
Statement Voting

Bingsheng Zhang
Lancaster University

b.zhang2@lancaster.ac.uk

Hong-Sheng Zhou
Virginia Commonwealth University

hszhou@vcu.edu

December 29, 2018

Abstract

In this work, we introduce a new concept, statement voting. Statement voting can be viewed as a
natural extension of traditional candidate voting. Instead of de�ning a �xed election candidate, each voter
can de�ne a statement in his or her ballot but leave the vote “unde�ned” during the voting phase. During
the tally phase, the (conditional) actions expressed in the statement will be carried out to determine the
�nal vote.

We provide a comprehensive study of this new concept: under the Universal Composability (UC) frame-
work, we de�ne a class of ideal functionalities for statement voting, and then construct several protocols
for realizing these functionalities. Since statement voting covers liquid democracy as a special case, our
constructions immediately provide us the �rst solutions to liquid democracy. We remark that our state-
ment voting can be extended to enable more complex voting and generic ledger-based non-interactive
multi-party computation. We believe that the statement voting concept opens a door for constructing a
new class of e-voting schemes.

1

Contents
1 Introduction 1

2 Preliminaries 4
2.1 The UC framework . 4
2.2 Ideal functionalities . 5
2.3 Non-interactive zero-knowledge proofs/arguments . 5

3 Modeling 6

4 Homomorphic Encryption based construction 8
4.1 Key-homomorphic threshold fully homomorphic encryption . 9
4.2 Protocol description . 10
4.3 Security . 13

5 MPC based construction 13
5.1 Threshold PKE . 13
5.2 Protocol description . 15
5.3 Security . 17

6 Mix-net based construction 17
6.1 Threshold re-randomizable encryption . 18
6.2 Protocol description . 19
6.3 Security . 22

7 Application to Liquid Democracy 24

A Supplementary material for Section 4 28
A.1 Proof for Theorem 4.2 . 28
A.2 Instantiation of TFHE via GSW . 31
A.3 Fully homomorphic encryption . 33
A.4 Gentry-Sahai-Waters (GSW) construction . 34
A.5 LWE assumption . 36

B Supplementary material for Section 5 37
B.1 Proof for Theorem 5.2 . 37

C Supplementary material for Section 6 40
C.1 Proof for Theorem 6.2 . 40
C.2 Instantiation of TRE . 44
C.3 Instantiations of NIZKs . 44

2

1 Introduction

Elections/Referendums provide people in each society with the opportunity to express their opinions in the
collective decision making process. Unfortunately, the existing election/voting systems have many limitations
and it often fails to serve the best interest of the people. For example, to make correct decisions, the voters
have to invest tremendous e�ort to analyze the issues. The cost of identifying the best voting strategy is high,
even if we assume that the voter has collected accurate information. In addition, misinformation campaigns
often in�uence the voters to select certain candidates which could be against the voters’ own interests. We
here ask the following challenging question:

Is it possible to introduce new technologies to circumvent the implementation barriers so that more
e�ective democracy can be enabled?

We very much expect an a�rmative answer because from a societal perspective, we need to ensure that these
unmotivated/misinformed voters to participate in the process of decision making.

A new concept. We could approach the above problem via multiple angles. In this paper, we propose a new
and clean concept: statement voting. Statement voting can be viewed as a natural extension of traditional
candidate voting. Instead of de�ning a �xed election candidate, each voter can de�ne a statement in his or
her ballot but leave the vote “unde�ned” during the voting phase. During the tally phase, the (conditional)
actions expressed in the statement will be carried out to determine the �nal vote. Single Transferable Vote
(STV) is a special case of statement voting, where the voters rank the election candidates instead of naming
only one candidate in their ballots. The ranked candidate list together with the STV tally rule can be viewed
as an outcome-dependent statement. Roughly speaking, the statement declares that if my favorite candidate
has already won or has no chance to win, then I would like to vote for my second favorite candidate, and so
on.

Liquid democracy [For02], a hybrid of direct democracy and representative democracy, is another special
case of statement voting; there, the voters can either vote directly on issues, or they can delegate their votes
to representatives who vote on their behalf. The vote delegation can be expressed as a target-dependent
statement, where a voter can de�ne that his/her ballot is the same as the target voter’s ballot.

Careful readers may wonder why this type of natural voting idea has never appeared in the physical
world. First of all, conventional paper-voting ballot cannot handle complex statements. Moreover, in the
reality, the voters care about privacy and anonymity. To ensure anonymity, the voters are not willing to leave
their identities in the ballots. If no identities (or equivalences) are included in the ballots, then it is di�cult
for a statement refers to and depends on a particular voter’s ballot, such as liquid democracy. The election
committees might assign each voter a temporal ID to achieve anonymity, but a voter needs to obtain the target
voter’s temporal ID in order to delegate his vote. This requires secure peer-to-peer channels among all the
voters, which is not practical. Before presenting our constructions, we �rst need to clearly de�ne and model
our security goal.

Modeling statement voting. We provide a rigorous modeling for statement voting. More concretely, we
model statement voting in the well-known Universal Composability (UC) framework, via an ideal function-
ality FSV. The functionality interacts with a set of voters, trustees, and consists of preparation phase, ballot
casting phase, and tally phase. During the preparation phase, the trustees, need to indicate their presence to
FSV. The election/voting will not start until all the trustees have participated in the preparation.

In our formulation, we introduce a working table W to trace the voters’ behavior. Each entry of the
working table is saved for storing one voter’s information including the voter’s original ID, his alternative
ID, and the voting statement he submitted; During the ballot casting phase, each voter can submit his voting
statement. These voting statements will be collected and recorded in working table W. If a voter is corrupt,
then he is also allowed to revise his own alternative ID in the working table. When all the trustees are
corrupted, the functionality FSV leaks the voters’ information (i.e., W), to the adversary.

1

The collected information in the working table W will be used in the tally phase for de�ning the privacy
leakage as well as the �nal result. More concretely, we compute a new table U by �rst eliminating all Vi’s
in W, and then sorting all the entries lexicographically. This carefully de�ned table U can now be used to
de�ne (1) the �nal result via applying a circuit TallyProcess on U, and (2) certain level of privacy leakage L.
Our formulation here allows us to de�ne a class of statement voting functionalities. For example, to de�ne
a functionality with strong privacy, we can set L := TallyProcess(U); we can also set L := U to de�ne a
functionality with relatively weaker privacy, or set L := W to de�ne a functionality without privacy.

We emphasize that in practice, virtually all threshold cryptographic systems cannot achieve fairness;
namely, during the opening process of a threshold cryptographic system, the last several share holders can
jointly see the content to be opened themselves before hand. Hence, they can decide if they want to actually
open the content. However, surprisingly, this subtle issue was rarely modeled in the literature. For instance,
the only previously known e-voting functionality [Gro04] fails to address it. During the tally phase, the tally
will be released if all the trustees agree to proceed.

Constructions. Our statement voting concept can be implemented via the following di�erent approaches.
We assume a trusted Registration Authority (RA) to ensure voter eligibility and a consistent Bulletin Board
(BB) where the voting transactions and result will be announced to.
A fully/somewhat homomorphic encryption based scheme. In this scheme, the trustees �rst run a distributed
key generation protocol to setup the voting public key pk. Each voter Vi then encrypt, sign and submit their
voting statements, xi (in forms of (PIDi,Encpk(xi))) to the BB. To present re-play attacks, zero-knowledge (ZK)
proofs are necessary to ensure the voter knows the plaintext included in his/her submitted ciphertext. After
that, the tally processing circuit is evaluated over {(PIDi,Encpk(xi))}i∈[n] by every trustee. The �nal tally
ciphertext is then decrypted by the trustees and the result will be announced on the BB. To ensure universal
veri�ability, the circuit evaluation and ZK proofs shall be publicly auditable.
A veri�able MPC based scheme. In this scheme, we can adopt BDO publicly auditable MPC [BDO14], where
the trustees form the MPC system. They pre-compute su�ciently many correlated randomness (e.g., Beaver
triples), and also set up a voting public key. Each voterVi then encrypt, sign and submit their voting statements,
xi (in forms of (PIDi,Encpk(xi))) to the BB. Again, to present re-play attacks, ZK proofs are necessary to
ensure the voter knows the plaintext included in his/her submitted ciphertext. After that, the trustees perform
MPC online computation to �rst decrypt those encrypted ballots and then evaluate the tally processing circuit
over the shared ballots. Finally, the tally result will be posted on the BB. Note that during the online phase,
BDO MPC scheme also posts audit information on the BB to enable public veri�ability.
A mix-net based scheme. In this scheme, the trustees �rst run a distributed key generation protocol to set up
the public key pk of a re-randomizeable encryption scheme. Each voter Vi then encrypt, sign and submit a
random temporal IDwi, in forms of (PIDi,Encpk(wi)) to the BB. After that each voter will submit an encrypted
voting statement where PIDj are replaced with re-randomized encryption τj , for all j ∈ [n]. The encrypted
statement together with the voter’s encrypted temporal ID will then be shu�ed via a mix-net. The resulting
ciphertexts will be decrypted by the trustees and evaluated by every voter themselves. Note that the tally
processing function must be symmetric, otherwise we cannot use mix-net. The privacy that this construction
achieves is relatively weaker. However, we emphasize that this level of privacy has been widely accepted and
is consistent with all the existing paper-based voting systems.

An immediate application: liquid democracy. In the past decades, the concept of liquid democ-
racy [For02] has been emerging as an alternative decision making model to make better use of collective
intelligence. Due to its advantages, liquid democracy has received high attentions since the spread of its
concept; however, there is no satisfactory solution in the form of either paper-voting or e-voting yet1.

1All the existing liquid democracy implementations, e.g., Google Votes and Decentralized Autonomous Organization (DAO) do not
consider privacy/anonymity. This drawback prevents them from being used in serious elections. Here, we note that straightforward
blockchain-based solutions cannot provide good privacy in practice. Although some blockchains such as Zerocash [BCG+14] can

2

Extensions and further remarks. In this work, we initiate the study of statement voting. We remark that
our statement voting concept can be signi�cantly extended to support much richer ballot statements. It opens
a door for constructing a new class of e-voting schemes. We also remark that this area of research is far
from being completed, and our design and modeling ideas can be further improved. Nevertheless, designing
useful and acceptable statement policy is a topic in the computational social choice theory, which is outside
the scope of this paper. We �nally remark that, voting policies can be heavily in�uenced by local legal and
societal conditions. How to de�ne “right” voting policy itself is a very interesting question. We believe
our techniques here have the potential to help people to identify suitable voting policies which can further
eliminate the barriers to democracy.
Related work. The concept of liquid democracy (a.k.a. delegative democracy) is emerging over the last
decades [Mil69, Alg06, BZ16]. To our best knowledge, Ford [For02] �rst o�cially summarized the main char-
acteristics of liquid democracy and brought it to the vision of computer science community. However, in
terms of implementation/prototyping, there was no system that can enable liquid democracy until very re-
cently. Google Votes [HL15] is a decision-making system that can support liquid democracy, and it is built
on top of social networks, e.g., the internal corporate Google+ network. Decentralized Autonomous Orga-
nization (DAO) [DAO17] realized liquid democracy using the blockchain technology, and it has been widely
used to vote on expenses and actions of various contracts. Recently, Merkle [Mer16] provide a comprehensive
review on DAO, collective intelligence, and liquid democracy. He believes that liquid democracy can utilize
the expertise of all the citizens to make high-quality decisions. Nevertheless, all the existing liquid democ-
racy voting systems only focus on the functionality aspect of liquid democracy, and no privacy or some other
advanced security properties were considered.

With regards to conventional security oriented e-voting systems, Chaum [Cha81] proposed to use anony-
mous channels and pseudonyms to achieve voter privacy and veri�ability. Benaloh and Yung later showed
how to distribute the centralized election authority using threshold cryptography [BY86]. Sako and Kil-
ian [SK95] minimized the assumption needed for a mix-type voting system to achieve so-call receipt-freeness,
where the voters can simulate/hide their votes to the coercers. Groth [Gro04] gave the �rst UC de�nition
for an e-voting system, and he proposed a protocol using (threshold) homomorphic encryption. Moran and
Naor [MN06] later studied the privacy and receipt-freeness of an e-voting system in the stand-alone setting.
Unruh and Muller-Quade [UMQ10] gave a formal study of e-voting coerciability in the UC framework. Alwen
et al. [AOZZ15] considered stronger versions of coerciability in the MPC setting under UC framework.

The most widely used e-voting system in practice is Helios [Adi08]. Almost all the end-to-end veri�able e-
voting systems [CRS05, CEC+08, KZZ15b, KZZ15a] requires a consistent bulletin board (BB). However, none
of them gives a practical realization of BB. Meanwhile, there is some work [KMNV16] on extending Helios to
support proxy voting, where the voters can delegate their votes to some pre-de�ned proxies. Each voter can
only delegate once.

On the other hand, Kiayias, Zhou, and Zikas [KZZ16] gives a UC model of the global ledger and discuss
about how to use such a ledger to enable fair and robust MPC.
Organization. In Section 2, we present the required preliminaries including a brief overview of UC frame-
work and some useful ideal functionalities. In Section 3, we rigorously model statement voting. In Section 4,
we present the details of our statement voting construction via threshold fully homomorphic encryption; ad-
ditional information such as security proof and building block instantiation can be found in Supplemental
material A. In Section 5, we present a statement voting construction via veri�able MPC; additional informa-
tion can be found in in Supplemental material B. Then in Section 6, we present a more e�cient solution via
mix-net; additional information can be found in in Supplemental material C. Finally, our application to liquid
democracy can be found in Section 7.

be viewed as a global mixer, they implicitly require anonymous channels. While in practice, all the implementations of anonymous
channels su�er from time leakage, i.e., the user’s ID is only hidden among the other users who are also using the system at the same
time. Subsequently, the adversary can easily identify the user during quiet hours.

3

2 Preliminaries

2.1 The UC framework

Following Canetti’s framework [Can01, Can00], a protocol is represented as interactive Turing machines
(ITMs), each of which represents the program to be run by a participant. Protocols that securely carry out a
given task are de�ned in three steps, as follows. First, the process of executing a protocol in an adversarial
environment is formalized. Next, an “ideal process” for carrying out the task at hand is formalized. The
parties have access to an “ideal functionality,” which is essentially an incorruptible “trusted party” that is
programmed to capture the desired functionality of the task at hand. A protocol is said to securely realize an
ideal functionality if the process of running the protocol amounts to “emulating” the ideal process for that
ideal functionality. Below we overview the model of protocol execution (called the real-world model), the ideal
process, and the notion of protocol emulation.

Themodel for protocol execution. The model of computation consists of the parties running an instance
of a protocol π, a network adversary A that controls the communication among the parties, and an environ-
ment Z that controls the inputs to the parties and sees their outputs. The execution consists of a sequence
of activations, where in each activation a single participant (either Z , A, or some other ITM) is activated,
and may write on a tape of at most one other participant, subject to the rules below. Once the activation of a
participant is complete, the participant whose tape was written on is activated next.

Let EXECπ,A,Z(λ, z, r) denote the output of the environment Z when interacting with parties run-
ning protocol π on security parameter λ, input z and random input r = rZ , rA, r1, r2, ... as described
above (z and rZ for Z ; rA for A, ri for party Pi). Let EXECπ,A,Z(k, z) denote the random vari-
able describing EXECπ,A,Z(k, z, r) when r is uniformly chosen. Let EXECπ,A,Z denote the ensemble
{EXECπ,A,Z(k, z)}k∈N,z∈{0,1}∗ .

Ideal functionalities and ideal protocols. Security of protocols is de�ned via comparing the protocol
execution to an ideal protocol for carrying out the task at hand. A key ingredient in the ideal protocol is
the ideal functionality that captures the desired functionality, or the speci�cation, of that task. The ideal
functionality is modeled as another ITM (representing a “trusted party”) that interacts with the parties and
the adversary. More speci�cally, in the ideal protocol for functionality F all parties simply hand their inputs
to an ITM instance running F .

Securely realizing an ideal functionality. We say that a protocol π emulates protocol φ if for any network
adversary A there exists an adversary (also known as simulator) S such that no environment Z , on any
input, can tell with non-negligible probability whether it is interacting with A and parties running π, or it is
interacting with S and parties running φ. This means that, from the point of view of the environment, running
protocol π is “just as good” as interacting with φ. We say that π securely realizes an ideal functionality F if it
emulates the ideal protocol for F . More precise de�nitions follow. A distribution ensemble is called binary if
it consists of distributions over {0, 1}.

De�nition 2.1. Let π and φ be protocols, and F be an ideal functionality. We say that π UC-emulates φ if for
any adversaryA there exists an adversary S such that for any environment Z that obeys the rules of interaction
for UC security we have EXECφ,S,Z ≈ EXECπ,A,Z . We say that π UC-realizes F if π UC-emulates the ideal
protocol for functionality F .

Hybrid protocols. Hybrid protocols are protocols where, in addition to communicating as usual as in the
standard model of execution, the parties also have access to (multiple copies of) an ideal functionality. Hy-
brid protocols represent protocols that use idealizations of underlying primitives, or alternatively make trust

4

assumptions on the underlying network. They are also instrumental in stating the universal composition the-
orem. Speci�cally, in an F-hybrid protocol (i.e., in a hybrid protocol with access to an ideal functionality F),
the parties may give inputs to and receive outputs from an unbounded number of copies of F . The de�nition
of a protocol securely realizing an ideal functionality is extended to hybrid protocols in the natural way.

2.2 Ideal functionalities

Bulletin board functionality The public bulletin board (BB) is modeled as a global functionality ḠBB.
Formal description can be found in Fig. 1. The functionality is parameterized with a predicate Validate that
ensures all the newly posted messages are consistent with the existing BB content w.r.t. Validate. Any party
can use (submit, sid,msg) and (read, sid) to write/read the BB. We remark that our ḠBB can be much simpli-
�ed version of the global public ledger functionality Ḡledger recently de�ned by Kiayias et al [KZZ16].

Functionality ḠBB

The shared functionality ḠBB is globally available to all the parties and the adversary S . It is parameterized with
a predicate Validate, and variable state. Initially, state := ε.

Upon receiving (submit, sid,msg) from a party P or the adversary S , if Validate(state,msg) = 1, then set
state := state||msg.
Upon receiving (read, sid) from a party P or the adversary S , return (read, sid, state) to the requestor.

Figure 1: The public bulletin board functionality.

Certi�cate functionality We present the multi-session version of certi�cate functionality following the
modeling of [Can03]. The multi-session certi�cate functionality F̂Cert can provide direct binding between a
signature for a message and the identity of the corresponding signer. This corresponds to providing signatures
accompanied by “certi�cates” that bind the veri�cation process to the signers’ identities. For completeness,
we recap F̂Cert in Fig. 2.

2.3 Non-interactive zero-knowledge proofs/arguments

Here we brie�y introduce non-interactive zero-knowledge (NIZK) schemes in the Random Oracle (RO) model.
Let R be an e�ciently computable binary relation. For pairs (x,w) ∈ R we call x the statement and w the
witness. Let LR be the language consisting of statements inR, i.e. LR = {x|∃w s.t. (x,w) ∈ R}. An NIZK
scheme includes following algorithms: a ppt algorithm Prov that takes as input (x,w) ∈ R and outputs a
proof π; a polynomial time algorithm Verify takes as input (x, π) and outputs 1 if the proof is valid and 0
otherwise.

De�nition 2.2 (NIZK Proof of Membership in the RO Model). NIZKro
R .{Prov, Verify, Sim,Ext} is an NIZK

Proof of Membership scheme for the relationR if the following properties hold:

• Completeness: For any (x,w) ∈ R,

Pr
[
ζ ← {0, 1}λ;π ← ProvRO(x,w; ζ) : VerifyRO(x, π) = 0

]
≤ negl(λ).

• Zero-knowledge: If for any ppt distinguisher A we have∣∣ Pr[ARO,O1(1λ) = 1]− Pr[ARO,O2(1λ) = 1]
∣∣ ≤ negl(λ).

The oracles are de�ned as follows: O1 on query (x,w) ∈ R returns π, where (π, aux) ← SimRO(x); O2

on query (x,w) ∈ R returns π, where π ← ProvRO(x,w; ζ) and ζ ← {0, 1}λ.

5

Functionality F̂Cert

The functionality F̂Cert interacts with a set of signers {S1, . . . ,Sk}, and a set of veri�ers {R1, . . . ,Rn}, and the
adversary S .

• Upon receiving (Sign, sid, ssid,m) from a signer P ∈ {S1, . . . ,Sk}, verify that ssid = (P, ssid′) for
some ssid′. If not, ignore the request. Otherwise, send (SignNotify, sid, ssid,m) to the adversary S .
Upon receiving (Signature, sid, ssid,m, σ) from S , verify that no entry (ssid,m, σ, 0) is recorded. If it
is, then return (Error) to P and halt. Else, return (Signature, sid, ssid,m, σ) to P , and record the entry
(ssid,m, σ, 1).

• Upon receiving (Verify, sid, ssid,m, σ) from any party P ∈ {R1, . . . ,Rn}, send
(VerifyNotify, sid, ssid,m) to the adversary S . Upon receiving (Verified, sid, ssid,m, b∗) from S ,
do:

If (ssid,m, σ, 1) is recorded then set b = 1.
Else, if the signer of subsession ssid is not corrupted, and no entry (ssid,m, ·, 1) is recorded, then set
b = 0 and record the entry (ssid,m, σ, 0).
Else, if there is an entry (ssid,m, σ, b′) recorded, then set b := b′.
Else, set b := b∗, and record the entry (ssid,m, σ, b∗).

Output (Verified, sid, ssid,m, b) to P .

Figure 2: The multi-session functionality for certi�cate.

• Soundness: For all ppt adversary A,

Pr
[

(x, π)← ARO(1λ) : x 6∈ LR ∧ VerifyRO(x, π) = 1
]
≤ negl(λ).

De�nition 2.3 (NIZK Proof of Knowledge in the RO Model). NIZKro
R .{Prov,Verify, Sim,Ext} is an NIZK

Proof of Knowledge scheme for the relationR if the completeness, zero-knowledge, and extraction properties hold,
where the extraction is de�ned as follows.

• Extractability: For all ppt adversary A,

Pr

[
(x, π)← ARO(1λ);w ← ExtRO(x, π) :

(x,w) ∈ R if VerifyRO(x, π) = 1

]
≥ 1− negl(λ).

We need non-interactive zero-knowledge proofs/arguments of knowledge and non-interactive zero-
knowledge proofs/arguments of membership. For simplicity, we will drop RO from the superscript if the
context is clear.

We use (NIZKRi .Verify, NIZKRi .Sim) to denote the corresponding veri�cation algorithm and simulator.

3 Modeling

Our statement voting system consists of a set of trustees T := {T1, . . . ,Tk}, and a set of voters V :={
V1, . . . ,Vn

}
. In this section, we will de�ne an ideal functionality for statement voting. In next sections

(Sections 4, 5 and 6), we will construct several protocols for realizing the ideal statement voting functionality.
The statement voting functionality. The ideal functionality for statement voting, denoted as FSV, is for-
mally described in Fig. 3. The functionality interacts with n number of voters, k number of trustees. It consists
of three phases—Preparation, Ballot Casting, and Tally. The functionality uses a working table W to trace the

6

Functionality FSV

The functionality FSV interacts with a set of voters V := {V1, . . . ,Vn}, a set of trustees T := {T1, . . . ,Tk}, and
the adversary S . Let Vhonest, Vcorrupt and Thonest, Tcorrupt denote the set of honest/corrupt voters and trustees,
respectively.
FunctionalityFSV is parameterized by an algorithm TallyProcess (see Figure 4), a working table W, and variables
result , T1, T2, and Bi for all i ∈ [n].

Initially, set result := ∅, T1 := ∅, T2 := ∅; for i ∈ [n], set Bi := ∅.
Table W consists of n entries, and each entry consists of voter’s real ID, voter’s alternative ID, and the statement
that the voter submitted; for all i ∈ [n], the ith entry W[i] := (Vi, wi, statementi), where wi ← {0, 1}λ,
statementi := ∅.

Preparation:

1. Upon receiving input (InitialTrustee, sid) from the trustee Tj ∈ T, set T1 := T1 ∪ {Tj}, and send a
noti�cation message (InitialTrusteeNotify, sid,Tj) to the adversary S .

Ballot Casting:

1. Upon receiving input (Cast, sid, (si, w∗i)) from the voter Vi ∈ V, if |T1| < k, ignore the input.
Otherwise,

ifVi is honest (noww∗i := ⊥), then updateW[i] := (Vi, wi, si); send a message (CastNotify, sid,Vi)
to the adversary S .
if Vi is corrupt, then update W[i] := (Vi, w

∗
i , si).

If |Tcorrupt| = k, then additionally send a message (Leak, sid,W[i]) to the adversary S .

Tally:

1. Upon receiving input (Tally, sid) from the trustee Tj ∈ T, set T2 := T2 ∪ {Tj} and do the following:
set U := W; then eliminate all Vi’s in U; �nally sort the entries in U lexicographically.
de�ne L. For example, set L := TallyProcess(U) or L := U or L := W.

Send a noti�cation message (TallyNotify, sid,Tj) to S .
If |T2 ∩ Thonest|+ |Tcorrupt| = k, send a leakage message (Leak, sid, L) to S .
If |T2| = k, compute result ← TallyProcess(U).

2. Upon receiving input (ReadResult, sid) from a voter Vi ∈ V, if result = ∅, ignore the input.
Else, return (ResultReturn, sid, result) to Vi.

Figure 3: The voting functionality.

7

voters’ behavior during the entire ideal execution. Each entry of the working table is saved for storing one
voter’s information including the voter’s original ID, his alternative ID, and the voting statement that he
submitted;
Preparation phase. During the preparation phase, the trustees, playing the role of voting organizers, need to
indicate their presence to FSV by sending (InitialTrustee, sid) to it. The election/voting will not start until
all the trustees have participated in the preparation.
Ballot Casting phase. During the ballot casting phase, each voter can submit his voting statement, and this
voting statement will be recorded in the corresponding entry. If a voter is corrupt, then he is also allowed to
revise his own alternative ID in the working table. More concretely, based on the input (Cast, sid, (si, w∗i))
from voter Vi, the corresponding entry will be updated, i.e., W[i] := (Vi, wi, si) if the voter is honest, and
W[i] := (Vi, w

∗
i , si) if Vi is corrupt. When all the trustees are corrupted, the functionality FSV leaks the

voters’ information (i.e., W), to the adversary.
Tally phase. Voters’ information in the working table W will be used in the tally phase for de�ning the privacy
leakage as well as the �nal result. More concretely, we compute a new table U by �rst eliminating all Vi’s
in W, and then sorting all the entries lexicographically. This carefully de�ned table U can now be used to
de�ne (1) the �nal result via applying a circuit TallyProcess on U, and (2) certain level of privacy leakage L.
Our formulation here allows us to de�ne a class of statement voting functionalities. For example, to de�ne
a functionality with strong privacy, we can set L := TallyProcess(U); we can also set L := U to de�ne a
functionality with relatively weaker privacy, or set L := W to de�ne a functionality without privacy.

Let TallyAlg be a deterministic symmetric election tally function that takes V and outputs the tally result.
The concrete functionality of TallyAlg depends on the actual election, and we do not have any restriction on
TallyAlg. Take a simple 1-out-of-m election where there are m candidates C := (C1, . . . , Cm) as an example.
Each vote vi ∈ V is an element in C. The tally result is an m-vector Zm+ whose i-th coordinate is equal to
the number of times Ci was chosen in V . In the rest of this paper, we use vi = ⊥ to indicate blank vote, and
TallyAlg should ignore those inputs.

TallyProcess

Input: a set of ballots B := (B1, . . . , Bn)

Output: the tally result result

Statement interpretation:

• Compute (v1, . . . , vn)← StatementProcess(B1, . . . , Bn), where StatementProcess takes input as the set of state-
ments and outputs the voters’ �nal votes.

Tally computation:

• Compute result ← TallyAlg(v1, . . . , vn), where TallyAlg(·) is the tally algorithm that takes input as the votes and
outputs the tally result.

• Return result .

Figure 4: The extended tally processing algorithm.

4 Homomorphic Encryption based construction

To illustrate the main concept, we �rst present a (key-homomorphic) threshold fully homomorphic encryption
(FHE) based scheme. A key-homomorphic public key encryption scheme allows the user to deterministically
combine several public keys pk1, . . . , pkn into a combined public key pk; meanwhile, the corresponding secret
keys sk1, . . . , skn can be combined into the secret key sk for pk. This property can enable e�cient distributed

8

key generation. In a nutshell, the scheme works as follows. During the preparation phase, each trustee Tj ∈ T
generates a public key pkj and posts it on the ḠBB. The voters Vi ∈ V can then combine the posted pkj ’s to the
election public key pk. During the ballot casting phase, the voters Vi ∈ V submit their encrypted statement
to the ḠBB. After that, all the parties can evaluate the (public deterministic) TallyProcess circuit over the
encrypted data. During the tally phase, the trustees Tj ∈ T then jointly decrypt the �nal tally ciphertext(s) to
reveal the election outcome. We will now introduce the main primitive, publicly-evaluable key-homomorphic
threshold fully homomorphic encryption (TFHE).

4.1 Key-homomorphic threshold fully homomorphic encryption

A publicly evaluable key-homomorphic threshold fully homomorphic encryption scheme TFHE consists of a
tuple of algorithms: (Setup,Keygen,Enc,Eval,Dec,CombinePK,CombineSK,ShareDec, ShareCombine) as
follows.

• param← Setup(1λ). The algorithm Setup takes input as the security parameter λ, and outputs public
parameters param. All the other algorithms implicitly take param as input.

• (pk, sk) ← Keygen(param). The algorithm Keygen takes input as the public parameter param, and
outputs a public key pk, a secret key sk.

• c← Enc(pk,m). The algorithm Enc takes input as the public key pk and the message m, and outputs
the ciphertext c.

• c′ := Eval(pk,F , c1, . . . , cn). The algorithm Eval takes input as the public/evaluation key pk, the
description of the evaluation function (circuit) F , and a set of ciphertexts c1, . . . , cn, and outputs the
result ciphertext c′.

• m ← Dec(sk, c). The algorithm Dec takes input as the secret key sk and a ciphertext c, and outputs
the decrypted plaintext m.

• pk := CombinePK(pk1, . . . , pkk). The algorithm CombinePK takes input as a set of public keys
(pk1, . . . , pkk), and outputs a combined public key pk.

• sk ← CombineSK(sk1, . . . , skk). The algorithm CombineSK takes input as a set of secret key
(sk1, . . . , skk), and outputs combined secret key sk.

• µi ← ShareDec(ski, c). The algorithm ShareDec takes input as the secret key ski and a ciphertext c,
and outputs a decryption share µi.

• m ← ShareCombine(c, µ1, . . . , µk). The algorithm ShareCombine takes input as a ciphertext c and k
decryption shares (µ1, . . . , µk), and outputs a plaintext m.

• c′ ← Trans(c, {ski}i∈[k]\{j}). The algorithm Trans takes input as a ciphertext c← TFHE.Enc(pkj ,m)
and a set of secret keys {ski}i∈[k]\{j}, and outputs a ciphertext c′.

• {µj}j∈[k]\I ← SimShareDec(c,m, {µi}i∈I). The algorithm SimShareDec takes as input a ciphertext c,
a plaintextm, and a set of decryption shares {µi}i∈I and outputs a set of decryption shares {µj}j∈[k]\I .
Here I ([k].

De�nition 4.1. We say TFHE = {Setup,Keygen,Enc,Eval,Dec,CombinePK,CombineSK, ShareDec,
ShareCombine} is a secure key-homomorphic threshold fully homomorphic encryption if the following prop-
erties hold:

9

• Key combination correctness: If {(pki, ski)}i∈[k] are all valid key pairs, pk :=
TFHE.CombinePK({pki}i∈[k]) and sk := TFHE.CombineSK({ski}i∈[k]), then (pk, sk) is also a
valid key pair.

For all ciphertext c ∈ Cpk, where Cpk is the ciphertext-space de�ned by pk, we have

TFHE.Dec(sk, c) = TFHE.ShareCombine(c,TFHE.ShareDec(sk1, c), . . . ,TFHE.ShareDec(skk, c)) .

• Ciphertext transformative indistinguishability: We say that a TFHE scheme achieves ciphertext trans-
formative indistinguishability, if for all message m, for any j ∈ [k], there exists a ppt algorithm Trans
such that (

param,TFHE.Trans(c, {ski}i∈[k]\{j})
)
≈
(
param,TFHE.Enc(pk,m)

)
where {(pki, ski)}i∈[k] are all valid key pairs, pk := TFHE.CombinePK({pki}i∈[k]) and sk :=
TFHE.CombineSK({ski}i∈[k]).

• Share-simulation indistinguishability: We say TFHE scheme achieves share-simulation indistinguisha-
bility if there exists a ppt simulator SimShareDec such that for all valid key pairs {(pki, ski)}i∈[k], all
subsets I ([k], all messagem, the following two distributions are computationally indistinguishable:(

param, c,SimShareDec(c,m, {µi}i∈I)
)
≈
(
param, c, {µj}j∈[k]\I

)
where param← TFHE.Setup(1λ), c← TFHE.Enc(pk,m) and
µj ← TFHE.ShareDec(skj , c) for j ∈ [k] \ I.

The above TFHE is adopted from Lopez-Alt et al. [LTV11, AJL+12], with the following modi�ca-
tion: we use pk as the evaluation key. This modi�cation allow us to evaluate the ciphertexts publicly. In
[LTV11, AJL+12], only distinguished players (i.e., the ones with secret keys) after a joint protocol, can obtain
the evaluation key. This feature of public evaluation of ciphertexts is critical for e-voting. We also provide
instantiation in Supplementary material A.2. Our instantiation is based on the well-known FHE construction
by Gentry, Sahai and Waters [GSW13].

4.2 Protocol description

In this section, we formally describe our TFHE-based construction for statement voting. The protocol is
designed in the {ḠBB, F̂Cert}-hybrid world and it consists of three phases: preparation, ballot casting, and
tally. For the sake of notation simplicity, we omit the processes of �ltering invalid messages on ḠBB. In
practice, ḠBB contains many messages with invalid signatures, and all those messages should be ignored.

4.2.1 Preparation phase

As depicted in Figure 5, in the preparation phase, each trustee Tj , �rst picks a randomness generates αj and
generates a partial public key using (pkj , skj)← TFHE.Keygen(param;αj). It then generates an NIZK proof

π
(1)
j ← NIZKR1

{
(pkj), (αj , skj) : (pkj , skj) = TFHE.Keygen(param;αj)

}
to show that this process is executed correctly; namely, it shows knowledge of (αj , skj) w.r.t. to the generated
partial public key pkj . It then signs and posts (pkj , π

(1)
j) to ḠBB.

10

Preparation:
Upon receiving (InitialTrustee, sid) from the environment Z , the trustee Tj , j ∈ [k], operates as the follows:

Generate (pkj , skj)← TFHE.Keygen(param;αj) where αj is the fresh randomness, and then compute

π
(1)
j ← NIZKR1

{
(pkj), (αj , skj) : (pkj , skj) = TFHE.Keygen(param;αj)

}
Send (Sign, sid, ssid, (pkj , π

(1)
j)) to F̂Cert and receives (Signature, sid, ssid, (pkj , π

(1)
j), σ

(1)
j) from F̂Cert,

where ssid = (Tj , ssid
′) for some ssid′.

Send (Submit, sid, 〈ssid, (pkj , π
(1)
j), σ

(1)
j 〉) to ḠBB.

Figure 5: TFHE based statement voting scheme Πfhe-SV in the {ḠBB, F̂Cert}-hybrid world (Part I).

4.2.2 Ballot casting phase

As depicted in Figure 6, in the ballot casting phase, each voter Vi, i ∈ [n] �rst fetches the partial public
keys {pkj}j∈[k] from ḠBB. After checking their corresponding NIZK proofs, the voter Vi combines them to
the election public key pk := TFHE.CombinePK({pkj}kj=1). Vi then encrypts his ballot (Vi, si) as ci =
TFHE.Enc(pk, (Vi, si)). Here Vi is abused as the voter’s PID and si is her statement. The voter then posts
the ciphertext ci on the ḠBB together with the corresponding NIZK proof showing that ci is indeed generated
by the voter Vi.

Ballot Casting:

Upon receiving (Cast, sid, si) from the environment Z , the voter Vi, i ∈ [n] operates as the follows:
Send (Read, sid) to ḠBB, and obtain (Read, sid, state) from ḠBB. If

{
〈ssid, (pkj , π

(1)
j), σ

(1)
j 〉
}
j∈[k]

is contained in state ,

then for j ∈ [k], send (Verify, sid, ssid, (pkj , π
(1)
j), σ

(1)
j) to F̂Cert, and receive (Verified, sid, ssid, (pkj , π

(1)
j), b

(1)
j)

from F̂Cert; If
∏k
j=1 b

(1)
j = 1, check NIZKR1 .Verify(pkj , π

(1)
j) = 1 for j ∈ [k]. If any of the checks is invalid, halt.

Compute and store pk := TFHE.CombinePK({pkj}
k
j=1).

Encrypt ci ← TFHE.Enc(pk, (Vi, si);βi) where βi is the fresh randomness, and then compute

π
(2)
i ← NIZKR2

{
(pk, ci), (Vi, si, βi) : ci = TFHE.Enc(pk, (Vi, si);βi)

}
Send (Sign, sid, ssid, (ci, π(2)

i) to F̂Cert , where ssid = (Vi, ssid
′) for some ssid′,

and receive (Signature, sid, ssid, (ci, π(2)
i), σ

(2)
i) from F̂Cert.

Send (Submit, sid, 〈ssid, (ci, π(2)
i), σ

(2)
i 〉) to ḠBB.

Figure 6: TFHE based statement voting scheme Πfhe-SV in the {ḠBB, F̂Cert}-hybrid world (Part II).

4.2.3 Tally phase

The tally phase is depicted in Figure 7. The trustee Tj ∈ T, j ∈ [k] fetches the posted encrypted ballots
{ci}i∈[n] from ḠBB. It checks the corresponding NIZK proofs and removes the invalid ones. Each of the
trustees Tj ∈ T then evaluates the TallyProcess circuit as c := TFHE.Eval(pk,TallyProcess, c1, . . . , cn).
After that, all the trustees jointly decrypt c to the �nal tally τ , attached with necessary NIZK proofs. Finally,
all the voters Vi ∈ V can read the tally result τ from ḠBB.

11

Tally:
Upon receiving (Tally, sid) from the environment Z , the trustee Tj , where j ∈ [k], operates as the follows:

Send (Read, sid) to ḠBB, and obtain (Read, sid, state) from ḠBB. If
{
〈ssid, (pkj , π

(1)
j), σ

(1)
j 〉
}
j∈[k]

is contained in state ,

then for j ∈ [k], send (Verify, sid, ssid, (pkj , π
(1)
j), σ

(1)
j) to F̂Cert, and receive (Verified, sid, ssid, (pkj , π

(1)
j), b

(1)
j)

from F̂Cert; If
∏k
j=1 b

(1)
j = 1, check NIZKR1 .Verify(pkj , π

(1)
j) = 1 for j ∈ [k]. If any of the checks is invalid, halt.

Compute pk← TFHE.CombinePK({pkj}
k
j=1).

For i ∈ [n], if 〈ssid, (ci, π(2)
i), σ

(2)
i 〉 is contained in state , then send (Verify, sid, ssid, (ci, π(2)

i), σ
(2)
i) to F̂Cert, and

receive (Verified, sid, ssid, (ci, π(2)
i), b

(2)
i) from F̂Cert; if b(2)

i = 1, check NIZKR2 .Verify((pk, ci), π
(2)
i) = 1. If any of

the above checks is invalid, reset ci := ⊥.
Compute c := TFHE.Eval(pk,TallyProcess, c1, . . . , cn).
Compute τ j ← TFHE.ShareDec(skj , c) together with

π
(3)
j ← NIZKR3

{
(c, τ j , pkj), (skj , αj) :
(pkj , skj) = TFHE.Keygen(param;αj) ∧ τ j = TFHE.ShareDec(skj , c)

}
Send (Sign, sid, ssid, (τ j , π(3)

j)) to F̂Cert and receives (Signature, sid, ssid, (τ j , π(3)
j), σ

(3)
j) from F̂Cert, where ssid =

(Tj , ssid
′) for some ssid′.

Send (Submit, sid, 〈ssid, (τ j , π(3)
j), σ

(3)
j 〉) to ḠBB.

Upon receiving (ReadResult, sid) from the environment Z , the voter Vi, i ∈ [n] operates as the follows:
Send (Read, sid) to ḠBB, and obtain (Read, sid, state) from ḠBB. If

{
〈ssid, (τ j , π(3)

j), σ
(3)
j 〉
}
j∈[k]

is contained in state ,

then for j ∈ [k], send (Verify, sid, ssid, (τ j , π(3)
j), σ

(3)
j) to F̂Cert, and receive (Verified, sid, ssid, (τ j , π(3)

j), b
(3)
j) from

F̂Cert; If
∏k
j=1 b

(3)
j = 1, check NIZKR3 .Verify((c, τ j , pkj), π

(3)
j) = 1 for j ∈ [k]. If any of the checks is invalid, halt.

Compute τ ← TFHE.ShareCombine({τ j}kj=1).
Return (ReadResultReturn, sid, τ) to the environment Z .

Figure 7: TFHE based statement voting scheme Πfhe-SV in the {ḠBB, F̂Cert}-hybrid world (Part III).

12

4.3 Security

Now we show our construction can realize statement voting functionality with strong privacy. That is, the
leakage L is minimal (i.e., the tally result). We note that a simpli�ed version of our statement voting function-
ality with strong privacy can be found in Figure 16 in Supplementary material A.1. More formally, we have
the following the theorem.

Theorem 4.2. Protocol Πfhe-SV described in Figure 5, Figure 6 and Figure 7 UC-realizesFSV in the {ḠBB, F̂Cert}-
hybrid world against static corruption.

The security proof can be found in Supplementary material A.1.

5 MPC based construction

The presented TFHE-based construction is used to illustrate the core idea. In practice, FHE schemes may still
be hundreds times slower than the state-of-the-art MPC protocols, especially when NIZK proofs are involved.
In fact, the construction described in Section 4 can be viewed as a special case of an MPC protocol in the
server-client setting, where the trustees T form the MPC players. The voters submit their statements, and the
trustees then jointly evaluate the TallyProcess circuit.

In the following, we show how to eliminate the needs of a FHE using so-called publicly auditable MPC.
Note that the main di�erence between a conventional MPC protocol and an e-voting system is that the e-
voting system should still ensure the integrity of an election process even when all the trustees are corrupted.
Whereas, a conventional MPC protocol does not ensure computation correctness when all the players are
corrupted.

Baum et al. [BDO14], proposed a publicly auditable MPC in the ḠBB-hybrid model. Their scheme is based
on SPDZ [DPSZ12, DKL+13], but it can be extended to support most other later SPDZ variants along this line
of research. The general idea to make an MPC system publicly auditable is to attach each shared value with a
(Pedersen) commitment so that the same linear/opening operations of the shared value can be carried out on
the corresponding commitments. Those commitments are posted on the ḠBB, so that everyone can perform
the same MPC online phase circuit on the commitments and check if the opening of the resulting commitment
is consistent with the MPC output. Hereby, due to space limitation, we will omit the MPC construction and
refer interested readers to [BDO14] for details. In the following, we �rst give another building block.

5.1 Threshold PKE

We would like to adopt a key-homomorphic threshold PKE scheme TE. It consists of a tuple of algorithms:
(Setup,Keygen,Enc,Dec,CombinePK,CombineSK,ShareDec, ShareCombine) as follows.

• param← Setup(1λ). The algorithm Setup takes input as the security parameter λ, and outputs public
parameters param. All the other algorithms implicitly take param as input.

• (pk, sk) ← Keygen(param). The algorithm Keygen takes input as the public parameter param, and
outputs a public key pk, a secret key sk.

• c← Enc(pk,m). The algorithm Enc takes input as the public key pk and the message m, and outputs
the ciphertext c.

• c′ ← ReRand(pk, c). The algorithm ReRand takes input as the public key pk and a ciphertext c, and
outputs a re-randomized ciphertext c′.

• m ← Dec(sk, c). The algorithm Dec takes input as the secret key sk and a ciphertext c, and outputs
the decrypted plaintext m.

13

• pk := CombinePK(pk1, . . . , pkk). The algorithm CombinePK takes input as a set of public keys
(pk1, . . . , pkk), and outputs a combined public key pk.

• sk ← CombineSK(sk1, . . . , skk). The algorithm CombineSK takes input as a set of secret key
(sk1, . . . , skk), and outputs combined secret key sk.

• µi ← ShareDec(ski, c). The algorithm ShareDec takes input as the secret key ski and a ciphertext c,
and outputs a decryption share µi.

• m ← ShareCombine(c, µ1, . . . , µk). The algorithm ShareCombine takes input as a ciphertext c and k
decryption shares (µ1, . . . , µk), and outputs a plaintext m.

• c′ ← Trans(c, {ski}i∈[k]\{j}). The algorithm Trans takes input as a ciphertext c ← TE.Enc(pkj ,m)
and a set of secret keys {ski}i∈[k]\{j}, and outputs a ciphertext c′.

• {µj}j∈[k]\I ← SimShareDec(c,m, {µi}i∈I). The algorithm SimShareDec takes as input a ciphertext c,
a plaintextm, and a set of decryption shares {µi}i∈I and outputs a set of decryption shares {µj}j∈[k]\I .
Here I ([k].

De�nition 5.1. We say TE = {Setup,Keygen,Enc,Dec,CombinePK,CombineSK,ShareDec,
ShareCombine} is a secure key-homomorphic threshold public key encryption if the following properties
hold:

Key combination correctness: If {(pki, ski)}i∈[k] are all valid key pairs, pk := TE.CombinePK({pki}i∈[k])
and sk := TE.CombineSK({ski}i∈[k]), then (pk, sk) is also a valid key pair.

For all ciphertext c ∈ Cpk, where Cpk is the ciphertext-space de�ned by pk, we have

TE.Dec(sk, c) = TE.ShareCombine(c,TE.ShareDec(sk1, c), . . . ,TE.ShareDec(skk, c)) .

Ciphertext transformative indistinguishability: There exists a ppt algorithm Trans such that if
{(pki, ski)}i∈[k] are all valid key pairs,

pk := TE.CombinePK({pki}i∈[k]) and sk := TE.CombineSK({ski}i∈[k]), then for all message m, for
any j ∈ [k], the following holds.(

param,TE.Trans(c, {ski}i∈[k]\{j})
)
≈
(
param,TE.Enc(pk,m)

)
IND-CPA security: We say that aTE scheme achieves indistinguishability under plaintext attacks (IND-CPA)

if for any ppt adversary A the following advantage AdvCPA is negligible.

ExperimentCPA(1λ)

1. Run param← TE.Setup(1λ).
2. Run (pk, sk)← TE.Keygen(param);
4. A(pk) outputsm0,m1 of equal length;
5. Pick b←

{
0, 1
}
; Run c← TE.Enc(pk,mb);

6. A(c) outputs b∗; It returns 1 if b = b∗; else, returns 0.

We de�ne the advantage of A as

AdvCPAA(1λ) =

∣∣∣∣Pr[ExperimentCPA(1λ) = 1]− 1

2

∣∣∣∣ .
14

Share-simulation indistinguishability: We say TE scheme achieves share-simulation indistinguishability
if there exists a ppt simulator SimShareDec such that for all valid key pairs {(pki, ski)}i∈[k], all subsets
I ([k], all messagem, the following two distributions are computationally indistinguishable:(

param, c,SimShareDec(c,m, {µi}i∈I)
)
≈
(
param, c, {µj}j∈[k]\I

)
where param← TE.Setup(1λ), c← TE.Enc(pk,m) and µj ← TE.ShareDec(skj , c) for j ∈ [k] \ I.

5.2 Protocol description

In this section, we formally describe our MPC-based construction for statement voting. we assume there
exists an MPC protocol ΠMPC that UC-realize FCMPC, where FCMPC is the MPC functionality (as described in
Fig. 1 of [BDO14]) and C is the statement voting circuit depicted in Fig. 8, below. C takes public input as each
trustee Ti’s partial public key pki, and a set of encrypted ballots {cj ← TE.Enc(pk, (Vi, si))}j∈[n], where si
is the voter Vi’s statement. Meanwhile, C also takes private inputs as a random coin αj from each trustee
Tj , j ∈ [k]. C �rst uses αj to generate (p̂kj , ŝkj) ← TE.Keygen(param;αj); it then checks if p̂kj = pkj ,
j ∈ [k]. If veri�ed, C uses {ŝkj}j∈[k] to decrypt the ciphertexts {ci}i∈[n] to obtains the ballots {Bi}i∈[n]. It
then computes and outputs the tally τ ← TallyProcess(B1, . . . , Bn).

Public input: {pkj}j∈[k] and {ci}i∈[n]
Private input: {αj}j∈[k]
Public output: τ

For j ∈ [k], generate (p̂kj , ŝkj)← TE.Keygen(param;αj).
Check if p̂kj = pkj , j ∈ [k]; otherwise, return ⊥.
Set sk := TE.CombineSK(ŝk1, . . . , ŝkk).
For i ∈ [n], compute Bi ← TE.Dec(sk, ci).
Return τ ← TallyProcess(B1, . . . , Bn).

Figure 8: Statement voting circuit C

The protocol is designed in the {ḠBB, F̂Cert,FCMPC}-hybrid world and it consists of three phases: prepa-
ration, ballot casting, and tally. Again, for the sake of notation simplicity, we omit the processes of �ltering
invalid messages on ḠBB. In practice, ḠBB contains many messages with invalid signatures, and all those
messages should be ignored. We assume all the parties implicitly have a common input param← Setup(1λ).

5.2.1 Preparation phase

As depicted in Fig. 9, the preparation phase is the same as the TFHE based construction, except it uses TE
instead.

5.2.2 Ballot casting phase

As depicted in Figure 10, the ballot casting phase is also the same as the TFHE scheme, except TE is used
instead.

5.2.3 Tally phase

The tally phase is depicted in Figure 11. The trustees Tj ∈ T fetches all the posted encrypted ballots on the
ḠBB, denoted as {ci}i∈[n]. It also checks their corresponding NIZK proofs. After that, each of the trustees

15

Preparation:
Upon receiving (InitialTrustee, sid) from the environment Z , the trustee Tj , j ∈ [k], operates as the follows:

Generate (pkj , skj)← TE.Keygen(param;αj) where αj is the fresh randomness, and then compute

π
(1)
j ← NIZKR11

{
(pkj), (αj , skj) : (pkj , skj) = TE.Keygen(param;αj)

}
Send (Sign, sid, ssid, (pkj , π

(1)
j)) to F̂Cert and receives (Signature, sid, ssid, (pkj , π

(1)
j), σ

(1)
j) from F̂Cert,

where ssid = (Tj , ssid
′) for some ssid′.

Send (Submit, sid, 〈ssid, (pkj , π
(1)
j), σ

(1)
j 〉) to ḠBB.

Figure 9: MPC based statement voting scheme Πmpc-SV in the {ḠBB, F̂Cert,FCMPC}-hybrid world (Part I).

Ballot Casting:

Upon receiving (Cast, sid, si) from the environment Z , the voter Vi, i ∈ [n] operates as the follows:
Send (Read, sid) to ḠBB, and obtain (Read, sid, state) from ḠBB. If

{
〈ssid, (pkj , π

(1)
j), σ

(1)
j 〉
}
j∈[k]

is contained in state ,

then for j ∈ [k], send (Verify, sid, ssid, (pkj , π
(1)
j), σ

(1)
j) to F̂Cert, and receive (Verified, sid, ssid, (pkj , π

(1)
j), b

(1)
j)

from F̂Cert; If
∏k
j=1 b

(1)
j = 1, check NIZKR1 .Verify(pkj , π

(1)
j) = 1 for j ∈ [k]. If any of the checks is invalid, halt.

Compute and store pk := TE.CombinePK({pkj}
k
j=1).

Encrypt ci ← TE.Enc(pk, (Vi, si);βi) where βi is the fresh randomness, and then compute

π
(2)
i ← NIZKR12

{
(pk, ci), (Vi, si, βi) : ci = TE.Enc(pk, (Vi, si);βi)

}
Send (Sign, sid, ssid, (ci, π(2)

i) to F̂Cert , where ssid = (Vi, ssid
′) for some ssid′,

and receive (Signature, sid, ssid, (ci, π(2)
i), σ

(2)
i) from F̂Cert.

Send (Submit, sid, 〈ssid, (ci, π(2)
i), σ

(2)
i 〉) to ḠBB.

Figure 10: MPC based statement voting scheme Πmpc-SV in the {ḠBB, F̂Cert,FCMPC}-hybrid world (Part II).

16

Tally:
Upon receiving (Tally, sid) from the environment Z , the trustee Tj , where j ∈ [k], operates as the follows:

Send (Read, sid) to ḠBB, and obtain (Read, sid, state) from ḠBB. If
{
〈ssid, (pkj , π

(1)
j), σ

(1)
j 〉
}
j∈[k]

is contained in state ,

then for j ∈ [k], send (Verify, sid, ssid, (pkj , π
(1)
j), σ

(1)
j) to F̂Cert, and receive (Verified, sid, ssid, (pkj , π

(1)
j), b

(1)
j)

from F̂Cert; If
∏k
j=1 b

(1)
j = 1, check NIZKR1 .Verify(pkj , π

(1)
j) = 1 for j ∈ [k]. If any of the checks is invalid, halt.

For i ∈ [n], if 〈ssid, (ci, π(2)
i), σ

(2)
i 〉 is contained in state , then send (Verify, sid, ssid, (ci, π(2)

i), σ
(2)
i) to F̂Cert, and

receive (Verified, sid, ssid, (ci, π(2)
i), b

(2)
i) from F̂Cert; if b(2)

i = 1, check NIZKR2 .Verify((pk, ci), π
(2)
i) = 1. If any of

the above checks is invalid, reset ci := ⊥.
Send (Input, sid, αj , {pk`}`∈[k], {ci}i∈[n]) to FCMPC, and obtain τ .
Send (Sign, sid, ssid, τ) to F̂Cert and receives (Signature, sid, ssid, τ), σ

(3)
j) from F̂Cert, where ssid = (Tj , ssid

′) for
some ssid′.
Send (Submit, sid, 〈ssid, τ, σ(3)

j 〉) to ḠBB.

Upon receiving (ReadResult, sid) from the environment Z , the voter Vi, i ∈ [n] operates as the follows:
Send (Read, sid) to ḠBB, and obtain (Read, sid, state) from ḠBB.
Fetch τ from state and return (ReadResultReturn, sid, τ) to the environment Z .

Figure 11: MPC based statement voting scheme Πmpc-SV in the {ḠBB, F̂Cert,FCMPC}-hybrid world (Part III).

sends (Input, sid, αj , {pk`}`∈[k], {ci}i∈[n]) to FCMPC. After the computation, the trustee Tj ∈ T receives the
tally result τ and posts it to the ḠBB.

5.3 Security

Similar to the TFHE based solution, our construction here can also achieve the statement voting functionality
with strong privacy. We have the following the theorem.

Theorem 5.2. Protocol Πmpc-SV described in Figure 9, Figure 10 and Figure 11 UC-realizes FSV in the
{ḠBB, F̂Cert,FCMPC}-hybrid world against static corruption.

The security proof can be found in Supplementary material B.1.

6 Mix-net based construction

In this section, we will construct a much more e�cient statement voting scheme based on mix-net. The
privacy that this construction achieves is relatively weaker. However, we emphasize that this level of privacy
has been widely accepted and is consistent with all the existing paper-based voting systems.

The intuition is as follows. At the beginning of scheme, each voter Vi, i ∈ [n], is assigned with a temporal
random ID, denoted as IDi. Let I := {ID1, . . . , IDn} be the set of all the voter’s random IDs. The voter’s
statement takes input as a subset of I , denoted as D, and uses ID ∈ D as references to point to those voters’
ballots. For instance, the statement could be “If both voter IDx and voter IDy vote for ‘Yes’, then my vote is ‘Yes’;
otherwise, my vote is ‘No’.” The ballot of a voter Vi is in forms of Bi := (IDi, statementi), where IDi is the
voter’s temporal ID, and statementi is the voter’s statement.

To ensure privacy, the voters cannot post their temporal IDs publicly on the bulletin board ḠBB; however,
the voters should be allowed to freely refer to any voter’s ID. To address this challenge, we introduce the
following technique. At the beginning of the protocol execution, each voter picks a random ID and posts the
encryption of the ID on the ḠBB. If a voter wants to refer to another voter in the statement, he/she simply
copies the ciphertext of the corresponding voter’s ID.

17

We emphasize that in practice the mix-net servers can be di�erent from talliers (a.k.a. decrypters). As
such, they could have di�erent threshold requirements. For notation simplicity, we combine both roles to the
same set of parties, trustees, in the protocol description.

6.1 Threshold re-randomizable encryption

A threshold re-randomizable encryption scheme TRE consists of a tuple of algorithms: (Setup,Keygen,Enc,
Dec,CombinePK,CombineSK,ShareDec, ShareCombine,ReRand) as follows.

• param← Setup(1λ). The algorithm Setup takes input as the security parameter λ, and outputs public
parameters param. All the other algorithms implicitly take param as input.

• (pk, sk) ← Keygen(param). The algorithm Keygen takes input as the public parameter param, and
outputs a public key pk, a secret key sk.

• c← Enc(pk,m). The algorithm Enc takes input as the public key pk and the message m, and outputs
the ciphertext c.

• c′ ← ReRand(pk, c). The algorithm ReRand takes input as the public key pk and a ciphertext c, and
outputs a re-randomized ciphertext c′.

• m ← Dec(sk, c). The algorithm Dec takes input as the secret key sk and a ciphertext c, and outputs
the decrypted plaintext m.

• pk := CombinePK(pk1, . . . , pkk). The algorithm CombinePK takes input as a set of public keys
(pk1, . . . , pkk), and outputs a combined public key pk.

• sk ← CombineSK(sk1, . . . , skk). The algorithm CombineSK takes input as a set of secret key
(sk1, . . . , skk), and outputs combined secret key sk.

• µi ← ShareDec(ski, c). The algorithm ShareDec takes input as the secret key ski and a ciphertext c,
and outputs a decryption share µi.

• m ← ShareCombine(c, µ1, . . . , µk). The algorithm ShareCombine takes input as a ciphertext c and k
decryption shares (µ1, . . . , µk), and outputs a plaintext m.

• c′ ← Trans(c, {ski}i∈[k]\{j}). The algorithm Trans takes input as a ciphertext c ← TRE.Enc(pkj ,m)
and a set of secret keys {ski}i∈[k]\{j}, and outputs a ciphertext c′.

• {µj}j∈[k]\I ← SimShareDec(c,m, {µi}i∈I). The algorithm SimShareDec takes as input a ciphertext c,
a plaintextm, and a set of decryption shares {µi}i∈I and outputs a set of decryption shares {µj}j∈[k]\I .
Here I ([k].

De�nition 6.1. We say TRE = {Setup,Keygen,Enc,Dec,CombinePK,CombineSK, ShareDec,
ShareCombine,ReRand} is a secure threshold re-randomizable public key encryption if the following
properties hold:

Key combination correctness: If {(pki, ski)}i∈[k] are all valid key pairs, pk :=
TRE.CombinePK({pki}i∈[k]) and sk := TRE.CombineSK({ski}i∈[k]), then (pk, sk) is also a
valid key pair.

For all ciphertext c ∈ Cpk, where Cpk is the ciphertext-space de�ned by pk, we have

TRE.Dec(sk, c) = TRE.ShareCombine(c,TRE.ShareDec(sk1, c), . . . ,TRE.ShareDec(skk, c)) .

18

Ciphertext transformative indistinguishability: There exists a ppt algorithm Trans such that if
{(pki, ski)}i∈[k] are all valid key pairs,

pk := TRE.CombinePK({pki}i∈[k]) and sk := TRE.CombineSK({ski}i∈[k]), then for all message m,
for any j ∈ [k], the following holds.(

param,TRE.Trans(c, {ski}i∈[k]\{j})
)
≈
(
param,TRE.Enc(pk,m)

)
Unlinkability: We say a TRE scheme is unlinkable if for any ppt adversary A the following advantage

AdvUnlink is negligible.

ExperimentUnlink(1λ)

1. A outputs a set I ⊂
{

1, . . . , k
}
of up to k − 1 corrupted indices.

2. For i = [n], run (pki, ski)← TRE.Keygen(1λ;ωi);
3. A(

{
pkj
}
j∈[k]\I) outputs c0, c1;

4. b←
{

0, 1
}
; c′ ← TRE.ReRand(pk, cb;ω);

5. A(c′) outputs b∗; It returns 1 if b = b∗; else, returns 0.

We de�ne the advantage of A as

AdvUnlinkA(1λ) =

∣∣∣∣Pr[ExperimentUnlink(1λ) = 1]− 1

2

∣∣∣∣ .
Share-simulation indistinguishability: We say TRE scheme achieves share-simulation indistinguishabil-

ity if there exists a ppt simulator SimShareDec such that for all valid key pairs {(pki, ski)}i∈[k], all subsets
I ([k], all messagem, the following two distributions are computationally indistinguishable:(

param, c,SimShareDec(c,m, {µi}i∈I)
)
≈
(
param, c, {µj}j∈[k]\I

)
where param← TRE.Setup(1λ), c← TRE.Enc(pk,m) and µj ← TRE.ShareDec(skj , c) for j ∈ [k]\I.

6.2 Protocol description

In this section, we formally describe our mix-net based construction for statement voting. The protocol is
designed in the {ḠBB, F̂Cert}-hybrid world and it consists of three phases: preparation, ballot casting, and
tally.

We will use threshold re-randomizable encryption (TRE) as building block. A threshold re-
randomizable encryption scheme TRE consists of a tuple of algorithms: (Setup,Keygen,Enc,Dec,
CombinePK,CombineSK, ShareDec,ShareCombine,ReRand). TRE is related to TFHE except that, Eval al-
gorithm is disabled inTRE; instead, we will allow the ciphertexts can be re-randomized viaReRand algorithm.
More details can be found in Supporting material 6.1.

6.2.1 Preparation phase

As depicted in Fig. 12, in the preparation phase, each trustee Tj , j ∈ [k] �rst picks a randomness generates αj
and generates a partial public key using (pkj , skj) ← TRE.Keygen(param;αj). It then generates an NIZK
proof

π
(1)
j ← NIZKR4

{
(pkj), (αj , skj) : (pkj , skj) = TRE.Keygen(param;αj)

}
to show that this process is executed correctly; namely, it shows knowledge of (αj , skj) w.r.t. to the generated
partial public key pkj . It then signs and posts (pkj , π

(1)
j) to ḠBB.

19

Preparation:
Upon receiving (InitialTrustee, sid) from the environment Z , the trustee Tj , j ∈ [k], operates as the follows:

Generate (pkj , skj)← TRE.Keygen(param;αj) where αj is the fresh randomness, and then compute

π
(1)
j ← NIZKR4

{
(pkj), (αj , skj) : (pkj , skj) = TRE.Keygen(param;αj)

}
Send (Sign, sid, ssid, (pkj , π

(1)
j)) to F̂Cert and receives (Signature, sid, ssid, (pkj , π

(1)
j), σ

(1)
j) from F̂Cert,

where ssid = (Tj , ssid
′) for some ssid′.

Send (Submit, sid, 〈ssid, (pkj , π
(1)
j), σ

(1)
j 〉) to ḠBB.

Figure 12: Mix-net based statement voting scheme Πmix-SV in the {ḠBB, F̂Cert}-hybrid world (Part I).

6.2.2 Ballot casting phase

As depicted in Fig. 13, the ballot casting phase consists of two rounds. In the �rst round, each voter Vi,
i ∈ [n] �rst fetches the trustees’ partial public keys {pkj}kj=1 from ḠBB. She then checks the validity of their
attached NIZK proofs. If all the NIZK proofs are veri�ed, she computes and stores the election public key as
pk← TRE.CombinePK({pkj}kj=1). In addition, the voter Vi picks a random temporal ID wi ← {0, 1}λ. She
then uses the election public key pk to encrypt wi as Wi ← TRE.Enc(pk, wi;βi) with fresh randomness βi.
She also computes

π
(2)
i ← NIZKR5

{
(pk,Wi), (βi, wi) : Wi = TRE.Enc(pk, wi;βi)

}
to show that she is the creator of this ciphertext. Voter Vi then signs and posts (Wi, π

(2)
i) to ḠBB.

In the second round, each voter Vi, i ∈ [n] �rst fetches all the posted encrypted temporal IDs from ḠBB,
and checks their attached NIZK proofs. For any missing or invalid (encrypted) temporal IDs, the voters replace
them with TRE.Enc(pk,⊥; 0), which is encryption of ⊥ with trivial randomness. Moreover, the voters also
de�nes W0 ← TRE.Enc(pk,⊥; 0).

For the sake of uniformity, our scheme restricts that each voter’s statement can refer up to λ1 ∈ N the
other voters’ IDs, and the size of the statement should �t in the plaintext space. For a voter Vi, i ∈ [n],
denote Di ⊆ [n] as the set of indices of the referenced voters’ IDs. Let Wi := {Wj | j ∈ Di} be the set of
ciphertexts of the corresponding referenced voters’ IDs. The voter Vi re-randomizes all the ciphertexts inWi

and pads re-randomized W0’s to form a ciphertext vector of size λ1, denoted as (U1, . . . , Uλ1). The voter Vi
then replaces the voter IDs in the statement as the pointers to Uj , j ∈ [λ1]. Denote the modi�ed statement as
s′i. It then encrypts s′i to ciphertext Si. Of course, to ensure correctness, NIZK proofs are generated to show
(i) Uj , j ∈ [λ1] is indeed re-randomized from one of the ciphertexts in (W0, . . . ,Wn), and (ii) Si is indeed
created by the voter himself/herself. The voter Vi then signs and posts (U1, . . . , Uλ1) and Si together with
the corresponding NIZK proofs to ḠBB.

6.2.3 Tally phase

The tally phase is depicted in Fig. 14 and Fig. 15. The trustees �rst fetches (Wi, (U1, . . . , Uλ1), Si) (which is
viewed as the submitted ballot for voter Vi) from ḠBB and check their attached NIZK proofs. All the invalid
ballots will be discard. Let n′ be the number of valid ballots. All the trustees then jointly shu�e the ballots via
a re-encryption mix-net. More speci�cally, each trustee sequentially permutes (Wi, (U1, . . . , Uλ1), Si) as a
bundle using shu�e re-encryption. To ensure correctness, the trustee also produces a NIZK proof showing the
correctness of the shu�e re-encryption process. After that, upon receiving (Tally, sid) from the environment,

20

Ballot Casting:

Upon receiving (Cast, sid, si) from Z , the voter Vi operates as the follows:

◦ Round 1:
Send (Read, sid) to ḠBB, and obtain (Read, sid, state) from ḠBB. If

{
〈ssid, (pkj , π

(1)
j), σ

(1)
j 〉
}
j∈[k]

is

contained in state , then for j ∈ [k], send (Verify, sid, ssid, (pkj , π
(1)
j), σ

(1)
j) to F̂Cert, and receive

(Verified, sid, ssid, (pkj , π
(1)
j), b

(1)
j) from F̂Cert; If

∏k
j=1 b

(1)
j = 1, check NIZKR4

.Verify(pkj , π
(1)
j) = 1

for j ∈ [k]. If any of the checks is invalid, halt.
Compute and store pk← TRE.CombinePK({pkj}kj=1).
Randomly selectswi ← {0, 1}λ and computeWi ← TRE.Enc(pk, wi;βi) with fresh randomness βi together
with
π
(2)
i ← NIZKR5

{
(pk,Wi), (βi, wi) : Wi = TRE.Enc(pk, wi;βi)

}
.

Send (Sign, sid, ssid, (Wi, π
(2)
i)) to F̂Cert, and receive (Signature, sid, ssid, (Wi, π

(2)
i), σ

(2)
i) from F̂Cert,

where ssid = (Vi, ssid
′) for some ssid′.

Send (Submit, sid, 〈ssid, (Wi, π
(2)
i), σ

(2)
i 〉) to ḠBB.

◦ Round 2:
Send (Read, sid) to ḠBB, and obtain (Read, sid, state) from ḠBB.
For ` ∈ [n], if 〈ssid, (W`, π

(2)
`), σ

(2)
` 〉 is contained in state , then send (Verify, sid, ssid, (W`, π

(2)
`), σ

(2)
`) to

F̂Cert, and receive (Verified, sid, ssid, (W`, π
(2)
`), b

(2)
j) from F̂Cert;

For ` ∈ [n], setW` ← TRE.Enc(pk,⊥; 0) ifW` is missing or b(2)` = 0 orNIZKR5 .Verify((pk,W`), π
(2)
`) = 0.

Set ` = 1. Scan though the statement si, for each referenced voter Vj , compute
• Ui,` ← TRE.ReRand(pk,Wj ; γi,`) with a fresh randomness γi,` and

π
(3)
i,` ← NIZKR6

{
(pk, (W0, . . . ,Wn), Ui,`), (γi,`, j) :
Ui,` = RTE.ReRand(pk,Wj ; γi,`)

}
.

• Replace Vj with ` in the statement si. ` := `+ 1 and repeat the above process for all the voter IDs in
si.

• If ` < λ1, compute
– Ui,` ← TRE.ReRand(pk,W0; γi,`) with a fresh randomness γi,`

and π(3)
i,` ← NIZKR6

{
(pk, (W0, . . . ,Wn), Ui,`), (γi,`, 0) :
Ui,` = TRE.ReRand(pk,W0; γi,`)

}
.

– Repeat the above process until ` = λ1.

• Denote the modi�ed statement as s′i. Compute Si ← TRE.Enc(pk, s′i; δi) and π
(4)
i ←

NIZKR5

{
((pk, Si), (δi, s

′
i) : Si = TRE.Enc(pk, s′i; δi)

}
.

Send (Sign, sid, ssid, ((Ui,`, π(3)
i,`)λ1

`=1, Si, π
(4)
i)) to F̂Cert , where ssid = (Vi, ssid

′) for some ssid′,
and receive (Signature, sid, ssid, ((Ui,`, π(3)

i,`)λ1

`=1, Si, π
(4)
i), σ

(3)
i) from F̂Cert.

Send (Submit, sid, 〈ssid, ((Ui,`, π(3)
i,`)λ1

`=1, Si, π
(4)
i), σ

(3)
i 〉) to ḠBB.

Figure 13: Mix-net based statement voting scheme Πmix-SV in the {ḠBB, F̂Cert}-hybrid world (Part II).

21

all the trustees Tj check the correctness of the entire mix-net and then jointly decrypt the mixed ballots using
TRE.ShareDec. More speci�cally, each trustee will sign and post its decryption shares to ḠBB.

Tally:
Upon receiving (Tally, sid) from the environment Z , the trustee Tj , where j ∈ [k], operates as the follows:

◦ Round 1 to k:
If j = 1, send (Read, sid) to ḠBB, and obtain (Read, sid, state) from ḠBB. For x ∈ [n]:

• If 〈ssid, (Wx, π
(2)
x), σ

(2)
x 〉 is contained in state , then send (Verify, sid, ssid, (Wx, π

(2)
x), σ

(2)
x) to F̂Cert, and receive

(Verified, sid, ssid, (Wx, π
(2)
x), b

(2)
x) from F̂Cert;

• If 〈ssid, ((Ux,`, π(3)
x,`)

λ1
`=1, Sx, π

(4)
x), σ

(3)
x 〉, is contained in state , then send

(Verify, sid, ssid, ((Ux,`, π(3)
x,`)

λ1
`=1, Sx, π

(4)
x), σ(3)

x)

to F̂Cert, receive (Verified, sid, ssid, ((Ux,`, π(3)
x,`)

λ1
`=1, Sx, π

(4)
x), b

(3)
x) from F̂Cert;

Set i := 0. For ` ∈ [n], de�ne e(0)
i := (Wx, (Ux,`)

λ1
`=1, Sx) and i := i+ 1 if the following holds:

• Wx, (Ux,`)
λ1
`=1, Sx exist in state and b(2)

x · b(3)
x = 1;

• NIZKR5 .Verify((pk,Wx), π
(2)
x) = 1;

• For all ` ∈ [λ1], NIZKR6 .Verify((pk, (W0, . . . ,Wn), Ux,`), π
(3)
x,`) = 1;

• NIZKR5 .Verify((pk, Sx), π
(4)
x) = 1;

Assume i = n′ after the above process.
(If j > 1, Tj sends (Read, sid) to ḠBB, and obtain (Read, sid, state)

from ḠBB; Tj then fetches (e
(j−2)
i)n

′
i=1, e

(j−1)
i)n

′
i=1, π

(5)
j−1 from state and check

NIZKR7 .Verify((pk, (e
(j−2)
1 , . . . , e

(j−2)

n′), (e
(j−1)
1 , . . . , e

(j−1)

n′)), π
(5)
j−1).)

Tj randomly picks a permutation Πj over [n’]; For i ∈ [n′], for ` ∈ [λ2]: set e(j)
i,` ← TRE.ReRand(pk, e

(j−1)

Πj(i),`; r
(j)
i,`),

where r(j)
i,` are fresh randomness. Compute

π
(5)
j ← NIZKR7

(
pk, (e

(j−1)
1 , . . . , e

(j−1)
n′), (e

(j)
1 , . . . , e

(j)
n′)
)
,
(

Πj , (r
(j)
i,`)i∈[n′],`∈[λ1+2]

)
:

∀i ∈ [n′] ∀` ∈ [λ1 + 2] : e
(j)
i,` = TRE.ReRand

(
pk, e

(j−1)
Πj(i),1

; r
(j)
i,`

)
Send (Sign, sid, ssid, (e(j)

i)n
′
i=1, π

(5)
j)) to F̂Cert and receive (Signature, sid, ssid, (e(j)

i)n
′
i=1, π

(5)
j), σ

(4)
j) from F̂Cert,

where ssid = (Tj , ssid
′) for some ssid′.

Send (Submit, sid, 〈ssid, (e(j)
i)n

′
i=1, π

(5)
j , σ

(4)
j 〉) to ḠBB.

Figure 14: Mix-net based statement voting scheme Πmix-SV in the {ḠBB, F̂Cert}-hybrid world (Part III).

Each voter can then compute the tally result as follows. The voter �rst fetches all the decryption shares and
checks their validity using NIZKR8 .Verify. Upon success, the voter uses TRE.ShareCombine to reconstruct
the messages. She then use TallyProcess as described in Fig. 4 to calculate the �nal tally.

6.3 Security

We have the following the theorem.

Theorem 6.2. Protocol Πmix-SV described in Figure 12, Figure 13, Figure 14 and Figure 15 UC-realizes FSV in the
{ḠBB, F̂Cert}-hybrid world against static corruption.

The security proof can be found in Supplemental material C.1.

22

◦ Round k + 1:
Send (Read, sid) to ḠBB, and obtain (Read, sid, state) from ḠBB. For j ∈ [k], if 〈ssid, (e(j)

i)n
′
i=1, π

(5)
j , σ

(4)
j 〉 is contained in

state , then send (Verify, sid, ssid, (e(j)
i)n

′
i=1, π

(5)
j), σ

(4)
j) to F̂Cert, and receive (Verified, sid, ssid, (e(j)

i)n
′
i=1, π

(5)
j), b

(4)
j)

from F̂Cert; if b(4)
j = 1, check NIZKR4 .Verify((pk, (e

(j−1)
1 , . . . , e

(j−1)

n′), (e
(j)
1 , . . . , e

(j)

n′)), π
(5)
j) = 1. If any of the above

checks is invalid, halt.
For i ∈ [n′], ` ∈ [λ1 + 2], compute m(j)

i,` ← TRE.ShareDec(skj , e
(k)
i,`). and

π
(6)
i,j,` ← NIZKR8

(e

(k)
i,` ,m

(j)
i,` , pkj), (skj , αj) :

(pkj , skj) = TRE.Keygen(param;αj)

∧m(j)
i,` = TRE.ShareDec(skj , e

(k)
i,`)

Send (Sign, sid, ssid, (m(j)

i,` , π
(6)
i,j,`)i∈[n′],`∈[λ1+2]) to F̂Cert and receives (Signature, sid, ssid, (m(j)

i,` , π
(6)
i,j,`)i∈[n′],`∈[λ1+2], σ

(5)
j)

from F̂Cert, where ssid = (Tj , ssid
′) for some ssid′.

Send (Submit, sid, 〈ssid, (m(j)
i,` , π

(6)
i,j,`)i∈[n′],`∈[λ1+2], σ

(5)
j 〉) to ḠBB.

Upon receiving (ReadResult, sid) from the environment Z , the voter Vi, where i ∈ [n], operates as the follows:
Send (Read, sid) to ḠBB, and and obtain (Read, sid, state) from ḠBB.
For j ∈ [k], if 〈ssid, (m(j)

i,` , π
(6)
i,j,`)i∈[n′],`∈[λ1+2], σ

(5)
j 〉 is contained in state , send

(Verify, sid, ssid, (m(j)
i,` , π

(6)
i,j,`)i∈[n′],`∈[λ1+2])i∈[n′],`∈[λ1+2], σ

(5)
j) to F̂Cert, and receive

(Verified, sid, ssid, (m(j)
i,` , π

(6)
i,j,`)i∈[n′],`∈[λ1+2], b

(5)
j) from F̂Cert. If

∏k
j=1 b

(5)
j = 1, for all j ∈ [k], i ∈ [n′], ` ∈ [λ1+2],

check NIZKR8 .Verify((e
(k)
i,` ,m

(j)
i,` , pki), π

(6)
i,j,`) = 1. If any of the above checks is invalid, return (Error, sid) to the

environment Z and halt.
For i ∈ [n′], ` ∈ [λ1 + 2]: compute mi,` ← TRE.ShareCombine(e

(k)
i,` , {m

(j)
i,` }

k
j=1), ` ∈ [λ1 + 2]; de�ne Bi :=

(mi,`)`∈[λ1+2].
Calculate election result result ← TallyProcess({Bi}i∈[n′]), and return (ReadResultReturn, sid, result) to Z .

Figure 15: Mix-net based statement voting scheme Πmix-SV in the {ḠBB, F̂Cert}-hybrid world (Part IV).

23

7 Application to Liquid Democracy

As mentioned before, liquid democracy is an emerging type of voting system that receives high attentions
since the spread of its concept; however, there is no satisfactory solution in the form of either paper-voting
or e-voting yet. We now show that how to de�ne a simple statement to enable liquid democracy. We are
particularly interested in the mix-net based scheme due to its e�ciency. In the following, we will realize a
liquid democracy voting scheme on top of the scheme presented in Section 6.

The preparation phase of the liquid democracy scheme is identical to Fig. 12 In the ballot casting phase,
in round 1, the voter Vi, i ∈ [n] picks a random temporal ID, and submits its encryption to ḠBB as described
in Fig. 13. In round 2, the liquid democracy statement consists of two ciphertexts (U, S); if the voter Vi wants
to delegate her vote to voter Vj , she sets U ← TRE.ReRand(pk,Wj) and S ← TRE.Enc(⊥); if the voter
Vi wants to directly cast her vote xi, she sets U ← TRE.ReRand(pk,W0) and S ← TRE.Enc(xi). The tally
phase is also identical to the one depicted in Fig. 14 and Fig. 15.

The statement interpretation step in the TallyProcess is de�ned as follows. Each ballots is in form of
either Bi = (wi, ui,⊥) or Bi = (wi,⊥, xi), where wi and ui are temporal ID’s, and xi is a vote. To resolve
the delegation, the algorithm needs to follow the “chain of delegation”, i.e., for each ballot Bi:

• If Bi is in form of (wi, ui,⊥), try to locate a ballot Bj in form of (ui, X, Y). If founded, replace Bi :=
(wi, X, Y).

• Repeat the above step, until Bi is in form of (wi,⊥, Z). If there is a delegation loop, de�ne Bi :=
(wi,⊥,⊥).

Namely, in case of delegation loop, we set the ballot to blank ballot. Of course, we can enrich the statement
by adding another variable to indicate whether a voter wants to be delegated. When the “chain of delegation"
breaks by Vi wants to delegate his vote to Vj , while Vj does not want to be delegated. In this case, Vi’s
ballot will be re-set to a blank ballot. The most preferable statement for liquid democracy in practice shall be
determined by computational social choice theory, which is outside the scope of this paper.

Acknowledgement: We thank Zengpeng Li for his helpful discussions about TFHE instantiation.

References

[Adi08] Ben Adida. Helios: Web-based open-audit voting. In USENIX Security, pages 335–348, 2008.

[AJL+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan, and
Daniel Wichs. Multiparty computation with low communication, computation and interaction via
threshold FHE. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume
7237 of LNCS, pages 483–501. Springer, Heidelberg, April 2012.

[Alg06] Dan Alger. Voting by proxy. Public Choice, 126(1):1–26, 2006.

[AOZZ15] Joël Alwen, Rafail Ostrovsky, Hong-Sheng Zhou, and Vassilis Zikas. Incoercible multi-party com-
putation and universally composable receipt-free voting. In Rosario Gennaro and Matthew J. B.
Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 763–780. Springer, Heidel-
berg, August 2015.

[AP14] Jacob Alperin-Sheri� and Chris Peikert. Faster bootstrapping with polynomial error. In Juan A.
Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 297–314.
Springer, Heidelberg, August 2014.

24

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer,
and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE
Symposium on Security and Privacy, pages 459–474. IEEE Computer Society Press, May 2014.

[BDO14] Carsten Baum, Ivan Damgård, and Claudio Orlandi. Publicly auditable secure multi-party com-
putation. In Michel Abdalla and Roberto De Prisco, editors, SCN 14, volume 8642 of LNCS, pages
175–196. Springer, Heidelberg, September 2014.

[BG12] Stephanie Bayer and Jens Groth. E�cient zero-knowledge argument for correctness of a shu�e.
In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS,
pages 263–280. Springer, Heidelberg, April 2012.

[BP16] Zvika Brakerski and Renen Perlman. Lattice-based fully dynamic multi-key FHE with short ci-
phertexts. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part I, volume 9814 of
LNCS, pages 190–213. Springer, Heidelberg, August 2016.

[BPW12] David Bernhard, Olivier Pereira, and Bogdan Warinschi. How not to prove yourself: Pitfalls of
the Fiat-Shamir heuristic and applications to Helios. In Xiaoyun Wang and Kazue Sako, editors,
ASIACRYPT 2012, volume 7658 of LNCS, pages 626–643. Springer, Heidelberg, December 2012.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching from classical
GapSVP. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS,
pages 868–886. Springer, Heidelberg, August 2012.

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based FHE as secure as PKE. In Moni Naor,
editor, ITCS 2014, pages 1–12. ACM, January 2014.

[BY86] Josh Cohen Benaloh and Moti Yung. Distributing the power of a government to enhance the
privacy of voters (extended abstract). In Joseph Y. Halpern, editor, 5th ACM PODC, pages 52–62.
ACM, August 1986.

[BZ16] Christian Blum and Christina Isabel Zuber. Liquid democracy: Potentials, problems, and perspec-
tives. Journal of Political Philosophy, 24(2):162–182, 2016.

[Can00] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
Cryptology ePrint Archive, Report 2000/067, 2000. http://eprint.iacr.org/2000/
067.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
42nd FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

[Can03] Ran Canetti. Universally composable signatures, certi�cation and authentication. Cryptology
ePrint Archive, Report 2003/239, 2003. http://eprint.iacr.org/2003/239.

[CEC+08] David Chaum, Aleks Essex, Richard Carback, Jeremy Clark, Stefan Popoveniuc, Alan Sherman,
and Poorvi Vora. Scantegrity: End-to-End Voter-Veri�able Optical- Scan Voting. IEEE Security &
Privacy Magazine, 6(3):40–46, May 2008.

[Cha81] David Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Commun.
ACM, 24(2):84–88, 1981.

[CP93] David Chaum and Torben P. Pedersen. Wallet databases with observers. In Ernest F. Brickell,
editor, CRYPTO’92, volume 740 of LNCS, pages 89–105. Springer, Heidelberg, August 1993.

25

http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2003/239

[CRS05] David Chaum, Peter Y. A. Ryan, and Steve A. Schneider. A practical voter-veri�able election
scheme. In Sabrina De Capitani di Vimercati, Paul F. Syverson, and Dieter Gollmann, editors,
ESORICS 2005, volume 3679 of LNCS, pages 118–139. Springer, Heidelberg, September 2005.

[DAO17] DAO. Create a democratic autonomous organization, 2017. https://www.ethereum.
org/dao.

[DKL+13] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P. Smart.
Practical covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits. In Jason
Crampton, Sushil Jajodia, and Keith Mayes, editors, ESORICS 2013, volume 8134 of LNCS, pages
1–18. Springer, Heidelberg, September 2013.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation
from somewhat homomorphic encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 643–662. Springer, Heidelberg, August 2012.

[For02] Bryan Ford. Delegative democracy. 2002. http://www.brynosaurus.com/deleg/
deleg.pdf.

[GK15] Jens Groth and Markulf Kohlweiss. One-out-of-many proofs: Or how to leak a secret and spend
a coin. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of
LNCS, pages 253–280. Springer, Heidelberg, April 2015.

[Gro04] Jens Groth. Evaluating security of voting schemes in the universal composability framework. In
Markus Jakobsson, Moti Yung, and Jianying Zhou, editors, ACNS 04, volume 3089 of LNCS, pages
46–60. Springer, Heidelberg, June 2004.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In Ran Canetti and Juan A. Garay,
editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 75–92. Springer, Heidelberg, August
2013.

[HL15] Steve Hardt and Lia Lopes. Google votes: A liquid democracy experiment on a corporate social
network. Technical Disclosure Commons, 2015. http://www.tdcommons.org/dpubs_
series/79.

[KMNV16] Oksana Kulyk, Karola Marky, Stephan Neumann, and Melanie Volkamer. Introducing proxy vot-
ing to helios. In ARES 2016, pages 98–106, 2016.

[KZZ15a] Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. DEMOS-2: Scalable E2E veri�able
elections without random oracles. In Indrajit Ray, Ninghui Li, and Christopher Kruegel:, editors,
ACM CCS 15, pages 352–363. ACM Press, October 2015.

[KZZ15b] Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. End-to-end veri�able elections in the
standard model. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume
9057 of LNCS, pages 468–498. Springer, Heidelberg, April 2015.

[KZZ16] Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Fair and robust multi-party computation
using a global transaction ledger. In Marc Fischlin and Jean-Sébastien Coron, editors, EURO-
CRYPT 2016, Part II, volume 9666 of LNCS, pages 705–734. Springer, Heidelberg, May 2016.

[LTV11] Adriana Lopez-Alt, Eran Tromer, and Vinod Vaikuntanathan. Cloud-assisted multiparty compu-
tation from fully homomorphic encryption. Cryptology ePrint Archive, Report 2011/663, 2011.
http://eprint.iacr.org/2011/663.

26

https://www.ethereum.org/dao
https://www.ethereum.org/dao
http://www.brynosaurus.com/deleg/deleg.pdf
http://www.brynosaurus.com/deleg/deleg.pdf
http://www.tdcommons.org/dpubs_series/79
http://www.tdcommons.org/dpubs_series/79
http://eprint.iacr.org/2011/663

[Mer16] Ralph Merkle. Daos, democracy and governance. Manuscript, 2016. http://merkle.com/
papers/DAOdemocracyDraft.pdf.

[Mil69] James C. Miller. A program for direct and proxy voting in the legislative process. Public Choice,
7(1):107–113, 1969.

[MN06] Tal Moran and Moni Naor. Receipt-free universally-veri�able voting with everlasting privacy. In
Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 373–392. Springer, Heidelberg,
August 2006.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller.
In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS,
pages 700–718. Springer, Heidelberg, April 2012.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-key FHE. In
Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS,
pages 735–763. Springer, Heidelberg, May 2016.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: extended
abstract. In Michael Mitzenmacher, editor, 41st ACM STOC, pages 333–342. ACM Press, May / June
2009.

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In Richard E.
Ladner and Cynthia Dwork, editors, 40th ACM STOC, pages 187–196. ACM Press, May 2008.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages 84–93. ACM Press, May
2005.

[Sch91] Claus-Peter Schnorr. E�cient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, 1991.

[SK95] Kazue Sako and Joe Kilian. Receipt-free mix-type voting scheme - a practical solution to the
implementation of a voting booth. In Louis C. Guillou and Jean-Jacques Quisquater, editors,
EUROCRYPT’95, volume 921 of LNCS, pages 393–403. Springer, Heidelberg, May 1995.

[UMQ10] Dominique Unruh and Jörn Müller-Quade. Universally composable incoercibility. In Tal Rabin,
editor, CRYPTO 2010, volume 6223 of LNCS, pages 411–428. Springer, Heidelberg, August 2010.

27

http://merkle.com/papers/DAOdemocracyDraft.pdf
http://merkle.com/papers/DAOdemocracyDraft.pdf

A Supplementary material for Section 4

A.1 Proof for Theorem 4.2

Before providing the proof details, we �rst present a simpli�ed version of our statement voting functionality
as in Figure 16. We note that, this functionality achieves strong privacy.

Functionality FSV

The functionality FSV interacts with a set of voters V := {V1, . . . ,Vn}, a set of trustees T := {T1, . . . ,Tk}, and
the adversary S . Let Vhonest, Vcorrupt and Thonest, Tcorrupt denote the set of honest/corrupt voters and trustees,
respectively.
Functionality FSV is parameterized by an algorithm TallyProcess, and variables result , T1, T2, and Bi for all
i ∈ [n].

Initially, set result := ∅, T1 := ∅, T2 := ∅; for i ∈ [n], set Bi := ∅.

Preparation:

1. Upon receiving input (InitialTrustee, sid) from the trustee Tj ∈ T, set T1 := T1 ∪ {Tj}, and send a
noti�cation message (InitialTrusteeNotify, sid,Tj) to the adversary S .

Ballot Casting:

1. Upon receiving input (Cast, sid, si) from the voter Vi ∈ V, if |T1| < k, ignore the input. Otherwise,
record Bi := (Vi, si); send a message (CastNotify, sid,Vi) to the adversary S . If |Tcorrupt| = k, then
additionally send a message (Leak, sid,Vi, Bi) to the adversary S .

Tally:

1. Upon receiving input (Tally, sid) from the trustee Tj ∈ T, if Tj 6∈ T2 then set T2 := T2 ∪ {Tj}.
Send a noti�cation message (TallyNotify, sid,Tj) to S .
If |T2 ∩ Thonest|+ |Tcorrupt| = k, send (Leak, sid,TallyProcess(B1, . . . , Bn)) to S .
If |T2| = k, compute result ← TallyProcess(B1, . . . , Bn).

2. Upon receiving input (ReadResult, sid) from a voter Vi ∈ V, if result = ∅, ignore the input.
Else, return (ResultReturn, sid, result) to Vi.

Figure 16: The statement voting functionality.

Proof. To prove the theorem, we construct a simulator S such that no non-uniform ppt environment Z
can distinguish between (i) the real execution EXECḠBB,F̂Cert

Πfhe-SV,A,Z where the parties V := {V1, . . . ,Vn} and
T := {T1, . . . ,Tk} run protocol Πfhe-SV in the {ḠBB, F̂Cert}-hybrid world and the corrupted parties are
controlled by a dummy adversary A who simply forwards messages from/to Z , and (ii) the ideal execution
EXECḠBBFSV,S,Z where the parties interact with functionalityFSV in the ḠBB-hybrid model and corrupted parties
are controlled by the simulator S . Let Vcorrupt ⊆ V and Tcorrupt ⊆ T be the set of corrupted voters and
trustees, respectively. We consider following cases.

Case 1: 0 ≤ |Vcorrupt| < n ∧ 0 ≤ |Tcorrupt| < k.

Simulator. The simulator S internally runsA, forwarding messages to/from the environment Z . The sim-
ulator S simulates honest voters Vi ∈ V\Vcorrupt, honest trustees Tj ∈ T\Tcorrupt and functionalities F̂Cert.
In addition, the simulator S simulates the following interactions with A.

28

• In the preparation phase:

Upon receiving (InitialTrusteeNotify, sid,Tj) from the external FSV for an honest trustee
Tj ∈ T \ Tcorrupt, the simulator S acts as Tj , following the protocol Πfhe-SV as if Tj receives
(InitialTrustee, sid) from Z .
Monitoring ḠBB, when a valid (pkj , π

(1)
j) is posted on ḠBB from a corrupted trustee Tj ∈ Tcorrupt,

use NIZKR1 .Ext
RO(pkj , π

(1)
j) to extract the corresponding secret key skj .

• In the ballot casting phase:
Upon receiving (CastNotify, sid,Vi) from the external FSV for an honest voter Vi ∈ V \Vcorrupt,
the simulator S creates ci ← TFHE.Enc(pk, 0). It then uses NIZKR2 .Sim to simulate the corre-
sponding proofs π(2)

i . The simulator S then follows the protocol to post (ci, π
(2)
i) to ḠBB.

Monitoring ḠBB, when a valid (ci, π
(2)
i) is posted on ḠBB from a corrupted voter Vi ∈ Vcorrupt,

uses the extracted
{
skj
}
j∈[k]

to decrypt ci to (Vi, si). The simulator S then acts as Vi to send
(Cast, sid, si) to FSV.

• In the tally phase:
Upon receiving (TallyNotify, sid,Tj) from the externalFSV for an honest trusteeTj ∈ T\Tcorrupt,
if τ j are not de�ned yet, the S acts asTj , following the protocol Πfhe-SV as ifTj receives (Tally, sid)
from Z . S then adds j to J , where J is initially empty. If τ j is de�ned, S uses NIZKR3 .Sim to
simulate the corresponding proof π(3)

j . It then follows the protocol to post (τ j , π
(3)
j) on the ḠBB.

Upon receiving (Leak, sid, τ) from the external FSV, the simulator S uses the extracted secret key
skj to compute τ j ← TFHE.ShareDec(skj , c) for all the corrupted trustees Tj ∈ Tcorrupt. It
then adds all the indices of the corrupted trustees to J . The simulator S computes {τ j}j∈[k]\J ←
SimShareDec(c, τ, {τ i}i∈J).

Indistinguishability. The indistinguishability is proven through a series of hybrid worldsH0, . . . ,H4.
HybridH0: It is the real protocol execution EXECḠBB,F̂Cert

Πfhe-SV,A,Z .
Hybrid H1: H1 is the same as H0 except that H1 runs NIZKR1 .Ext

RO(pkj , π
(1)
j) to extract the corrupted

trustee’s secret key skj . H1 halt if the extraction fails.

Claim A.1. H1 andH0 are indistinguishable.

Proof. According to Def. 2.3, the probability NIZKR1 .Ext
RO extraction fails (a.k.a. knowledge error) is negligi-

ble, so the probability that any adversaryA and the environmentZ can distinguishH1 fromH0 is negl(λ).

Hybrid H2: H2 is the same as H1 except the following: During the tally phase, uses the extracted skj from
Hybrid H1 to decrypt each ciphertext, and the last honest trustee’s message shares of each ciphertext are
calculated by TFHE.SimShareDec instead of using TFHE.ShareDec.

Claim A.2. H2 andH1 are indistinguishable.

Proof. By the share-simulation indistinguishability of the underlying TFHE scheme, the distribution of the
simulated decryption share(s) are computationally indistinguishable to the real ones. Moreover, by soundness
of

NIZKR3

{
(c, τ j , pkj), (skj , αj) :

(pkj , skj) = TFHE.Keygen(param;αj) ∧ τ j = TFHE.ShareDec(skj , c)

}
the corrupted trustees have negligible probability to post an invalid decryption share that is di�erent from
τ j ← TFHE.ShareDec(skj , c). Therefore, the adversary’s advantage of distinguishingH2 fromH1 is negl(λ).

29

Hybrid H3: H3 is the same as H2 except the followings. During the vote phase, H3 uses NIZKR2 .Sim to
simulate π(2)

i for all the honest voter Vi ∈ V.

Claim A.3. H3 andH2 are indistinguishable.

Proof. The advantage of the adversary is bounded by the ZK property of NIZKR2 as de�ned by Def. 2.2.

Hybrid H4: H4 is the same as H3 except the followings. During the vote phase, the simulator posts ci ←
TFHE.Enc(pk, 0) for all the honest voter Vi ∈ V.

Claim A.4. H4 andH3 are indistinguishable.

Proof. The probability that any adversary A can distinguish H4 from H3 is bounded by AdvCPAA(1λ) and
ciphertext transformative indistinguishability. More speci�cally, we now show the if there exists an adversary
A who can distinguish H4 from H3, then we can construction an adversary B that can break the IND-CPA
game of the underlying TFHE by reduction. During the IND-CPA game, B receives a public key pk∗ from the
challenger. There must be at least one honest trustee in this case, and with our loss of generality, assume Tx is
honest. During the preparation phase, B posts pk∗ as Tx’s public key together with simulated proof. During
the ballot casting phase, for each honest voter Vi, i ∈ [n], B sends m0 := 0 and m1 := si to the IND-CPA
challenger, and receives c∗. B then computes c′ ← TFHE.Trans(c∗, {ski}i∈[k]\{x}). It posts c′ as the honest
voter’s encrypted ballot. It is easy to see that, when c∗ encrypts m0, the adversary’s view is indistinguishable
fromH4; when c∗ encryptsm1, the adversary’s view is indistinguishable fromH3. Hence, ifA can distinguish
H4 fromH3 with non-negligible probability, then B can break the IND-CPA game with the same probability.

The adversary’s view of H4 is identical to the simulated view EXECḠBBFSV,S,Z . Therefore, no PPT Z can
distinguish the view of the ideal execution from the view of the real execution with more than negligible
probability.

Case 2: 0 ≤ |Vcorrupt| < n ∧ |Tcorrupt| = k.

Simulator. Similar as Case 1, the simulator S internally runsA, forwarding messages to/from the environ-
ment Z . The simulator S simulates honest voters Vi ∈ V \ Vcorrupt, honest trustees Tj ∈ T \ Tcorrupt and
functionalities F̂Cert. In addition, the simulator S simulates the following interactions with A.

• In the preparation phase:

Monitoring ḠBB, when a valid (pkj , π
(1)
j) is posted on ḠBB from a corrupted trustee Tj ∈ Tcorrupt,

use NIZKR1 .Ext
RO(pkj , π

(1)
j) to extract the corresponding secret key skj .

• In the ballot casting phase:

Upon receiving (Leak, sid,Vi, si) from the external FSV for an honest voter Vi ∈ V \ Vcorrupt, the
simulator S acts as Vi, following the protocol Πfhe-SV as if Vi receives (Cast, sid, si) from Z .
Monitoring ḠBB, when a valid (ci, π

(2)
i) is posted on ḠBB from a corrupted voter Vi ∈ Vcorrupt,

uses the extracted
{
skj
}
j∈[k]

to decrypt ci to (Vi, si). The simulator S then acts as Vi to send
(Cast, sid, si) to FSV.

• In the tally phase:

The simulator S monitoring ḠBB; once a τ j , π(3)
j is posted from a corrupted trustee Tj ∈ Tcorrupt,

the simulator S acts as Tj to send (Tally, sid) to FSV.

30

Indistinguishability. The indistinguishability in this case is straightforward, as S never simulate a single
message to either any corrupted parties or the external ḠBB. The simulator S knows all the honest voters’
ballot from the externalFSV, it simply acts as the honest voters according to the protocol Πfhe-SV. Meanwhile,
it also extracts the ballot of the malicious voters by using the extracted trustees’ secret keys. Hence, the
simulator S can submit the extracted ballot to the external FSV on the malicious voters’ behave. Therefore,
when NIZK extraction for trustees’ secret keys are successful, the view of Z in the ideal execution has
identical distribution to the view of Z in the real execution.

Case 3: |Vcorrupt| = n ∧ 0 ≤ |Tcorrupt| ≤ k.

Simulator. Trivial case. There is nothing needs to extract, as the trustees do not have input. The simulator
S just run trustee according to protocol Πfhe-SV.
Indistinguishability. The view of Z in the ideal execution has identical distribution to the view of of Z in
the real execution.

A.2 Instantiation of TFHE via GSW

In this subsection, we present our construction TFHE. Assume there exist N players in our system, and each
player has a (pk, sk) pair. Without lose of generality, for player i with (pki, ski) generated from Keygen for
i ∈ [N].

• param ← TFHE.Setup(1λ): The algorithm takes as input the security parameter λ then outputs
param := (n,m, q, χ) as public parameter;

• (pki, ski) ← TFHE.Keygen(1λ) : The algorithm �rst samples a public matrix B ← Zn×mq , a secret
vector si ← Z1×n

q , and an error vector ei ← χ1×m; Then, the algorithm computes bi := si · B + ei
(mod q) ∈ Z1×m

q ; The algorithm constructs and broadcasts the public key

pk := A =

(
B

b

)
∈ Z(n+1)×m

q

and keeps secret key sk := t := [−s, 1] ∈ Z1×(n+1)
q privately; Observe that

[−s|1] ·
(
B

b

)
= e (mod q);

• pk := TFHE.CombinePK(pk1, . . . , pkN): It takes input as a set of public keys (pk1, . . . , pkN), and
outputs a combined public key pk. i.e., pk =

∑N
i=1 pki

• c← TFHE.Enc(pk,m) : In this setting, each player uses the combine public key to encrypt his message
m, in more detail:

1. Most importantly, each player will broadcasts their public key pki, and receives the other player’s
public keys, then generates a combine public key via CombinePK(pk1, . . . , pkN):

pk :=
N∑
i

pki =

(
B∗

b∗

)
∈ Z(n+1)×m

q

where b∗ :=
∑N

i bi and B∗ :=
∑N

i Bi;

31

2. Samples a random matrix Ri ← {0, 1}m×(n+1)`, then, computes and broadcasts

C :=

(
B∗

b∗

)
·Ri +mi ·G (mod q) ∈ Z(n+1)×(n+1)`

q

Here, we stress that, in general encryption scheme, each player encrypts msg ∈ {0, 1} under his
public key pk by using Ci ← Enc(pki,mi) := pkiRi + miG where the pki is not the common
public key.

• c∗ ← TFHE.Eval(C, pk, c1, · · · , cN) : Homomorphic evaluation algorithm, upon receiving all the
encrypted data from other players, each player invokes the Eval algorithm (e.g., addition or multipli-
cation) to generate the evaluation ciphertext. We stress that the Eval algorithm is the same as the
evaluation algorithm of Gentry et al. [GSW13].

• sk ← CombineSK(sk1, . . . , skN). It takes input as a set of secret key (sk1, . . . , skk), and outputs
combined secret key sk. More concretely, each player uses the secret key share functional polynomial
fi to share the secret key share, e.g., f(x) = sk + r1x

1 + r2x
2 + · · · + rNx

N and sends each fj to
the player j for j ∈ [N]. Then, the player i re-constructs these shares to generate ski :=

∑
j∈S fj(i).

For example, we parse ski into k pieces, ski := (fi(1), · · · , fi(N)), at the end of secret share, we set
ski := (f1(i), · · · , fN (i)).

• y ← TFHE.Dec(c∗, sk1, · · · , skN) :

1. Upon receiving the shares from other players, the player i combines his shares of secret key by
computing ski :=

∑
j∈S fj(i) and broadcasts µi := (

∑
j∈S skj · c∗) ·G−1(wT) + smdgi;

2. Upon receiving all the partial messages {µi}i∈T , each player picks an arbitrary subset T ⊆ S ⊆
[N] such that |T | = [N/2]+1. Then, they use the “Lagrange interpolation” polynomial to compute
result =

∑
k∈T δk(0) · µk = b q2c ·m+ noise for k ∈ T ;

3. Finally, they output m.

• µi ← TFHE.ShareDec(ski, c
∗). It takes the secret key of player i and the evaluated ciphertext as

input. Upon receiving the shares from other players, the player i combines his shares of secret key by
computing ski :=

∑
j∈S fj(i) and broadcasts the partial message µi := (

∑
j∈S skj · c∗) ·G−1(wT) +

smdgi;

• m ← TFHE.ShareCombine(c, µ1, . . . , µk). It takes input as a ciphertext c and k decryption shares
(µ1, . . . , µk), and outputs a plaintext m. More concretely, upon receiving all the partial messages{
µi
}
i∈T , each player picks an arbitrary subset T ⊆ S ⊆ [N] such that |T | = [N/2] + 1. Then, they

use the “Lagrange interpolation” polynomial to compute result =
∑

k∈T δk(0) · µk = b q2c ·m+ noise
for k ∈ T ; Lastly, outputs m.

Theorem A.5. The construction TFHE above is a secure publicly evaluable key-homomorphic threshold FHE
under the LWE assumption.

Proof. To prove the above theorem, we need to show
1). Correct Key Combination: Consider the combination of keys, it is easily seen that

pk∗ = pk1 + pk2 + · · ·+ pkN =

N∑
i=1

bi =

N∑
i=1

(
si ·B + ei (mod q) ∈ Z1×m

q si
)
·B

= (

N∑
i=1

si)B + (

N∑
i=1

ei) (mod q).

32

Obliviously, then (pk∗, sk∗) are valid key tuples.
2). Ciphertext transformative indistinguishability: We note that, the ppt algorithmTrans takes input

as the current ciphertext c under the set
{
ski
}

for i ∈ [k], and outputs the transformed ciphertext c′ ≈ c. As

mentioned earlier, in our setting, we obtain that, C′ := Trans(C, {ski}i∈[k]) =

(
B∑
i∈j bi

)
· R̄ + m ·G,

where we recall the original ciphertext as follows C =

(
B

b

)
·R + m ·G under the secret key sk := t :=

[−s, 1] ∈ Z1×(n+1)
q . Notably b = s · B + e (mod q). In order to prove the C′ and C indistinguishability,

we only consider
(

B∑
i∈j bi

)
· R̄ and

(
B

b

)
· R indistinguishability. In a simple, the simulator can easily

obtain the original ciphertext and the public keys which from the parties. Once the simulator obtain the
randomness from one of the parties, he could create a matrix R̄ = R + Y ∈

{
0, 1
}m×(n+1)` for z =∑

i∈[k]\[j] biR + (
∑

i∈[k]\[j] si · B +
∑

i∈[k]\[j] ei)Y ∈ Z1×m
q . Hence, they are identical and there is no ppt

adversary can distinguish them.
3). Share-simulation indistinguishability:
We �rst de�ne the SimShareDec(c,m, {µi}i∈I), then �x j∗ ∈ T̄ = [N] \ T . Sample the partial message

µj uniformly and let µj∗ :=

(
B∗

b∗

)
·Ri −

∑
i∈N,i6=j∗ µi and output {µj}j∈T̄ . By correct share decryption,

we know that regardless of how {µj}j∈T̄ were created, µj∗ :=

(
B∗

b∗

)
· Ri −

∑
i∈N,i6=j∗ µi. Since this

is a deterministic function of the rest of the variables, we simply need to prove that {µj := (sk∗j · c∗) ·
G−1(wT) + smdgj}{j∈T̄ ,j 6=j∗} ≈c {µj ← Zq

}{
j∈T̄ ,j 6=j∗

}. Obliviously, inspired by the security of TFHE,
utilizing the leftover hash lemma and the LWE assumption, we can prove the above equation satisfy the
property of computational indistinguishability.

A.3 Fully homomorphic encryption

A fully homomorphic encryption scheme FHE consists of a tuple of algorithms: (Setup,Keygen,Enc,Eval,
Dec) as follows.

• param← Setup(1λ). The algorithm Setup takes input as the security parameter λ, and outputs public
parameters param. All the other algorithms implicitly take param as input.

• (pk, sk) ← Keygen(param). The algorithm Keygen takes input as the public parameter param, and
outputs a public key pk, a secret key sk.

• c← Enc(pk,m). The algorithm Enc takes input as the public key pk and the message m, and outputs
the ciphertext c.

• c′ := Eval(pk,F , c1, . . . , cn). The algorithm Eval takes input as the public (a.k.a., evaluation) key pk,
the description of the evaluation function (circuit) F , and a set of ciphertexts c1, . . . , cn, and outputs
the result ciphertext c′.

• m ← Dec(sk, c). The algorithm Dec takes input as the secret key sk and a ciphertext c, and outputs
the decrypted plaintext m.

De�nition A.6. We say FHE = {Setup,Keygen,Enc,Eval,Dec} is a secure fully homomorphic encryption if
the following properties hold:

33

• Correctness: The correctness properties are required as follows:

- For any λ,m ∈ {0, 1}∗, and (pk, sk) output by Keygen(1λ), we have that

m = Dec
(
sk,
(
Enc(pk,m)

))
;

- For any λ, anym1, · · · ,ml ∈ {0, 1}∗, and C ∈ Cλ, we have that

C(m1, · · · ,m`) = Dec
(
sk,
(
Eval

(
pk, (C,Enc(pk,m1), · · · ,Enc(pk,m`))

)))
.

• IND-CPA security: We say that a TFHE scheme achieves indistinguishability under plaintext attacks
(IND-CPA) if for any ppt adversary A the following advantage AdvCPA is negligible.

ExperimentCPA(1λ)

1. Run param← TFHE.Setup(1λ).
2. Run (pk, sk)← TFHE.Keygen(param);
4. A(pk) outputsm0,m1 of equal length;
5. Pick b←

{
0, 1
}
; Run c← TFHE.Enc(pk,mb);

6. A(c) outputs b∗; It returns 1 if b = b∗; else, returns 0.

We de�ne the advantage of A as

AdvCPAA(1λ) =

∣∣∣∣Pr[ExperimentCPA(1λ) = 1]− 1

2

∣∣∣∣ .
A.4 Gentry-Sahai-Waters (GSW) construction

Let k be a security parameter and let L be the number of levels for the somewhat homomorphic scheme. We
describe the algorithms that form the GSW scheme [GSW13]. The algorithm is originally de�ned in terms of
the functions
BitDecomp,BitDecomp−1 and Flatten, but we tend to follow the formulation in [AP14, MW16] and so use
the matrix G.

• GSW.Setup(1k, 1L):

1. Choose a modulus q of κ = κ(k, L) bits, parameter n = n(k, L) ∈ N, and error distribution
χ = χ(k, L) on Z so that the (n, q,m, χ)-LWE problem achieves at least 2k security against
known attacks.
Choose a parameter m = m(k, L) = O(n log(q));

2. Output: param = (n, q,m, χ).
We also use the notation ` = blog(q)c+ 1 and N = (n+ 1) · `.

• GSW.Keygen(param):

1. Sample uniformly t = (t1, . . . , tn)T ← Znq and compute

s← (1,−tT)T = (1,−t1, · · · ,−tn)T ∈ Z(n+1)×1
q ;

2. Generate a matrix B← Zm×nq uniformly and a vector e← χm;

34

3. Compute b = Bt + e ∈ Zmq and construct the matrix A = (b|B) ∈ Zm×(n+1)
q as the vector b

followed by the n columns of B.
Observe that

As = (b|B)s = (Bt + e|B)

(
1
−t

)
= Bt + e−Bt = e.

4. Return sk← s and pk← A.

- C← GSW.Enc(param, pk, µ): In order to encrypt one-bit messages µ ∈ {0, 1}:

1. Let G be the (n+ 1)×N gadget matrix as above;
2. Sample uniformly a matrix R← {0, 1}m×N ;

3. Compute C = µG + ATR (mod q) ∈ Z(n+1)×N
q .

- µ′ ← GSW.Dec(param, sk,C):

1. We have sk = s ∈ Zn+1
q ;

2. De�ne a vector w = [dq/2e|0, · · · , 0] ∈ Z1×(n+1)
q

3. Compute v = sTG · G−1(wT) ∈ Zq and output µ = |b v
q/2e| as the decrypted message. So if

|µ| ≤ q/4 then return 0 otherwise return 1.

- GSW.Eval(param,C1, · · · ,C`):

- GSW.Add(C1,C2): output

C1 + C2 = (µ1 + µ2)G + AT (R1 + R2) ∈ Z(n+1)×N
q ;

- GSW.Mult(C1,C2): Compute G−1(C2) ∈ {0, 1}N×N and output C1G
−1(C2).

Note that

C1G
−1(C2) =

(
µ1G + ATR1

)
G−1(C2)

= µ1C2 + ATR1G
−1(C2)

= µ1µ2G + ATR1G
−1(C2) + µ1A

TR2

= µ1µ2G + AT
(
R1G

−1(C2) + µ1R2

)
∈ Z(n+1)×N

q .

One may also compute a homomorphic NAND gate by outputting G−C1G
−1(C2).

RemarkA.7. Note that the formulation of the decryption algorithm in [MW16] is to choose an appropriate vector
w and compute sCG−1(wT). This is considerably less e�cient than the original GSWdecryption algorithm (both
in terms of computation time and also the size of the error term). Hence we employ the original GSW decryption
algorithm for our scheme.

There is also a variant of the scheme that handles messages in Zq when q is a power of two. We refer
to [GSW13] for the details.

35

A.4.1 Security

A sketch proof is given in [GSW13] of the following theorem.
TheoremA.8. Let (n, q,m, χ) be such that the LWE(n,q,m,χ) assumption holds and letm = O(n log(q)). Then
the GSW scheme is IND-CPA secure.

The main step in the proof is showing that (A,RA) is computationally indistinguishable from uniform.
De�nition A.9 ([GSW13, AP14, BV14, BP16]). If the ciphertexts C = µG + A ·R, along with the secret key
s = (−t, 1), then the noise of C is the in�nity norm of the noise vector: noise(s,µ)(C) = ‖C − µG‖∞, i.e.,
noise(s,µ)(C) = ‖tA ·R‖ = ‖e ·R‖ ≤ mB ·m ≤ E.

Lemma A.10 ([GSW13, AP14, BV14, BP16]). For the ciphertexts C = µG + A ·R ∈ Zn×mq , along with the
secret key s = (−t, 1) and G ∈ Zn×mq , then the noise in negation, addition and multiplication is bounded as
follows:

- Addition: for all messages µ1, µ2 ∈ {0, 1}, it holds that noise(s,µ1+µ2)(C1 + C2) ≤ noise(s,µ1)(C1) +
noise(s,µ2)(C2);

- Multiplication: for all messages µ1, µ2 ∈ {0, 1}, it holds that
noise(s,µ1µ2)(C1G

−1(C2)) ≤ µ1 · noise(s,µ2)(C2) + m · noise(s,µ1)(C1) for an e�ciently computable
functionG−1 : Znq → Zmq . i.e., noise(s,µ1µ2)(C1G

−1(C2)) ≤ ‖µ1 · (e2R2) + (e1R1) ·G−1(C2)‖.

- Negation: for all message µ ∈ {0, 1}, it holds that noise(s,1−µ)(G−C) = noise(s,µ)(C).

A.5 LWE assumption

De�nition A.11 ([Bra12] Def2.1). A distribution ensemble χ = χ(λ) over the integers is called B-bounded
(denoted |χ| ≤ B) if there exists:

Pr
x

$←χ
[|x| ≥ B] ≤ 2−Ω̃(n)

De�nition A.12 (LWE Distribution). For the security parameter λ, let n = n(λ) and m = m(λ) be integers,
let χ = χ(λ) be error distribution over Z bounded by B = B(λ), and let q = q(λ) ≥ 2 be an integer modulus
for any polynomial p = p(λ) such that q ≥ 2p · B. Then, sample a vector s ∈ Zn×1

q called the secret, the LWE
distribution As,χ over Znq × Zq is sampled by choosing A ∈ Zm×nq uniformly at random, choosing e ← χm×1,
and outputting

(
A,b = A · s + e (mod q)

)
.

We de�ne the decisional version as follows,
De�nition A.13 (Decision-LWEn,q,χ,m). Assume given an independent sample (A,b) ∈ Zm×nq ×Zm×1

q , where
the sample is distributed according to either: (1) As,χ for a uniformly random s ∈ Znq (i.e., {(A,b) : A ←
Zm×nq , s ← Zn×1

q , e ← χm×1,b = A · s + e (mod q)}), or (2) the uniform distribution (i.e., {(A,b) : A ←
Zm×nq ,b← Zm×1

q }). Then, the above two distributions are computationally indistinguishable.

RemarkA.14. Regev and others [Reg05, Pei09, PW08, MW16] show that reductions between the LWE assumption
and approximating the shortest vector problem in lattices (for appropriate parameters). We omit the corollary of
these schemes’ results. More details will be �nd [Reg05, Pei09, PW08, MW16].

Lemma A.15 (Smudging Lemma). Let B1 = B1(λ), and B2 = B2(λ) be positive integers and let vsm ∈
[−B1, B1] be a �xed integer. Let vsm2 ← [−B2, B2] be chosen uniformly at random. Then the distribution of vsm2
is statistically indistinguishable from that of vsm2 + vsm1 as long as B1/B2 = negl(λ).

Lemma A.16 ([MP12]). For any N ≥ mdlog qe there exists a computable gadget matrix G ∈ Zm×Nq and
an e�ciently computable deterministic inverse (a.k.a., “short preimage”) function G−1(·). The inverse function
G−1(M) takes as input a matrix M ∈ Zm×m′q for any m′ and outputs a matrix G−1(M) ∈ {0, 1}N×m′ such
thatGG−1(M) = M.

36

B Supplementary material for Section 5

B.1 Proof for Theorem 5.2

Proof. To prove the theorem, we construct a simulator S such that no non-uniform ppt environment Z
can distinguish between (i) the real execution EXEC

ḠBB,F̂Cert,FCMPC
Πmpc-SV,A,Z where the parties V := {V1, . . . ,Vn}

and T := {T1, . . . ,Tk} run protocol Πmpc-SV in the {ḠBB, F̂Cert,FCMPC}-hybrid world and the corrupted
parties are controlled by a dummy adversary A who simply forwards messages from/to Z , and (ii) the
ideal execution EXECḠBBFSV,S,Z where the parties interact with functionality FSV in the ḠBB-hybrid model and
corrupted parties are controlled by the simulator S . Let Vcorrupt ⊆ V and Tcorrupt ⊆ T be the set of corrupted
voters and trustees, respectively. We consider following cases.

Case 1: 0 ≤ |Vcorrupt| < n ∧ 0 ≤ |Tcorrupt| < k.

Simulator. The simulator S internally runsA, forwarding messages to/from the environment Z . The sim-
ulator S simulates honest voters Vi ∈ V \Vcorrupt, honest trustees Tj ∈ T \Tcorrupt and functionalities F̂Cert
and FCMPC. In addition, the simulator S simulates the following interactions with A.

• In the preparation phase:

Upon receiving (InitialTrusteeNotify, sid,Tj) from the external FSV for an honest trustee
Tj ∈ T \ Tcorrupt, the simulator S acts as Tj , following the protocol Πmpc-SV as if Tj receives
(InitialTrustee, sid) from Z .
Monitoring ḠBB, when a valid (pkj , π

(1)
j) is posted on ḠBB from a corrupted trustee Tj ∈ Tcorrupt,

use NIZKR11 .Ext
RO(pkj , π

(1)
j) to extract the corresponding secret key skj and random coin αj .

• In the ballot casting phase:
Upon receiving (CastNotify, sid,Vi) from the external FSV for an honest voter Vi ∈ V \Vcorrupt,
the simulator S creates ci ← TE.Enc(pk, 0). It then uses NIZKR12 .Sim to simulate the correspond-
ing proofs π(2)

i . The simulator S then follows the protocol to post (ci, π
(2)
i) to ḠBB.

Monitoring ḠBB, when a valid (ci, π
(2)
i) is posted on ḠBB from a corrupted voter Vi ∈ Vcorrupt,

uses the extracted
{
skj
}
j∈[k]

to decrypt ci to (Vi, si). The simulator S then acts as Vi to send
(Cast, sid, si) to FSV.

• In the tally phase:
Upon receiving (Leak, sid, τ) from the external FSV, the simulator S acts as the simulated FCMPC to
send τ to each of the trustees Tj ∈ T. For any honest trustee Tj ∈ T \ Tcorrupt, the simulator S
acts as Tj to post τ on the ḠBB.

Indistinguishability. The indistinguishability is proven through a series of hybrid worldsH0, . . . ,H3.
HybridH0: It is the real protocol execution EXEC

ḠBB,F̂Cert,FCMPC
Πmpc-SV,A,Z .

Hybrid H1: H1 is the same as H0 except that H1 runs NIZKR11 .Ext
RO(pkj , π

(1)
j) to extract the corrupted

trustee’s secret key skj . H1 halt if the extraction fails.

Claim B.1. H1 andH0 are indistinguishable.

Proof. According to Def. 2.3, the probabilityNIZKR11 .Ext
RO extraction fails (a.k.a. knowledge error) is negligi-

ble, so the probability that any adversaryA and the environmentZ can distinguishH1 fromH0 is negl(λ).

37

Hybrid H2: H2 is the same as H1 except the followings. During the vote phase, H3 uses NIZKR12 .Sim to
simulate π(2)

i for all the honest voter Vi ∈ V.

Claim B.2. H2 andH1 are indistinguishable.

Proof. The advantage of the adversary is bounded by the ZK property of NIZKR12 as de�ned by Def. 2.2.

Hybrid H3: H3 is the same as H2 except the followings. During the vote phase, the simulator posts ci ←
TE.Enc(pk, 0) for all the honest voter Vi ∈ V.

Claim B.3. H3 andH2 are indistinguishable.

Proof. The probability that any adversary A can distinguish H4 from H3 is bounded by AdvCPAA(1λ) and
ciphertext transformative indistinguishability. More speci�cally, we now show the if there exists an adversary
A who can distinguish H4 from H3, then we can construction an adversary B that can break the IND-CPA
game of the underlying TE by reduction. During the IND-CPA game, B receives a public key pk∗ from the
challenger. There must be at least one honest trustee in this case, and with our loss of generality, assume Tx is
honest. During the preparation phase, B posts pk∗ as Tx’s public key together with simulated proof. During
the ballot casting phase, for each honest voter Vi, i ∈ [n], B sends m0 := 0 and m1 := si to the IND-CPA
challenger, and receives c∗. B then computes c′ ← TE.Trans(c∗, {ski}i∈[k]\{x}). It posts c′ as the honest
voter’s encrypted ballot. It is easy to see that, when c∗ encrypts m0, the adversary’s view is indistinguishable
fromH3; when c∗ encryptsm1, the adversary’s view is indistinguishable fromH2. Hence, ifA can distinguish
H3 fromH2 with non-negligible probability, then B can break the IND-CPA game with the same probability.

The adversary’s view of H3 is identical to the simulated view EXECḠBBFSV,S,Z . Therefore, no PPT Z can
distinguish the view of the ideal execution from the view of the real execution with more than negligible
probability.

Case 2: 0 ≤ |Vcorrupt| < n ∧ |Tcorrupt| = k.

Simulator. Similar as Case 1, the simulator S internally runsA, forwarding messages to/from the environ-
ment Z . The simulator S simulates honest voters Vi ∈ V \ Vcorrupt, honest trustees Tj ∈ T \ Tcorrupt and
functionalities F̂Cert. In addition, the simulator S simulates the following interactions with A.

• In the preparation phase:

Monitoring ḠBB, when a valid (pkj , π
(1)
j) is posted on ḠBB from a corrupted trustee Tj ∈ Tcorrupt,

use NIZKR11 .Ext
RO(pkj , π

(1)
j) to extract the corresponding secret key skj .

• In the ballot casting phase:

Upon receiving (Leak, sid,Vi, si) from the external FSV for an honest voter Vi ∈ V \ Vcorrupt, the
simulator S acts as Vi, following the protocol Πmpc-SV as if Vi receives (Cast, sid, si) from Z .
Monitoring ḠBB, when a valid (ci, π

(2)
i) is posted on ḠBB from a corrupted voter Vi ∈ Vcorrupt,

uses the extracted
{
skj
}
j∈[k]

to decrypt ci to (Vi, si). The simulator S then acts as Vi to send
(Cast, sid, si) to FSV.

• In the tally phase:

Once the simulated FCMPC receives (Input, sid, αj , {pk`}`∈[k], {ci}i∈[n]) from a corrupted trustee
Tj ∈ Tcorrupt, the simulator S acts as Tj to send (Tally, sid) to FSV.

38

Indistinguishability. The indistinguishability in this case is straightforward, as S never simulate a single
message to either any corrupted parties or the external ḠBB. The simulator S knows all the honest voters’
ballot from the externalFSV, it simply acts as the honest voters according to the protocol Πmpc-SV. Meanwhile,
it also extracts the ballot of the malicious voters by using the extracted trustees’ secret keys. Hence, the
simulator S can submit the extracted ballot to the external FSV on the malicious voters’ behave. Therefore,
when NIZK extraction for trustees’ secret keys are successful, the view of Z in the ideal execution has
identical distribution to the view of Z in the real execution.

Case 3: |Vcorrupt| = n ∧ 0 ≤ |Tcorrupt| ≤ k.

Simulator. Trivial case. There is nothing needs to extract, as the trustees do not have input. The simulator
S just run trustee according to protocol Πmpc-SV.
Indistinguishability. The view of Z in the ideal execution has identical distribution to the view of of Z in
the real execution.

39

C Supplementary material for Section 6

C.1 Proof for Theorem 6.2

Functionality FSV

The functionality FSV interacts with a set of voters V := {V1, . . . ,Vn}, a set of trustees T := {T1, . . . ,Tk}, and
the adversary S . Let Vhonest, Vcorrupt and Thonest, Tcorrupt denote the set of honest/corrupt voters and trustees,
respectively.
FunctionalityFSV is parameterized by an algorithm TallyProcess (see Figure 4), a working table W, and variables
result , T1, T2, and Bi for all i ∈ [n].

Initially, set result := ∅, T1 := ∅, T2 := ∅; for i ∈ [n], set Bi := ∅.
Table W consists of n entries, and each entry consists of voter’s real ID, voter’s alternative ID, and the statement
that the voter submitted; for all i ∈ [n], the ith entry W[i] := (Vi, wi, statementi), where wi ← {0, 1}λ,
statementi := ∅.

Preparation:

1. Upon receiving input (InitialTrustee, sid) from the trustee Tj ∈ T, set T1 := T1 ∪ {Tj}, and send a
noti�cation message (InitialTrusteeNotify, sid,Tj) to the adversary S .

Ballot Casting:

1. Upon receiving input (Cast, sid, (si, w∗i)) from the voter Vi ∈ V, if |T1| < k, ignore the input.
Otherwise,

ifVi is honest (noww∗i := ⊥), then updateW[i] := (Vi, wi, si); send a message (CastNotify, sid,Vi)
to the adversary S .
if Vi is corrupt, then update W[i] := (Vi, w

∗
i , si).

If |Tcorrupt| = k, then additionally send a message (Leak, sid,W[i]) to the adversary S .

Tally:

1. Upon receiving input (Tally, sid) from the trustee Tj ∈ T, set T2 := T2 ∪ {Tj} and do the following:
set U := W; then eliminate all Vi’s in U; �nally sort the entries in U lexicographically.

Send a noti�cation message (TallyNotify, sid,Tj) to S .
If |T2 ∩ Thonest|+ |Tcorrupt| = k, send a leakage message (Leak, sid,U) to S .
If |T2| = k, compute result ← TallyProcess(U).

2. Upon receiving input (ReadResult, sid) from a voter Vi ∈ V, if result = ∅, ignore the input.
Else, return (ResultReturn, sid, result) to Vi.

Figure 17: The voting functionality.

Proof. To prove the theorem, we construct a simulator S such that no non-uniform PPT environment Z
can distinguish between (i) the real execution EXECḠBB,F̂Cert

Πmix-SV,A,Z where the parties V := {V1, . . . ,Vn} and
T := {T1, . . . ,Tk} run protocol Πmix-SV in the {ḠBB, F̂Cert}-hybrid world and the corrupted parties are
controlled by a dummy adversary A who simply forwards messages from/to Z , and (ii) the ideal execution
EXECḠBBFSV,S,Z where the parties interact with functionalityFSV in the ḠBB-hybrid model and corrupted parties
are controlled by the simulator S . Let Vcorrupt ⊆ V and Tcorrupt ⊆ T be the set of corrupted voters and
trustees, respectively. We consider following cases.

40

Case 1: 0 ≤ |Vcorrupt| < n ∧ 0 ≤ |Tcorrupt| < k.

Simulator. The simulator S internally runsA, forwarding messages to/from the environment Z . The sim-
ulator S simulates honest voters Vi ∈ V\Vcorrupt, honest trustees Tj ∈ T\Tcorrupt and functionalities F̂Cert.
In addition, the simulator S simulates the following interactions with A.

• In the preparation phase:

Upon receiving (InitialTrusteeNotify, sid,Tj) from the external FSV for an honest trustee
Tj ∈ T \ Tcorrupt, the simulator S acts as Tj , following the protocol Πmix-SV as if Tj receives
(InitialTrustee, sid) from Z .
Monitoring ḠBB, when a valid (pkj , π

(1)
j) is posted on ḠBB from a corrupted trustee Tj ∈ Tcorrupt,

use NIZKR4 .Ext
RO(pkj , π

(1)
j) to extract the corresponding secret key skj .

• In the ballot casting phase:

Upon receiving (CastNotify, sid,Vi) from the external FSV for an honest voter Vi ∈ V \Vcorrupt,
the simulator S acts as Vi, following the protocol Πmix-SV round 1 description as if Vi receives
(Cast, sid, (·,⊥)) fromZ . In round 2, the simulator S creates Ui,` ← TRE.Enc(pk, 0), ` ∈ [λ1] and
Si ← TRE.Enc(pk, 0). It then simulates the corresponding proofs π(3)

i,` and π(4)
i . The simulator S

then follows the protocol to post (Ui,`, π
(3)
i,`)λ1

`=1, Si, π
(4)
i) to ḠBB.

The simulator S monitoring ḠBB; once a (Wi, π
(2)
i) is posted from a corrupted voter Vi ∈ Vcorrupt,

the simulator S uses the extracted
{
skj
}
j∈[k]

to decryptWi to the temporal IDwi. Record (Vi, wi).

When a valid (Ui,`, π
(3)
i,`)λ1

`=1, Si, π
(4)
i) is posted on ḠBB from a corrupted voter Vi ∈ Vcorrupt, uses

the extracted
{
skj
}
j∈[k]

to decrypt Ui,` to wi,` and Si to si. Replace the ID references in si to their
actuarial voter ID’s, and denoted the modi�ed statement as s′i. Record (Vi, s

′
i).

Upon receiving any (TallyNotify, sid,Tj) from the external FSV for an honest trustee Tj ∈ T \
Tcorrupt or any corrupted trustee has moved to the tally phase, the simulator S acts as each of the
corrupted voters Vi ∈ Vcorrupt to send (Cast, sid, (s′i, wi)) to FSV if both (Vi, wi) and (Vi, s

′
i) is

recorded; otheriwse, it acts as Vi to send (Cast, sid, (s′i,⊥)) to FSV if only (Vi, s
′
i) is recorded.

• In the tally phase:

Upon receiving (TallyNotify, sid,Tj) from the externalFSV for an honest trusteeTj ∈ T\Tcorrupt,
if {m(j)

i,` }i∈[n′],`∈[λ1+2] is not de�ned, the simulator S acts as Tj , following the protocol Πmix-SV
as if Tj receives (Tally, sid) from Z . S then adds j to J , where J is initially empty. If
{m(j)

i,` }i∈[n′],`∈[λ1+2] is de�ned, S uses NIZKR8 .Sim to simulate the corresponding proof π(6)
i,j,`. It

then follows the protocol to post (m
(j)
i,` , π

(6)
i,j,`)i∈[n′],`∈[λ1+2] on the ḠBB.

The simulator S monitoring ḠBB; once (m
(j)
i,` , π

(6)
i,j,`)i∈[n′],`∈[λ1+2] is posted from a corrupted trustee

Tj ∈ Tcorrupt, the simulator S acts as Tj to send (Tally, sid) to FSV.
Upon receiving (Leak, sid, (B̃1, . . . , B̃n)) from the externalFSV, the simulator S uses the extracted
secret key skj to compute

m
(j)
i,` ← TRE.ShareDec(skj , e

(k)
i,`) for all the corrupted trustees Tj ∈ Tcorrupt. The simulator

S then uses TRE.SimShareDec. to compute the message shares of the rest honest Tj ’s message
shares m(j)

i,` according to (B̃1, . . . , B̃n).

Indistinguishability. The indistinguishability is proven through a series of hybrid worldsH0, . . . ,H4.

41

HybridH0: It is the real protocol execution EXECḠBB,F̂Cert
Πmix-SV,A,Z .

Hybrid H1: H1 is the same as H0 except that H1 runs NIZKR4 .Ext
RO(pkj , π

(1)
j) to extract the corrupted

trustee’s secret key skj . H1 halt if the extraction fails.

Claim C.1. H1 andH0 are indistinguishable.

Proof. According to Def. 2.3, the probability ExtRO extraction fails (a.k.a. knowledge error) is negligible, so
the probability that any adversary A and the environment Z can distinguishH1 fromH0 is negl(λ).

Hybrid H2: H2 is the same as H1 except the following: During the tally phase, uses the extracted skj from
Hybrid H1 to decrypt each ciphertext, and the last honest trustee’s message shares of each ciphertext are
calculated by TRE.SimShareDec instead of using TRE.ShareDec.

Claim C.2. H2 andH1 are indistinguishable.

Proof. By the share-simulation indistinguishability of the underlying TRE scheme, the distribution of the
simulated decryption share(s) are computationally indistinguishable to the real ones. Moreover, by soundness
of

π
(6)
i,j,` ← NIZKR8

(e

(k)
i,` ,m

(j)
i,` , pkj), (skj , αj) :

(pkj , skj) = TRE.Keygen(param;αj)

∧m(j)
i,` = TRE.ShareDec(skj , e

(k)
i,`)

the corrupted trustees have negligible probability to post an invalid decryption share that is di�erent from
m

(j)
i,` ← TRE.ShareDec(skj , e

(k)
i,`). Therefore, the adversary’s advantage of distinguishing H2 from H1 is

negl(λ).

Hybrid H3: H3 is the same as H2 except the followings. During the vote phase, H3 uses NIZKR6 .Sim to
simulate π(3)

i,` , ` ∈ [λ1] and uses NIZKR7 .Sim to simulate π(4)
i for all the honest voter Vi ∈ V.

Claim C.3. H3 andH2 are indistinguishable.

Proof. The advantage of the adversary is bounded by the ZK property of NIZK as de�ned by Def. 2.2.

Hybrid H4: H4 is the same as H3 except the followings. During the vote phase, the simulator posts Ui,` ←
TRE.Enc(pk, 0), ` ∈ [λ1] and Si ← TRE.Enc(pk, 0) for all the honest voter Vi ∈ V.

Claim C.4. H4 andH3 are indistinguishable.

Proof. The probability that any adversary A can distinguish H4 from H3 is bounded by AdvCPAA(1λ),
AdvUnlinkA(1λ) and ciphertext transformative indistinguishability. More speci�cally, we now show the if
there exists an adversary A who can distinguishH4 fromH3, then we can construction an adversary B that
can break the IND-CPA game of the underlying TRE by reduction. During the IND-CPA game, B receives
a public key pk∗ from the challenger. There must be at least one honest trustee in this case, and with our
loss of generality, assume Tx is honest. During the preparation phase, B posts pk∗ as Tx’s public key to-
gether with simulated proof. During the ballot casting phase, for each honest voter Vi, i ∈ [n], B sends
m0 := (0, 0, . . . , 0) and m1 := (wi,1, . . . , wi,λ1 , si) to the IND-CPA challenger, and receives {c∗`}`∈[λ1+1]. B
then computes c′` ← TRE.Trans(c∗` , {ski}i∈[k]\{x}). It posts c′ as the honest voter’s encrypted ballot. It is easy
to see that, due to AdvUnlinkA(1λ), when {c∗`}`∈[λ1+1] encryptsm0, the adversary’s view is indistinguishable
fromH4; when {c∗`}`∈[λ1+1] encryptsm1, the adversary’s view is indistinguishable fromH3. Hence, ifA can
distinguishH4 fromH3 with non-negligible probability, then B can break the IND-CPA game with the same
probability.

42

The adversary’s view of H4 is identical to the simulated view EXECḠBBFSV,S,Z . Therefore, no PPT Z can
distinguish the view of the ideal execution from the view of the real execution with more than negligible
probability.

Case 2: 0 ≤ |Vcorrupt| < n ∧ |Tcorrupt| = k.

Simulator. Similar as Case 1, the simulator S internally runsA, forwarding messages to/from the environ-
ment Z . The simulator S simulates honest voters Vi ∈ V \ Vcorrupt, honest trustees Tj ∈ T \ Tcorrupt and
functionalities F̂Cert. In addition, the simulator S simulates the following interactions with A.

• In the preparation phase:

Monitoring ḠBB, when a valid (pkj , π
(1)
j) is posted on ḠBB from a corrupted trustee Tj ∈ Tcorrupt,

use NIZKR4 .Ext(pkj , π
(1)
j) to extract the corresponding secret key skj .

• In the ballot casting phase:
Upon receiving (Leak, sid,Vi, Bi) from the external FSV for an honest voter Vi ∈ V \Vcorrupt, the
simulator S acts as Vi, following the protocol Πmix-SV as if Vi receives (Cast, sid, Bi) from Z .
The simulator S monitoring ḠBB; once a (Wi, π

(2)
i) is posted from a corrupted voter Vi ∈ Vcorrupt,

the simulator S uses the extracted
{
skj
}
j∈[k]

to decryptWi to the temporal IDwi. Record (Vi, wi).

When a valid (Ui,`, π
(3)
i,`)λ1

`=1, Si, π
(4)
i) is posted on ḠBB from a corrupted voter Vi ∈ Vcorrupt, uses

the extracted
{
skj
}
j∈[k]

to decrypt Ui,` to wi,` and Si to si. Replace the ID references in si to their
actuarial voter ID’s, and denoted the modi�ed statement as s′i. Record (Vi, s

′
i).

When any corrupted trustee has moved to the tally phase, the simulator S acts as each of the
corrupted voters Vi ∈ Vcorrupt to send (Cast, sid, (s′i, wi)) to FSV if both (Vi, wi) and (Vi, s

′
i) is

recorded; otheriwse, it acts as Vi to send (Cast, sid, (s′i,⊥)) to FSV if only (Vi, s
′
i) is recorded.

• In the tally phase:

The simulator S monitoring ḠBB; once (m
(j)
i,` , π

(6)
i,j,`)i∈[n′],`∈[λ1+2] is posted from a corrupted trustee

Tj ∈ Tcorrupt, the simulator S acts as Tj to send (Tally, sid) to FSV.

Indistinguishability. The indistinguishability in this case is straightforward, as S never simulate a single
message to either any corrupted parties or the external ḠBB. The simulator S knows all the honest voters’
ballot from the externalFSV, it simply acts as the honest voters according to the protocol Πmix-SV. Meanwhile,
it also extracts the ballot of the malicious voters by using the extracted trustees’ secret keys. Hence, the
simulator S can submit the extracted ballot to the external FSV on the malicious voters’ behave. Therefore,
when NIZK extraction for trustees’ secret keys are successful, the view of Z in the ideal execution has
identical distribution to the view of Z in the real execution.

Case 3: |Vcorrupt| = n ∧ 0 ≤ |Tcorrupt| ≤ k.

Simulator. Trivial case. There is nothing needs to extract, as the trustees do not have input. The simulator
S just run trustee according to protocol Πmix-SV.
Indistinguishability. The view of Z in the ideal execution has identical distribution to the view of of Z in
the real execution.

43

C.2 Instantiation of TRE

We adopt threshold ElGamal encryption as a candidate for the threshold re-randomizable encryption (TRE)
scheme. For any given security parameter λ, we pick a cyclic group 〈g〉 = G with prime order q where
the DDH assumption holds. The group information is denoted as param and is an implicit input of every
algorithm.

• TRE.Keygen(param): The algorithm randomly picks ski ← Zq and outputs (pki := gski , ski).

• TRE.CombinePK({pki}ki=1): The algorithm sets h :=
∏k
i=1 pki and outputs pk := (h, pk1, . . . , pkk).

• TRE.CombineSK(sk1, . . . , skk). The algorithm CombineSK takes input as a set of secret key
(sk1, . . . , skk), and outputs combined secret key sk :=

∑k
i=1 ski.

• TRE.Enc(pk,m): The algorithm randomly picks r ← Zq and outputs e := (gr,m · hr).

• TRE.ReRand(pk, e): The algorithm �rst parses e into (e1, e2), then randomly picks s← Zq and outputs
e′ := (gs · e1, h

s · e2).

• TRE.Dec(sk, e). The algorithm Dec �rst parses e into (e1, e2), and outputs the decrypted plaintext
m := e2/e

sk
1 .

• TRE.ShareDec(pk, ski, e): The algorithm �rst parses ciphertext e into (e1, e2); then it outputs mi :=

eski1 .

• TRE.ShareCombine(e, {mi}ki=1): The algorithm �rst parses ciphertext e into (e1, e2); then it outputs
m := e2/

∏k
i=1mi.

• Trans(e, {ski}i∈[k]\{j}). The algorithm �rst parses e into (e1, e2); then it outputs (e1, e2 ·∏
i∈[k]\{j} e

ski
1).

• SimShareDec(e,m, {µi}i∈I). The algorithm �rst parses e into (e1, e2) and then generates random
decryption shares {µj}j∈[k]\I except for the last one, denoted as µx. It then set µx = e2

m·
∏
j∈[k]\{x} µj

and outputs {µj}j∈[k]\I .

First of all, the correctness of the above scheme follows by inspection. Now let’s examine the security
properties. It is easy to see that AdvCPAA(1λ) = negl(λ) is guaranteed by the IND-CPA security of the un-
derlying ElGamal encryption which is under the DDH assumption. Besides, AdvUnlinkA(1λ) = 0, as each
re-randomized ciphertext has the same distribution as a freshly encrypted ciphertext. In terms of the cipher-
text transformative indistinguishability, it is perfectly indistinguishable as the resulting ciphertext has the
same distribution as a freshly encrypted one. Finally, share-simulation indistinguishability is also straightfor-
ward and it is implied by IND-CPA security.

C.3 Instantiations of NIZKs

Several NIZK proofs are used in our construction. Hereby, we provide RO-based instantiation for these prim-
itives.

NIZK for distributed key generation. In the preparation phase, we used a NIZK proof of knowledge for
knowledge of the secret key and correctness of the distributed key generation, i.e.,

NIZKR4

{
(pk), (ω, sk) : (pk, sk) = TRE.Keygen(param;ω)

}

44

In terms of ElGamal encryption, this NIZK can be realized by strong Fiat-Shamir heuristic of the Schnorr’s
proof [Sch91]. Schnorr’s proof is Sigma proof of knowledge of discrete logarithm; however, its RO-NIZK
version has a small caveat, i.e., the knowledge extraction is based on RO rewinding. Alternatively, to enable
extractability, we propose to a NIZK in Fig. 18, where H1 : {0, 1}∗ 7→ G is a hash function. NIZKR9 allows
the prover to show an ElGamal ciphertext is encryption of 0/1 using a Sigma disjunction of Chaum-Pederden
Sigma protocol. NIZKR10 is strong Fiat-Shamir heuristic of Chaum-Pederden Sigma protocol for DDH tuples.

NIZK for Discrete Logarithm

Statement: h = gs

Witness: s1, . . . , sκ ∈ {0, 1} s.t. s =
∑κ
i=1 2i−1si

Prove:

Set u := H1(h) and pick r1, . . . , rκ ← Zq .
For i ∈ [κ], compute ei,1 := gr1 , ei,2 := gsiur1 , and prove

πi ← NIZKR9

{
(g, u, ei,1, ei,2), (si, ri) :
(ei,1 = gri ∧ ei,2 = uri) ∨ (ei,1 = gri ∧ ei,2/g = uri)

}
.

Compute e1 :=
∏κ
i=1(ei,1)2

i−1 , e2 :=
∏κ
i=1(ei,2)2

i−1 and r :=
∑κ
i=1 2i−1ri. Prove

φ← NIZKR10

{
(g, u, e1, e2), (r) : (e1 = gr ∧ e2/h = ur)

}
.

Output π := ((ei,1, ei,2)i∈[κ], π1, . . . , πκ, φ).
Verify:

Set u := H1(h), e1 :=
∏κ
i=1(ei,1)2

i−1 , and e2 :=
∏κ
i=1(ei,2)2

i−1 .
For i ∈ [κ], check NIZKR9

.Verify
{

(g, u, ei,1, ei,2), πi
}

.
Check NIZKR10

.Verify
{

(g, u, e1, e2), φ
}

.

Figure 18: NIZK for Discrete Logarithm

Theorem C.5. The NIZK described in Fig. 18 is an NIZK proof of knowledge of s ∈ Zq for h = gs with
extractability.

Proof. The completeness and soundness follow directly by the completeness of the underlying NIZKR9 and
NIZKR10 . For ZK, the simulator generates (ei,1, ei,2) as encryption of 0 and computes NIZKR9 honestly. It
then simulates φ using NIZKR10 .Sim. In terms of extractability, the knowledge extractor simulates the RO
for H1, and it outputs u = gx for a randomly chosen x ∈ Zq . Now the extractor can decrypt (ei,1, ei,2) and
obtain si, for i ∈ [κ]; it then outputs s =

∑κ
i=1 2i−1si.

Remark C.6. We note that it is also possible to use Schnorr’s proof (without extractability) for better compu-
tational e�ciency, but at the cost of one more round. Namely, instead of directly posting the partial public keys
on the bulletin board, we let the trustees �rst post a commitment of their partial public keys, and then decommit
them. For instance, we can use simple hash based commitment. To commitm, pick a random d← {0, 1}λ, output
c := H(m‖d). To verify a commitment, just check if c = H(m‖d). Now the simulator can �x the combined
public key to the one that the simulator knows its corresponding secrete key by equivocating the commitments.
(cf. [BPW12] for more details of this technique.)

NIZK for knowledge of plaintext. In our scheme, the voters post encryptions of their temporal ID on the
BB. In order to prevent the adversary from copying and modifying their temporal ID, we use NIZK for the

45

correctness of TRE.Enc algorithm as the following.

NIZKR5

{
(pk, e), (ω,m) : e = TRE.Enc(pk,m;ω)

}
With regard to ElGamal encryption, the proof of knowledge of plaintext and randomness is the same as proof
of knowledge of randomness, as given r, everyone can compute m := e2/pk

r . This can be done via strong
Fiat-Shamir heuristic on Schnorr’s proof [Sch91]. However, this NIZK assume the plaintext m is public. In
practice, if the message space is small, we can use Sigma OR-composition to numerate each possible plaintext.
However, this is not e�cient. Alternatively, we we propose a Sigma protocol for knowledge of plaintext in
Fig. 19.

Σ protocol for knowledge of plaintext

Statement: h and (e1, e2) = (gr,m · hr)
Witness: m ∈ G and r ∈ Zp
Prover:

Pick random S ← G and t ∈ Zp.
Send (c1, c2) = (gt, S · ht) to the veri�er.

Veri�er:

Send random challenge ρ← {0, 1}λ to the prover.
Prover:

Send u := r · ρ+ t and W := mρ · S to the veri�er.
Veri�er:

Return valid if and only if eρ1 · c1 = gu and eρ2 · c2 = W · hu.

Figure 19: Σ protocol for knowledge of plaintext

TheoremC.7. TheNIZK described in Fig. 19 is a Sigma proof of knowledge ofm ∈ G and r ∈ Zp for (e1, e2) =
(gr,m · hr).

Proof. Perfect completeness follows by inspection. To special soundness, we can construct a knowledge ex-
tractor that takes in two set of valid transcripts (c1, c2, ρ1, u1,W1) and (c1, c2, ρ2, u2,W2) can output the
witness. Indeed, we have r := u1−u2

ρ1−ρ2
and m := (W1/W2)1/(ρ1−ρ2). Finally, for special honest veri�er zero-

knowledge, we will construct a ppt simulator Sim that given any challenge ρ∗ can outputs a valid transcript
that is indistinguishable from the real one. The simulator Sim �rst picks random u← Zp andW ← G. It then
computes c1 := gu/eρ

∗

1 and c2 := W ·hu/eρ
∗

2 . It is easy to see that (c1, c2, ρ
∗, u,W) has identical distribution

as the real transcript.

One-out-of-many NIZK. In our scheme, the voters need to use

NIZKR6

{
(pk, (e1, . . . , en), e′), (ω, i) : e′ = TRE.ReRand(pk, ei;ω)

}
to show that e′ is re-randomized from one of a set of ciphertexts as follows. The statement can be re-stated as
to show that one of the ciphertexts (e1/e

′, . . . , en/e
′) is encryption of 0; namely, the prover knows i and r such

that ei/e′ := TRE.Enc(pk, 0; r). Groth and Kohlweiss [GK15] proposed an e�cient one-out-of-many proof,
whose proof size is O(log n). Their proof is a 3-move public coin special honest veri�er zero-knowledge
proof that allows the prover to convince the veri�er that one out of a set of commitment commits to 0.
Although they instantiate their proof to Pedersen commitment, their protocol is also compatible with ElGamal

46

commitment/encryption. Therefore, we can use strong Fiat-Shamir heuristic on their proof to instantiate our
NIZKR6 , and no knowledge extractor is needed. Due to space limitation, we refer interested readers to [GK15]
for more details.

NIZK for shu�le correctness. Each trustee is shu�ing the set of triple ciphertext (ballot) in turn. We need
shu�e NIZK for the correctness of re-encryption mix-net, i.e.,

NIZKR7

{
(pk, (e1, . . . , en), (e′1, . . . , e

′
n)), (Π, (ω1, . . . , ωn)) :

∀i ∈ [n] : e′i = TRE.ReRand(pk, eΠ(i);ωi)

}
.

There are many ZK/NIZK of shu�ing correctness for ElGamal re-encryption. To our best knowledge, the
most e�cient one is proposed by Bayer and Groth [BG12]. The proof size of their ZK is O(

√
n). Although

the original proof is for shu�ing single ElGamal ciphertexts rather than bundles of three ciphertexts, it is
easy to modify their proof to meet our requirement. More concretely, the modi�ed protocol consists of two
sub-protocols. Let ρ be the permutation. The prover �rst uses generalized Pedersen commitment to commit
xρ(1), . . . , xρ(n) and prove its correctness, where x is randomly chosen by the veri�er; after that, the prover
uses multi-exponentiation argument to show that

∏n
i=1(ei,j)

xi = TRE.Enc(pk, 0; s) ·
∏n
i=1(e′i,j)

xπ(i) for
j ∈ [3], where s is some randomness known to the prover. Their protocol is Fiat-Shamir friendly, and we
refer interested readers to [BG12] for more details.

NIZK for share decryption correctness The NIZK proof of membership

NIZKR8

{
(pki, e1,mi), (ski) : pki = gski ∧ mi = eski1

}
invoked above can be instantiated by strong Fiat-Shamir heuristic on the well-known Chaum-Pedersen proof
[CP93] for DDH tuples.

47

	Introduction
	Preliminaries
	The UC framework
	Ideal functionalities
	Non-interactive zero-knowledge proofs/arguments

	Modeling
	Homomorphic Encryption based construction
	Key-homomorphic threshold fully homomorphic encryption
	Protocol description
	Security

	MPC based construction
	Threshold PKE
	Protocol description
	Security

	Mix-net based construction
	Threshold re-randomizable encryption
	Protocol description
	Security

	Application to Liquid Democracy
	Supplementary material for Section 4
	Proof for Theorem 4.2
	Instantiation of TFHE via GSW
	Fully homomorphic encryption
	Gentry-Sahai-Waters (GSW) construction
	LWE assumption

	Supplementary material for Section 5
	Proof for Theorem 5.2

	Supplementary material for Section 6
	Proof for Theorem 6.2
	Instantiation of TRE
	Instantiations of NIZKs

