data (n=4-10 mice per group) are from two independent 947 

experiments performed.*, P<0.05; **, P<0.01; ***, P<0.005; N.S. , not significant via Bonferonni’s 948 

multiple comparison following ANOVA (A), (D), (E-H) or student’s t-test (B),and (C)   for the indicated 949 

comparisons between groups.  950 

 951 

Supplementary Figure 3. Successful depletion of Foxp3+ Tregs during T. spiralis infection results in 952 

no parasite-specific antibody or mastocytosis differences, while adoptive transfer of Tregs restores 953 

the small intestinal lamina propria population in Itgb8 (CD11c-cre) mice. DEREG mice were treated 954 

every 2 days with 200 ng diphtheria toxin or PBS (Control) 2 days prior to infection with 300 T. 955 

spiralis larvae and examined at the indicated time-points post-infection. (A) The percentage of 956 

Foxp3+ CD4 T-cells in the mLN, as assessed via flow cytometry antibody staining and/or Foxp3-GFP 957 

reporter. (B) Parasite-specific serum IgG1 and IgG2a levels in Control and DEREG mice at day 15 958 
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post-infection, obtained via ELISA. (C) Serum MMCP-1 levels from Control and DEREG mice following 959 

infection, obtained via ELISA. Data (n=4-9 mice per group) are from two independent experiments 960 

performed. Wild-type, Itgb8 (CD11c-cre) and Itgb8 (CD11c-cre) mice were adoptively transferred 961 

with 1x106 Tregs were infected with 300 T. spiralis larvae 2 days following cell transfer. 962 

Representative flow cytometry plots (D) and (E) percentage Foxp3 expression in small intestinal 963 

lamina propria CD4+ T-cells from day 13 post-infection. Data (n=4 mice per group) are from two 964 

independent experiments performed. **, P<0.01; ***, P<0.005; N.S. , not significant via Dunnet’s 965 

multiple comparison following ANOVA (A) and (E), Bonferonni’s multiple comparison following 966 

ANOVA (C) and student’s t-test (B) for indicated comparisons between groups.  967 

 968 

Supplementary Figure 4. Ablation of IL-17 during T. spiralis infection does not alter CD4+ T-cell IL-969 

13 response. C57BL/6 mice were infected with 300 T. spiralis larvae and treated with 100μg of anti-970 

IL-17 or control antibody (Bio-X-Cell) every 3 days from day 7 post-infection. (A) Number of mLN 971 

IFNγ and IL-13 positive CD4+ T-cells and (B) representative flow cytometry plots. . Data (n=5 mice per 972 

group) are from two independent experiments performed. N.S. , not significant via student’s t-test 973 

for indicated comparisons between groups. 974 

 975 

Supplementary Figure 5. Mice lacking the TGFβ-activating integrin αvβ8 on DCs do not have 976 

baseline differences in intestinal muscle contraction and rIL-17 treatment following T. spiralis 977 

infection does not alter parasite specific antibody responses. Wild-type and Itgb8 (CD11c-cre) mice 978 

were infected with 300 T. spiralis larvae and treated with PBS or 2ug of recombinant IL-17 every 3 979 

days from day 9 post-infection and examined at the indicated time-points post-infection. (A) 980 

Parasite-specific serum IgG1 and IgG2a levels in wild-type and Itgb8 (CD11c-cre) PBS or rIL-17 981 

treated mice at day 18 following infection, obtained via ELISA. (B) Base line jejunal longitudinal 982 
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muscle tension in naïve wild-type and Itgb8 (CD11c-cre) mice in an isolated tissue bath. Chow was 983 

removed 12 hrs prior to sacrifice at day 13 and mice received 200μls carmine red in methylcellulose 984 

20 minutes before sacrifice. (C) Representative macroscopic images of wild-type and Itgb8 (CD11c-985 

cre) naïve mice, arrow indicates front of dye and scale bar=1 cm.  Data (n=4 mice per group) are 986 

from two independent experiments performed. N.S. , not significant via Bonferonni’s (A) multiple 987 

comparison following ANOVA and student’s t-test (B) for indicated comparisons between groups. 988 


