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Abstract

A key policy argument in favor of emissions markets (relative to command-and-control types of

regulation) is their ability to aggregate dispersed information and generate price signals to guide

firms’ trading and abatement decisions. We investigate this argument in a multi-period model

where firms receive noisy private signals about their current period emissions and privately

observe their previous period emissions before this information is made public to the rest of

the market. Firms respond to information by trading and abating emissions. We show that

there exists a rational expectations equilibrium that fully aggregates firms’ private information,

justifying the policy argument in favor of emissions markets, in the absence of other frictions. We

also derive predictions about how prices should be reacting to new private or public information

and show that the possibility of abatement dampens the impact of shocks on prices. Finally,

we show that the information aggregation result breaks down if firms’ abatement costs are also

private information.∗

∗JEL Codes: G14, D83, D84, D85, Q58

Keywords: Information aggregation, efficient market hypothesis, price formation, emissions trad-

ing
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I Introduction

A central argument in favor of market-based policy instruments (as opposed to command-and-

control policies) is their ability to decentralize decisions to those economic agents who have the

information. Translated in the context of emissions markets, this argument contends that profit

maximization by firms subject to the scheme, combined with competitive markets for allowances, will

generate the “right” price signal to guide abatement and trading decisions, ultimately minimizing

the costs of reducing emissions.

Montgomery (1972), Cronshaw and Kruse (1996), and Rubin (1996) have provided theoretical

foundations for this argument - a variant of the First Welfare Theorem - for emissions markets

without uncertainty. Yet, uncertainty is paramount in most emissions trading schemes. Business-

as-usual emissions are intrinsically uncertain. For example, emissions from the electricity sector are

highly dependent on the relative price of gas and coal, the business cycle, as well as on the weather.

Firms learn about their emissions over time as this uncertainty unfolds. In addition, different firms

have access to different abatement opportunities and these are typically privately known.

The presence of these sources of uncertainty - private information and exogenous risk - raises

two questions. First, can competitive emissions markets adequately aggregate private information,

a necessary condition for efficiency ? Second, what impact does uncertainty have on the welfare

properties of competitive emissions markets? The existing literature has partially answered the

second question in the context of exogenous risk (Schennach 2000; Seifert et al. 2008; Hitzemann

and Uhrig-Homburg 2018) but has not tackled the issue of information aggregation.

To answer these questions, we analyze a multi-period emissions trading model with both private

information and aggregate shocks. Our model builds on the canonical model in the literature

(Rubin 1996; Schennach 2000) with risk neutral price-taking firms in the allowances market, no

pass-through of costs, and short-term (instantaneous) abatement. Our main departure point is

to explicitly model firms’ sequential arrival of private information and public information releases,

and how these get aggregated into the equilibrium price. We assume the most favorable conditions

on the market to perform this role by using the dynamic rational expectations equilibrium (Tirole

1982) as our equilibrium concept. In a dynamic rational expectations equilibrium (REE), firms take

the price as given and use the information contained in the price, together with their own signals,

to decide on the best strategy to maximize their expected discounted profits, at every point in time.

There is no trading friction and a single price prevails.

We model a market with a finite horizon, by which firms need to surrender enough allowances

to cover their emissions to date, and where surplus allowances lose their values entirely at the end.
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The first phase (2005-2007) of the EU Emissions Trading Scheme (EU ETS) is a case in point, but

the model also captures markets with restrictions on the banking of unused allowances. To model

the gradual arrival of information to the market, we assume that the market is made of several

compliance periods. At the time when they decide on their abatement, firms receive a noisy signal

about their emissions during the current compliance period. They learn about their actual level of

emissions at the end of the compliance period and this information becomes public with a delay, at

the time emissions are verified.

We first consider an artificial economy where all private information is public and solve for the

equilibrium price and trading at all times when new information reaches the market. Because the

horizon is finite, we can solve the model by backward induction using standard dynamic program-

ming techniques. At all times, the equilibrium price is equal to the probability that the market is

short at the end of the horizon, times the penalty that firms must pay for failing to deliver enough

allowances to cover their emissions. The equilibrium price follows a martingale and converges to

zero or the penalty as the horizon gets closer and uncertainty about whether the market is long or

short decreases. The gradual arrival of information implies that the impact of exogenous shocks

to emissions spreads over two periods: at the beginning of the compliance period, when firms re-

ceive a noisy signal about their current period emissions, and at the beginning of the next period,

when they learn the realized emissions. Abatement endogenously dampens shocks to emissions as

they provide an alternative for firms to cover their emissions: when emissions are high, abatement

increases in reaction.

To prove that this full information equilibrium is an equilibrium when information is private,

we need to show that the equilibrium price fully aggregates private information, in the sense that

the equilibrium price is a sufficient statistic for the information dispersed in the economy and it

results in the same allocation as if each trader had access to all private information (Grossman

1976). The challenge here is that the equilibrium price, a one dimensional variable, is driven by

both the expectation and the variance of future emissions, net of abatement, i.e. a two dimensional

variable. We show that, when the only source of asymmetric information is private information

about emissions, prices can nevertheless be inverted to recover these parameters, i.e. prices are a

sufficient statistic. This implies that the full information equilibrium outcome is also the outcome

under rational expectations and dispersed information. This is no longer true when abatement costs

are also private information.

Relationship with the literature: Understanding the ability of markets to aggregate dis-

persed information has been a central question in finance since the seminal papers by Grossman
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(1976) and Grossman and Stiglitz (1980). This literature has shown that many factors can result in

prices not fully aggregating the underlying dispersed information even when traders are price-takers

(see Brunnermeier 2001 for a survey). Two features distinguish emissions markets from other asset

markets with dispersed information. First, the value of emissions allowances depends on the proba-

bility that the market is going to be short or long and it is the same for all traders, whereas traders

in asset markets may value the same piece of information differently based on their current positions

or risk attitudes. Second, the presence of abatement in emissions markets implies that prices today

endogenously affect the balance between the supply and demand of allowances tomorrow, whereas

shocks to the supply of assets are typically exogenous in finance. These two features – on top of less

fundamental modeling differences – set our paper apart from recent explorations about information

aggregation in dynamic markets (see e.g. He and Wang 1995; Vives 2011; and Cespa and Vives

2012). We will see that the first feature provides favorable conditions for information aggregation,

while the second complicates the inference problem because abatement endogenously affects both

the expected level of emissions and its variance, conditional on traders’ information.

In contrast to finance, the environmental economics literature has paid little attention to issues of

information aggregation. In fact, most theoretical analyses of emissions trading since Rubin (1996)

take the social planner’s perspective as their starting point, arguing e.g. as Schennach (2000) that

“[Rubin (1996) has shown that] when allowed to trade with one another, units will collectively behave

like a central planner who efficiently allocates emission permits to each unit to minimize total costs.”

Other recent examples of this social planner’s approach include Seifert et al. (2008) and Hintermann

(2010). Similarly, Chesney and Taschini (2012) solve for the informationally efficient equilibrium

emissions price in a model with private information but no abatement. Such approaches implicitly

assume that the equilibrium price will fully aggregate private information. Our results show that

this assumption is warranted when the only source of asymmetric information is private information

about emissions but that it is inconsistent with equilibrium behavior with dispersed information

when there is also private information about abatement costs.

Our analysis also generates new insights into the determinants of the dynamics of prices in

emissions markets. In particular, we go beyond the well-known result according to which emissions

prices are martingales and derive explicit forms for the way they get updated, following new infor-

mation arrival. In particular, when full information aggregation obtains, we show that prices should

not respond to the publication of verified emissions since that information was already (privately)

known to market participants. This is a special case of the strong form of the Efficient Market

Hypothesis.
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II A Benchmark Model of Price Formation

We explore price formation in a model designed to capture the salient features of many emissions

markets, namely gradual arrival of private information about own emissions, abatement, and un-

limited banking and borrowing of allowances within a phase. Figure 1 illustrates the timing of

allocation and surrender of emissions allowances in the EU ETS. Phases are made of several com-

pliance periods. Allocations for the whole phase are announced at the beginning of the phase but

allowances are distributed in yearly installments at the end of February of each year. Emissions

for year t are verified by March of year t + 1. Firms have then until April 30 to surrender the

allowances corresponding to the emissions of the previous year. This timing makes it possible for

firms to use some of the current year’s allowances to cover the previous year’s emissions. It is

arguably equivalent to full borrowing as one year of allowances is likely to provide the necessary

inter-temporal flexibility in most cases. Failure to surrender sufficient allowances results in a fine,

together with the requirement to buy any missing allowances in the market (from the next phase

if necessary). Unused allowances can be banked for future years. During Phase I of the EU ETS

(2005-07), allowances lost their value at the end of the phase. Banking across phases was allowed

starting with phase II (2008-12).

FIGURE 1. - Timing of Allocation and Surrender of Allowances in the EU ETS

Figure 1 also clarifies the timing of information available to the market. While firms could

arguably track their individual emissions as they happened, verified emissions for all installations

are only made public in April of the year after.1

1According to the Report on the functioning of the EU ETS (COM(2015) 576 final), most of the installations

covered by the EU ETS use the calculation-based methodology to monitor their emissions throughout the year. This

method weighs all emissions-producing inputs used by the installation by an emission factor to generate an estimate

of its emissions. Continuous emissions measurement systems are only used in a very small number of installations
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We model the finite horizon version of this market. The market plays out over T + 1 periods.

In periods 1 to T , N firms emit carbon according to an i.i.d. exogenous stochastic process, eit

∼ N(µt, σ
2), where µt and σ2 capture, respectively, the business cycle and firm heterogeneity.2 For

now, we assume that both µt and σ2 are common knowledge but relax this assumption for µt in

section IV. The number of firms N is finite (otherwise there would not be any aggregate uncertainty

about future emissions) but sufficiently large to make the price-taking assumption reasonable and

some of our proofs will rely of N being large enough. We interpret eit as the emissions of firm i

during period t, net of their received allowances. Let et denote period t aggregate emissions,
∑

i eit,

and Et =
∑t

τ=1 eτ denote aggregate emissions to date. Similarly, Eit =
∑t

τ=1 eiτ denote firm i’s

cumulative emissions to date.

To reflect the gradual arrival of information, we further divide each period t ≤ T into two

subperiods, one beginning at time t and the other beginning at time t + 0.5. Subperiods differ

in the information available to firms. At integer times t = 1, 2, ..., firms privately learn about

their emissions in the previous period, eit−1, and receive a noisy but unbiased signal xit about their

current period emissions, equal to xit = eit + εit, where εit is i.i.d. distributed according to N(0, 1).

At mid-period points, t = 2.5, 3.5, ..., emissions about the previous period are made public. Firms

do not receive any additional private information.

Trading takes place at the beginning of each subperiod. Let yit denote the number of allowances

traded by firm i at time t (where yit > 0 corresponds to a purchase and yit < 0 to a sale) and let pt

denote the price of allowances at time t. In addition, at the beginning of each (full) period, firms

decide on their abatement ait for the period. Abatement incurs a quadratic cost c(ai, θi) = 1
2θia

2
i ,

with θi > 0, that differs across firms. For now, we assume that these costs are common knowledge

and do not vary over time. We relax this assumption in Section V. For future reference we also let

1
θ =

∑
i

1
θi
. As for emissions, we introduce notations at and At to denote period t and cumulative

aggregate abatement respectively, and Ait to denote firm i’s cumulative abatement to date.

Period T + 1 is a pure compliance period: there are no emissions nor abatement. Firms learn

about their emissions in period T , eiT , decide on their sales or purchases of allowances, yiT+1, and

surrender their allowances for compliance. The role of this last period is to provide an opportunity

for firms to buy the needed allowances to cover their net emissions from period 1 to period T. With

full borrowing and banking, there is no loss in generality in assuming that compliance only occurs

at time T + 1 (the end of the phase). If market participants fail to surrender enough allowances to

(140 installations in 2014).
2Alberola et al. (2008) analyze the empirical drivers of emissions in the EU ETS.
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cover their emissions, they are fined K per missing allowance.3

Figure 2 summarizes the timing of actions and information in the model.

FIGURE 2. - Timing of Information and Action

Firms are rational but, in the tradition of rational expectations models, they take prices as

given.4 Their objective is to minimize their expected total cost of compliance which is the sum of

incurred abatement costs, trading costs, and penalty if applicable,
∑T

t=1 c(ait, θi) +
∑T+1

t=1 ptyit +

max {0,K(EiT −AiT − YiT+1)} where the last term corresponds to the total penalty.5

3In practice, the penalty may depend on t because a firm that fails to surrender a number of allowances corre-

sponding to its emissions has to pay a fixed penalty and buy any missing allowance on the market. If there are enough

allowances in the market in period T + 1, cost-minimizing firms will always comply and have enough allowances to

cover their emissions (otherwise they pay the fixed penalty K plus the current price of allowances, pT+1). If the

market is short at time T + 1, firms that do not have enough allowances will need to pay the fixed penalty K plus

the expected allowance price in the next phase. As there is no banking or borrowing between phases, the prices in

the different phases are statistically disconnected and therefore the fact that the penalty may depend on t (because

of the expected price in the next phase) does not affect our results.
4The Rational Expectations Equilibrium concept has well-known limitations (Grossman 1976; Dubey et al. 1987;

Jackson 1991) but has also shown to be a useful empirical benchmark (Plott and Sunder 1988; Forsythe and Lundholm

1990). We use it as an idealized form of frictionless market (see also Kovalenkov and Vives 2014).
5We ignore discounting for simplicity. We also ignore any indirect effect of the market for allowances on the markets

that firms serve (no pass-through).
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Since there are only 2T + 1 moments of time when new information arrives or actions are taken,

we solve for the market equilibrium at these 2T + 1 moments. Let sit denote the vector of private

signals received at time t by trader i. At integer times, sit = (xit, eit−1), while at mid-period points,

sit+0.5 = (et−1). A fully dynamic Rational Expectations Equilibrium (REE) (Tirole 1982)

is a sequence of price functions mapping firms’ signals st = (s1t, s2t, ..., sNt) (and, implicitly, past

history of prices and own actions) into a price st → pt = gt(st) and a sequence of trades yit(sit, pt)

and abatement decisions ait(sit, pt) such that (i) each trader i minimizes his expected total cost

of compliance at all t and for all information (sit, pt) trader i may have, and (ii) markets clear∑
i yit(sit, pt) = 0 for all t, sit and pt.

The existence of a fully dynamic REE does not necessarily imply that prices fully aggregate

private information. This would be the case only if the price is a sufficient statistic for the private

and public information dispersed in the market (Grossman 1976). In other words, when the market

equilibrium fully aggregates private information, observing the equilibrium price leads to the same

market outcomes as if all participants pooled their private signals.

III Equilibrium

III.1 Full Information Equilibrium

We start by considering the equivalent artificial economy where all private information is public.6

Let It denote all the information available at time t in the economy, including all past prices,

emissions, and signals. Formally:

It = {p1, ... , pt, e1, ..., et−1, x1, ..., xt}

where we have innocuously summarized individual past emissions, abatement and signals through

their aggregates. Because, in that economy, no new information is revealed at mid-period times

(past emissions are already known at the beginning of the period), it is sufficient to solve for the

equilibrium at integer times. We do this using backward induction.

At time T+1, emissions and abatements are fixed and known so there are only two possibilities:

the market is short, i.e. cumulative aggregate emissions are higher than cumulative abatement

ET > AT , in which case pT+1 = K, the penalty, or ET ≤ AT , in which case pT+1 = 0. Firm i will

need to buy allowances at that price if its cumulative abatement and purchases do not cover its

cumulative emissions, EiT −AiT −YiT > 0 (where we have implicitly assumed that no trading takes

place at T + 0.5 since no new information reaches the market) and will sell allowances otherwise.

6This corresponds to Radner (1979)’s notion of full communication equilibrium.
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At time T, period T−1 aggregate emissions are revealed but only a noisy signal, xT , is available

for period T emissions. Based on this information, firms decide on their trading and abatement to

minimize their current and future expected costs of compliance:

minaiT ,yiT pT yiT + c(aiT , θi) + V i
T+1(aiT , yiT |IT )

where V i
T+1(aiT1, yiT |IT ) is firm i’s expected continuation cost of compliance at time T + 1 given

choices aiT and yiT , and information IT . Substituting for V i
T+1(aiT , yiT |IT ) into this expression

leads to:

minaiT ,yiT pT yiT + c(aiT , θi) + E[pT+1(EiT −AiT − YiT−1 − yiT )|IT ]

Together with market clearing,
∑

i yiT = 0, and the fact that firms share the same beliefs about pT+1

since they have the same information, the first order conditions for firms’ individual optimization

problem are given by

ca(aiT , θi) = θiaiT = E[pT+1|IT ]

pT = E[pT+1|IT ]
[1]

At the full information equilibrium at time T, we find the classic result that firms choose to abate

up to the point where marginal abatement costs are equal to the current price.

Define Z = ET − AT , the excess emissions by the end of the phase. From the perspective of

time t, Z is a random variable, with:

Z = Et−1 −At +
T∑
k=t

ẽk −
T∑

k=t+1

ãk [2]

where a tilda has been added on the values of emissions and abatement that are not known with

certainty at time t. With this definition, the expectation of pT+1 conditional on the information

available at time T can be written as:

E[pT+1|IT ] = K Pr(Z > 0|IT )

= K Pr(ẽT > AT−1 + aT − ET−1|IT ) [3]

where the terms on the righthand side of the inequality sign in (3) are either known at time T (AT−1

and ET−1) or are contemporaneously determined (aT ), whereas the term on the lefthand side is

a random variable, based on IT . Using the projection theorem for normally distributed variables

leads to ẽT |IT ∼ ẽT |xT ∼ N( 1
1+σ2NµT + σ2

1+σ2xT ,
Nσ2

1+σ2 ). Therefore, combining (1) and (3) implies

that the equilibrium price at time T is defined implicitly by the following equality:7

7This expression uniquely pins down pT : the LHS is increasing in pT , whereas the RHS is decreasing in pT .

Moreover, both sides are continuous and the LHS is lower than the RHS for low values of pT and higher for high

values of pT .
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pT = K

1− Φ

AT−1 + pT
θ − ET−1 − 1

1+σ2NµT − σ2

1+σ2xT√
Nσ2

1+σ2

 [4]

where Φ stands for the cumulative distribution function of the standardized normal or, equivalently,

using the definition of Z,

pT = K

[
1− Φ

(
−E(Z|IT )√
V (Z|IT )

)]
[5]

Equation (4) shows that the equilibrium price increases with cumulative past emissions (ET−1)

and the current aggregate emissions forecast ( 1
1+σ2NµT + σ2

1+σ2xT ) and it decreases in past and

current abatement (AT−1 + pT
θ ). Uncertainty about emissions, σ2, has an ambiguous effect on

prices. On the one hand, the variance of Z increases in σ2. The effect on price depends on the sign

of expected excess emissions, E(Z|IT ). If E(Z|IT ) < 0, i.e. the market is expected to be long at

time T + 1, an increase in σ2 will increase the price because it increases the probability that the

market becomes short at T + 1. The effect is opposite if E(Z|IT ) > 0. On the other hand, a higher

level of uncertainty also means that firms put more weight on signal xT when updating their prior

about period T emissions. This can either contribute towards increasing prices (if xT is larger than

NµT ) or decreasing prices (otherwise) by changing E(Z|IT ). These effects reinforce one another if

the market is expected to be long but emissions in the current period are expected to be higher than

expected (xT > NµT ) or, alternatively, if the market is expected to be short and current period

emissions are expected to be lower than NµT .

Finally, note that the numerator in (4) scales proportionally with the number of firms N ,

whereas its denominator only scales at the rate of
√
N. This implies that the price converges to K

or 0 (depending on the sign of the numerator) as the number of firms increases. Intuitively, as the

number of firms increases, aggregate uncertainty about net emissions decreases and the market is

either long or short.

For future reference, it is useful to examine how the price at time T responds to the new

information reaching the market at time T , namely xT and eT−1. Let fT (.) describe the function

implicitly defined by (4) that maps xT and eT−1 into pT . Linearizing fT around the expectation of its

arguments conditional on IT−1, E[xT | IT−1] = NµT and E[eT−1 | IT−1] = 1
1+σ2NµT−1+ σ2

1+σ2xT−1

yields:

fT (NµT , E[eT−1 | IT−1]) +∇fT (NµT , E[eT−1 | IT−1])

 xT−NµT

eT−1 − E[eT−1 | IT−1]

 [6]

In words: relative to its expectation from the perspective of period T −1, the price at time T reacts

to higher than expected signals about current emissions, xT−NµT , and to higher past emissions
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than previously foreseen, eT−1 −E[eT−1 | IT−1]. In Lemma 1, we show that the multiplier of these

surprises is positive and that it is smaller for surprises about current emissions because firms account

for the fact that xT is a noisy signal and therefore only partially update their beliefs about current

period emissions. Lemma 1 also shows that the presence of abatement, which manifests it-self in

the presence of pT
θ in the righthand side of (4) lowers the magnitude of these price adjustments:

abatement dampens shocks. All proofs can be found in the Appendix.

Lemma 1 (Price adjustment to new information at time T). Let fT (.) describe the function

implicitly defined by (4) that maps xT and eT−1 into pT . Then:

(i) Prices respond positively to shocks in emissions and the more so to realized emissions than to

noisy signals about current emissions: ∂
∂xT

fT (xT , eT−1) = σ2

1+σ2
∂

∂eT−1
fT (xT , eT−1) > 0.

(ii) The possibility of abatement dampens the price response to emissions shocks: ∂
∂xT

fT (xT , eT−1) <

∂
∂xT

f̃T (xT , eT−1) and ∂
∂eT−1

fT (xT , eT−1) < ∂
∂eT−1

f̃T (xT , eT−1) where f̃(xT , eT−1) is the anal-

ogous price function in an environment without abatement, evaluated at the same value of

excess emissions Z.

(iii) Abatement only partially adjusts to emissions shocks so that the net effect of a positive (nega-

tive) emissions shock remains positive (negative): ∂
∂xT

E[eT − aT |IT ], ∂
∂eT−1

E[eT−1− aT |IT ] ∈

(0, 1).

Moving to time T − 1, firm i’s optimization problem is given by:

minaiT−1,yiT−1 pT−1yiT−1 + c(aiT−1, θi) + V i
T (aiT−1, yiT−1|IT−1)

or, equivalently, substituting for the expected continuation cost and leveraging the law of iterated

expectations and the equilibrium at time T which imply that E[pT |IT−1] = E[pT+1 |IT−1]:

minaiT−1,yiT−1 pT−1yiT−1 + c(aiT−1, θi) + E[c(aiT , θi) + pT+1(EiT −AiT − YiT−1)|IT−1]

Market clearing and common information (and therefore beliefs) lead to the familiar first order

conditions for firms’ individual optimization problem :

ca(aiT−1, θi) = θiaiT−1 = E[pT+1|IT−1]

pT−1 = E[pT+1|IT−1]
[7]

As before, abatements equalize marginal costs with the current price of allowances. The difference is

that firms now need to form expectations both about future emissions and about future abatement.

Indeed, E[pT+1|IT−1] is now given by:

K Pr(Z > 0|IT−1) = K Pr(ET−2 −AT−1 + ẽT−1 + ẽT − ãT > 0|IT−1)
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where we have again used a tilda to highlight unknown variables from the perspective of T − 1.

From (1), we know that aT =
∑

i aiT = pT
θ . However, pT is not known at time T − 1 but a function

of random variables xT and eT−1, fT (xT , eT−1). Using the linearization (6) of fT (.) around the

expectation of its arguments given IT−1, Z|IT−1 can be approximated by the sum of independent

normal variables, and thus a normal variable it-self, with mean and variance given in Lemma 2.

Lemma 2 (Distribution of excess emissions as of time T-1). Z|IT−1 is distributed approxi-

mately normally with the following mean and variance

E[Z|IT−1] = ET−2 + 1
1+σ2NµT−1 + σ2

1+σ2xT−1 +NµT −AT−2 − 2pT−1

θ

V (Z|IT−1) = Nσ2

(1+σ2)
+ δTNσ

2

with δT =
(

1− 1
θ

∂
∂eT−1

fT (NµT , E[eT−1|xT−1])
)2

=

 KφT

θ

√
Nσ2

1+σ2

+ 1

−2

∈ (0, 1) and φT = φ

−E(Z|IT−1)√
Nσ2

1+σ2

.

Here again, we see that abatement changes the dynamics of excess emissions, Z, as information

received at time T − 1 impacts both the expected excess emissions and its variance (through φT ), a

property absent in models without abatement (Chesney and Taschini 2012) and in finance models

that rely on normally distributed noises. The reason is that abatement is an endogenous response

to shocks.

The expression for the variance in Lemma 2 captures the net contribution of emission shocks

at time T − 1 , Nσ2

(1+σ2)
(since aT−1 is contemporaneously determined it does not contribute noise to

Z|IT−1), and the contribution from future shocks at time T, δTNσ
2.

Remember that Nσ2 corresponds to the variance of emissions in period T , absent abatement.

Therefore, δT can be viewed as the dampening due to abatement. Looking at the expression for δT in

Lemma 2, it is easy to see that it is decreasing in K and increasing in θ. A higher penalty increases

abatement by increasing the expected price everything else equal. This reduces the net effect of

emission shocks, reducing the variance. On the other hand, an increase in θ means that abatement

is getting more expensive, which reduces firms’ adjustment to emissions shocks, everything else

equal.

The level of dampening also depends on the current value of excess net emissions (through φT ).

It is maximal when E(Z|IT−1) = 0 and minimal (i.e. δT converges to 1) when E[Z|IT−1] is either

very large or very low. The reason is that the level of excess net emissions influences the returns

to abatement. When excess net emissions are very large, the price is close to its ceiling, K. In

that case, the marginal benefit of abatement is limited because it will not change the probability

that the market is short very much. Likewise, when net emissions are very small (large in absolute

value but negative), the equilibrium price is close to its floor, zero. Again the marginal benefit of
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abatement is small. Instead, the marginal returns from abatement is high when E(Z|IT−1) is close

to zero, which explains that these are also circumstances where dampening is at its highest level.

Given Lemma 2, the price at time T − 1 is implicitly defined by:

pT−1 = K

[
1− Φ

(
−E(Z|IT−1)√
V (Z|IT−1)

)]
[8]

where pT−1 appears both on the left of this equation but also on the right, in E[Z|IT−1]. We show in

the Appendix that (8) uniquely pins down the equilibrium price at T −1. The intuition is similar to

period T , namely that the righthand side, i.e. the probability of being short at the end of the phase,

is decreasing with pT−1 because abatement increases with pT−1. The difference with period T is

that V (Z|IT−1) also changes with pT−1. The proof shows that the direct effect through abatement

is larger than the indirect effect through a change in variance.

Lemma 3 (Uniqueness of the full information price equilibrium at time T − 1). The full

information equilibrium price implicitly defined by (8) is unique for N large enough.

We can replicate this approach for T − 2 and before, leading to Theorem 1:

Theorem 1 (Full information equilibrium). For N large enough, the full information equilib-

rium price is unique and implicitly defined by the following equation:

pt = K

[
1− Φ

(
−E(Z|It)√
V (Z|It)

)]
for all t = 1, ..., T [9]

with

E(Z|It) = Et−1 + 1
1+σ2Nµt + σ2

1+σ2xt +
∑T

k=t+1Nµk −At−1 − (T−t+1)
θ pt [10]

V (Z|It) =


Nσ2

1+σ2 +
∑T

k=t+1E

[(
1− (T−k+1)

θ
∂fk
∂ek−1

)2
|It
]
Nσ2 for t ≤ T − 1

Nσ2

1+σ2 for t = T

[11]

where ∂fk
∂ek−1

is shorthand notation for ∂
∂ek−1

fk(Nµk, E [ek−1|Ik−1]) .

At all times, in equilibrium, firms equate marginal abatement cost to the price and are indifferent

between trading today or later. Equilibrium prices follow a martingale E[pt|It−1] = pt−1.

Theorem 1 shows that the equilibrium price takes the same form at all times. It is equal to the

expected penalty at time T + 1, which depends on the level of penalty, K, and the probability that

emissions exceed the target. The expression for expected excess emissions, E(Z|It), consists of the

13



expectation of past, current and future emissions, based on information at time t, Et−1 + 1
1+σ2Nµt+

σ2

1+σ2xt+
∑T

k=t+1Nµk, minus past, current and future abatement, where the term (T−t+1)
θ pt captures

the fact that firms expect to abate exactly the same amount per period going forward since pt is

the best forecast of future prices (intertemporal smoothing given that abatement costs are convex).

The expression for the variance accounts for the dampening of future shocks through abatement.

Corollary 1 derives the law of motion for expected excess emissions and formalizes the extent to

which uncertainty about the eventual balance between emissions and abatement decreases as time

goes by.

Corollary 1 (Dynamics of excess emissions). Expected excess emissions take the following

recursive form:

E[Z|It] = E[Z|It−1] +
[

σ2

1+σ2 1 − (T−t+1)
θ

]
xt −Nµt

et−1 − E[et−1|It−1]

pt − pt−1

 [12]

Their expected variance declines over time:

E [V (Z|It+1)|It] = V (Z|It)−Nσ2

(
1− (T − t)

θ

∂ft+1

∂et

)2

Expression (12) shows that beliefs about expected excess emissions are updated following arrival

of new information about current period emissions (xt−Nµt) and previous period emissions (et−1−

E[et−1|It−1]), as well as changes in prices which lead market participants to update their beliefs

about future abatements.

Corollary 1 shows that the variance of excess emissions only decreases in expectation. It even-

tually does decrease as expected given that uncertainty reduces over time.8 Equilibrium prices

therefore eventually converge to 0 or K.

Finally, though equilibrium prices are not linear in signals, we can derive an approximate lin-

ear recursive form for them that highlights their martingale property and the nature of updating

following new information arrival. Corollary 2 generalizes (6).

Corollary 2 (Approximate dynamics of equilibrium prices). Equilibrium prices follow ap-

proximately the following recursive form:

pt = pt−1 +∇ft(Nµt, E[et−1|xt−1])

 xt −Nµt

et−1 − E [et−1|xt−1]


with ∂

∂xt
ft(Nµt, E[et−1|xt−1]) = σ2

1+σ2
∂

∂et−1
ft(Nµt, E[et−1|xt−1]).

8To see this, compare the expressions for V (Z|IT ) in (4) and V (Z|IT−1) in Lemma 2

14



III.2 Information Aggregation

We now turn to the equilibrium in the economy with private information. Let Iit denote firm i’s

information set at time t. Formally,

Iit = {p1, ... , pt, e1, ..., et−2, eit−1, xi1, ..., xit} for integer values of t

The next theorem shows that the full information equilibrium price is a sufficient statistic for market

participants’ private information. Therefore, the full information equilibrium is also an equilibrium

in the economy with private information. Because the full information equilibrium is unique, so is

the REE that fully aggregates private information.9

Theorem 2 (Full information aggregation). There exists a unique dynamic Rational Expecta-

tions Equilibrium that fully aggregates market participants’ private information. This equilibrium is

characterized at integer times by the same equations (9) - (11) as the full information equilibrium.

Moreover, pt = pt+0.5 : prices are not affected by the publication of aggregate emissions at mid-period

points because this information has already been integrated into the price.

Theorem 2 shows that the strong form of the Efficient Market Hypothesis holds in our setting:

all information – private and public – is integrated into the price as soon as it arises. This result

is remarkable because, a priori, two parameters are needed to identify the distribution of excess

emissions (E[Z|It] and V (Z|It)) and there is only one price. The technical reason why the price is

nevertheless a sufficient statistic for the information dispersed in the economy is the combination

of two factors: first, the price reveals E[Z|It]√
V (Z|It)

(this is seen in (9)), second, V (Z|It) is a known

function of E[Z|It] and the ratio E[Z|It]√
V (Z|It)

is strictly increasing in E[Z|It]. Together, these elements

imply that E[Z|It] and V (Z|It) can be identified separately.

Economically, this comes from the fact that all incentives are eventually driven by E[Z|It] only.

In particular, the marginal returns from abatement depend on the market expectation about excess

emissions, E[Z|It], which in turn impacts the level of dampening of emissions shocks, and therefore

V (Z|It). This reduces the information to infer to a single dimensional variable, and the equilibrium

price is therefore able to perform its information aggregation role.

We now examine the welfare properties of the rational expectations equilibrium. Montgomery

(1972), Cronshaw and Kruse (1996), and Rubin (1996) have shown theoretically that competitive

emissions markets with no uncertainty minimize aggregate compliance costs: individual optimiza-

tion by firms results in a total compliance cost that is equivalent to the aggregate least-cost solution,

9This does not rule out other – non full information aggregating – REE (see e.g. Pálvölgyi and Venter 2015 for a

recent contribution to these questions).
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a corollary of the First Welfare Theorem. Theorem 3 shows that, when full information aggregation

takes place at equilibrium, this result generalizes to a market with private information and uncer-

tainty, with the caveat that the welfare criterion now is expected least-cost solution conditional on

all the information in the economy (constrained efficiency).

Theorem 3 (Constrained efficiency of the Rational Expectations Equilibrium). When full

information aggregation occurs, equilibrium decentralized abatement decisions minimize the expected

sum of current and future abatement costs at all times, conditional on the information available in

the economy.

As Kling and Rubin (1997) have noted before, the least cost solution may not be the solution

that maximizes social welfare if firms discount future payoffs differently from Society, if social costs

of emissions differ over time, or if the number of allowances is set suboptimally. These caveats also

apply here. In particular, K may differ from the marginal social cost of emissions beyond the initial

target but the market minimizes compliance cost, including this penalty.

IV Aggregate Uncertainty about Emissions

So far, the only source of uncertainty in the model was private information about past and current

emissions. In particular, the average difference between business-as-usual emissions and allowances,

µt, was common knowledge. This is a strong assumption for at least two reasons. First, in the

context of the launch of the EU ETS, business-as-usual emissions were hastily computed before

phase I and allowances allocations decided on this basis. Ex-post, it turned out that some of these

business-as-usual emissions were over-estimated. Second, µt can be interpreted as capturing the

business cycle, with high values of µt during booms and low values during recessions. While it may

be reasonable that the current business cycle is observable and common knowledge, business cycles

are intrinsically uncertain and therefore future µt’s are unlikely to be known with certainty today.

In this section, we explore two polar cases that relax the assumption that µt is common knowl-

edge and capture these sources of uncertainty:

Case 1: Unknown business-as-usual emissions. Suppose that individual emissions are still

drawn from a normal distribution N(µt, σ
2) as earlier, but now µt = µ for all t and

unknown to firms which hold a common prior N(µ0, τ
2
0 ) about µ.

Case 2: Uncertain future business cycle. Suppose that individual emissions are still drawn

from a normal distribution N(µt, σ
2) as earlier, but now µt is only observed at time
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t. Future average emissions are not known but correlated over time. They follow the

process µt+1 = µt + ρηt where ηt is i.i.d. N(0, 1) and ρ is common knowledge.

We first discuss how these alternative assumptions affect the full information equilibrium. Under

case 1, firms now not only learn about their past and current emissions at every period (and this

information is shared), they also update their beliefs about µ. The following lemma describes how

beliefs about µ and therefore beliefs about eit are updated.

Lemma 4 (Updated beliefs about µ and future emissions under case 1). Suppose that case

1 holds. In the full information economy, firms’ posterior beliefs at time t about average emissions

µ are normally distributed according to N(µt, τ
2
t ) with

µt =
(
σ2(1+σ2)
N∆

)
µt−1 +

(1+σ2)τ2t−1

∆

[
et−1

N + σ2

σ2+1
xt
N

]
τ2
t = σ2(1+σ2)

∆N τ2
t−1

where ∆ = τ2
t−1(1 + 2σ2) + σ2(1+σ2)

N . Posterior beliefs at time t about current and future individual

emissions are normally distributed according to N(µk, σ
2
k) with µk = µt given above and σ2

k = σ2+τ2
t

for k > t.

Lemma 4 shows that, every period, firms update their beliefs about current and future emissions,

following their learning about past emissions {e1t−1, ..., eNt−1} and current emissions {x1t, ..., xNt}.

They put more weight on their prior when realized emissions are noisy (σ2 large) and their prior

precise (τ2
t−1 small). As time passes, their posterior about µ becomes increasingly precise (τ2

t

decreases with t). Firms have the same prior about all future emissions.

Under case 2, firms observe the existing business cycle (and therefore learn about the current

value of µt). They update their beliefs about future business cycles accordingly:

Lemma 5 (Updated beliefs about future emissions under case 2). Suppose that case 2 holds.

Posterior beliefs at time t about future individual emissions are normally distributed according to

N(µk, σ
2
k) with µk = µt and σ2

k = (k − t)ρ2 + σ2 for k > t.

Lemma 5 shows that firms’ best prediction about average individual emissions is the same for all

future periods but become less precise as the time horizon increases. Future emissions are positively

correlated.

Looking back at how we derived the full information equilibrium in the benchmark model, it

is easy to see that the full information equilibrium in these richer informational environments is

characterized by the same equations as in Theorem 1 except that, at time t, the values for {µk}k≥t
and σ2 used to compute E[Z|It] and V (Z|It) are now replaced by the values {µk}k≥t and {σ2

k}k≥t
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described in Lemma 4 or Lemma 5, whichever applies. Importantly, in both cases, V (Z|It) is still a

known function of E(Z|It) and common knowledge parameters K, θ, N , T , σ2 and now µ0, τ
2
0 and

ρ (cf. intermediate step in the proof of Theorem 1). Thus, the argument for why prices separately

identify E[Z|It] and V (Z|It) in Theorem 2 still goes through and full information aggregation

obtains.

Theorem 4 (Full information aggregation when µt is not common knowledge). Consider

the extension of the benchmark model where either business-as-usual emissions are unknown (case

1) or future business cycles are uncertain (case 2). There exists a unique dynamic Rational Expec-

tation Equilibrium that fully aggregates market participants’ private information. This equilibrium

is characterized at integer times by the same equations (9) - (11) as the full information equilib-

rium, with the difference that, at time t, the values for {µk}k≥t and σ2 used to compute E[Z|It]

and V (Z|It) are now replaced by the values {µk}k≥t and {σ2
k}k≥t described in Lemma 4 (case 1)

or Lemma 5 (case 2). Moreover, pt = pt+0.5 : price are not affected by the publication of aggregate

emissions at mid-period points because this information has already been integrated into the price.

Theorem 4 shows that the information aggregation result derived in the context of the bench-

mark model is robust to extensions to richer informational environments about the determinants of

emissions.

V When Information Aggregation Fails

Another relevant source of private information in practice is abatement costs. These were assumed

to be common knowledge in the benchmark model but are unlikely to be common knowledge in

practice, especially in markets covering firms from multiple industries as is the case of the EU ETS.

To explore the impact of information asymmetries about abatement costs, we return to the

benchmark model but now let firms’ abatement cost parameters (θ1, ..., θN ) be private information,

with some common prior over the joint distribution. This does not change the full information

equilibrium which is still given by Theorem 1. However, now V (Z|It) is no longer a known function

of E[Z|It]. This is already seen in period T − 1 where V (Z|IT−1) = Nσ2

(1+σ2)
+ δTNσ

2 where δT is

defined in Lemma 2 and depends on both θ and E[Z|IT−1]. Therefore, whereas pt may still reveal

E[Z|It]√
V (Z|It)

, market participants are unable to separately identify E[Z|It] and V (Z|It). As a result,

full information aggregation at integer times fails. For the same reason, the publication of past

emissions at mid-period does not help re-establish information aggregation, even if prices may react

to such publication. This is formalized in the next Theorem whose proof is omitted.
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Theorem 5 (Failure of information aggregation when abatement costs are private infor-

mation). When both emissions and abatement costs are private information, equilibrium prices can

no longer fully aggregate private information. The strong form of the Efficient Market Hypothesis

fails.

Theorem 5 establishes that the full information equilibrium, or equivalently, the informed social

planner approach to emissions markets is not appropriate when there is asymmetric information

about abatement costs. Intuitively, a low price can be the result of either lower emissions than

anticipated or low abatement costs. Low emissions and low abatement costs should also impact

future beliefs differently but firms have no way to tell from the price which event applies.

VI Concluding Comments

A central argument in favor of market-based policy instruments such as emissions markets is their

ability to decentralize decisions to those who have the information, thereby arguably fostering

greater efficiency. Our paper examined this argument, using tools from finance to model explicitly

the nature of information asymmetry and uncertainty in such markets.

We have found that markets can fully aggregate private information and generate informative

prices if the source of informational asymmetry is due to firms’ emissions. For the optimist, these re-

sults – especially Theorems 2-4 – can be seen as providing microfoundations – under some conditions

– for the social planner approach to emissions markets.

In our view, however, a more suitable take-away from the analysis is that information aggregation

is difficult to obtain. Despite the extremely favorable modeling assumptions that we have adopted

(no friction beyond asymmetric information, a single price, etc.), information aggregation breaks

down as soon as there is some information asymmetry regarding abatement costs. Even when

abatement costs are common knowledge, the inference problem – from prices to a sufficient statistic

about market participants’ information – is highly complex and non linear, raising doubts that real

markets could solve it. The fact that market participants in the EU ETS closely watch the yearly

publication of past realized emissions and that prices react to this is evidence that information

aggregation probably fails in this market.

An interesting venue for future research is to understand what competitive emissions markets

can realistically achieve when there is private information about abatement costs and, in particular,

how market design can support the information aggregation process. Another important open

question is to understand the efficiency implications for emissions prices as an investment signal in

these markets, when information aggregation fails.
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Appendix: Proofs

Proof of Lemma 1. (i) Applying the implicit function theorem on (4) yields

∂

∂eT−1
fT (xT , eT−1) =

1√
Nσ2

1+σ2

Kφ1

1 + Kφ1

θ

√
Nσ2

1+σ2

=
Kθφ1

θ
√

Nσ2

1+σ2 +Kφ1

,

where φ1 = φ

AT−1+
pT
θ
−ET−1− 1

1+σ2
NµT− σ2

1+σ2
xT√

Nσ2

1+σ2

, and likewise,

∂

∂xT
fT (xT , eT−1) =

σ2

1 + σ2

1√
Nσ2

1+σ2

Kφ1

1 + Kφ1

θ

√
Nσ2

1+σ2

=
σ2

1 + σ2

∂

∂eT−1
fT (xT , eT−1),

proving the first part of the claim.

(ii) In the absence of abatement, pT does not appear on the righthand side of (4), leading to simple

derivatives: ∂
∂eT−1

f̃T (xT , eT−1) = 1√
Nσ2

1+σ2

Kφ2 and ∂
∂xT

f̃T (xT , eT−1) = σ2

1+σ2
1√
Nσ2

1+σ2

Kφ2, where

φ2 = φ

−ET−1 − 1
1+σ2NµT − σ2

1+σ2xT√
Nσ2

1+σ2

 .

The second claim follows directly from the comparison between the expressions of ∂
∂xT

fT (xT , eT−1)

and ∂
∂xT

f̃T (xT , eT−1), and ∂
∂eT−1

fT (xT , eT−1) and ∂
∂eT−1

f̃T (xT , eT−1) respectively when φ1 = φ2.

(iii) From the first order conditions for abatement (1), aT = 1
θfT (xT , eT−1). Therefore, using the

derivations in (i):

∂

∂xT
aT =

σ2

1 + σ2

Kφ1

θ
√

Nσ2

1+σ2 +Kφ1

<
σ2

1 + σ2
=

∂

∂xT
E[eT |IT ]

Likewise,
∂

∂eT−1
aT =

Kφ1

θ
√

Nσ2

1+σ2 +Kφ1

< 1 =
∂

∂eT−1
E[eT−1|IT ]

Proof of Lemma 2. By definition, Z = ET−2 − AT−1 + ẽT−1 + ẽT − ãT , where the variables

highlighted with a tilda are unknown as of time T − 1. Aggregate emissions ẽT−1 and ẽT are

independently distributed, conditional on IT−1, with

ẽT | IT−1 ∼ N(NµT , Nσ
2)
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and

ẽT−1 | IT−1 ∼ N
(

1

1 + σ2
NµT−1 +

σ2

1 + σ2
xT−1,

Nσ2

1 + σ2

)
Aggregate abatement ãT can be expressed as a function of the unknown variables (as of time T −1),

eT−1 and xT ,
fT (xT ,eT−1)

θ , where fT is the function defined implicitly by (4) that maps eT−1 and xT

into pT . Linearising fT around the expectations of its arguments, conditional on IT−1, implies that

Z|IT−1 can be approximated by the sum of three independent normally distributed variables, plus

some constant terms:10

Z|IT−1 =
(
ET−2 −AT−1 + eT−1 + eT − fT (xT , eT−1)

θ

)
|IT−1

' ET−2 −AT−1 +
(

1− 1
θ

∂fT
∂eT−1

)
eT−1|IT−1 +

(
1− 1

θ
∂fT
∂xT

)
eT − 1

θ
∂fT
∂xT

εT

−1
θfT (NµT , E[eT−1 | IT−1]) + 1

θ

(
∂fT
∂xT

NµT + ∂fT
∂eT−1

E[eT−1 | IT−1]
)

where ∂fT
∂eT−1

is shorthand notation for ∂
∂eT−1

fT (NµT , E[eT−1 | xT−1]) and ∂fT
∂xT

is shorthand notation

for ∂
∂xT

fT (NµT , E[eT−1 | xT−1]) derived in Lemma 1. Therefore Z|IT−1 is approximately normally

distributed with mean:

E[Z|IT−1] = ET−2 −AT−2 − pT−1

θ + 1
1+σ2NµT−1 + σ2

1+σ2xT−1 +NµT

−1
θfT (NµT , E[eT−1 | xT−1])

= ET−2 −AT−2 − 2
pT−1

θ + 1
1+σ2NµT−1 + σ2

1+σ2xT−1 +NµT

where we have used the fact that fT (NµT , E[eT−1 | xT−1]) = E[pT |IT−1] = pT−1 by the law of

iterated expectations. The variance of Z|IT−1 can be derived using the law of total variance:

V [Z|IT−1] = E [V [Z|IT ] |IT−1] + V [E [Z|IT ] |IT−1]

= Nσ2

(1+σ2)
+ V

[
1

(1+σ2)
NµT + σ2

(1+σ2)
xT + ET−1 −AT−1 − fT (xT , eT−1)

θ |IT−1

]
= Nσ2

(1+σ2)
+ V

[(
σ2

(1+σ2)
− 1

θ
∂fT
∂xT

)
xT +

(
1− 1

θ
∂fT
∂eT−1

)
eT−1|IT−1

]
= Nσ2

(1+σ2)
+
(

σ2

(1+σ2)

)2 (
1− 1

θ
∂fT
∂eT−1

)2
N(σ2 + 1) +

(
1− 1

θ
∂fT
∂eT−1

)2
Nσ2

(1+σ2)

= Nσ2

(1+σ2)
+
(

1− 1
θ

∂fT
∂eT−1

)2
Nσ2 = Nσ2

(1+σ2)
+

 KφT

θ

√
Nσ2

1+σ2

+ 1

−2

Nσ2

[13]

where the second and third lines use the expression for E [Z|IT ] and the linearization of pT as a

function of xT and eT−1 derived in the main text, and the fourth line leverages Lemma 1 ( ∂fT∂xT
=

σ2

1+σ2
∂fT
∂eT−1

) and the fact that V (eT−1|IT−1) = V (eT−1|xT−1) = Nσ2

1+σ2 . The last line follows from the

expression for ∂fT
∂eT−1

derived in the proof of Lemma 1.

10This is the delta method in econometrics (see Greene 2011): by using a first-order Taylor series expansion around

the conditional means of its arguments, xT and eT−1, the non linear function fT can be approximated by a linear

function that takes normally distributed values if xT and eT−1 are normally distributed.
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Proof of Lemma 3. Given that the lefthand side of (8) is strictly increasing in pT−1, that both

sides are continuous and that the lefthand side is smaller than the righthand side at pT−1 = 0, a

sufficient condition for (8) to admit a unique solution is that
E(Z|IT−1)√
V (Z|IT−1)

is decreasing in pT−1. Let

wT−1 = E[Z|IT−1]. Using Lemma 2, we can write V (Z|IT−1) as a function of wT−1:

hT−1(wT−1) ≡ V (Z|IT−1) =
Nσ2

1 + σ2
+ δT (wT−1)Nσ2 [14]

where δT (wT−1) =
(
K
√

1+σ2

θ
√
Nσ2

φ
(
−wT−1

√
1+σ2

√
Nσ2

)
+ 1
)−2

. Since E[Z|IT−1] is decreasing in pT−1, we

have

sign

(
∂

∂pT−1

(
E(Z|IT−1)√
V (Z|IT−1)

))
= −sign

(
∂

∂wT−1

(
wT−1√

hT−1(wT−1)

))
Expanding this expression,

∂

∂wT−1

(
wT−1√

hT−1(wT−1)

)
= hT−1(wT−1)−

1
2 − 1

2
hT−1(wT−1)−

3
2wT−1h

′
T−1(wT−1),

we see that a necessary and sufficient condition for
E(Z|IT−1)√
V (Z|IT−1)

to be decreasing in pT−1 is that

hT−1(wT−1)− 1

2
h
′
T−1(wT−1)wT−1 > 0

Substituting for hT−1(.) and h
′
T−1(.) using (14) and dividing by Nσ2, this is equivalent to:

1

1 + σ2
+ δT (wT−1)− 1

2
δ
′
T (wT−1)wT−1 > 0 [15]

The strategy of the proof is to show that (15) holds for N large enough. We do this by showing

that limN→∞δT (wT−1) = 1 and limN→∞δ
′
T (wT−1)wT−1 = 0.

Claim 1: limN→∞δT (wT−1) = 1

This follows directly from the fact that φ is bounded:

limN→∞

(
K
√

1 + σ2

θ
√
Nσ2

φ

(
−wT−1

√
1 + σ2

√
Nσ2

)
+ 1

)−2

= 1

Claim 2: limN→∞
1
2δ
′
T (wT−1)wT−1 = 0

limN→∞
1
2δ
′
T (wT−1)wT−1

= limN→∞

(
K
√

1+σ2

θ
√
Nσ2

φ
(
−wT−1

√
1+σ2

√
Nσ2

)
+ 1
)−3

K(1+σ2)
θσ2 φ

′
(
−wT−1

√
1+σ2

√
Nσ2

)
wT−1

N

= K(1+σ2)
θσ2 limN→∞φ

′
(
−wT−1

√
1+σ2

√
Nσ2

)
wT−1

N

= 0

since
wT−1

N converges to a finite number (wT−1 scales with N) and limx→±∞φ
′
(x) = 0.

Putting claim 1 and claim 2 together leads to:
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limN→∞
1

1 + σ2
+ δT (wT−1)− 1

2
δ
′
T (wT−1)wT−1 =

1 + 2σ2

1 + σ2
> 0

Continuity then implies that this inequality also holds for N large enough.

Proof of Theorem 1. It is easy to check that the solution for the equilibrium price at time T and

T − 1 satisfies (9) to (11). To prove that Theorem 1 holds for t < T − 1, we first show by induction

that pt = E[pT+1|It] for all t. This clearly holds for t = T, T − 1. Suppose it holds for k + 1 and

above, and consider the optimization problem of market participant i at time k:

minaik,yikpkyik + c(aik, θi) + V i
k+1(aik, θi|Ik)

Using the fact that pt = E[pT+1|It] for t > k and the law of iterated expectations, this optimization

problem can be rewritten as:

minaik,yikpkyik + c(aik, θi) + E

[
T∑

l=k+1

c(ail, θi) + pT+1(EiT −AiT − Yik)|Ik

]
where all transactions after time k cancel out in expectations. Common information and beliefs,

and market clearing, then lead to the familiar first order conditions for equilibrium:

pk = E[pT+1|Ik]

ca(aik, θi) = θiaik = E[pT+1|Ik]

Because this was shown for an arbitrary k, we conclude that pt = E[pT+1|It] (and ait = pt
θi

) for all

t. In particular, this implies that pt is a martingale: E[pt|It−1] = pt−1.

From the equilibrium at T + 1,

pt = E[pT+1|It] = K Pr(Z > 0|It) [16]

where, from the perspective of time t, Z is given by:

Z = Et−1 −At +

T∑
k=t

ek −
T∑

k=t+1

pk
θ

[17]

In expression (17), ek is normally distributed and pk is the result of normally distributed shocks and

can be approximated, from the perspective of time t, by the sum of normally distributed random

variables. Therefore Z|It is approximately normally distributed and thus pinned down by its mean

and variance, which we now derive.

Expression for E[Z|It]:
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Taking expectations of (17) given It and applying the law of iterated expectations, we get:

E[Z|It] = Et−1 −At−1 +
1

1 + σ2
Nµt +

σ2

1 + σ2
xt +

T∑
k=t+1

Nµk − (T − t+ 1)
pt
θ

i.e. (10). For future reference, we note that this implies that E[Z|It] takes the following recursive

form:

E[Z|It] = E[Z|It−1]+
σ2

1 + σ2
(xt−Nµt)+(et−1−

1

1 + σ2
Nµt−1−

σ2

1 + σ2
xt−1)− (T − t+ 1)

θ
(pt−pt−1)

[18]

Expression for V [Z|It]:

To derive the expression for the variance, we again use an induction argument and the expression

derived for E[Z|It]. Suppose that (11) holds for all t > l. From the law of total variance,

V (Z|Il) = E [V (Z|Il+1)|Il] + V (E[Z|Il+1]|Il)

= Nσ2

1+σ2 +
∑T

k=l+2E

[(
1− (T−k+1)

θ
∂fk
∂ek−1

)2
|Il
]
Nσ2

+V
(
El −Al + 1

1+σ2Nµl+1 + σ2

1+σ2xl+1 +
∑T

k=l+2Nµk − (T − l)pl+1

θ |Il
)

= Nσ2

1+σ2 +
∑T

k=l+2E

[(
1− (T−k+1)

θ
∂fk
∂ek−1

)2
|Il
]
Nσ2

+V
(
el + σ2

1+σ2xl+1 − (T − l)pl+1

θ |Il
)

From the perspective of time l, pl+1 is a function of xl+1 and el which we denote fl+1(xl+1, el).

Linearizing this function around the expectations of its two arguments and accounting for the fact

that ∂
∂xl+1

fl+1(Nµl+1, E[el|Il]) = σ2

1+σ2
∂
∂el
fl+1(Nµl+1, E[el|Il]) implies that:

V
(
el + σ2

1+σ2xl+1 − (T − l)pl+1

θ |Il
)

= V
(
el

(
1− (T−l)

θ
∂fl+1

∂el

)
+ σ2

1+σ2xl+1

(
1− (T−l)

θ
∂fl+1

∂el

)
|Il
)

=
(
Nσ2

1+σ2 + Nσ4

1+σ2

)(
1− (T−l)

θ
∂fl+1

∂el

)2

= Nσ2
(

1− (T−l)
θ

∂fl+1

∂el

)2

Therefore:

V (Z|Il) =
Nσ2

1 + σ2
+

T∑
k=l+1

E

[(
1− (T − k + 1)

θ

∂fk
∂ek−1

)2

|Il

]
Nσ2 [19]

as claimed, or equivalently and for future reference:

V (Z|Il) = E [V (Z|Il+1)|Il] +Nσ2

(
1− (T − l)

θ

∂fl+1

∂el

)2

[20]

Putting the expression for E[Z|Il] and V [Z|Il] together with (16) yields (9).

The last step in the proof is to check for uniqueness (existence follows directly from Brouwer’s fixed

point theorem on the domain [0,K]). We first show that V (Z|It) is fully pinned down by E[Z|It].

Intermediary step: V (Z|It) is fully pinned down by E[Z|It].
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The proof proceeds by induction. The claim holds for V (Z|IT−1) as shown in the proof of Lemma

3 (and trivially so for V (Z|IT )). Suppose it also holds for all t > l. Let ht(.) describe the function

that maps E[Z|It] into V (Z|It) for t > l i.e. V (Z|It) = ht(E[Z|It]). Then (20) can be rewritten as:

V (Z|Il) = E [hl+1(E[Z|Il+1])|Il] +Nσ2

(
1− (T − l)

θ

∂fl+1

∂el

)2

[21]

We first consider the second term of the righthand side. By definition,
∂fl+1

∂el
describes how pl+1

changes with el, evaluated at xl+1 = Nµl+1 and el = E[el|Il]. Applying the implicit function

theorem to (9) to obtain an expression for ∂
∂el
fl+1(Nµl+1, E[el|Il]) and rearranging, we get that :(

1− (T − l)
θ

∂fl+1

∂el

)2

=

(
1 +

K(T − l)
θ

φ(R)
∂R

∂el

)−2

[22]

where R =
E[Z|Il+1]√
V (Z|Il+1)

evaluated at xl+1 = Nµl+1 and el = E[el|Il] and the corresponding equilib-

rium price. Since, by assumption, V (Z|Il+1) is fully pinned down by E[Z|Il+1] and E[Z|Il+1] =

E[Z|Il] at xl+1 = Nµl+1 and el = E[el|Il] (no new information), then (22) is fully pinned down by

E[Z|Il] (and the knowledge of the model parameters, K, θ, N , T and σ2).

We now turn to the first term of the righthand side of (21). The martingale property of expected

excess emissions, (18), implies that E [hl+1(E[Z|Il+1])|Il] can be rewritten as

E [hl+1(E[Z|Il] + ∆l+1)|Il] [23]

where

∆l+1 =
σ2

1 + σ2
(xl+1 −Nµl+1) + (el −

1

1 + σ2
Nµl −

σ2

1 + σ2
xl)−

(T − l)
θ

(pl+1 − pl)

is approximately normally distributed from the perspective of time l, with E[∆l+1|Il] = 0 and

V (∆l+1|Il) = Nσ2
(

1− (T−l)
θ

∂fl+1

∂el

)2

, a function of E[Z|Il] (following the same arguments as above).

Therefore, E [hl+1(E[Z|Il+1])|Il] depends both directly, as an argument in hl+1, and indirectly,

through the distribution of ∆l+1, on E[Z|Il].

Uniqueness of equilibrium price:

A sufficient condition for the equilibrium price to be unique is that the righthand side of (9) is

decreasing in pt, or equivalently, that E(Z|It)√
V (Z|It)

is decreasing in pt. Leveraging the intermediary step,

let wt = E[Z|It] and ht(wt) = V (Z|It). Since E[Z|It] is decreasing in pt, we have

sign

(
∂

∂pt

(
E(Z|It)√
V (Z|It)

))
= −sign

(
∂

∂wt

(
wt√
ht(wt)

))
so we need to show that:

∂

∂wt

(
wt√
ht(wt)

)
> 0 for all t [24]
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Let δt+1(wt) =
(

1− (T−t)
θ

∂ft+1

∂et

)2

, the dampening factor for period t+ 1. From (19), ht(wt) can be

expressed as

ht(wt) =
Nσ2

1 + σ2
+Nσ2δt+1(wt) +Nσ2

T∑
k=t+2

E [δk(wk−1)|It] [25]

for t < T , where, using (22),

δt+1(wt) =

(
1 +

(T − t)
θ

Kφ

(
−wt√
ht+1(wt)

)(
∂

∂wt

wt√
ht+1(wt)

))−2

[26]

From Lemma 2, we know that δT (wT−1) is strictly bounded between 0 and 1, and likewise, we

established in Lemma 3 that ∂
∂wT−1

wT−1√
hT−1(wT−1)

> 0 for all wT−1 when N is large enough, which

implies (from (26)) that δT−1(wT−2) is also strictly bounded between 0 and 1. Referring back to

(25), this implies that hT−2(wT−2) scales up with N (denoted hT−2(wT−2) = O(N)).

Define the function gt(wt, N) = wt√
ht(wt,N)

(where with a slight abuse of notation we have made

explicit the dependence of ht on N). When t = T − 2, this function scales with N
1
2 since its

numerator scales with N and we have just established that its denominator scales with N
1
2 . Let’s

rewrite wt = Nwt to highlight the dependence of the numerator on N . Taking the total derivative

of gT−2(wT−2, N) with respect to N , this means that, for wT−2 > 0 (the argument is symmetric for

wT−2 < 0) and N large enough:

d

dN
gT−2(wT−2, N) = wT−2

∂

∂wT−2
gT−2(wT−2, N) +

∂

∂N
gT−2(wT−2, N) > 0

Because the second term is negative, we can conclude that

∂

∂wT−2
gT−2(wT−2, N) ≡ ∂

∂wT−2

(
wT−2√

hT−2(wT−2)

)
> 0

for N large enough. We can apply this argument recursively to establish that (24) holds for all

t.

Proof of Corollary 1. The corollary follows directly from (18) and (20).

Proof of Corollary 2. Corollary 2 follows directly from a linearization of (9) around xt = Nµt

and et−1 = E[et−1|It−1].

Proof of Theorem 2. From equation (9), market participants can infer E(Z|It)√
V (Z|It)

from the obser-

vation of the price. Moreover, the argument establishing the uniqueness of the equilibrium price

in the proof of Theorem 1 established that E[Z|It]√
V (Z|It)

is strictly increasing in E[Z|It]. Therefore,

E[Z|It] and V(Z|It) are separately identified from the observation of equilibrium prices. These are
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also sufficient statistics for Z conditional on It. Therefore, E[pT+1|Iit] = E[pT+1|It] for all i and

market participants minimize their expected compliance costs at the full information equilibrium

actions.

Proof of Theorem 3. We show that the solution {aFB1t ,.., a
FB
it , .., aFBNt }Tt=1 to the dynamic ag-

gregate cost minimization problem is identical to the abatement decisions arising in the market

equilibrium.

At time T + 1, emissions and abatements are fixed so there is no decision to take. Either

cumulative aggregate emissions are higher than cumulative abatement, in which case a penalty

of K per missing allowance is imposed, or ET ≤ AT , in which case no further cost is incurred.

Therefore, at time T + 1, aggregate abatement costs are equal to max {K (ET −AT ) , 0}.

The cost minimization problem from time T ’s perspective is given by:

min
a1T ,...,aNT

N∑
i=1

c(aiT , θi) + E [max {K (eT + ET−1 − aT −AT−1) , 0} |IT ] [27]

Let ϕ(.|IT ) denote the pdf of eT , the only variable that is not known with certainty in (27), condi-

tional on information IT . Expression (27) can be rewritten as:

min
a1T ,...aNT

N∑
i=1

c(aiT , θi) +K

∫ ∞
aT+AT−1−ET−1

(eT + ET−1 −AT )ϕ(eT |IT )deT

with first order conditions:

θia
FB
iT −K

∫ ∞
aT+AT−1−ET−1

ϕ(eT |IT )deT = 0

Using the fact that eT |IT ∼ N( 1
(1+σ2)

NµT + σ2

(1+σ2)
xT ,

Nσ2

1+σ2 ), this expression can be rewritten as:

θia
FB
iT = K

1− Φ

AT−1 + aFBT − ET−1 − 1
(1+σ2)

NµT − σ2

(1+σ2)
xT√

Nσ2

1+σ2


Comparing this expression with the equation characterizing the competition market equilibrium (1)

and (4), we conclude that aFBiT is the same as the abatement decision that arises in the market

equilibrium, conditional on being in the same situation, i.e. past abatement and past realized

emissions being the same.

The rest of the proof proceeds by induction. Suppose that the first best levels of abatement for

period t + 1 and above are identical to those arising in the market equilibrium and consider the

aggregate cost minimization problem at time t :
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min
a1t,...,aNt

N∑
i=1

c(ait, θi) + E

[
T∑

k=t+1

N∑
i=1

c(aik, θi) +K

∫ ∞
0

Zϕ(Z|It)dZ

]
where Z is defined by (2) as before, and ϕ(.|It) denotes its pdf, conditional on It. The first-order

conditions for i = 1, ..., N are given by:

θia
FB
it = K

∫ ∞
0

ϕ(Z|It)dZ [28]

Because, by assumption, aFBik is the same as in the market equilibrium for all k > t, then Z −

At−1 − Et−1|It has the same distribution as in the market equilibrium, Z − At−1 − Et−1|It ∼

N(E[Z|It]−At−1−Et−1, V [Z|It]), with E[Z|It] and V [Z|It] described by (10) and (11). Therefore,

(28) can be rewritten as:

θia
FB
it = K

[
1− Φ

(
−E(Z|It)√
V (Z|It)

)]
and the claim follows from comparison with (9).

Proof of Lemma 4. At every integer time t, two sets of new information, {e1t−1, ..., eNt−1} and

{x1t, ..., xNt}, can be used to update firms’ prior beliefs about µ. Because the prior about µ and the

eit−1’s and xit’s are normally distributed, the posterior belief about µ is also normally distributed.

Let µ ∼ N(µt−1, τ
2
t−1), the period t− 1 posterior about µ. This means that beliefs about eit−1 and

xit at the end of period t − 1 are given by eit−1 = µt−1 + τt−1ηt + σνit−1 and xit = eit + εit =

µt−1 + τt−1ηt + σνit + εit with ηt, νit, νit−1, and εit being i.i.d. N(0, 1). Given this, beliefs about µ,

et−1

N and xt
N are jointly normally distributed:

µ

et−1

N

xt
N

 = N



µt−1

µt−1

µt−1

 ,

τ2
t−1 τ2

t−1 τ2
t−1

τ2
t−1 τ2

t−1 + σ2

N τ2
t−1

τ2
t−1 τ2

t−1 τ2
t−1 + 1+σ2

N




This means that the updated posterior belief about µ conditional on observing et−1

N and xt
N is

normally distributed with mean µt and variance τ2
t given by (application of the projection theorem):

µt = µt−1 +
[
τ2
t−1 τ2

t−1

] τ2
t−1 + σ2

N τ2
t−1

τ2
t−1 τ2

t−1 + 1+σ2

N

−1  et−1

N − µt−1

xt
N − µt−1


where ∆ = N(τ2

t−1 + σ2

N )(τ2
t−1 + 1+σ2

N )−Nτ4
t−1 = τ2

t−1(1 + 2σ2) + σ2(1+σ2)
N , i.e.

µt =

(
σ2(1 + σ2)

N∆

)
µt−1 +

(1 + σ2)τ2
t−1

∆

[
et−1

N
+

σ2

σ2 + 1

xt
N

]
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and

τ2
t = τ2

t−1 −
[
τ2
t−1 τ2

t−1

] τ2
t−1 + σ2

N τ2
t−1

τ2
t−1 τ2

t−1 + 1+σ2

N

−1  τ2
t−1

τ2
t−1


i.e.

τ2
t =

σ2(1 + σ2)

∆N
τ2
t−1

Therefore the updated belief about eit is distributed according to N(µt, σ
2
t ) with σ2

t = σ2 + τ2
t .

Proof of Lemma 5. From the perspective of time t (and therefore knowledge of µt), individual

emissions at time k > t take the following form: eik = µt + ρ
∑k

l=t+1 ηl + σνik where ηl and νik are

i.i.d. N(0, 1). The claim follows directly.

Proof of Theorem 4. The claim follows directly from the argument in the text just before the

statement.
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