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ABSTRACT

Custard is a novel language for specifying norms. A crucial innova-
tion of Custard is that it models the information-centric aspects of
norms. Specifically, Custard enables treating a norm specification
on par with an information schema and gives a mapping of the norm
to queries that give the instances of the norm in the various states
of the norm’s canonical lifecycle. In essence, the mapping creates
a norm-based abstraction layer over underlying information stores
such as databases and logs.

Custard supports expressing the occurrence of complex events,
including based on aggregation, sophisticated deadlines, and nested
norms. We prove important correctness properties of our language,
including stability (the idea that once an event has occurred, it has
occurred forever) and safety (the idea that a query returns a finite
set of tuples). We have implemented a compiler that generates SQL
queries from Custard specifications. Writing out such SQL queries
by hand would be extremely difficult even for simple norms, thus
demonstrating Custard’s practical benefits.

1. INTRODUCTION

Norms provide a natural basis for modeling and enacting inter-
actions in sociotechnical systems involving multiple autonomous
social principals, who may be either humans or organizations. The
importance of norms derives from the fact that they serve as the
rules of encounter among the principals, and thereby as a standard
of correctness, in settings where it is either not possible or not desir-
able to regiment interactions [11]. Important kinds of norms stud-
ied in the literature include commitment, authorization, prohibition,
and power [3, 20, 13, 17].

Following convention, we understand an agent as a software en-
tity that acts on behalf of a principal in a sociotechnical system.
Several researchers have advocated intelligent agents that reason
about the applicable norms in deciding a course of action [6, 14,
2, 24]. In fact, norms are widely considered as social component
of an agent’s deliberation. For example, in an extended healthcare
setting, an agent representing a healthcare authority may sanction
an Electronic Health Record (EHR) service provider in case the
provider has violated norms related to the disclosure of informa-
tion. Or, an agent representing a fitness center may provide full
exercise and diet plans to only those agents to whom it is commit-
ted to providing such plans as a consequence of their signing up
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with the center; to others, the center may just provide basic fitness
tips.

Supporting such intelligent agent behavior in practical settings
presumes being able to reason about the states of the norms rele-
vant to the setting from low-level information recorded in databases
and logs. This in turn requires distinguishing between norm speci-
fications and norm instances. Returning to the above example of in-
appropriate disclosures, it may be one specific disclosure norm, say
a prohibition, several instances of which have been violated. This
distinction between norm specifications, or simply norms, and their
instances has not been adequately formalized. In general, what we
would like to do is treat a norm as an information schema and treat
information stores such as relational databases and logs as a store
of the norm’s instances in various lifecycle states. For example,
a certain state of the information store may imply an instance of
a prohibition that has been created but not violated and many in-
stances of the same prohibition that have been violated. Figure 1
captures our target information architecture.

Agent

Norm Store
(realized by Custard queries)

Traditional Information Store
(logs, relational databases)

Figure 1: Custard enables realizing a norm-based view of informa-
tion on top of commonly used information stores by way of queries.

With a view to realizing our target architecture, we propose Cus-
tard, a language for specifying information-based norms. In Cus-
tard, one can specify commitments, authorizations, prohibitions,
and powers. Custard is event-based: important stages in the lifecy-
cle of a norm instance, specifically, creation, detachment, expira-
tion, discharge, and violation, are event instances and inferred from
event instances recorded in the underlying information store. Cus-
tard is highly expressive: one can specify complex event expres-
sions involving logic-style operators, aggregation operators, rela-
tive time intervals within which events should occur, and nested
norms that involve multiple kinds of norms. For example, the com-
mitment to perform inform patients in case of a security breach,
which would itself be the violation of a prohibition.

We give the semantics of Custard specifications in terms of queries
in the tuple relational calculus (TRC) [8]. Effectively, for every
norm specified in Custard, we define a query for each event in the



norm’s canonical lifecycle. The query definition gives the instances
of the event. The benefit of using the TRC is that a query is defined
directly as a set of instances and paves the way for easy implemen-
tation in widely used query languages such as SQL. In fact, we
implemented a compiler that generates SQL queries from Custard
specifications.

Because of the richness of our language, especially the support
for specifying the nonoccurrence of an event, aggregation, and ex-
pressive time intervals, the queries turn out to be nontrivial. We
formulate and prove two desirable properties for our queries. One,
stability, a kind of monotonicity, which captures the idea that once
an event instance has occurred, it stays occurred forever. Thus,
for example, a prohibition instance determined violated at a certain
moment in time must be determined violated at all future moments.
Two, safety, which captures the idea that queries map to finite sets.

We demonstrate the effectiveness of Custard by modeling a real-
world privacy consent scenario being considered by Health Level
Seven (HL7) [10], which is a leading standardization body for health
information systems.

Organization. The rest of the paper is organized as follows. Sec-
tion 2 describes our metamodel for norms with the help of exam-
ples from the HL7 use case. Here, we express the norms in Custard
with the aim of clarifying the notions involved. Section 3 describes
Custard formally, including its syntax, semantics, and important
properties. Section 4 describes an implementation of Custard that
generates SQL queries. Section 5 discusses related work and lays
out future directions.

2. SAMPLING CUSTARD

We take as our point of departure recent work that understands
norm types such as commitment, authorization, prohibition, and
power as social expectations between agents [20, 21]. The import
of this formulation is that it yields a basis for accountability in so-
ciotechnical systems: the expectee is accountable to the expector
for the satisfaction of the expectation. In other words, the expector
may legitimately demand that the expectee give an account about
the status of the expectation. Let’s consider an example to illustrate
the notions involved.

EXAMPLE 1. A commitment from a hospital to encrypt sensi-
tive private health information (PHI) represents the patient’s ex-
pectation that the hospital will do that. The commitment implies
that the patient has a basis for demanding an account from the
hospital about whether his or her PHI has been encrypted, and if
not, why not. A failure to encrypt PHI would in fact be a violation,

for which the hospital may be sanctioned.
< expectee Norm
m(_ expecter — (Instance) Antecedent
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Figure 2: Norms metamodel (based on [20]).

Figure 2 (based on [20]) shows the important elements of our
conceptual model. Each (created) norm instance is an expectation

and has expector and expectee agents. The expector and expectee
represent the privileged and liable parties, respectively. A norm
instance is, in general, conditional, with the anfecedent stating the
condition under which the consequent, which represents the force
of the norm, applies. We consider four types of norms: commit-
ment, authorization, power, and prohibition.

Viewing norms as expectations between two agents leads to in-
teresting questions that have not received adequate attention in the
literature. For example, when is an authorization violated and who
is accountable to whom for the violation? In this paper, we adopt
conventions that help address these conceptual issues.

To illustrate our concepts and techniques, we use examples from
HL7’s collaborative health care scenarios. A patient signs up with
a cloud-based health vault to store and manage access to its pri-
vate health information (PHI). This information may include regu-
lar records of the patient’s vital health signs such as pulse, pressure,
blood sugar, and so on, that are monitored by wearable devices and
uploaded to the vault. The patient may authorize third parties to
receive the PHI from the vault by indicating consent. Alternatively,
the patient may revoke previously granted consent. For example,
the third party could be a fitness center that gives the patient exer-
cise and diet plans based on the information in the vault. The power
to grant or revoke authorizations is given to the patient by the ju-
risdiction in which the patient is resident. In general, third parties
granted authorization by the patient are prohibited from forward-
ing the information they receive to yet other parties. Parties may be
sanctioned for violating this prohibition.

Listing 1 shows an information schema for such a healthcare set-
tings. It describes a number of event specifications as relations,
each annotated with its key and timestamp attributes. No two in-
stances of an event (specification) will have identical bindings for
the key, and for every instance, the timestamp attribute records the
time of occurrence of the instance. The key of one event may oc-
cur in another. For example, accID occurs in Allowed. Such pat-
terns are crucial to correlation. Thus every Allowed instance can
be correlated by a Signedup instance via the binding for accID in
the former. In general, correlations may be effected via chains. For
example, a Revoked instance is correlated to an Allowed instance
by discID, and, therefore, to Signedup via accID.

Further, notice that there can be at most one SentCred instance
for an Allowed instance as their keys are identical. For every disclo-
sure to a third party, there can be many requests for data from that
party to the vault (ReqData). For every request, there can be at most
one access (Accessed). A third party may forward data accessed via
a request to yet other parties many times (Forwarded). Every For-
warded instance is correlated with a Signedup instance via a chain
of correlations (forID to reqID to discID to accID). Methodologies
for designing the appropriate information schemas are outside the
scope of the current paper.

Listing 1: Example schema for the healthcare scenario.

schema

// Patient pID becomes resident in jurisd. jID
Registered (pID, jID, resID, council)

key resID time t

//pID signs up with health vault hID
Signedup (pID, hID, acclID)
key accID time t

//pID allows disclosure to third party tpID
Allowed (pID, hID, discID, accID, tpID, info)
key discID time t
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Figure 3: Lifecycles for the various norms. For each norm type, each box refers to a lifecycle event (not a state). The transitions refer to
events as well—the occurrence or the impossibility of occurrence of the antecedent and consequent events.

//pID revokes disclosure for tpID
Revoked (pID, hID, discID)
key discID time t

//hID sends creds. to tpID if allowed disclosure
SentCred (hID, tpID, discID, credentials)
key discID time t

//tpID requests patient data from hID
ReqData (tpID, hID, reqID, discID, request)
key reqID time t

//tpID gets access to the requested data
Accessed (tpID, hID, reqID, response)
key reqID time t

//tpID forwards data to party otherID
Forwarded (tpID, otherID, forID, reqID, response)
key forID time t

//hID sanctions tpID for mishandling accID

Sanction (hID, tpID, accID, details)
key accID time t

2.1 Commitment

Our notion of commitment corresponds to the standard one in
literature: the debtor commits to the creditor to bring about a con-
dition (the consequent) if some condition (the antecedent) holds.

We give an example from the foregoing scenario.

EXAMPLE 2. When a patient signs up with a health vault, the
vault commits to the patient that if disclosure is allowed to a third

party, then the vault will authorize the party within a day.

Listing 2 shows a commitment listing in Custard. Disclosure-
Com is a name for the listing. The commitment is from hID to
pID; it is created upon the occurrence of a Signedup instance; de-
tached upon the occurrence of a correlated Allowed disclosure in-
stance, provided that disclosure has not been Revoked (this allows
modeling situations where patients may change their minds); it is
discharged when a correlated instance of DisclosureAuth (an au-
thorization, see Listing 3) is created. The detach and discharge
clauses represent the antecedent and the consequent, respectively.
In an expression of the form E[l,r], [I,r] is a time interval; the
expression says that E/ should occur within this interval. If | = 0,
we may omit specifying [; if » = oo, we may omit specifying r; if

I = 0 and r = oo, we may omit specifying the time interval.
Listing 2: Captures Example 2.

commitment DisclosureCom hID — pID

create Signedup

detach Allowed except Revoked

discharge created DisclosureAuth [0, Allowed+1]

The lifecycle of a created commitment instance is shown in Fig. 3a.
The instance is violated if the antecedent occurs but the conse-
quent cannot; it expires if the antecedent cannot occur; and it is
discharged if the consequent occurs. We adopt the convention that
a commitment may be both expired and discharged: this happens if
the antecedent cannot occur but the consequent occurs.

2.2 Authorization

An agent authorizes another to bring about a condition (as cap-
tured by the consequent) in a certain condition (as captured by the
antecedent).

EXAMPLE 3. A party is authorized by the health vault, via the
sending of credentials, that data requested will be available within
a day of the request for ten days after the request.

Listing 3: An authorization in Custard.

authorization DisclosureAuth tpID by hID
create SentCred

detach ReqData

discharge Accessed [ReqData+1, ReqData+10]

In authorizations, we treat the authorizing party as the expectee
and the authorized party as the expector. Thus, in Listing 3, the
expector is tpID and the expectee is the vault service. Specifically,
tpID expects access to patient information if it has been allowed
disclosure to. This aligns with the intuition that an authorization is
the authorized party’s privilege, not a liability. The authorization
would in fact be violated if the tpID had been allowed disclosure to
by the patient but were blocked by the vault service from accessing
the patient’s information.

Although in principle, an authorization may be violated as dis-
cussed above, we make a design assumption that makes the vio-
lation of authorization impossible. We assume that authorizations
are regimented by the agent, for example, via authentication and
access control mechanisms. Thus, access to a patient’s record is
regimented by the health vault via authentication. This also implies
that if a party is unable to gain access despite its being on the disclo-
sure list, then that is not a violation, but simply an implementation
error. Figure 3b captures the authorization lifecycle. The violated
event is unreachable to capture the fact that authorizations cannot
be violated.

2.3 Prohibition

An agent prohibits another from bringing about the consequent
if the antecedent has occurred. Unlike authorizations, we model
as prohibitions those cases where either events are not easily reg-
imented or not desired to be regimented. For example, it is not
easy to regiment a system so that smoking in a space (or littering)
is impossible. We capture the undesirability of such behaviors by



placing prohibitions on them. We give an example from the health
scenario.

EXAMPLE 4. Parties that have been allowed disclosure by the
patient are prohibited by the jurisdictional authority from forward-
ing the information they receive to other parties.

Listing 4 captures Example 4.

Listing 4: A prohibition in Custard.

prohibition DisclosureProh tpID by jID
create Accessed
violate Forwarded

Figure 3c captures the prohibition lifecycle. A prohibition is vi-
olated if the antecedent and the consequent have both occurred. In
a prohibition, the expectee and expector are the prohibited and pro-
hibiting parties, respectively.

2.4 Power

An agent empowers another to bring about certain states of af-
fairs by simply “saying so” provided some conditions hold. We
adopt Jones and Sergot’s distinction between power and authoriza-
tion[11]: power is the ability of an agent to modify norms among
other agents. Authorization, by contrast, is the ability to access re-
sources and, as discussed above, in our model, authorizations are
regimented in software.

EXAMPLE 5. The jurisdictional authority empowers the patient
to authorize any party to receive its information from the storage
service by simply filling out the appropriate form.

Listing 5 captures Example 5. It says that a patient who is reg-
istered in a jurisdiction and who has signed up with a vault after
becoming a resident has to power to authorize (and revoke) disclo-
sure to other parties.

Listing 5: A power in Custard.

power ConsentPower pID by jID

create Registered

detach Signedup[Registered ,]

discharge Allowed|[Signedup ,] and Revoke[ Signedup ,]

In a power instance, the empowered agent is the privileged party,
that is, the expector. The empowering agent is the liable party, that
is, the expectee. However, a power cannot be violated for the sim-
ple reason that “saying so” under the right conditions is enough to
fully exercise the power. The “effects” of the power will be real-
ized through other norms. In Example 5, the effect of the power is
realized through the vault becoming committed to authorize those
parties who are allowed by the patient to receive information. Of
course, the vault may refuse to comply, thus violating its commit-
ment, but the power itself is inviolable.

If the antecedent condition does not hold, then the exercise of
the power may be considered invalid but that is not the same as vi-
olation (recall that the privileged party is the empowered agent and
therefore an invalid exercise of the power cannot be a violation).
Figure 3d captures the lifecycle of power.

2.5 Aggregation

Many norms involve aggregation, as Example 6 illustrates.

EXAMPLE 6. The jurisdiction has the been empowered by the
patient to declare a party as “out-of-compliance” if in the year
Sfollowing it being allowed to receive information, it violates the
prohibition to forward information to others more than twice.

Listing 6 captures Example 6. The aggregation syntax is based
on the standard one in database theory: specify the attribute to
aggregate over (forID), the query in which the attribute appears
(Signedup and Allow and violated DisclosureProh), how to group
the tuples of the query (by accID), and the attribute that holds the
aggregated value (numViol). The aggregate event occurs when the
count of forID over the specified interval is greater than two.

Listing 6: A norm involving aggregation in Custard.
power SanctionPower jID by pID
create Signedup and Registered
detach count[ Signedup , Signedup+365] forID of
(Signedup and Allow and violated
DisclosureProh) as numViol groupby accID > 2
discharge Sanction[,detached SanctionPower+10]
where details=°‘Out of compliance’’

3. TECHNICAL FRAMEWORK

Let D = {Di...Dy,} be a set of domains where 7 € D is
the domain of time instants; in particular, 7 = N U {oo}, where
N is the set of natural numbers and oo is an infinitely distant time
instant. Below, A and R are the sets of agent names and the real
numbers, respectively. Table 1 defines the syntax of Custard.

Table 1: Syntax of Custard.

Event — Base | LifeEvent
LifeEv — created Spec | detached Spec | discharged Spec
expired Spec | violated Spec

Expr — Event[Time, Time] | Aggr | Expr where ¢ |
Expr EvOp Expr

EvOp — n|u|e

Aggr —— Func[Time, Time] D of Expr as D
group by GSpec Comp R

GSpec — D | GSpec,D

Func — sum | count | min | max | avg

Comp — >|>=|<|<=|=]|!=

Time — Event—7 |Event+7 | T

Norm — commitment | prohibition | authorization | power

Spec — Norm(A, A, Expr, Expr, Expr)

All expressions of type Expr are essentially (complex) events.
The Custard listings shown earlier use a surface syntax for Spec
expressions in the formal grammar. In the surface syntax, we write
and, or, and except for M, LI, and & respectively. In time inter-
vals, we omit lower and upper instants when they are 0 and oo,
respectively. An omitted detach clause means the norm is uncon-
ditional. Further, in the surface syntax, we label norms to simplify
writing nested commitments. For instance, the commitment in List-
ing 2 in the formal grammar is: commitment(hID, pID, SignedUp,
Allowed © Revoked, created authorization(tpID, hID, SentCred,
ReqData, Accessed[ReqData+1, ReqData+10])).

3.1 Semantics

An information schema is a nonempty set of events, each mod-
eled as a relation with a superkey and a distinguished timestamp
column. Definition 1 defines an information schema formally.

DEFINITION 1. For convenience, we identify a domain with its
set of possible values. An event schema over D pairs a nonempty
set of attributes and a key. That is, E = (A, K), where A C D,
T € A and K C A. (Treating each attribute as unique with its
own domain simplifies the notation without loss of generality.) Ep



is the set of all possible event schemas over D. An information
schema I over D is a nonempty set of event schemas over D. That
iS, I g 5‘D~

Definition 2 defines the intension of an event schema F.

DEFINITION 2. The universe over E, is the set of all possible
instances of E. Thatis, if A = {A1 ... Am}, U = A1 X.. . X Ap,.

The intension of E' is the powerset of its universe restricted to
sets that satisfy E’s key, that is, any two E instances that agree on
the key attributes must agree on every attribute (i.e., they are the
same instance). That is, (E) = {Y|Y € Ug and (Vu;,u; € Y if
ui| | K = uj|| K then u; = uj)}, where || indicates projection to
the specified set of attributes.

A model M of an information schema specifies, for each event
schema F, an extension of that schema [E] as the set of instances
of that event schema, respecting the event schema’s key. Defini-
tion 3 defines models formally.

DEFINITION 3. A model of an information schema is a function
that maps each of its event schemas to its extension, i.e., a member
of its intension. Specifically, M : Ep — (E). We term M(FE)
the extension of E and write it as [E]™, omitting the superscript
when M is understood.

The model defines [E] for Base E. The semantic postulates
below lift the [ ] to all expressions in Custard via the TRC. In the
TRC, quantification is over tuples; for a tuple 7, 7.a gives the value
of attribute a of 7. Below, t is the distinguished timestamp attribute
of all event schemas; {c,d} C T E, F, . .. are expressions of type
Event; X,Y, ... are expressions of type Expr; [ and r are Time
expressions; @ is either ‘+’ or ‘-’; ® is a Comp expression; N is a
Norm expression; g is a GSpec expression.

We use the following auxiliary functions: att gives the non-
timestamp attributes of an event schema; cmn gives the common
nontimestamp attributes of two event schemas; eq takes two tuples
and a set of attributes and returns true if and only if the tuples are
equal for each of those attributes; nul takes a tuple and a set of at-
tributes and returns true if and only if each attribute’s value is null
in that tuple; maz and min have their usual meanings; sumf takes
four values, a set of tuples S, an attribute col (which needs to be
summed), a set of columns g (to group S by), and an attribute col-
sum (whose value will be the sum), and gives a set of tuples with
the attributes g and colsum; holds takes a constraint and a tuple and
returns true iff the tuple satisfies the constraint.

D,. [Ele,d]] ={7|7 € [E] Ac < 7.t < d}. Select all events in
E that occur after (including at) ¢ but before d.

Ds. [E[F ®c,d]]={r|37" 7 € [E] AT € [F]A
eq(t, 7, cmn(E,F))AT't®c < 1.t < d}. Select Eif F
occurs and E occurs after (or before, depending on what &
is) ¢ moments of F’s occurrence but before d.

Ds. [Ele, F @ d)] ={r|37'T € [E] AT € [F]A
eq(, 7, cmn(E,F)) Ae < 7.t < 7't & d}. Select E if
F occurs and E occurs after ¢ but before d moments have
passed since F’s occurrence (or at least d moments before
F’s occurrence, depending on what @ is).

Dy. [E[F ®c,Gad]]={r|T € [E[F & ¢, x]]A
T € [E]0,G @ d]]}. Combines D2 and Ds.

We give definitions for aggregate events involving sum. The def-
initions for the events involving the other Func expressions (min,
max, count, avg) are analogous. We skip them for brevity.

Ds. [sumll,d] col of X as colsum group by g ® n] =
{rlrt=dAS={r|7" e [X]ANI<T"t <d} AT =
sumf (S, col, colsum, g)AIT" 7" € Theq(r,7", att(T))A
7"’ colsum @ n}.

Deg. [sum[l, F & d] col of X as colsum group by g ® n] =
{r3r' 7" € [Flneq(r, 7, g) ATt =Tt DdNA
S={r""" e [X]Anl <"t < TPt®d}ANT =
sumf (S, col, colsum, g)AIT"" """ € TAeq(r, 7", att(T))A

7" colsum @ n}.

D7 [XNY])={7|373r" 7 e [X]AT" € [Y]A
eq(, 7' att(X)) A eq(t, 7", att(Y))A
7.t = maz(t'.t,7".t)}. Select (X,Y) pairs where both
have occurred; the timestamp of this composite event is the
greater of the two.

Ds. [XUY]={7|373I" 7 e [X]AT" € [Y]A
eq(7, 7, att(X)) A eq(T, 7", att(Y))A
7.t = min(7".t, 7" .t))V

G’ e [X] A eq(r, 7 att( X)) ATt =7t A
nul(T, att(Y)) AVT'T" € [Y] = —eq(r, 7", att(Y)))V

G’ e[YIAeq(r, 7 att(Y)) ATt =7"t A
nul(T, att(X)) AVT 7" € [X] — —eq(r, 7", att(X)))}.

Select (X,Y) pairs where at least one has occurred. The
timestamp of this composite event is the smaller of the two,
if both have occurred, or equal to the timestamp of the one
that has occurred.

The interpretation of X © Y is that X should have occurred but
the (corresponding) Y should not have occurred. But what is the
time of nonoccurrence of an event? Consider X & E[l, d]. Here,
E|l, d] (corresponding to X) has not occurred if E (corresponding
to X)) hasn’t occurred between [ and d. Thus if E occurs before
[, say at b, then the time of the nonoccurrence of E[l,d] is b; if E
doesn’t occur before d, then the time of nonoccurrence of E[l, d]
is d. Notice that d could be co. The time of occurrence of the
X © E|l, d] is the maximum of the timestamps of X and E[l, d].

Dy. [X O E[l,d]] ={7|(37" 7" € [X] ATt = maz(7".t,d) A
vr' " € [E[0,d]] = —eq(r', 7", emn(X, E)))V
33" 7 e [XIAT" € [E[0,]Aeq(T!, 7", cmn(X, E))A
7.t = maz(r'.t,7".1))}.

The definition of [X & Fl[c, F' @ d]] follows along the same lines
except to account for the difference that the right timepoint refers to
an event (F') instead of being a constant. As before, we want X if
FE occurs too soon (before ¢). We also want X if E occurs too late,
in this case, after f & d, where f is the value of F’s timestamp. We
will give this nonoccurrence of E the timestamp f & d. But what
if F itself hasn’t occurred? Then, we won’t have a value for f.
But in this case, we would not want X anyway because without the
occurrence of F', it is not possible to determine the appropriateness
of the occurrence of E.

Dio. [X S E[lL,Fad] ={r|373r"vr" 7 € [X]AT" €
[F] A" € [E[0,F&d] A eq(r', 7", emn(X, F)) A
—eq(t, 7, emn(X,E)) ATt =1"t®d)V
(33" 7 e [ XIAT" € [E[0, ] Aeq(7!, 7", cmn(X, E))A
7.t = maz(r'.t,7".1))}.

Dy1. [X ©sum[l,d] col of Y as colsum group by g ® n] =
{rlrt = d NI 7" € [X] A eq(r, 7, att(X)) NS =



{7"|7" € [Y[l,d]]} AT = sumf(S, col, colsum,g) A
(v " e T — —eq(r, 7", att(T)) V =(7".colsum ®
n))}

D12, [X ©sumll, F & d] col of Y as colsum group by g ® n] =
{rlrt = d NI 7" € [X] A eq(r,7',att(X)) NS =
{T"|7" € [Y[l, F ® d]} AT = sumf (S, col, colsum, g) A
(vr""' " e T — —eq(r, 7", att(T)) V (7" .colsum &
n))}.

D13. [X where ] = {7|7 € [X] A holds(r,¢)}. Select X if
®.

D14—D17 transform complex expressions involving & to those
where © has an event of the form EJl,r] as its right hand side
operand.

Dy [Xo(YNZ) (XeY)u(Xe2).
Dis. [ XS (YUZ) (Xevy)n(Xe2).
Di. [XoYe2)]=[(XeY)u(Xn2z).

Di7. [X © (Y where )] =[(X ©Y)UT]. Theset T = {r|37’
7' € [X Y where =] Aeq(r, 7', att (X)) AT.t = 7't}

I=1
I=1

Below, we write N (c, 7, u) instead of N(z,y,c,r,u) as = and
y do not appear on the right hand side. (They would be important
in other kinds of reasoning, for example, related to group norms or
norm networks.)

Dss. [created N(c,r,u)] = [c]. A commitment is created when
its create event occurs.

Dy. [detached N(c,r,u)] = [eMr]. A commitment is de-
tached when its create and detach events both occur.

Dyp. [expired N(c,r,u)] = [¢©r]. A commitment is expired
when its create event has occurred but its detach fails to oc-
cur within the specified interval.

Dy, . [discharged commitment(c, 7, u)] = [(¢Mu) U (r Mw)].
A commitment is discharged when its discharge event has
occurred along with either its create or detach event.

Ds,. [discharged authorization(c,r,u)] = [¢ M7 Mu]. An au-
thorization is discharged when its discharge event has oc-
curred along with its create and detach event.

Dos. [discharged power(c,r,u)] = [c M7 Mu]. Apower is dis-
charged when its discharge event has occurred along with its
create and detach event.

Dyy. [discharged prohibition(c, r, u)] = [(¢Mr) ©u]. A pro-
hibition is discharged when its create and detach events oc-
cur but the violate event fails to occur.

Dss. [violated commitment(c, 7, u)] = [(cM7) © u]. A com-
mitment is violated when its create and detach events occur
but the discharge event fails to occur.

Dog. [violated authorization(c, 7, u)] = ¢ (the empty set). No
authorization can be violated.

Do7. [violated power(c, 7, u)] = ¢. No power can be violated.

Dss. [violated prohibition(c,r,u)] = [e¢MrMwu]. A prohibi-
tion is violated when its create, detach, and violate events
all occur.

Day. [X]i={7|7 € [X]A0 < 7.t < i}. Selectall X that have
occurred prior to time instant 4.

3.2 Properties

Stability is the idea that once an event is determined to have oc-
curred, then at all future time instants, it should be determined to
have occurred. In other words, an event that has occurred cannot
later “unoccur”. For example, a message that been sent cannot be
unsent. Stability of events is a fundamental assumption in reason-
ing about distributed systems.

We would like to extend this notion of stability to norm lifecy-
cle event instances. Thus, for example, if a prohibition instance is
determined to have been violated at a time instant, then at all fu-
ture instants, it should be determined violated. Stability would be
highly desirable in business settings as it would give stakeholders
confidence in the status of things.

A Base event is by definition stable, since the model defines its
extension. However, stability for complex events, including life-
cycle events, does not automatically follow from the stability of
Base events. For example, imagine an event specification of the
form X © E[0,100]. Let’s say a query is run at time 50, before
which some X instance has occurred but the corresponding E in-
stance hasn’t occurred. Then the query may determine that the cor-
responding X © E[0, 100] instance has occurred. However, that
would be premature: the E instance could yet occur, say at time
55, and a later query would determine the X & E[0, 100] instance
to have not occurred. In essence, we would have switched the status
of the event from occurred to not occurred.

Aggregation operators also pose a challenge to stability. A sum
event determined to have occurred at an instant may at future in-
stants be determined to have not occurred as additional events oc-
cur. For example, if the sum over a number of events was required
to be greater than some value, it may hit that value after observ-
ing, say, five events. However, future events may lower the sum (if
the attribute which is being summed can take negative values) and
cause it to dip below the required value.

We have built the semantics so that stability is guaranteed for all
events and the above described scenarios do not occur. Theorem 1
states the stability requirement formally: the set defined by a query
at time ¢ (see D2g) should be a subset of the set defined by the
query at ¢ + 1.

THEOREM 1. Vi [X]; C [X]it1

Proof Sketch. Let’s consider a model M. The model defines [E]
for Base E. Therefore, [E]; C [E]i+1. We should look at the each
of queries defined in D1—D>g one by one and determine that the
property holds for them.

D, . Follows from the fact that for Base E [E]; C [E]i+1. Rea-
soning for Do—Dy is essentially analogous.

Ds. If 7 € [sum[l, d] col of X as colsum group by v ® n];, then
all relevant X instances, that is, those that happen in [I, d] have
been considered. Dg is analogous.

D7. Follows from [X]; C [X]i+1 and [Y]; C [Y]it1. Ds is
analogous.

Dy. Two subcases. One, 7 € [X © E[l,d]]; and X occurs at
some time k but E does not occur in [0, d]. In this case, 7.t =
maz(k,d). If .t = k, then k < 4; if 7.t = d, then d < 3.
Therefore, 7 € [X © E[l,d]Ji+1. Two, 7 € [X © E[,d]]
because X and E[0, [] have both occurred. Since they are each
stable, 7 € [X © E[l,d]]i+1. D1o—D12 are analogous.

D13. Follow from the fact that [ X] is stable.

D14=D17. A query of these forms reduces to a query where the
right hand side of every & operand is a base event, lifecycle
event, or aggregation event qualified by a time interval. Such ex-
pressions are stable. Their combinations with other expressions
is also stable.



Dqs Follows from the fact that [[c] is stable. D19—Dog are analo-
gous.

Safety is a well-known correctness criterion for database queries
[8]. Definition 4 defines safety formally.

DEFINITION 4. A query Q is safe if and only if given any pos-
sible model M with finite extensions for Base events, the extension
of Q relative to M, [Q)], is finite.

Negation-like operators such as & have the potential to compro-
mise safety if their usage is not restricted adequately. For example,
imagine that we had a unary negation operator &, and the cre-
ate clause for some commitment were simply &, F (assume E is
Base). This would amount to considering created infinitely many
commitment instances, one for each E instance that is not present
in [E]. A technique that is commonly employed to avoid such con-
clusions is to guard such negation-like operators, as we do in Cus-
tard: © is a binary operator, the extension of whose left operand
circumscribes the extension of its right operand. Theorem 2 states
the theorem and the proof sketch illustrates the foregoing discus-
sion.

THEOREM 2. All Custard queries are safe.

Proof sketch. In essence, any Custard query maps to finitely many
applications of the query definitions D1—D2g. Specifically, a query
maps to a binary tree of height h where the leaf nodes are Base
events and the root is the query itself. We must show that every
query at every height k(0 < k < h) has a finite extension if its
children have finite extensions.

The proof is by induction on the height of the tree. The queries
at the leaves represent the base (in the induction sense) case. We
know that they have finite extensions because the model defines fi-
nite extensions for Base events. Assume finiteness for every query
at height £ and show finiteness for every query at height k£ + 1. For
brevity, we illustrate only the crucial cases that involve &. Suppose
aquery at k + 1 is X © E|[l, d]. By the inductive hypothesis, we
know that both X and E[l, d] have finite extensions. According
to the definition of [X & E[l,d]] (Do), there are two subcases to
consider, corresponding to the disjunction. In both cases though,
we are selecting tuples from finite extensions of X and E (specif-
ically, from E[0,d] and E[0,1]). Hence, [X © EJl,d]] is finite.
The other cases involving & are analogous.

4. IMPLEMENTATION

We implemented a Custard compiler in Java using the Eclipse
XText language definition and parsing library. The compiler reads
in a file containing an event schema definition (such as the one
in Listing 1) and norm specifications and creates two files, one
containing the SQL table creation statements corresponding to the
schema and another containing the SQL queries, one for each life-
cycle event for each norm. Since there are several dialects of SQL,
we picked one that is widely used, namely, MySQL. Listing 7
shows some of the table creation statements generated for the event
schema in Listing 1. For better readability, the timestamp attribute
is stamp (instead of t).

Listing 7: Generated SQL Create Table statements.

CREATE TABLE SentCred (

hID VARCHAR(10), tpID VARCHAR(10), discID
VARCHAR(10), credentials VARCHAR(10),

stamp DATETIME,

PRIMARY KEY(discID)

)8

CREATE TABLE ReqData (

hID VARCHAR(10), tpID VARCHAR(10), discID
VARCHAR(10), reqID VARCHAR(10), request
VARCHAR(10) ,

stamp DATETIME,

PRIMARY KEY(reqID)

IE

CREATE TABLE Accessed (

hID VARCHAR(10), tpID VARCHAR(10), reqID
VARCHAR(10), response VARCHAR(10),

stamp DATETIME,

PRIMARY KEY(reqID)

)

For the authorization specification in Listing 3, the compiler gen-
erates four SQL queries corresponding to the created, expired, de-
tached, and discharged instances (recall that in our model, autho-
rizations can’t be violated). Listing 8 shows the query that re-
turns the created instances of the authorization at time NOW (the
current time). In other words, it shows the SQL equivalent of
[created DisclosureAuth]now. In the current implementation
all queries are automatically evaluated for NOW; however, we are
working on an extension where the user could input a time value.
This would allow the user to run retrospective queries such as “how
many instances of this authorization were created two months ago?”
and hypothetical queries such as “given the current state of the
database, how many instances of DisclosureCom commitments will
be violated a month from now?”

Listing 8: Generated SQL for created instances of DisclosureAuth.

SELECT hID, tpID, discID, credentials , stamp
FROM (SELECT hID, tpID, discID, credentials ,
stamp
FROM SentCred) AS QueryO
WHERE stamp < NOW() ;

Listing 8 contains a nested query. The query is simple and could,
in fact, be easily rewritten without the nesting. Listing 9, which
shows the query for the discharged instances of the authorization, is
far more complex, and contains several levels of unavoidable nest-
ing. Such a query would be practically impossible to write by hand.
This demonstrates the significant practical benefits of Custard.

Listing 9: Generated SQL for the discharged instances. The
SQL DATETIME values ‘1000-01-01 00:00:00" and ‘9999-12-31
23:59:59’ correspond to the Oth and the infinitely distant time in-
stants, respectively, in our implementation. The unit of time is day.
SELECT
hID, tpID, discID, credentials , reqlD,
response , stamp

FROM
(SELECT
hID, tpID, discID, credentials , reqID,
response ,
GREATEST (Query21 . stamp ,
Query28.stamp3) AS stamp
FROM
(SELECT
hID, tpID, discID, credentials , stamp
FROM

SentCred) AS Query2l1
NATURAL JOIN (SELECT
hID, tpID, reqID, response, stamp AS
stamp3
FROM
(SELECT
hID, tpID, reqlD, response,
GREATEST (Query30 . stamp ,
Query32.stamp4) AS stamp



FROM
(SELECT
hID, tpID, reqID, response, discID,
request ,
GREATEST (Query22 . stamp ,
Query34 .stamp5) AS stamp
FROM
(SELECT
hID, tpID, reqID, response, stamp
FROM

Accessed) AS Query22
NATURAL JOIN (SELECT
hID, tpID, discID, reqID, request, stamp

AS stamp5
FROM
(SELECT
hID, tpID, discID, reqlD, request, stamp
FROM

ReqData) AS Query23) AS Query34

Query34.stampS5 + INTERVAL 0 DAY <=
Query22 . stamp
AND Query22.stamp < ’9999—12-31
23:59:59°) AS Query30
NATURAL JOIN (SELECT
hID, tpID, reqID, response, stamp AS

stamp4
FROM
(SELECT
hID, tpID, reqID, response, discID,
request ,
GREATEST (Query22 . stamp ,
Query36.stamp6) AS stamp
FROM
(SELECT
hID, tpID, reqID, response, stamp
FROM

Accessed) AS Query22
NATURAL JOIN (SELECT
hID, tpID, discID, reqlD, request, stamp

AS stamp6
FROM
(SELECT
hID, tpID, discID, reqID, request, stamp
FROM
ReqData) AS Query24) AS Query36
WHERE
’1000—01—-01 00:00:00° <= Query22.stamp
AND Query22.stamp < Query36.stamp6 +
INTERVAL 10 DAY) AS Query31) AS
Query32) AS Query25) AS Query28)
AS Query26
'WHERE

stamp < NOW() ;

5. DISCUSSION

Custard is a language for specifying norms over low-level infor-
mation schemas. We described its semantics and proved important
properties. We also illustrated Custard with examples from health-
care. Custard supports semantically complex features that would be
important in real world settings, such as the absence of events, nest-
ing, and aggregation. Custard’s novelty lies not only in that it raises
norm specifications to the level of information schemas but also in
the fact that it describes a general approach to formalizing norm
lifecycles: others may use our basic formalization approach even
when they formalize a norm’s lifecycle differently (for example,
considering an authorization as violated when the consequent oc-
curs without the antecedent having occurred). The implementation
of Custard to generate SQL queries is proof of its value. The gen-
erated queries even for even a simple norm turn out to enormously

complex, running in tens of lines. Custard saves the programmer
the effort of writing these queries by hand. We discuss below the
relevant strands of literature.

Commitments. Custard follows a recent trend of more explicit
information modeling in commitments [18, 5]. It is specifically
informed by advances reported in Cupid [5], which presents an
information-based language for commitments. Whereas Custard
adopts Cupid’s basic style and approach, it goes significantly be-
yond Cupid in expressiveness. Cupid supports only commitments
and does not support aggregation. Cupid formulates the query
extensions in terms of relational algebra whereas Custard defines
them in terms of the TRC, which yields cleaner and more direct
set-based formulations. The formulation and proof of stability is
novel to Custard.

Custard leverages work on first-order event-based representa-
tions of commitments [26, 23, 15]. These often emphasize dif-
ferent aspects, for example, reasoning about commitment opera-
tions, richer commitment content, and deadlines. Custard attempts
to bring together these concerns in a single expressive language.

Institutions and Norms. Norms are widely studied in multi-
agent systems from different perspectives. Important overlapping
themes relevant to Custard concern the modeling of institutions and
contracts [16, 3, 13], norm reasoning and conflicts [25, 9, 19], mon-
itoring and reasoning about agent compliance with norms [24, 1,
17], and programming norm-aware adaptive agents [6, 14, 2, 15,
24, 12, 4]. Custard could be enhanced to incorporate some of the
techniques studied in this literature, for instance, to support defeasi-
ble reasoning and degrees of norm compliance. Custard could also
be enhanced with an agent-oriented API to support runtime mon-
itoring of norms and their incorporation in the agent deliberation
cycle.

Representations of norms vary widely. Custard models norms as
directed expectations between agents. Generally, work on norms
(excluding commitments, which are mostly treated as directed) does
not model them explicitly as expectations between agents, as we do
in Custard. For example, the norm representations of Artikis et al.
[3] are essentially single-agent. Modgil et al. [17] have the notion
of the target agents of the norms; however, it is not possible to dis-
tinguish between the expector and expectee in their representation.
Further, in some of their examples, the target set contains only one
agent. In general, single-agent formulations could be understood
as the special case where the expector implicitly is the institution
itself. Some norm formulations are devoid of agents, for example,
King et al.’s [13].

Future Work. Custard represents an initial effort to represent
norms in an information-oriented framework. It opens up many
interesting directions of work. One, formalizing norms in higher-
level database logics such as 4QL, which has been applied to set-
tings of collaborative agents [7]. Two, extending the reasoning
to settings where there is uncertainty associated with the occur-
rence of events [22]. Three, studying the expressiveness of Custard
by encoding a variety of norm patterns that arise in real-life set-
tings and, where necessary, extending Custard and creating macros
that capture complex oft-repeating patterns. Four, devising a tool-
supported methodology for writing Custard specifications. In the
present paper, we did not dwell on well-formedness criteria for
specifications or how we would come up Custard specifications
given requirements or a low-level information schema. Techniques
from traditional information modeling would be relevant. Five, re-
lating Custard specifications to interaction specifications and for-
mulating consistency protocols for ensuring that multiple Custard
stores remain adequately synchronized.
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