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Evaporating black-holes, wormholes, and vacuum
polarisation: do they always conserve charge?
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Abstract Acareful examination of the fundamentals of electromagnetic theory shows
that due to the underlying mathematical assumptions required for Stokes’ Theorem,
charge conservation cannot be guaranteed in topologically non-trivial spacetimes.
However, in order to break the charge conservation mechanism we must also allow
the electromagnetic excitation fields D, H to possess a gauge freedom, just as the
electromagnetic scalar and vector potentials ϕ and A do. This has implications for
the treatment of electromagnetism in spacetimes where black holes both form and
then evaporate, as well as extending the possibilities for treating vacuum polarisation.
Using this gauge freedom of D, H we also propose an alternative to the accepted
notion that a charge passing through a wormhole necessarily leads to an additional
(effective) charge on the wormhole’s mouth.

Keywords Electromagnetism · topology · charge-conservation · constitutive
relations · gauge freedom

1 Introduction

It is not only a well established, but an extremely useful consequence of Maxwell’s
equations, that charge is conserved [1] However, this principle relies on some assump-
tions, in particular those about the topology of the underlying spacetime, which are
required for Stokes’ Theorem to hold. Here we describe how to challenge the status
of charge conservation, by investigating the interaction of electromagnetic theory and
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the spacetime it inhabits, and go on to discuss the potential consequences of such a
scenario.

As well as considering topologically non-trivial spacetimes, we also no longer
demand that the excitation fields D, H are directly measurable. This relaxation means
that the excitation fields D, H are now allowed a gauge freedom analogous to that of
the scalar and vector electromagnetic potentials ϕ and A. This gauge freedom for D,
H is given by

D→ D + ∇ × Ag, H→ H + Ȧg + ∇ϕg, (1)

where ϕg andAg are the new gauge terms, which vanish when inserted intoMaxwell’s
equations. Note that there are already long-standing debates about whether – or how –
any measurement of the excitation fields might be done (see e.g. [2,3] and references
therein). Unlike the case for E, B, there is no native Lorentz force-like equation
for magnetic monopoles dependent on D, H, although proposals – based on the
assumption that monoples indeed exist – have been discussed [4]. Neither is there
an analogous scheme for measuring E, B inside a disk by using the Aharonov-Bohm
effect [5,6,7], a method particularly useful inside a medium where collisions may
prevent a point charge obeying the Lorentz force equation. This double lack means
that whenever making claims about the measurability of D, H, one has to make
assumptions about their nature, for example that it is linearly and locally related to E,
B, such as in the traditional model of the vacuum. Such assumptions act to fix any
gauge for D, H, so that one can measure the remaining parameters; but if D, H are
taken to be not measurable, then the gauge no longer needs to be fixed.

The relaxed assumptions about topology and gauge are not merely minor technical
details, since many cosmological scenarios involve a non-trivial topology. Notably,
black holes have a central singularity that is missing from the host spacetime [8,9], and
a forming and then fully evaporated black hole creates a non-trivial topology, which in
concert with allowing a gauge freedom for now non-measureable D, H fields, breaks
the usual basis for charge conservation. We also consider more exotic scenarios, such
as the existence of a universe containing a wormhole (see e.g. [10]), or a “biverse”– a
universe consisting of two asymptotically flat regions connected by an Einstein-Rosen
bridge. In particular we test the claim that charges passing through such constructions
(wormholes) are usually considered to leave it charged [11,12,13].

Topological considerations and their influence on the conclusions of Maxwell’s
theory are not new, but our less restrictive treatment of D, H allows us a wider
scope than in previous work. Misner and Wheeler, in [13] developed an ambitious
programme of describing all of classical physics (i.e. electromagnetism and gravity)
geometrically, i.e. without including charge at all. Non-trivial topologies, such as
spaces with handles, were shown to support situations where charge could be inter-
preted as the non-zero flux of field lines, which never actually meet, over a closed
surface containing the mouth of a wormhole. Baez andMuniain [14] show that certain
wormhole geometries are simply connected, so that every closed 1-form is exact. In
this case charge can then be defined as an appropriate integral of the electric field over a
2-surface. In another example, Diemer and Hadley’s investigation [15] has shown that
it is possible, with careful consideration of orientations, to construct wormhole space-
times containing topological magnetic monopoles or topological charges; and Marsh
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[16] has discussed monopoles and gauge field in electromagnetism with reference to
topology and de Rham’s theorems.

It is important to note that our investigation here is entirely distinct from and prior
to any cosmic censorship conjecture [17], the boundary conditions at a singularity,
models for handling the event horizon [18], or other assumptions. Although an event
horizon or other censorship arrangement can hide whatever topologically induced
effects there might be, such issues are beyond the scope of our paper, which instead
focuses on the fundamental issues – i.e. the prior and classical consequences of the
violation of the prerequisites of Stokes’ Theorem in spacetimes of non-trivial topology.

In section 2 we summarise the features of electromagnetism relevant to our anal-
ysis. In section 3 we investigate under what circumstances charge conservation no
longer holds, and its consequences for the electromagnetic excitation field H, which
is the differential form version of the traditional D, H. Next, in section 4 we describe
further consequences, such as how a description of bound and free charges necessarily
supplants a standard approach using constitutive relations based onH. Then, in section
5 we see that topological considerations mean that H can be defined in a way that has
implications for the measured charge of wormholes. Lastly, after some discussions in
section 6, we summarise our results in section 7.

2 Electromagnetism

2.1 Basics

Although perhaps the most famous version of Maxwell’s equations are Heaviside’s
vector calculus form in E, B and D, H, here we instead use the language of differential
forms [19,20], an approach particularly useful when treating electromagnetism in a
fully spacetime context [21,22,23]. Thismore compact notation combines the separate
time and space behaviour into a natively spacetime formulation, so that the four vector
equations in curl and divergence are reduced to two combined Maxwell’s equations
[19,20]:

dF = 0, (2)

and

dH = J. (3)

Here F,H ∈ ΓΛ2M are the Maxwell and excitation 2-form fields on spacetime M,
J ∈ ΓΛ3M is the free current density 3-form, and Γ indicates that F and H are smooth
global sections of the bundle Λ2M. Conventionally, F = E ∧ dt + B, where E is a
1-form representing the electric field, and B is a 2-form representing the magnetic
field. Taking the exterior derivative (d) of (3) leads to the differential form of charge
conservation, i.e. that J is closed,

dJ = 0. (4)

As equations (2) and (3) are underdetermined, they need to be supplemented by a
constitutive relation, connecting F and H. In general this relation can be arbitrarily
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Σt1

Fig. 1 A closed 3-surfaceU in spacetime on which to check conservation of charge. This surface is formed
from U = S

⋃
Σt0

⋃
Σt1 , with the orientations of S, Σt0 and Σt1 given by the blue arrows. Note that we do

not necessarily need to consider a 4-volume enclosed by this boundary U, as can be seen by comparing the
topology condition with the gauge-free condition, as discussed in the main text.

complicated, but the simplest is the “Maxwell vacuum” where they are related by the
Hodge dual ?, i.e.

H = ?F. (5)

It is worth noting, however, that competing constitutive models exist, even for the
vacuum. Two well known examples are the weak field Euler-Heisenberg constitutive
relations and Bopp-Podolski [24,25,26] constitutive relations, which are respectively

HEH = ?F −
8α2

45m4 [? (F ∧?F)?F + 7? (F ∧ F) F] , (6)

and

HBP = ?F + `2?d?d?F, (7)

where α is the fine structure constant, m is the mass of the electron and length ` is a
small parameter.

However, fixing a constitutive relation where H has a straightforward relationship
to F, such as those given above, is of itself sufficent to enforce charge conservation. In
contrast, we consider more general constitutive models, and so can investigate wider
possibilities.
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2.2 Conservation of charge

The starting point for our investigation of topology, charge conservation, and the
role of H, is a closed 3-surface U with no boundary, i.e. ∂U = ∅. This surface U

is topologically equivalent to the 3-sphere, and is depicted on fig. 1. We can write
U = S

⋃
Σt0

⋃
Σt1 where Σt0 and Σt1 are bounded regions of the space Σ at times

t0 and t1, and S is the boundary of Σ between the times t0 ≤ t ≤ t1. As shown in
fig. 1, the orientation of Σt1 is outward, while those of Σt0 and S are inward. Charge
conservation, expressed as ∫

U

J = 0, (8)

can be expressed in this case as∫
Σt1

J −
∫
Σt0

J −
∫
S

J =
∫
U

J = 0, (9)

which we may interpret as the total charge in Σ at time t1 is given by the total charge
in Σ at time t0, plus any charge that entered Σ in the time t0 ≤ t ≤ t1.

Irrespective of possible complications associated with the constitutive relations,
charge conservation (8) follows straightforwardly in either of two ways, both due to
Stokes’ theorem:

1. Topology condition: The first proof assumes that U is the boundary of a topolog-
ically trivial bounded region of spacetime, i.e. U = ∂N, N ⊂ M, within which J
is defined. A topologically trivial space is one that can be shrunk to a point i.e. it
is topologically equivalent to a 4-dimensional ball. Then one has∫

U

J =
∫
∂N

J =
∫
N

dJ = 0, (10)

the last equality arising from (4), which we call the “topology condition”.
2. Gauge-free condition: The second proof arises from integrating (3) over U, and

presumes that H is a well-defined 2-form field. We have that∫
U

J =
∫
U

dH =
∫
∂U

H = 0, (11)

where the last equality, which we call the “gauge-free condition”, results solely
from the fact that U is closed (i.e. ∂U = ∅), but does not require that U is itself the
boundary of a compact 4-volume1.

1 The fact thatH is well-defined has been used in invoking
∫
U
dH =

∫
∂U

H in (11). Compare integrating
dθ around the unit circle C to obtain the fallacious result

∮
C
dθ =

∮
∂C
θ = 0, since ∂C = ∅. The problem

is that θ is not well defined (and continuous) on all of C. By defining two submanifolds U1 and U2 such
that U1 ∪ U2 = C with respective coordinate patches θ and θ + 2π, then a careful integration around C

yields the correct answer of 2π.
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Fig. 2 Here we show a region of spacetime N with a boundary U = ∂N that encloses a singularity with
a finite duration. As a consequence, it is topologically non-trivial and not globally hyperbolic. This might
occur, for example, due to the formation and subsequent evaporation of a black hole, which would first
create and then remove a metric singularity in spacetime. If the singularity instead existed only for an
instant, the blue line drawn here would reduce to a single point, and the figure would then depict the
manifold M used in section 3.

2.3 Non-conservation of Charge

The arguments for conservation of charge presented thus far have beenmathematically
rigorous. Given this sound basis, one may ask, why would anyone doubt conservation
of charge? One might note, for example, the case of black holes, where charge is one
of the few quantities preserved in the no-hair theorem [27]. However, our need to make
assumptions about the nature of U or H in the proofs (10) and (11), when establishing
conservation of charge, provides us with an opportunity for testing its true basis and
extent of validity. Notably, to create a charge non-conservation loophole, both (10)
and (11) must be violated: if either one applies then charge is conserved.

To break the topology condition (10), it is sufficient that either there is no compact
spacetime region N such that U = ∂N, or that there are events in N where J is
undefined. A test scenario is represented in fig. 2, where a black hole forms in an
initially unremarkable spacetime, i.e. one that contains spatial hypersurfaces that are
topologically trivial. On formation this introduces a singularity, but then later as
the black hole evaporates, the singularity also vanishes. The evaporation step also
removes the event horizon, thus exposing any effects of the singularity – e.g. in charge
conservation – to the rest of the universe. In this case the singularity, which exists
for a period of time before evaporating [28] by means of Hawking radiation [29,30],
must either be removed from spacetime, meaning that N is no longer topologically
trivial, or alternatively that J is not defined in all of N.
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Next, to break the gauge-free condition (11), we take the position that the only
fundamental Maxwell’s equations are (2) and (4), that is the closure of F and J. Since
equation (3), and indeed H itself, would now not be considered fundamental, H may be
considered as simply a potential for the current J. As such, it will have its own gauge
freedom, as discussed in the Introduction. Writing (1) in differential form notation,
for any 1-form ψg ∈ ΓΛ

1M, where ψg encodes ϕg and Ag, we have

H→ H + dψg. (12)

This alternative interpretation of Maxwell’s equations implies that similar to the usual
1-form potentialA for F, the excitation fieldH is not measurable. SinceH is not defined
absolutely, the Maxwell equation dH = J and the constitutive relation linking H to F
must be replaced by a constitutive relation relating the measurable quantities F and
J. This might take the form of relating J to F and its derivatives, for example. Thus
we may interpret (3) and (5) as two aspects of a single constitutive relation for the
Maxwell vacuum

d?F − J = 0. (13)

An alternative, axion-like, constitutive relation might be given by

d?F − J = ψ ∧ F, (14)

where ψ ∈ ΓΛ1M is a prescribed closed 1-form. For the electromagnetic potential A,
in (14) we can write H = ?F+ψ ∧A but this does not define H uniquely. Likewise for
a (non unique) φ ∈ ΓΛ0M with dφ = ψ one has H = ?F + φ F.

When considering constitutive relations in a medium we distinguish the free
current Jf ∈ ΓΛ3M from the bound current Jb ∈ ΓΛ3M representing the polarisation
of the medium. The total current Jt ∈ ΓΛ3M is given by Jt = Jf + Jb. We set Jf = J
in the above and describe the difference between the Jf and d?F as the bound current
Jb. Thus we replace (3) with

d?F − Jf = Jb, (15)

where Jb is related to F via another constitutive relation. For example in (13), Jb = 0,
whereas in (14) Jb = ψ ∧ F. The currents Jf and Jb will be used in what follows to
encode the effects of charge non-conservation.

It is worth noting that these two apparently distinct cases allowing for non-
conservation of charge are related by topological considerations – the choice of
spacetime with a line or point removed, the non-existence of a well-defined H, and the
breaking of global charge conservation are all related to the deRham cohomology of
the spacetime manifold2.

2 The k-th deRham cohomology Hk
dR (M̂) of the manifold M̂ is defined to be the equivalence class of

closed k−forms modulo the exact forms. In the topologically trivial case all the Hk
dR (M̂) = 0, with k > 0,

and hence all closed forms are exact. In the language here, this implies that since J is closed, dJ = 0 there
must exist a 2-form H ∈ ΓΛ2M̂ such that dH = J. In general H is not unique but it is globally defined. In
the case of an evaporating black hole, the deRham cohomology H3

dR (M̂) = R. Therefore even though J is
closed, it is not exact, i.e. there is no H ∈ ΓΛ2M̂ such that dH = J, and thus J need not be not globally
conserved. A similar analysis is connected to/with magnetic monopoles. If we remove a world-line from
spacetime, then the H2

dR (M̂) = R. This implies that there need not exist an electromagnetic potential A,
where dA = F. Hence

∫
S2 F , 0 where S2 is a sphere at a moment in time enclosing the “defect”.
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ξ

f(ξ)

1
2

Fig. 3 A bump function f (ξ ) which we used to construct a smooth current density. The function is
completely flat for ξ > 1

2 and for ξ near zero.

3 Singularity

In this section we construct an orientable manifoldM on which charge is not globally
conserved, even though (locally) dJ = 0 everywhere on M. We start by assuming a
flat spacetime with a Minkowski metric, except with the significant modification that
a single event 0 has been removed; i.e. M = R4\0. This spacetime M is sufficient
to demonstrate our mathematical and physical arguments for charge conservation
failure – but without introducing any of the additional complications of (e.g.) the
Schwarzschild black-hole metric. As already noted in our Introduction, the discussion
here is entirely separate from and prior to any assumptions about cosmic censorship,
or any imagined model of the singularity behaviour.

3.1 Charge conservation

Let (t, x, y, z) be the usual Cartesian coordinate system with 0 = (0, 0, 0, 0) and let
(t, r, θ, φ) be the corresponding spherical coordinates3. Set R+ = {r ∈ R|r ≥ 0}. Let
us construct the smooth 3-form current density J defined throughout M as

J =



0 for t ≤ 0,
J+ for t > 0.

(16)

This J+ is then defined using a function f : R+ → R+ f (ξ) ≥ 0 for 0 ≤ ξ < 1
2 ,

f (ξ) = 0 for ξ ≥ 1
2 and all the derivatives f (n) (0) = 0 for n ≥ 1. Such functions

3 Let M have signature (−, +, +, +) and orientation?1 = dt ∧ dx ∧ dy ∧ dz.
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are usually called bump functions, an example of which is shown in fig. 3. Here ξ is
simply the argument of the function f (and also of the function h below), and it is
replaced by r/t when the function is used to define fields. We then have

J+ =
1
t3 f

( r
t

)
dx ∧ dy ∧ dz

−
1
t4 f

( r
t

)
dt ∧ (x dy ∧ dz + y dz ∧ dx + z dx ∧ dy) . (17)

The first term on the right hand side of (17) represents the charge density, while the
second term represents the current density4. We note that as expressed in the Cartesian
coordinates of (17), J+ is well defined at the spatial origin for t > 0. In spherical polar
coordinates we have

J+ = sin(θ) f
( r

t

) (
r2

t3 dr −
r3

t4 dt
)
∧ dθ ∧ dφ. (18)

To establish charge conservation on all ofMwith dJ = 0, we first note, from (18),
that dJ+ = 0 for r > 0 and t > 0. Since f (1) (0) = 0 then, from (17), dJ+ = 0 for t > 0
and r = 0. Moreover, since J = 0 for t < 0, we have that dJ = 0 for t < 0. For the
hypersurface t = 0, we note that about any point for which r , 0 there exists an open
set in M on which J = 0 and hence J|t=0 = 0. Thus dJ = 0 on all ofM.

Physically, (16) and (18) represents a δ-function of charge Q appearing at the
origin at t = 0, and then spreading out spatially from 0 into M; where

Q = 4π
∫ ∞

0
ξ2 f (ξ)dξ. (19)

The spacetime origin is not an event in M, and the Q’s appearance at t = 0 does
not induce dJ , 0 at some event in M. We see that the total charge is zero for the
constant-time hypersurfaces5 with t < 0, but for the constant-time hypersurfaces with
t > 0 the charge is Q.

Similarly, over a region such as that shown in figs. 1 and 2 we have that
∫
U

J , 0.
Charge is therefore not conserved inM, despite the fact that dJ = 0 everywhere inM.

Now since M is topologically non-trivial, it is impossible to find a single H such
that dH = 0. This must be the case since if it were not, then we could apply (11)
to establish Q = 0. Nevertheless we can find two fields H+ and H− with intersecting
domains M+ and M− such that on the intersection, H+ = H− + dψ, i.e they differ by
just a gauge, as per (12). Let

M+ =M\{t < 0} and M− =M\
{
t > 0 and r < 1

2 t
}
, (20)

4 One may think of our proposed J as an application of deRham’s second theorem. Since the unit
3-sphere about the origin is a 3-cycle which is not a boundary, deRham’s second theorem states that for
any real valued Q there always exists a 3-form ω on M such that

∫
S3 ω = Q. Here our ω is J, which is

chosen so that after the initial “impulse” at 0, it subsequently respects causality.
5 In fact any Cauchy hypersurface with t < 0 suffices here.
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t

r

M−, J=0,
H− defined

M− ⋂
M+,

J=0,
H− and H+ defined

M+, J 6=0,
H+ defined

Fig. 4 A spacetime M in which charge is not conserved. The forward cone, lying within the lightcone of
the excised event at 0 has non-zero charge, whereas the remainder of the spacetime is uncharged. We show
the regions M+ andM− where the excitation 2-forms H+ and H− are defined.

and with H+ ∈ ΓΛ2M+ and H− ∈ ΓΛ2M−, let

H+ = h
( r

t

)
(x dy ∧ dz + y dz ∧ dx + z dx ∧ dy)

= h
( r

t

) (
r3 sin θ dθ ∧ dφ

)
,

H− = 0,

as depicted in fig. 4. Here

h(ξ) =
1
ξ3

∫ ξ

0
f (ξ̂) ξ̂2d ξ̂ . (21)

Since h(ξ) is smooth about ξ = 0 and

h(ξ) =
Q

4πξ3 for ξ > 1
2, (22)

then on the intersection M+
⋂

M−= { (t, r, θ, φ) | r > t > 0} we have

H+ =
Q
4π

sin(θ)dθ ∧ dφ and H− = 0. (23)

ThereforeH+ = H−−(Q/4π)d (cos(θ) dφ) for the region { (t, r, θ, φ) | r > t > 0, θ , 0, π}.
Choosing other patches of the (θ, φ) sphere we can find other gauge fields ψ such that
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H+ = H− + dψ. In this example, there is no global H-field, and both H+ and H− fail in
distinct regions of M. This strongly suggests that H need not have absolute physical
significance, unlike F.

The new gauge freedom for H suggests the possibility of further generalisations
to the vacuum constitutive relations. These could now go beyond rather prescriptive
vaccum models such as e.g. the Euler-Heisenberg or Bopp-Podolsky ones in (6) and
(7), whose Lagrangian formulations insist on a unique H.

4 Polarisation of the vacuum

We now stay with the same scenario as in the previous section, but instead apply
the bound current version of Maxwell theory as given by (15), interpreting Jb as
representing the polarisation of the vacuum. It is known from quantumfield theory that
vacuum polarization occurs naturally for intense fields, with the first order correction
to the excitation 2-form given by (6). Indeed, the strong magnetic fields associated
with magnetars are known to induce non-trivial dielectric properties on vacuum
[31]. An alternative model for the polarization of the vacuum is given by the Bopp-
Podolski theory of electromagnetism, as outlined in (7). However in these cases
the bound currents JbEH = dHEH − d?F and JbBP = dHBP − d?F correspond to a
well defined excitation 2-form H and therefore must conserve charge, regardless of
topology. Nevertheless we are still free to consider more general versions of Jb which
are not exact and contain more than just those corrections.

Since ?F is well defined, and d?F = Jf + Jb, one can use the argument (11),
replacing H with?F, to conclude that Jf + Jb is globally conserved. We now examine
whether it is necessary for Jf and Jb to be globally conserved independently. If H is
well defined then from (3) (which now becomes dH = Jf) dJf = 0 and hence dJb = 0.
Under these circumstances, we find that Jf by itself is globally conserved, and likewise
for Jb by itself.

In the following, we demand only that Jf and hence Jb are closed: dJf = dJb = 0,
and do not insist that they are globally conserved independently. This requires us
to abandon the concept of a global macroscopic well-defined H, and to express the
constitutive relations for our spacetime using the microscopic bound current, Jb.
Unlike F, the excitation H cannot be measured directly using either the Lorentz force
equation or the Aharonov-Bohm effect.

To demonstrate our replacement of H, we now show that we can replace it with a
bound current. We start by choosing an appropriate F, setting

F = h
( r

t

)
χ
( r

t

)
hv(t) r dt ∧ dr = R

( r
t

)
r dt ∧ dr, (24)

where

1. h(ξ) is defined from Eq. (22), i.e. h(ξ = r
t > 0) = 1

ξ3

∫ ξ

0 f (ξ̂) ξ̂2d ξ̂ .
2. f : R+ → R+ is again a bump function satisfying f (ξ) ≥ 0 for 0 < ξ < 1/2,

f (ξ) = 0 for ξ ≥ 1/2, and f (n) = 0 for n ≥ 1.
3. hv : R→ R is the Heaviside step function.
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r

t
Region I II III IV

Li
gh
t
co
ne

Jf 6= 0

Jb = 0

J f
=
0

J b
=
0

J f
=
0

J b
6=0

J f
=
0

Jb
=
0

Jb=0

Jf=0

Fig. 5 Domains in a spacetime M where Jf (blue) and Jb (red) may be non-zero; note in particular that
the supports of Jf and Jb do not intersect. For completeness, we show several different regions where the
various possible combinations of zero and non-zero Jf and Jb hold, although alternative (and simpler)
scenarios are possible. Note that Region I matches the cone shown on fig. 4, and Region IV encompasses
both a section above the light line, as well as below.

4. χ : R+ → R is a bump function with χ(ξ) = 1 for 0 ≤ χ < 2
3 and χ(ξ) = 0 for

ξ > 5
6 .

Clearly dF = 0. The scalar factor R(ξ) on the right hand side of (24) has the
following properties

R
( r

t

)
=




0 for t < 0,
h
(
r
t

)
for 0 ≤ r < 1

2 t, Region I
Q

4πr3 for 0 < 1
2 t < r < 2

3 t, Region II
χ
(
r
t

)
Q

4πr3 for 0 < 2
3 t < r < 5

6 t, Region III

0 for 0 < 5
6 t < r, Region IV

(25)
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where Q is given by (19), and the regions I to IV are shown in fig. 5. These regions
contain a selection of the possible combinations of Jf and Jb. We can then set the
constitutive relation to be that of (15), with Jf, Jb ∈ ΓΛ3M being independently
conserved, but only in a local sense, not globally. For our example, they are respectively
given by

Jf =



d?F for 0 < r < 1
2 t, in Region I

0 for t < 0 and 1
2 t < r < t,

in Regions II, III and IV
(26)

and

Jb =



0 for t < 0 and 0 < r < 2
3 t and 0 < 5

6 t < r,
in Regions I, II and IV

d?F for 0 < 2
3 t < r < 5

6 t, in Region III
(27)

or explicitly as

Jf =




h′
( r

t

) [( r3

t
+ 3r2

)
dr −

r4

t2 dt
]
∧ sin(θ)dθ ∧ dφ

for 0 < r < 1
2 t, in Region I

0 for 1
2 t < r < t, in Regions II, III and IV

(28)

and

Jb =




0 for t < 0 and 0 < r < 2
3 t and 0 < 5

6 t < r,
in Regions I, II and IV

Q
4π

χ′
( r

t

) [1
t

dr −
r
t2 dt

]
∧ sin(θ)dθ ∧ dφ

for 0 < 2
3 t < r < 5

6 t, in Region III.

(29)

The occurrence of a bound charge of single sign over an extended region of
space may seem rather unusual. However, this can be realised in a dielectric with a
continuously varying permittivity. For example, a constant bound charge density λ
can be obtained with the dielectric varying as

ε (z) = ε0 + ε0
P0 − λ z
ε0 V0 + λ z

, (30)

which gives

E(z) =
λ z
ε0
+ V0 and P(z) = P0 − λ z, (31)

for constants V0 and P0.
In writing (24) the distinction between free and bound current densities, as arise

in the subsequent calculations, is introduced artificially. So whilst our introduced
example is certainly artificial, it can be taken to be representative and illustrative of a
scenario in which the 2-form field H is no longer globally defined; but that the sum of
free and bound charge densities in vacuum is globally conserved, while the two types
of charge are not collectively globally conserved, and exist independently in disjoint
regions of space. This echoes the previous section, but here we use the non-exactness
of J rather than the gauge freedom for H; thus suggesting generalisations to the charge
and polarization properties of the vacuum constitutive relations.
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5 Wormhole

(a)

MI

MII

∞I

∞II

(b)

MI

MII

∞I

∞II

(c)

MII

MI

∞II

∞I

Fig. 6 Deforming a “biverse”, i.e. two otherwise distinct universes interconnected by a wormhole, into
an annulus. When deforming from (a) into (b), the wormhole’s throat (blue line) is unchanged, whilst the
top (MII) and bottom (MI) universes are deformed into cylinders. The final stage from (b) to (c) requires
opening out the cylinders into two nested annuli, which form a single annulus with the throat demarking
the join. The red line in each diagram represents the path for a point charge leaving MI and entering MII.

A wormhole [10] is another example of a non-trivial spacetime, although in this
case it is the first deRham cohomology which does not vanish, H1

dR = R. In this
scenario we do not break conservation of global charge, but instead address the issue
of whether a wormhole necessarily gains the charge of any matter passing through it.
One simple way of describing this standard viewpoint is to note that the usual process
of drawing field lines for a charge, as it moves, forbids them from swapping their end-
points from one place to another. This means that a positive charge passing through
a wormhole “drags” its field lines behind it like a tail, and the resulting collection of
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field lines (re)entering the wormhole looks like a negative charge, and then as they
exit the other side they look like a positive charge; as depicted on fig. 7.

(a)

MI

MII

∞I

∞II

(b)

MI

MII

∞I

∞II

(c)

MI

MII

∞I

∞II

Fig. 7 A depiction of the standard interpretation of field line behaviour as a charge q moves from the
lower universe MI (a), through the wormhole (b), and into the upper universe MII (c) – all the field lines
(green) from the point charge (red dot) must remain attached to ∞I. Note that despite the similarity in
relative charge-wormhole positions between the starting point in (a) and the end point in (c), the field line
configuration is very different. Consequently, as the charge moves ever further from the wormhole mouth
inMII, the effective charges in the biverse would number three and not one:MI has a wormhole mouth with
field lines exiting it on the way to infinity, and which integrate to +q, whilst MII has an overall dipole-like
field between an effective charge −q on the wormhole mouth and the free charge +q.
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The proof of conservation of charge is similar to the arguments of (10) and (11)
but in this case the two arguments have different interpretations. First we note from fig.
6 that spatially the wormhole is topologically equivalent to a 3-dimensional annulus,
i.e. a 3-ball with an inner 3-ball removed. The inner and outer 2-spheres ∞I and
∞II represent spacelike infinity in the two universes MI and MII. Between the two
2-spheres is a concentric sphere which is the throat. Although geometrically the throat
is the minimum size sphere which connects the two universes, topologically there is
nothing special about the throat, and here we take it as a convenient place to talk about
where one passes from one universe to the other. Further, since each universe (MI or
MII) has its own infinity (∞I or ∞II), there are two ways to be arbitrarily far from the
wormhole, and thus there are two possible destinations for the field lines of a charge.

Consider the 3-dimensional region Σ bounded by the spheres SI and SII. Then,
as illustrated in fig. 8(a), [t0, t1] × Σ is a 4-dimensional region bounded by Σt0 , Σt1 ,
[t0, t1] × SII and [t0, t1] × SI. Then

0 =
∫

[t0,t1]×Σ
d J =

∫
∂
(
[t0,t1]×Σ

) J

=

∫
Σt1

J −
∫
Σt0

J +
∫

[t0,t1]×SII
J +

∫
[t0,t1]×SI

J. (32)

This states that the total charge in Σ at time t1 equals the charge in Σ at time t0 plus
any charge that enters (or leaves) via SII and SI. We cannot let SI go to infinity as then
it would disappear from the right hand side of (32) and Stokes’ theorem will no longer
apply.

Another issue arises when considering the second proof of charge conservation
(cf. (11)). IfH is a well-defined 2-form field wemay integrate it over the 3-dimensional
timelike hypersurface [t0, t1]× SI, fig. 8(b). Setting QI

t =
∫
SI
t

H as the charge inside SI

at time t, we have

QI
t1 −QI

t0 =

∫
SI
t1

H −
∫
SI
t0

H =
∫
∂
(
[t0,t1]×SI

) H

=

∫
[t0,t1]×SI

dH =
∫

[t0,t1]×SI
J. (33)

Thus if H is well-defined, and no current passes through SI, then QI
t is a conserved

quantity. When a charge q located within the sphere SI passes though the throat of the
wormhole toMII, an observer inMI who has merely integrated H over SI to establish
the conserved quantity QI

t , no longer sees q in their part of the universe. They rather
say that after the charge has passed though the throat, the wormhole has gained charge
q [11,12,13].

There may still be aspects of this standard “charged wormhole” view that worry
some. Of course, if a charge enters a box, the charge will still be in the box whenever
we subsequently look inside, and we can reasonably say that the box has acquired that
charge. However, in the current case, after passing to universeMII, the charge q might
subsequently move arbitrarily far from the throat6. At such a distance, some might

6 Ignoring dynamical constraints it could even move to ∞II and therefore pass out of universe MII,
changing the overall charge of the biverse!
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Fig. 8 Integration submanifolds for our wormhole example of fig. 6. The diagram on the left (a) is for
integrating J, whereas the diagram on the right (b) is for integrating H. The orientation is shown in dark
red.

consider it unreasonable to have the steady-state field of the charge still influenced by
some prehistoric transit fromMI. Nevertheless, the standard viewpoint insists that an
observer in MI still sees that the wormhole has acquired, and retained, charge q.

However, since our biverse scenario has a non-trivial topology, we can again
consider H to be undefined in an absolute sense. Having decided that H is not defined,
one is free to consider how to replace it. We consider here a simple extension to
Maxwell’s equations in which the charge the wormhole gains depends on the distance
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(a)

MI

MII

∞I

∞II

(b)

MI

MII

∞I

∞II

(c)

MI

MII

∞I

∞II

Fig. 9 Depiction of the alternative field line behavior when allowing for the topology and the new freedom
for H. Field lines (green) in the biverse all start a the point charge (red dot), but now have a choice of
infinity to terminate at. Initially, when the charge is (a) well within universe I, relatively few field lines
reach through the wormhole into universe II and hence off to∞II, but as the point charge moves into to the
throat (b) more of the field lines will reach ∞II. In (c) we see that after the charge has moved fully into
universe II, in a position mirroring that in (a), the arrangement of field lines is also mirrored, in distinct
contrast with the standard treatment of fig. 7.

from the charge to the throat, and is no longer affected by whether or not the charge
made a one-way transit through that throat in the past.
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Consider a single point charge q, and define QI(rp) as a function of the radial
position, rp of the charge. Thus we can set

QI(rp) = q ζ (rp) (34)

where ζ (rp) =
1
2
+

δrp
2(r2

th + δrp2)1/2
, (35)

and where rth is the radius of the throat and δrp is the distance to the throat with
δrp > 0 and δrp < 0 if the charge is in MI and MII respectively. Although this
function is arbitrary it does have the useful feature that QI(rp) → q if rp → ∞I and
the QI(rp) → 0 if rp → ∞II, and is inline with physical intuition.

We note below that the field H is still well-defined as long as the charge is moving
slowly, drp/dt ≈ 0. Let FI

rp
∈ ΓΛ2M and FII

rp
∈ ΓΛ2M be the static electromagnetic

field for a point charge at rp . So that

dFI
rp
= 0 , dFII

rp
= 0 , d?FI

rp
= Jrp ,

and d?FII
rp
= Jrp , (36)

where Jrp is the distributional source corresponding to a point charge at r = rp , θ = 0
and φ = 0

Jrp = qδ(r − rp) δ(θ) δ(φ) r2 sin θ dr ∧ dθ ∧ dφ, (37)

subject to the boundary conditions

lim
r→∞I

FI = 0 , lim
r→∞II

r2FI = 0,

lim
r→∞I

r2FII = 0 , lim
r→∞II

FII = 0. (38)

That is to say the field lines for FI due to the point charge all terminate at∞I, whereas
those for FII terminate at∞II. Let

Hrp = ζ (rp)?FII
rp
+
[
1 − ζ (rp)

]
?FI

rp
(39)

which has the property that, as long as the point charge is inside SI, which includes
all of MII, then

QI
rp
=

∫
SI

Hrp . (40)

Thus as the point charge moves closer to the throat more of the field lines reach ∞II,
fig. 9. However we only approximately solve Maxwell’s equations since

d Hrp = Jrp + ζ
′(rp)

rp
t

dt ∧?
(
FI
rp
− FII

rp

)
+ ζ (rp)

rp
t

dt ∧?*
,

FI
rp

rp
−

FII
rp

rp
+
-
. (41)
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However, we again emphasise thatwe cannot define aHrp which solves bothMaxwell’s
equations and eqn. (40).

Another attractive feature of our proposed modification occurs in relation to a
wormhole connecting two distinct regions (A and B, say) in the same universe. In
this topology, a charge q can circulate multiple (n, say) times by entering at A and
exiting at B. Standard Maxwell theory then predicts that A has a charge of nq, and B
a charge of −nq, which can become arbitrarily large. The modification to Maxwell’s
theory of (38) avoids this problem, as integrating around A will yield a charge that
does not exceed q.

6 Discussion

There are mechanisms for charge conservation that exist independently of the topol-
ogy or gauge-free conditions that we have discussed above. One of the most notable
is a consequence of Noether’s theorem for a U (1) gauge invariant Lagrangian, which
enforces local charge conservation dJ = 0. For example, if Λ[A, α] ∈ ΓΛ4M is in-
variant under substitutions α → eıφα and A → A + ıdφ, then the 3-form ∂Λ/∂A
is locally conserved, i.e. d(∂Λ/∂A) = 0. Since the variations are purely local, this
makes no statement about the global conservation of charge in non trivial spacetimes.
It should also be noted that most Lagrangian formulations of electromagnetism im-
plicitly assume a model for H. For example the Maxwell vacuum where Λ contains
the term ΛEM = 1

2 dA ∧ ?dA, or a model of a simple non-dispersive “antediluvian”
media7 where ΛEM = 1

2 dA∧?Z(dA) and Z is a constitutive tensor [32]. It would also
be interesting to attempt to construct Lagrangians which do not imply a well defined
excitation 2-form.

We might also broaden our examination of conservation laws beyond just charge
to those of energy and momentum, by looking at the divergence-free nature of the
stress-energy tensor T. In our discussion of section 3, the total energy of the current
and electromagnetic field must be zero before the singularity, i.e. on a hypersuface
in M−. Likewise, although we did not define the energy, the existence of fields after
the singularity, implies that the total energy would be non zero. However, just as
in the case of charge conservation, this lack of global energy conservation is not
inconsistent with the local energy conservation law d(τK ) = 0, obtained from the
energy 3-form τK = ?T(K,−)), where K is a timelike Killing field. Of course, in
the general relativistic case of an evaporating black hole there are challenges about
defining the total energy, but one should not be surprised if an appropriate measure
of total energy were also not conserved.

For momentum, if M possesses a spacelike Killing vector K , then K is locally
conserved, i.e. d(τK ) = 0, but again this has said nothing about the global conservation
of momentum. We see from (18) that the construction of J that it is spherically
symmetric and hence will not change the total momentum. However, this was a
choice and non spherically symmetric currents can easily be obtained by introducing
a Lorentz boost. Of course, when considering the total momentum, i.e. that of the

7 A a non-dispersive medium would not produce rainbows.
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electromagnetic field plus that of the response of the medium, one encounters the
thorny issue of the Abraham-Minkowski controversy [33,34] and choice of Poynting
vector [35]. From the perspective here, the question of which momentum is most
appropriate would be further complicated by the non existence of the excitation 2-
form.

As a final remark, our results presented here raise the possibility of developnig a
way to prescribe dynamic equations for the electromagnetic fieldFwithout introducing
or referring to an excitation field H at all. One possibility is to combine Maxwell’s
equation (3) directly with the constitutive relations, thus eliminating the need for H
[36].

7 Conclusion

In this paper we have clarified physical issues regarding electromagnetism on space-
times with a non-trivial topology – either missing points, as can be introduced by
the singularity at the heart of a black hole, or the presence of wormhole-like bridges
between universes, or between two locations in the same universe.

We have unambiguously shown that such cases have significant implications for
charge conservation – i.e. that it need not be conserved; and the role of (or need for)
the electromagnetic excitation field H (i.e. the Maxwell D, H vector fields) – i.e. that
it is not always globally unique, and thus has a subordinate or even optional status as
compared to themore fundamental F comprising theMaxwellE,B vector fields. All of
these considerations are purely electromagnetic, and are prior to any considerations
about the physics of singularities, such as cosmic censorship hypotheses. Similar
statements can be made about the global versus local conservation of leptonic and
baryonic charges.

Although our results show that Maxwell’s equations need not conserve charge
on topologically non-trivial spaces, neither do they guarantee that they will not (or
cannot). But they do insist that charge conservation is not a fundamental property,
and can only be maintained with additional assumptions. Further, wormholes mouths
do not – or need not – be considered to accumulate a charge that is the sum of all
charge that passes through; it is possible to construct a self-consistent electromagnetic
solution where the wormhole only temporarily accommodates a passing charge.
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