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Abstract—Cities have become congested with traffic and
changes to road network infrastructure are usually not possible.
Thus, researchers and practitioners are investigating the practice
of traffic light signal optimisation methodologies upon already
established road networks to improve the flow of vehicles through
the cities. The flow of traffic can be described by multiple
factors such as mean journey time, mean waiting time, average
vehicle velocity, and time loss. Static timing means that each
traffic phase is active for a pre-fixed duration during the cycle.
We aim to optimise traffic signal timing plans to minimise the
mean journey time, which is increased by improper signalling,
for vehicles during their journey across the junctions. In this
research, we propose and empirically analyse several automatic
intelligent decision support systems including genetic algorithms
and selection hyper-heuristic methods for the optimisation of
traffic light signalling problem. The empirical results indicate
the success of the proposed algorithm techniques.

Index Terms—Transportation, Traffic Optimisation, Genetic
Algorithms, Hyper-heuristics

I. INTRODUCTION

There have been a growing number of studies concerning
the optimisation of traffic light signalling because it offers
a way to increase the throughput of roads with no additional
cost. The problem can be broadly grouped under the following
main categories; static traffic lights and adaptive traffic lights
[1]. The former class operates on fixed timings, and the latter
reacts to the current state of the road via sensors. This study
focuses on optimising static traffic lights.

The traffic light cycle optimisation problem is considered a
highly complex N P-hard optimisation problem, for which ex-
act methods (such as mixed integer programming techniques)
are unsuitable. There is a wide and varied literature on the
use of novel heuristic methods for the optimisation of traffic
light signalling [2]. These methods have proven to be very
effective at finding near-optimal solutions to a large number
of problems in the transportation field.

A relatively new breed of optimisation algorithms known as
hyper-heuristics are beginning to be applied to these problems.
Hyper-heuristics are automated methodologies for selecting
or generating heuristics to solve multiple computationally
difficult optimisation problems [3]. They combine several

fairly simple low level heuristics to create bespoke approaches
for a given optimisation problem domain. Both types of hyper-
heuristics (selection or generation) have proven successful on
many difficult optimisation problems (see for example [4],
[5]). To the best of the authors’ knowledge, the use of hyper-
heuristics for this problem domain remains unexplored in the
scientific literature.

This work investigates the use of genetic algorithms and
selection hyper-heuristics to static traffic light cycle optimi-
sation problem that could outperform conventional manual
approaches in terms of solution quality.

The structure of this paper is as follows. Section II describes
the problem dealt with in this work and discusses previous
work. Section III describes the developed methods including
the algorithmic components, operators and low level heuristics.
The computational experiments and empirical results are pre-
sented in Section IV. Finally, in Section V we discuss overall
conclusions and future work.

II. BACKGROUND
A. Traffic Light Cycle Optimisation Problem

Traffic light timing cycles problem is a well-known real-
world optimisation problem. A solution for the problem re-
quires tuning the timing of each traffic light cycle in the
network. Optimisation methods generally aim to minimise
travel time of vehicles, and maximise the total traffic flow
at a given intersection. A solution is simulated by a traffic
simulator which provides the information necessary to evaluate
the candidate solution under optimisation.

A number of heuristic methods have been proposed in the
literature. Fouladvand et al. [6] worked on the problem of
traffic light timing cycles control in isolated intersections.
They solved the problem effectively and provided a noticeable
contribution. Genetic algorithms have found popularity in
attacking this problem. Rouphail et al. [7] proposed a genetic
algorithm coupled with the CORSIM micro-simulator for tim-
ing optimisation of intersections in the city of Chicago, USA.
Kalganova et al. [8] employed a genetic algorithm to solve the
problem and introduced a new fitness calculation technique



considering overall delays in the network. In addition to
genetic algorithms, other heuristics have been successfully
applied to this problem. Burvall and Olegérd [9] applied simu-
lated annealing to optimise traffic flow in a single intersection
network. They reported that simulated annealing scales better
than genetic algorithm for the parametrisations used. They
argued that simulated annealing applications tend to be limited
to small instances and population-based approaches such as
genetic algorithms are more suited to larger instances.

B. Heuristic Methods

Heuristic optimisation algorithms guide the computational
search required for finding solutions to problems, typically
N'P-hard problems, where the optimal solutions cannot be
found due to time and computing power constraints.

1) Genetic algorithm: Genetic algorithm (GA) was in-
troduced by John Holland in the mid 70’s [10]. GA is
a population-based heuristic technique inspired by Charles
Darwins theory of natural evolution and it belongs to the class
of evolutionary computation algorithms. In GA, a chromosome
is a set of variables, referred to as genes, which defines a
solution to the tackled optimisation problem [11]. A pool of
solutions for a given optimisation problem is evolved through
an evolutionary cycle, also known as population generation, to
obtain an efficient near-optimal solution at the end. The main
components of genetic algorithms are selection, crossover, mu-
tation and replacement. Firstly, parent individuals are selected
from the pool of solutions. The selection can be simple random
meaning that chromosomes are selected at random, or the
selection can favour the high quality solutions (fitness propor-
tionate selection). Other selection methods include: roulette
wheel selection, ranked selection and tournament selection.
Selected solutions are then recombined using a crossover
operator, generating new solutions which are then subjected
to mutation perturbing those new individuals further. Many
crossover techniques exist. One-point crossover is the most
popular crossover at which a random point is selected between
[0, — 1], where [ is the length of the chromosome. All data
beyond that point are exchanged to form new offsprings.
Mutation operators are used to maintain the diversity of
solutions and researchers argue that mutation is useful to allow
the algorithm to escape local minima. In this operation, a
gene (or group of genes) in the chromosome is altered by
randomly changing the gene’s value, swapping two genes,
or randomly shuffling a subset of the genes. Finally, the
replacement (reinsertion) component decides which solutions
will survive to the next generation. A simple genetic algorithm
is outlined in Algorithm 1.

2) Hyper-heuristic: Hyper-heuristic research has been
growing since the initial ideas emerged in 1960s [12]. The
term hyper-heuristic was initially defined in the early 2000s
as a ‘heuristics to choose heuristics’ [13]. A number of review
papers on hyper-heuristics have been published. The earliest
appeared in [14], where the authors introduced the idea of
hyper-heuristics and emphasised one of the key aims, namely,
to raise the level of generality at which optimisation systems

Algorithm 1: Genetic algorithm

1 let f(x) be the objective we seek to minimise

2 population < initialise();

3 repeat

4 parents < select(population, 2);

5 of fspring < crossover(parents);

6 of fspring < mutation(of f spring);

7 worstChromosome <—getWorstSolution(population)
8 if f(of fspring) < f(worstChromosome) then
9 population.pop(worstChromosome);

10 population.insert(of f spring);

11 end

12 until termination criterion is satisfied,

13 return getBestSolution(population);

can operate. A more recent overview and tutorial chapter [15]
discussed a class of hyper-heuristic that generates heuristics
from a set of heuristic components. Burke et al. [16] provided
a unified classification of hyper-heuristics that captures the
work that was being undertaken at the time in the field of
hyper-heuristics.

There are two main components in a single-point-based
search selection hyper-heuristic: heuristic selection that selects
a low level heuristic and applies it to the candidate solution,
and move acceptance which decides whether to accept or
reject the newly generated solution. The existence of a logical
interface (as illustrated in Figure 1) between the selection
hyper-heuristic and problem domain, referred to as domain
barrier, prevents the hyper-heuristic to retrieve any problem-
specific information and increases the level of generality and
the reusability of the selection hyper-heuristic components,
which can then be used across different problem domains
without any modification.

The simplest form of a selection hyper-heuristic is a method
that combines a simple random heuristic selection method
(SR) with an improve or equal acceptance method (IE).
Simulated annealing (SA) [17] has been applied as a move
acceptance method in selection hyper-heuristics by several
studies (see for example [18]). In SA, the probability of
accepting worsening moves is given by the formula:

Af

p:efT

)

where Af is the change in the evaluation function and T is
the method parameter called temperature. The pseudocode of
the general selection hyper-heuristic framework is provided in
Algorithm 2.
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Algorithm 2: Selection hyper-heuristic algorithm

Let LLH represent the set of low level heuristics
Let Scandidate Tepresent the current solution
Let Spest represent the best solution
Sinitial < initialise();
Sbest — Sinitial;
Scandidate — Sinitial;
repeat
LLH,; < Select(LLH);
Snew — APPIYHeuriSﬁC(LLHu Scandi,date);
Spest < updateBestSolution(Sy,e.,);
if Accept(scandidatea Snew) then
‘ Scandidate — Snew;
end
until termination criterion is satisfied,
return Spqg;
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III. METHODOLOGY

Simulation of traffic light control on a single intersection
is used as our case study. The traffic is controlled by an
eight phase traffic light. Each phase represents a different
state of the traffic light. In this study, all the phases are set
with a fixed amount of time (3 seconds) except the phases
{0, 4} which correspond to the time that the green light
phase is active in the directions North-South, and East-West,
respectively. This study aims to optimise the flow of traffic by
tuning the amount of time the traffic light spends in the {0, 4}
phases. The proposed heuristic approaches described in Sec-
tion II-B (genetic algorithm GA, simple random with improve
or equal move acceptance hyper-heuristic SR-IE, and simple
random with simulated annealing move acceptance hyper-

Fig. 2. The problem scenario

heuristic SR-SA) are implemented in this study using an open
source microscopic inter- and multi-modal space-continuous
and time-discrete traffic flow simulation platform, referred to
as SUMO “Simulation of Urban MOWbility” [19], designed for
benchmarking purposes and it encapsulates problem domain
specific details. We used the netedit tool and randomTrips.py
script within SUMO to design the intersection and generate the
traffic for our case study problem (see Figure 2).

The traffic consists of 528 vehicles departing at times
between Os and 800s. The simulation is run until the last
vehicle exited the traffic network or a time limit of 3000s
is exceeded. The latter condition occurs when very poor
timing configurations were tested. Several metrics were used
to evaluate the quality of timing configurations, including:
mean vehicle journey time (s), mean vehicle speed (m/s),
mean vehicle waiting time (s) (defined as the time a vehicle
spends on the road during its journey with a speed of less than
0.1m/s) and mean time loss (s) (defined as the time lost due
to driving below the ideal speed). We set the mean vehicle
journey duration as the main objective function to minimise
as it is the most tangible benefit to the users of the road.

A candidate solution is encoded by a 2-coordinate vector of
type integer that contains the durations of two corresponding
traffic light phases. Selection hyper-heuristics operate by using
a prefixed pool of low level heuristics by which a randomly
initialised solution is improved over the search time. Four low
level heuristics that perturb a given solution in different ways
are used under the problem domain implementation of the
selection hyper-heuristic framework:

e LLH;: Increase or decrease a randomly selected compo-
nent of the solution (i.e. the amount of time the traffic
light spends in the randomly selected phase) by a random
number between [0, 5]

o LLH5: Increase or decrease a randomly selected compo-
nent of the solution by 10

e LLH;: Increase or decrease a random number of com-
ponents by a random number between [0, 1]

e« LLH,: Swap two components of the solution at random

In SR-SA selection hyper-heuristic method, the temperature



TABLE I
PARAMETERS OF THE GENETIC ALGORITHM

| Parameter | Value |
| Population size | 4 |
| Crossover type | one-point |
| Mutation rate | 50% |

|

| Selection | random selection

is initially set to 1 and multiplied by a cooling factor of 0.99
each iteration. These values are set after a small number of
preliminary experiments. Table I provides the parameter values
for GA.

IV. EMPIRICAL RESULTS

The experiments were conducted on an i7-4500U CPU
with a memory of 8GB RAM. The three algorithms were
run for ten times and the termination criterion is set to 1000
function evaluations. Mann-Whitney-Wilcoxon test, with 95%
confidence level, was performed to compare pairwise statistical
variations of two given approaches. Given M, versus My,
(i) M, > M, denotes that M, is better than M, and this
performance difference is statistically significant, (ii)) M, <
M, denotes that M, is better than M, and this performance
difference is statistically significant, (iii) M, ~ M,; denotes
that there is no statistical significant between the two methods.
SUMO provides a default configuration as a baseline whose
performance is compared to the proposed heuristic methods,
SR-IE, SR-SA and GA. Our experiments evaluate the solutions
from the mean journey time perspective.

Table II presents the results, which clearly shows that the
proposed methods, SR-IE, SR-SA and GA, improve signifi-
cantly on the performance of the SUMO default configuration.
In both Table II and Table IV, the column best for each metric
criterion is defined as the value of the criterion of the solution
that has the lowest objective value, not necessarily the best
value achieved for that criterion. Based on the Mann-Whitney-
Wilcoxon test with respect to the averages over 10 runs on
the problem scenario (see Table III), there is statistically
significant performance differences between GA and SR-IE.
In overall, the genetic algorithm seems to perform the best,
followed by Simple Random with Simulated Annealing (SR-
SA) hyper-heuristic. However, this performance difference
between GA and SR-SA is not statistically significant.

Figures 3-6 provide the average of changes in the mean
journey time, mean vehicle speed, mean time loss and mean
waiting time (all from mean journey time perspective) versus
iteration from 10 runs while solving the problem scenario for
1000 iterations. It can be observed that the three approaches
rapidly improve the quality of the best-of-run solution in hand.
This improvement slows down over time. The fluctuations due
to the simulated annealing move acceptance component in
SR-SA and the employment of the perturbative operators (i.e.
crossover and mutation) in GA help the search in SR-SA and
GA to explore different search regions leading to an improved
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Fig. 3. Average of changes in the objective function value (the lower the
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Fig. 4. Average of changes in the mean vehicle speed (from mean journey
time perspective) (the higher the better)

solutions even if it takes some time to do so. It is clearly
observed that while solving the problem scenario, the three
algorithms seem to generate continuous improvements until
they converged after about 400 iterations.

When optimising a certain parameter such as mean journey
time, an optimisation algorithm will tend to prioritise traffic
from the direction with the majority of the traffic, which in
the case of heavily unbalanced traffic might lead to extremely
long waiting times for those in the minority. To quantify this
phenomenon, we introduced two new measures to evaluate the
fairness of the flow, namely the VSSD (Vehicle Speed Stan-
dard deviation) and JTSD (Journey Time Standard Deviation).
These measures can provide an insight into how the fairness
of the different traffic light controllers in the same problem
scenario compare. A comparison between the algorithms using
the two metrics is shown in Table IV.

Figure 7 provides the average utilisation rate for each low



TABLE II
SUMMARY OF EXPERIMENTAL RESULTS. BEST VALUES ARE HIGHLIGHTED IN BOLD

Mean Journey Time

Mean Vehicle Speed

Mean Time Loss Mean Vehicle Waiting Time

Algorithm Best Avg. Std. Best Avg. Std. Best Avg. Std. Best Avg. Std.

SUMO Default 163.41 - - 2.94 - - 134.60 - - 92.79 - -

SR-IE 137.98  141.52 2.57 3.83 3.88 0.15 109.17 11271 2.57 75.36 79.73 2.40

SR-SA 138.13  140.36 1.81 3.87 3.90 0.16 109.31 11154 1.81 77.41 78.94 1.26

GA 136.91  138.68 1.22 4.38 4.05 0.25 108.10  109.86 1.21 77.50 77.65 1.12
TABLE III TABLE IV

PAIRWISE PERFORMANCE COMPARISON OF SR-IE, SR-SA AND GA
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Fig. 5. Average of changes in the mean time loss (from mean journey time
perspective) (the lower the better)
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Fig. 6. Average of changes in the mean waiting time (from mean journey
time perspective) (the lower the better)

VSSD (VEHICLE SPEED STANDARD DEVIATION) AND JTSD (JOURNEY
TIME STANDARD DEVIATION). BEST VALUES ARE HIGHLIGHTED IN BOLD

VSSD JTSD
Algorithm Best Avg. Best Avg.
SUMO Default 2.09 - 81.04 -
SR-IE 2.32 2.66 73.21 75.41
SR-SA 2.62 2.49 77.27 74.18
GA 3.20 2.80 84.50 76.69

level heuristic over 10 runs in SR-IE and SR-SA considering
the invocations that generated improvements on the best-of-
run solution. It is noted that LLLH; is the most successful low
level heuristic in both algorithms, being responsible for the
highest percentage of improvement on best-of-run solution.

SR-IE SR-SA

Pa

35%

LLH,;
LLH,
LLH;
LLH,4

EECOE

Fig. 7. Average utilisation rate

V. CONCLUSION

In this work, we propose a set of three heuristic methods,
including genetic algorithm and hyper-heuristics, and applied
them to the traffic light cycle optimisation problem. The three
methods are shown to be highly competitive from a compu-
tational perspective. However the genetic algorithm notably
outperformed simple random with improve or equal move
acceptance hyper-heuristic and performs slightly better than
simple random with simulated annealing hyper-heuristic. The
low level heuristics used in both hyper-heuristic algorithms
are fairly simple random perturbation heuristics. We naturally
envisage that future work could well exploit different types
of low level heuristics, including hill climbers (local search
heuristics). However, hill climbing low level heuristics are



known to be computationally expensive because they require
multiple calls of the simulator per iteration. In this study,
we introduced two metrics to measure the fairness of traffic
flow. No attempts were made to optimise with fairness as an
objective. This research has potential to be implemented in
many countries such as Sudan where traffic sensors are not
widely deployed. The use of heuristic methods in this way will
open doors towards a more collaborative environment where
engineer and computer algorithm work together to solve such
difficult problems without any costly new apparatus. The only
information required by the proposed heuristic methods is the
vehicle flow from each direction at peak hours, recorded to
synthesise a realistic simulation of the scenario. The timing
cycles of existing traffic lights could then be reconfigured
to the near-optimal results obtained by these optimisation
methods.
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