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Abstract 31 

 32 

Alzheimer’s disease (AD) is currently under-diagnosed and is predicted to affect a great 33 

number of people in the future, due to the unrestrained aging of the population. An accurate 34 

diagnosis of AD at an early-stage, prior to (severe) symptomatology, is of crucial importance 35 

as it would allow the subscription of effective palliative care and/or enrolment into specific 36 

clinical trials. Today, new analytical methods and research initiatives are being developed for 37 

the on-time diagnosis of this devastating disorder. During the last decade, spectroscopic 38 

techniques have shown great promise in the robust diagnosis of various pathologies, including 39 

neurodegenerative diseases and dementia. In the current study, blood plasma samples were 40 

analysed with near-infrared (NIR) spectroscopy as a minimally-invasive method to distinguish 41 

patients with AD (n=111) from non-demented volunteers (n=173). After applying multivariate 42 

classification models (principal component analysis with quadratic discriminant analysis – 43 

PCA-QDA), AD individuals were correctly identified with 92.8% accuracy, 87.5% sensitivity 44 

and 96.1% specificity. Our results show the potential of NIR spectroscopy as a simple and cost-45 

effective diagnostic tool for AD. Robust and early diagnosis may be a first step towards 46 

tackling this disease by allowing timely intervention. 47 

 48 

 49 

 50 

 51 

 52 
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Introduction 55 

 Alzheimer’s disease (AD), being responsible for 60-80% of the cases, constitutes the 56 

most common type of dementia. A risk factor for the development of AD is increasing age, 57 

which, in combination with the progressive increase in the number of elderly people, is 58 

expected to lead to ~135 million affected individuals worldwide by 2050 1. Apart from the 59 

detrimental impact of this disorder on patients, their families and the society, the economic 60 

burden should also be considered; the worldwide cost had been estimated to become a US$ 61 

trillion dollar disease in 2018 2. Furthermore, AD is definitively diagnosed only after a post-62 

mortem brain biopsy. It is therefore more than evident that effective means to diagnose AD 63 

accurately and at an early-stage is crucial in order to intervene with therapeutic strategies and 64 

recruit patients to clinical trials. 65 

 Infrared (IR) spectroscopy has advanced significantly over the last decades, specifically 66 

in the field of biomedical investigation 3, 4. By exploiting the vibrational movements of the 67 

chemical bonds within a sample after excitation, IR spectroscopy can provide quantitative and 68 

qualitative information about a sample. Technological advancements have also simplified the 69 

previously expensive and complicated instrumentation, thus facilitating the wider-use of these 70 

systems. In this study, near-IR (NIR) spectroscopy was employed to study the region of the 71 

electromagnetic spectrum ranging between ~750-2500 nm. The most prominent bands in the 72 

NIR include overtones and combinations of fundamental vibrations of –CH, -NH, -OH groups 73 

5. It has been previously shown that NIR spectroscopy holds promise for biomedical 74 

applications 6, including the study of human skin (skin carcinomas, atopy and leprosy) 7, 75 

diabetes 8, breast and colorectal cancers 9, 10, Alzheimer’s disease 11 and chronic fatigue 76 

syndrome 12.  77 

 Spectroscopic techniques have been previously employed by independent research 78 

groups for the investigation of neurodegenerative disorders, either by analysis of brain biopsies 79 
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or biofluids, such as cerebrospinal fluid (CSF) and blood samples 13-17. The objective of the 80 

current study was to detect AD using a minimally-invasive, but at the same time rapid and 81 

inexpensive, blood test. Our aim was to use a large number of individuals and add further 82 

evidence, to the current literature, about the diagnostic capabilities of spectroscopy as a 83 

diagnostic tool. 84 

The use of a suitable substrate in spectroscopy is also of major importance as it could 85 

distort the resultant spectral information and lead to falsified conclusions; for this reason, 86 

numerous studies have previously used costly and/or fragile substrates, such as calcium/barium 87 

fluoride or gold substrates, to avoid signal interference 18-22. At the same time, however, the 88 

substrate of choice should be relatively inexpensive in order to be welcomed to a clinical 89 

setting. Therefore, a secondary aim of this study was to investigate whether the signal from the 90 

commonly-used and inexpensive low-E glass slide 23, 24 could be removed from the samples’ 91 

spectra without affecting the diagnostic result. 92 

Materials and Methods  93 

Patient cohort and sample collection 94 

Our cohort included 111 patients with AD and 173 individuals with no symptoms of 95 

AD, who were designated as healthy controls (HC). The latter group mainly consisted of close 96 

relatives (e.g., spouses) escorting the patients at the time of examination. More information 97 

about the age and gender of the participants is provided in Table 1. 98 

All participants were recruited at Salford Royal Hospital (Salford, UK) with informed 99 

consent obtained prior to enrolment in accordance with Local Ethical Approval (05/Q1405/24 100 

conferred by North West 10 Research Ethics Committee Greater Manchester North). Blood 101 

samples were collected in EDTA tubes following standard operating procedures. To acquire 102 

the plasma, whole blood was centrifuged for 10 min at 2000 rpm, 4oC and the supernatant was 103 
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collected in new microtubes. Plasma samples were aliquoted and kept at -80oC until needed for 104 

the spectroscopic analysis. Samples were thoroughly thawed before depositing 50 μL onto IR-105 

reflective glass slides (MirrIR Low-E slides, Kevley Technologies, USA) and left to dry 106 

overnight at room temperature. 107 

NIR spectroscopy 108 

Spectra were acquired using an ARCoptix FT-NIR Rocket spectrometer (Arcoptix 109 

S.A., Switzerland) in the range of 900 to 2600 nm. Samples were interrogated using the 110 

transmission mode with 10 point spectra collected per sample (resolution of 8 cm-1). Each 111 

sample spectrum was subtracted by a low-E slide background spectrum in order to eliminate 112 

the signal resulting from the slide. 113 

Pre-processing and computational analysis 114 

Data pre-processing and multivariate classification models were built using MATLAB 115 

R2014b software (MathWorks Inc., USA) with PLS Toolbox version 7.9.3 (Eigenvector 116 

Research Inc., USA) and lab-made routines. The 10 spectra collected per sample were initially 117 

averaged, and the following pre-processing steps were applied to the dataset: truncation at the 118 

biofingerprint region (1850-2150 nm) (highlighted in Fig. 1a), Savitzky-Golay (SG) smoothing 119 

to remove unwanted noise from the spectra (window = 15 points, 2nd order polynomial 120 

function), extended multiplicative signal correction (EMSC) to correct for light scattering and 121 

automatic weighted least squares baseline correction to remove baseline absorptions. The 122 

spectra were divided into training (70%) and test (30%) sets using the Kennard-Stone (KS) 123 

sample selection algorithm 25. The training set was used for construction of the classification 124 

models, whereas the test set was only used for final model evaluation. 125 

  Classification was performed using principal component analysis with quadratic 126 

discriminant analysis (PCA-QDA). PCA-QDA model is based on a PCA decomposition 127 
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followed by a Mahalanobis distance calculation. PCA reduces the original dataset into a few 128 

number of principal components (PCs) accounting for the majority of the variance across the 129 

spectra. As a result, a scores and a loading array are generated for each PC representing the 130 

variance on the sample and variable (e.g., wavelength) directions, respectively 26. PCA also 131 

solves problems with ill-conditioned data (data matrix with large condition number) by 132 

reducing redundant information across the data and solving collinearity problems. For this 133 

reason, PCA is commonly employed prior to discriminant analysis, with the PCA scores used 134 

as input variables for the QDA algorithm. 135 

 As aforementioned, QDA is a classification algorithm based on a Mahalanobis distance 136 

calculation. QDA assumes classes having different variance structures, calculating an 137 

individual variance-covariance matrix for each class 27. This improves the classification 138 

capacity of QDA in comparison to linear methods (e.g., linear discriminant analysis – LDA) 139 

when classes with different variances are being analysed, which occurs often in complex 140 

datasets. The QDA classification scores were calculated in a non-Bayesian form in order to 141 

reduce the degree of overfitting, as follows 28: 142 

𝑄𝑖𝑘 = (𝐱𝑖 − �̅�𝑘)T𝐂𝑘
−1(𝐱𝑖 − �̅�𝑘)        (01) 143 

where 𝑄𝑖𝑘 is the QDA classification score for sample 𝑖 of class 𝑘; 𝐱𝑖 is the vector containing 144 

the classification variables for sample 𝑖 (i.e., PCA scores);  �̅�𝑘 is the mean vector for class 𝑘; 145 

𝐂𝑘 is the variance-covariance matrix of class 𝑘; and T represents the transpose matrix. 146 

Outliers were identified using a Hotelling T2 versus Q residual test 29. This test enables someone 147 

to create a chart containing the Hotelling T2 values in the x-axis and the Q residuals in the y-148 

axis, where all samples far from the origin [0,0] are considered to be outliers. The Hotelling T2 149 

values represent the sum of the normalised PCA scores, which is the distance from the 150 

multivariate mean to the projection of the sample onto the PCs; and the Q residuals are the sum 151 
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of squares of each sample in the error matrix, which are the residuals between the sample and 152 

its projection via PCA. 153 

Model validation 154 

 Validation was performed on a patient basis, meaning that each sample represents a 155 

different patient rather than an individual spectrum. The models were validated using quality 156 

parameters including accuracy (total number of samples correctly classified considering true 157 

and false negatives), sensitivity (proportion of positives correctly identified), specificity 158 

(proportion of negatives correctly identified), positive predictive value (proportion of test 159 

positives which are true positives) and negative predictive value (proportion of test negatives 160 

which are true negatives) (Table S1) 30. 161 

In addition, receiver operating characteristics (ROC) curve was generated using 162 

easyROC version 1.3 (http://www.biosoft.hacettepe.edu.tr/easyROC/) 31, where area under the 163 

curve (AUC) value was calculated as a general indicator of how well the model distinguished 164 

between the classes. 165 

Results 166 

 In total, we acquired 1110 NIR spectra from AD patients (n=111) and 1730 spectra 167 

from HC volunteers (n=173). The absorption due to the low-E slide signal was subtracted from 168 

the samples’ signal in order to reduce glass interference (Figure S1). The average raw and pre-169 

processed spectra (truncation at 1850-2150 nm, SG smoothing, EMSC and baseline correction) 170 

for each class are depicted in Figure 1. Seven outliers (three due to AD and four due to HC 171 

samples) were detected using a Hotelling T2 versus Q residual test  (Figure S2). These samples 172 

were removed from the classification model. In total, 194 samples were used in the training set 173 

(118 HC, 76 AD) and 83 samples in the test set (51 HC, 32 AD), defined by the KS algorithm. 174 

After pre-processing, slight visual differences are evident between HC and AD patients (Figure 175 

http://www.biosoft.hacettepe.edu.tr/easyROC/
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1b). Significant differences were observed between HC and AD spectra (1850-2150 nm) using 176 

a two-tailed t-test with 95% confidence level (p < 0.001). 177 

For classification, the PCA-QDA algorithm was applied using 2 PCs (67.24% 178 

cumulative explained variance). PCA scores and loadings are depicted in Figure 2a and 2b, 179 

respectively. The scores profile on the two PCs were superposed for HC and AD samples, with 180 

no clear separation observed between the classes. The loadings profiles (Figure 2b) indicated 181 

greater differences close to regions corresponding to a combination of O-H stretch/C-O stretch 182 

second overtone (~1860 nm); second overtone C=O stretching (H-bonded) in peptides (1908 183 

nm); and a combination of bands consisting of N-H bend second overtone, C-H stretch/C=O 184 

stretch, C=O stretch/N-H in-plane bend/C-N stretching in proteins (2100 nm, 2111 nm, 2150 185 

nm) 32-34. These bands correspond to the most important spectral features used by the QDA 186 

classifier in PCA-QDA. The PCA-QDA model distinguished between AD and HC individuals 187 

with 92.8% accuracy, 87.5% sensitivity and 96.1% specificity (Table 2). The ROC curve and 188 

AUC value for PCA-QDA are shown in Figure 3. The AUC value (0.928) is close to the 189 

maximum of 1, indicating its excellent predictive response. 190 

Discussion  191 

With improved life conditions and health care, increased longevity has resulted into a 192 

greater number of elderly people and, thus, many cases of demented individuals worldwide. 193 

Numerous research groups have devoted substantial resources and co-ordinated their efforts to 194 

study dementias and provide an accurate diagnosis. For instance, the most studied biomarkers 195 

for AD are amyloid-β (Aβ) and tau protein (phosphorylated-tau and total-tau) in CSF. 196 

Collection of CSF, however, is an invasive procedure, rendering routine testing difficult. The 197 

understanding that the blood-brain barrier (BBB) is a semipermeable membrane, allowing the 198 

secretion of biological molecules between brain and peripheral blood, as well as the fact that 199 
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500 mL CSF is daily absorbed into the bloodstream, has led to the characterization of blood as 200 

an “information-rich” sample 35. 201 

Blood biomarkers indicative of disease constitute a developing field with great promise 202 

in the area of neurodegenerative disorders. A great number of new, blood-based molecular tests 203 

have emerged over the years, suggesting different biological markers for the detection of AD 204 

and other dementias 35-41. Even though the diagnostic capability of the above-mentioned tests 205 

is satisfactory, the high cost and laborious experimental work of these methods are great 206 

disadvantages for the development of a clinical test. 207 

In contrast to conventional molecular techniques, spectroscopic tests allow cost-208 

effective and rapid results. Previous studies using the mid-IR region for the diagnosis of AD 209 

have achieved comparable diagnostic results with the current NIR study. For instance, using 210 

ATR-FTIR in the mid-IR region, Paraskevaidi et al. achieved 86% sensitivity and specificity 211 

for individuals who carried one or two alleles of apolipoprotein e4 (APOE ε4) 42; Carmona et 212 

al. used the mid-IR (as well as Raman spectroscopy) to differentiate between healthy elderly 213 

and demented patients with a sensitivity of 89% and specificity of 92% 14; Peuchant et al. also 214 

employed mid-IR spectroscopy and achieved 98.4% diagnostic accuracy 43. Other preliminary 215 

studies, have also successfully applied spectroscopic approaches (IR or Raman spectroscopy) 216 

for the diagnosis of AD or other types of dementia 15, 44, 45; however, the small number of 217 

samples in these studies was a limitation, preventing more general conclusions. According to 218 

the NIR results of the present study, most of the differences between healthy and demented 219 

individuals seem to be related mainly to protein bands. Some of the well-known characteristics 220 

of AD include the built-up of Aβ plaques and neurofibrillary tangles (primarily consisting of 221 

tau protein) in the brain, and therefore we can speculate that the observed changes in the NIR 222 

region may be attributed to such protein changes. 223 
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The current study has achieved exceptionally high diagnostic accuracies using NIR 224 

spectroscopy in the transmission mode. The PCA-QDA classification model presented 92.8% 225 

accuracy, 87.5% sensitivity and 96.7% specificity which are comparable, and even superior, to 226 

current conventional diagnostic biomarkers. Using NIR spectroscopy, also decreases the 227 

instrumental cost substantially, as instrumentation is much cheaper than other IR or Raman 228 

systems and it can be easily translated to portable systems. Our results, coming from a large 229 

cohort, add to the current literature by validating previous spectroscopic work, thus taking 230 

spectroscopy one step forward towards clinical implementation. Indeed, repetition and 231 

validation in independent research groups is of crucial importance for every new biomarker or 232 

diagnostic test prior to clinical trials. Herein, we have also shown that after appropriate spectral 233 

pre-processing, the low-E signal can be subtracted from the spectra, therefore allowing direct 234 

comparison of the sample information without interference from the slide. It should be noted 235 

here that the patient cohort in this study was already diagnosed with the disease, therefore the 236 

potential of blood-based NIR spectroscopy for pre-symptomatic detection remains to be further 237 

explored. Nevertheless, we are optimistic as previous spectroscopy studies have demonstrated 238 

segregation between early-stage/mild AD and healthy controls 15, 44, 46, but a larger number of 239 

early-stage patients is still required. 240 

To conclude, this study detected a blood signature for AD, showing great promise in 241 

the accurate, simple and minimally-invasive diagnosis of the disease. Our main objective in 242 

the current study was to show whether NIR spectroscopy, in the transmission mode, could 243 

provide satisfactory diagnostic performance after removal of the substrate’s signal. Future 244 

studies should focus on the recruitment of more participants, including asymptomatic 245 

individuals or patients with mild cognitive impairment (MCI). This would be the next big step 246 

in this field, as accurate identification of MCI individuals would allow immediate management 247 
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and recruitment into clinical trials; the latter may also prove crucial for the development of new 248 

therapeutic strategies. 249 
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Tables 258 

 259 

Table 1: Patient characteristics 260 

 Alzheimer’s disease Healthy control 

           Number of cases 

 111 173 

                     Age 

<65 60/111 90/173 

≥65 51/111 79/173 

Unknown - 4/173 

                   Gender 

Female 50/111 103/173 

Male 61/111 68/173 

Unknown - 2/173 

 261 

 262 

 263 

 264 

 265 

 266 

 267 

 268 

 269 

 270 
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Table 2: Quality parameters for PCA-QDA model. PPV: positive predictive value, NPV: 271 

negative predictive value. 272 

Parameter Value (%) 

Accuracy  92.8 

Sensitivity 87.5 

Specificity 96.1 

PPV  93.3 

NPV  92.5 

 273 

 274 

  275 
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Figures 276 

 277 

Figure 1. Average (a) raw and (b) pre-processed NIR spectra for healthy controls (HC) and 278 

Alzheimer’s disease (AD) patients. 279 

 280 

  281 

a. b.
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 282 

Figure 2. (a) PCA scores on PC1 and PC2 for healthy controls (HC) and Alzheimer’s disease 283 

(AD) samples (explained variance for each PC inside parenthesis); (b) PCA loadings based on 284 

PC1 and PC2. 285 

 286 

  287 

a. b.
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 288 

Figure 3. ROC curve for PCA-QDA model. AUC stands for area under the curve. 289 

 290 

 291 

 292 

 293 

 294 

 295 

 296 

 297 

AUC = 0.928
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