
The Time-Varying Dependency Patterns of NetFlow
Statistics

Alexander J. Gibberd∗†, Marina Evangelou‡ and James D. B. Nelson∗
∗Department of Statistical Science, †Department of Security and Crime Science

University College London, Gower Street, London WC1E 6BT
Email: alexander.gibberd.12@ucl.ac.uk, j.nelson@ucl.ac.uk

‡Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ
Email: m.evangelou@imperial.ac.uk

Abstract—We investigate where and how key dependency
structure between NetFlow features change throughout the course
of daily network activity. Our approach is probabilistic in nature,
we formulate the identification of dependency patterns as a
regularised statistical estimation problem. The resulting model
can be interpreted as a set of time-varying graphs and provides
a useful visual interpretation of network activity. We believe this
is the first application of dynamic graphical modelling to network
traffic of this kind. Investigations are performed on 9 days of real-
world network traffic across a subset of IP’s. We demonstrate
that dependency between features may change across time and
discuss how these change at an intra and inter-day level.

I. INTRODUCTION

Networked systems are increasingly being targeted by so-
phisticated cyber-criminals and other parties. Rather than
cause immediate damage and expose themselves to defenders,
attackers are increasingly choosing to infiltrate and remain
active within a network for extended periods of time. These
Advanced Persistent Threats (APT) are hard to detect due to
the massive complexity and volume of activity within networks
which can mask the subtle movements of an attacker [3]. A
common strategy for infiltration is to initially target a single,
or small subset of devices in a network. Once this objective is
secured, an attack can be escalated, the intruder compromises
further machines within the network, gaining further control
over the network [9].

Traditional Intrusion Detection Systems (IDS) such as
SNORT operate on a rule-based approach [10], they can react
very quickly to detect known threats which correspond to
previously modelled and coded patterns. Given the efficiency
of such pattern matching, these methods can be applied at
the packet level. Unfortunately, such hard-coded rules require
frequent updating to keep up with current threats. Furthermore,
given their high levels of specificity, rule-based methods are
also increasingly bypassed using so-called polymorphic at-
tacks [2]. To counter over-fitting and rule specification issues,
a popular research direction in network anomaly detection is
to adopt so called machine-learning based approaches [10],
[13], [7]. Generally speaking, these aim to model different
classes of network activity (i.e. anomalous/normal) based on
some algorithm which is trained on real network data.

Discriminative and Generative Models

Two main strands of machine-learning methodologies are
employed in the literature:

• Discriminative methods - classify activity as nor-
mal/abnormal based on an explicit labeling of normality,
i.e. one has access to some labeled data where the state of
the network is known. Sometimes, this may be extended
to consider specific types of anomaly, in a task which is
known as anomaly identification [7].

• Generative models - aim to describe an underlying sta-
tistical distribution from which observed data may be
generated from. Anomalous activity can then defined with
respect to the estimated distribution [10]. Many correla-
tion based, for example Principle Component Analysis
(PCA) methods may be seen in this light [11].

Let xt be a set of p features derived from network traffic and
yt represent the state of the network at a time t. Roughly
speaking, a discriminative model will try and predict yt given
data xt, using a model built (or trained) on data from the
past xt′ , yt

′
where t′ < t. Statistically, such a procedure aims

to model the conditional distribution P (Y |X), i.e. once we
observe the random variable X we should be able to say
something about the network state Y . However, in order to
train such a model, we need observations that relate to both
the random variable X and the network state variable Y . In
many situations, we simply don’t know whether the network
is in an anomalous state a-priori, i.e. we cannot measure Y .
Such a setting may relate to zero-day threats where knowledge
of the attack vector is not available in advance of the attack.

In this case, a generative approach can be useful for
defining anomalies. Rather than model the conditional dis-
tribution P (Y |X), a generative model aims to describe the
joint distribution of the network features P (X1, X2, . . . , Xp).
In particular, the joint distribution is desirable, rather than a
set of marginal models which describe P (X1), . . . , P (Xp)
and struggle to model inter-dependencies between features.
Such joint modelling of features is the focus of this paper.
However, defining and learning a joint distribution, as opposed
to a conditional discriminative, or set of marginal models is

difficult due to the inherent parametric complexity of such
models.

Understanding Feature Dynamics

It is common practice to assess correlation patterns (which
can relate to the specification of a joint distribution) across
a whole data set, one does not typically take into account
how these may change as a function of time. However, it
is well known that network traffic can exhibit non-stationary
behaviour [12], [10]; it is therefore possible that dependency
patterns may change depending on which time/scale they are
observed.

In this work, we aim to quantify whether any such temporal
variation in dependency exists on real network traffic. To
achieve this, we utilise a novel dynamic graphical modelling
framework. Representing dependencies between features as a
set of time-varying graphs, we uncover important relations
between features and quantify their variation over several days
of real data. To the authors’ knowledge, this is the first time
such a methodology has been applied to NetFlow derived
features. We limit our analysis here to the consideration
of feature dynamics and do not build an explicit anomaly
detection engine. However, it is our belief that understanding
dependencies between features, and how these can vary over
time is an important step to building fully generative anomaly
detection systems.

In the next section we introduce our data-set and the subset
of features used for our analysis. We also provide some details
of the dynamic graph modelling tools used to extract and
study dependency patterns. Section III introduces a set of
experiments that investigate feature dynamics at both an intra
and inter-day scale. We then conclude with a discussion of
estimated dependency structures, what they mean in the con-
text of network traffic, and how knowledge of the investigated
patterns can be used in future work for anomaly detection.

II. METHODOLOGY AND DATA

A. The Dataset

We aim to assess the dependency structure within a set of
features (p = 14) that relate to the number of connections,
packets, and size of packets (see Table I for more details).
These are extracted from a subset of 10 IP addresses within
the Imperial College London (ICL) network. The IP addresses
(to be understood as devices) under study are kept constant
throughout the study, where data was collected for 13 con-
secutive days (including 4 weekend days which we discount
in our analysis). The features we use in this study relate to
various statistics of events contained within segmented regions
of time, known as bins. Figure 1 demonstrates what one of
these features (Number of events) looks like for different bin
sizes, we plot this at 10 minutes and 5 minutes. Clearly, the
distribution of features (within a bin) changes depending on
the size of the bin. In particular we note that many of the
features we use are based on count data, as the bin-size tends
to zero these feature distributions will demonstrate an excess
of zero values [1], [12]. This is undesirable for our particular

0

2000

4000

6000

8000

N
u

m
b

e
r

o
f
E

v
e

n
ts

Weekly Summary of Event Count Feature

5 minute

10 minute

0 20 40 60 80 100 120
-2

-1

0

1

2

E
ve

nt
C

ou
nt

(10
mi

n)

0 20 40 60 80 100 120

Time since start of week (hours)

-2

0

2

E
ve

nt
 C

ou
nt

(5
mi

n)

Figure 1: Top: Example traces of aggregated NetFlow packet
counts (within 5 and 10 minute intervals) across 5 consecutive
days (Mon-Fri). Bottom: The same traces as transformed by
Eq. (1) with h = 2.

Name Description
No_Events Number of events that start and end in bin
No_StartEvents Number of events that start in bin but end outside
Bytes_Median Median of packet size within bin
Bytes_MAD Median absolute deviance (MAD) of packet size
Bytes_SUM Total number of bytes in bin
Bytes_SD Standard-deviation of bytes
Packets_Median Median number of packets
Packets_MAD MAD of packer distribution within bin
Packets_SUM Number of packets within bin
Packets_SD Standard-deviation of packet distribution in bin
BP_ratio_Median Median of ratio between bytes and packet
BP_ratio_MAD MAD of byte-packet ratio
BP_ratio_SUM Sum of ratio within bin
BP_ratio_SD Standard-deviation of byte-packet ratio

Table I: List of extracted NetFlow features used in this
analysis. For further details on the construction of features
see Evangelou et al. [1].

analysis as we wish to model the features as continuous
random variables. To avoid such problems, we perform our
analysis with a relatively large bin-size of 10 minutes, the
limitations of this are discussed further in section IV.

Pre-processing

To enable stable estimation of dependency structure it is pru-
dent to ensure that all features are measured on a similar scale
level. To this end, we perform a localised z-scoring procedure
which measures the empirical mean and standard-deviation of
a feature flow within a window (of width 2h+1). We perform
a local de-trending and variance stabilising transform to each
feature flow according to:

Xt =
Xt − µ̂t

σ̂t
, (1)

where µ̂t = (
∑t+h

i=t−hXi)/2h + 1 and σ̂t =
(∑t+h

i=t−h(Xi −
µ̂t)

2/2h
)1/2

. The result of such a transform can be seen
in Fig. (1). The focus of this work is on understanding the
contemporaneous relationship between features and how these
change over time. The interest here is thus correlatory in

nature, we desire to know how one feature i changes with
(not necessarily in response) to another feature j. As we have
rescaled the data, we can assume that the marginal variance
of the data will be approximately 1 across time. Estimation of
dependency structure should therefore no longer be sensitive
to variable scaling (i.e. trends in the data).

B. Gaussian Graphical Models

An undirected graphical model (UGM) factorises a joint
distribution Dp over a set of p variables by representing
conditional dependencies as a graph structure G(V,E). An
example of a graphical model relating to network features
can be seen in Fig. 2, where V indexes a set of nodes
(relating to features) and E denotes edges associated with
feature dependency. In our case, we assume our features are
drawn from a Gaussian graphical model (GGM) whereby the
distribution is Gaussian Dp = Np(0,Σ0), with covariance
matrix Σ0. An important property of GGM’s, is that one
may infer conditional independence between variables i, j by
considering the relevant entry in the precision matrix, defined
as Θi,j := (Σ)−1i,j . In particular the following statements hold:

(j, k) ∈ E ⇐⇒ Xj ⊥ Xk|XV \{j,k} ⇐⇒ Θi,j 6= 0 ,

where Xj ⊥ Xk|XV \{i,j} means the variable Xj is inde-
pendent of Xk conditioned on the rest of the variables (see
Lauritzen et al. [8] for more details). These are indexed by
the complete set of vertices excluding the j, kth elements,
i.e V \{j, k} := {i = 1, . . . , p | ∀i 6= j, k}. Estimating
the precision matrix Θ̂ is thus of great importance when
inferring the edge set of a GGM. Naive estimation of the
precision matrix, for example via Maximum-Likelihood will
generally result in a completely dense precision matrix and
graph G(V,E), i.e. all possible edges will be contained within
E (see left plot in Fig. 2). Such an estimate is undesirable for
two reasons. Firstly, we do not gain any intuition about the
dependencies between variables, and secondly, the estimator is
likely to have high-variance due to the number of parameters
O(p2) required to be estimated. A popular solution to this
problem is to enforce sparsity on the graph, whereby the
number of edges estimated s = |E| is small in comparison
to the number of possible edges, i.e. s < p2/2 − p. Such a
model has less degrees of freedom than it’s dense counterpart
and therefore provides a more robust estimate of the joint
distribution. As seen in Fig. (2), a sparse graphical model
also enables enhanced interpretation, in the GGM setting the
estimated edges obtained from Θ̂ can be used to identify con-
ditional dependencies between variables. Such dependencies
are important as they enable us to suggest where features may
be related, either by construction, or as a result of different
traffic processes operating on the network.

Sparsity can be enforced on a GGM in several ways,
either by assuming an a-priori pattern of zeros (and cor-
respondingly edges in the graph), or by placing a prior
on the number of edges in the graph (or non-zeros in the
precision matrix). A popular choice is to adopt a log-prior
proportional to the size of the off-diagonal precision entries,

N
o

Eve
nt

s

N
o

Sta
rtE

ve
nt

s

Byt
es

 M
ed

ia
n

Byt
es

 M
AD

Byt
es

 S
U
M

Byt
es

 S
D

Pac
ke

ts
 M

ed
ia
n

Pac
ke

ts
 M

AD

Pac
ke

ts
 S

U
M

Pac
ke

ts
 S

D

BP R
at

io
 M

ed
ia
n

BP R
at

io
 M

AD

BP R
at

io
 S

U
MN

o
Eve

nt
s

N
o

Sta
rtE

ve
nt

s
Byt

es
 M

ed
ia
nByt

es
 M

ADByt
es

 S
U
M

Byt
es

 S
D

Pac
ke

ts
 M

ed
ia
n

Pac
ke

ts
 M

AD
Pac

ke
ts
 S

U
MPac

ke
ts
 S

D

BP R
at

io
 M

ed
ia
n

BP R
at

io
 M

AD
BP R

at
io
 S

U
M

Θ (λ
1
=0)

N
o

Eve
nt

s

N
o

Sta
rtE

ve
nt

s

Byt
es

 M
ed

ia
n

Byt
es

 M
AD

Byt
es

 S
U
M

Byt
es

 S
D

Pac
ke

ts
 M

ed
ia
n

Pac
ke

ts
 M

AD

Pac
ke

ts
 S

U
M

Pac
ke

ts
 S

D

BP R
at

io
 M

ed
ia
n

BP R
at

io
 M

AD

BP R
at

io
 S

U
MN

o
Eve

nt
s

N
o

Sta
rtE

ve
nt

s
Byt

es
 M

ed
ia
nByt

es
 M

ADByt
es

 S
U
M

Byt
es

 S
D

Pac
ke

ts
 M

ed
ia
n

Pac
ke

ts
 M

AD
Pac

ke
ts
 S

U
MPac

ke
ts
 S

D

BP R
at

io
 M

ed
ia
n

BP R
at

io
 M

AD
BP R

at
io
 S

U
M

Θ (λ
1
=0.1)

0

1

2

3

4

5

6

7

8

9

10

11

No_Events

No_StartEvents

Bytes_Median

Bytes_MAD

Bytes_SUM
Bytes_SD

Packets_Median

Packets_MAD

Packets_SUM

Packets_SD

BP_RATIO_Median

BP_RATIO_MAD

BP_RATIO_SUM

BP_RATIO_SD

Figure 2: Top: Dense and sparse estimates of precision ma-
trices (λ1 = 0 and λ1 = 0.1 respectively). Bottom: Corre-
sponding graphical estimates for a static GGM. The size of
the nodes in the estimated graph represent the relative degree
(number of edges) associated with each node.

namely logP (Θ;λ1) = −λ1
∑

i 6=j |Θi,j |, where in this case
a larger value of λ1 corresponds to assuming a sparser graph.
Performing either Bayesian (we find the full distribution
P (Θ|X, λ)) or MAP (we find the most likely precision matrix
arg maxP (Θ|X, λ1)) inference we can then identify a sparse
GGM [4].

Dynamic Graphical Models

Traditionally, GGM’s are estimated in a static setting and
the data is assumed to be drawn independently and identically.
However, as discussed, we wish to examine the temporal
variation in dependency patterns. In order to achieve this,
we utilise what is known as a dynamic GGM [6]. Such
an extension permits temporal variation in the covariance
structure according to:

(Xt
1, . . . , X

t
p)> ∼ N (0,Σt

0) , (2)

where Σt
0 is a localised covariance matrix, for times t =

1, . . . , T . As it stands the model in (2) is not identifiable from
data as we are required to estimate O(Tp2) parameters from
only O(T) data points.

To aid in this identification and permit consistent estima-
tion, we must assume that the model has certain smoothness
properties, i.e. that the covariance can not vary too much
in adjacent time-intervals. There are variety of options over
what kind of smoothness we may wish to impose on such
models [6]. However, for the purposes of this work we will
assume that temporal variation will be restricted by a total-
variation type constraint, namely

∑T
t=2 |Θ

t
0 − Θt−1

0 | ≤ γ2.

This results in a piecewise constant precision matrix, where
one can expect a given entry in the precision matrix Θt

i,j to
change only at a few (sparse) points in time, i.e. for many
time points t, t + 1 ∈ [1, T] we expect Θt

i,j = Θt+1
i,j . Such a

smoothness prior is particularly useful for modelling bursty
and discontinuous network traffic as it can permit sudden
jumps in structure. In order to estimate such structure we work
in the MAP estimation paradigm and minimise the negative
penalised log-likelihood function: L({Θt},Y) :=

T∑
t=1

(
− log det(Θt) + trace((yt)>yΘt)

)
+ . . . (3)

.+ λ1

T∑
t=1

∑
i6=j

|Θt
i,j |+ λ2

T∑
t=2

P∑
i,j=1

|Θt
i,j −Θt−1

i,j | ,

where λ2 is a tuning parameter that effects the smoothness
of the estimated graphs. This parameter can be understood
in a similar way to λ1 which enforces sparsity, a larger λ2
results in smoother estimation of a dynamic graph. A set of
dynamic graph estimates can now be obtained by minimising
the objective in (3), we refer to this procedure as the Fused
Graphical Lasso (FGL). Since this function is convex, it can be
minimised reliably utilising a variety of convex optimisation
methods. In this work we utilise an Alternating Directed
Method of Multipliers (ADMM) algorithm which has compu-
tational complexity of order O(p3T log(T)). In the interests
of space we refer the reader to Gibberd et al. [5] for details
of this implementation, code is availiable on request.

III. EXPERIMENTS

In this section we detail the estimation of dynamic graphical
models based on 9 days of NetFlow features. We aim to
assess the within day and between-day variation in feature
dependency and visualise this via the estimated graphical
models.

5 10 15 20

2

4

6

λ
2

Day 6

5 10 15 20
time

λ
1
=

0

5 10 15 20

2

4

6

λ
2

5 10 15 20
time

λ
1
=

0.
01

5 10 15 20

2

4

6

λ
2

5 10 15 20
time

λ
1
=

0.
03

5 10 15 20

2

4

6

λ
2

5 10 15 20
time

λ
1
=

0.
05

5 10 15 20

2

4

6

λ
2

5 10 15 20
time

λ
1
=

0.
1

5 10 15 20

2

4

6

λ
2

5 10 15 20
time

λ
1
=

0.
2

5 10 15 20

2

4

6

λ
2

Day 7

5 10 15 20
time

λ
1
=

0

5 10 15 20

2

4

6

λ
2

5 10 15 20
time

λ
1
=

0.
01

5 10 15 20

2

4

6

λ
2

5 10 15 20
time

λ
1
=

0.
03

0

10

20

30

40

50

60

70

80

90

5 10 15 20

2

4

6

λ
2

5 10 15 20
time

λ
1
=

0.
05

5 10 15 20

2

4

6

λ
2

5 10 15 20
time

λ
1
=

0.
1

5 10 15 20

2

4

6

λ
2

5 10 15 20
time

λ
1
=

0.
2

Figure 3: Solution paths depicting the number of edges
estimated as a function of tuning parameters within two
consecutive days.

A. Intra-day Dynamics

In this first experiment we aim to assess whether there is
a common daily pattern to dependency dynamics. One might
hypothesize such behaviour according to a day-night cycle,
for example, activity during the day where users are working
on a network may exhibit different patterns to those detected
in the evening. To test such a hypothesis, we run FGL on
each of the 9 working week-days within our dataset. For each
day we find a solution path according to a grid of tuning
parameters λ1, λ2. Each point in this path corresponds to a
set of dynamic graphs with different sparsity and smoothness
properties. Figure 3 gives a visualisation of such solution
paths, comparing estimate edge structure across two days of
data. As expected, one can see the clear sparsity inducing
effect of λ1, whereby large λ1 have very few edges. Similarly,
the smoothing effect of λ2 can also be observed, larger
values have visibly reduced variation in the number of edges
estimated.

Cross-Validation

It is quite clear that the two days considered in Fig. (3)
do not have very similar solution paths. However, we wish to
know whether such difference between days is typical across
the whole data-set, or just limited to the two days plotted.
Hypothetically, if the data from across different days was
generated according to the same process, then a model trained
on one day should be able to describe some of the behaviour
of another day.

We here formalise such descriptive ability using a measure
of risk based on how well one training day can be explain
the data corresponding to a held out test day. Exchanging
the test data-set across the days in a leave-one-out cross-
validation fashion, the risk can be used to describe how well
the estimated models generalise between days. By minimising
this risk surface one can estimate an optimal set of tuning
parameters (λ1, λ2). To construct our risk function we adapt
the idealised setting where we have knowledge of the ground-
truth distribution. For a multivariate Gaussian distribution, the
predictive risk for a pair of ground truth Σ0 and estimated
Ŝ covariance matrices is given as R(Ŝ) = tr((Ŝ)−1Σ0) +
log det(Ŝ). Zhou et. al. [14] note that up to a constant
R(Ŝ) = −2E0[log(fŜ(Z))], where fS is the density for
N (0, Ŝ) and the data is drawn under the ground truth structure
Z ∼ N (0,Σ0). The likelihood and the risk are thus related
via the density function. In our case, we extend this measure
of risk to cover the whole time-series. We define the leave one
out cross-validation risk as: Rloo({Ŝt}Tt=1) :=

T∑
t=1

(
1

N

N∑
itest=1

∑
i6=itest

[
tr(Θ̂

i

tS
itest
t) + log det

(
(Θ̂

i

t)
−1)]) ,

(4)
where Sitest

t = yty
>
t is an ill-conditioned estimate of the

local empirical covariance. In effect, by averaging over the
N different days of data, we can see how different (λ1, λ2)
perform in terms of describing the data on other days.

R
loo

Cross-Validation Surface

1 2 3 4 5 6

Smoothness (λ
2
)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

S
p

a
rs

ity
 (
λ 1

)

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

×104

Figure 4: Leave-one-out risk surface, as averaged over N = 9
days of data.

The risk surface, as plotted in Fig. (4) tells us a lot about
how the estimated dependency graphs generalise across days.
In particular we note:
• The shrinkage inducing λ1 appears to have a minima at

around λ1 = 0.1.
• The risk surface suggests that λ2 should be set very large,

there is no discernible minima with respect to λ2.
The fact that the risk surface prefers a very large λ2 suggest
that almost constant precision matrices should be preferred,
i.e. there will be no dynamic structure estimated. This should
be interpreted as evidence against the hypothesis that there is a
regular daily cycle of dependency patterns, i.e. there appears
to be no consistent pattern to the dynamics across different
days (at least in this data-set). A perhaps more interesting
observation is the fact that there is a minima with respect to λ1,
whilst there are no regular temporal patterns, this does suggest
that there is an optimal level of sparsity which generalises
across different days.

B. Inter-day Dynamics

Whilst in the previous experiment, we didn’t see any signif-
icant temporal patterns in the daily analysis, we might still be
able to find some longer time-scale changes. In this experiment
we concatenate 5 days worth of data together (Monday-Friday)
in an effort to assess inter-day dynamics, we then run FGL
on the whole dataset for a wide range of tuning parameters
(λ1, λ2). For each setting of these parameters, we obtain a set
of precision matrix estimates {Θ̂

t
(λ1, λ2)}Tt=1 which encode a

graphical model through the pattern of non-zero entries. In this
mode of operation FGL is operating in a purely exploratory
data-analysis role, we want to see what solutions for different
λ1 and λ2 look like.

Figure 5 presents the output of this analysis, where we plot
the number of edges estimated in the graph as a function of
tuning parameters. There is clearly some temporal patterns
contained within the solution path. In particular we note that
there seems to be a slightly more dense region within the
periods t ∈ [10, 50] and t ∈ [70, 100]. It is interesting to
note that these appear to coincide with periods of increased
activity as measured by overall event count (see Fig. 1).
Rather than a daily cycle, this pattern suggests that meaningful

10 20 30 40 50 60 70 80 90 100 110

2

4

6

λ 2

Edge-Density Solution Path

10 20 30 40 50 60 70 80 90 100 110

time

λ 1
=

0

10 20 30 40 50 60 70 80 90 100 110

2

4

6

λ 2

10 20 30 40 50 60 70 80 90 100 110

time

λ 1
=

0
.0

1

10 20 30 40 50 60 70 80 90 100 110

2

4

6

λ 2

10 20 30 40 50 60 70 80 90 100 110

time

λ 1
=

0
.0

3

10 20 30 40 50 60 70 80 90 100 110

2

4

6

λ 2

10 20 30 40 50 60 70 80 90 100 110

time

λ 1
=

0
.0

5

10 20 30 40 50 60 70 80 90 100 110

2

4

6

λ 2

10 20 30 40 50 60 70 80 90 100 110

time

λ 1
=

0
.1

0

10

20

30

40

50

60

70

80

90

10 20 30 40 50 60 70 80 90 100 110

2

4

6

λ 2

10 20 30 40 50 60 70 80 90 100 110

Time since start of week (hours)

λ 1
=

0
.2

Figure 5: Edge density solution path for 5 consecutive days
of data.

dynamics might be detected over a period of several days.
Whilst this periodicity is very clear in the raw data, it is
not necessarily obvious that this would propagate through to
changes in feature dependency structure.

To investigate this structure further, we can harness the
cross-validation analysis performed in the intra-day experi-
ment to select an appropriate level of sparsity and set λ1 = 0.1.
In Fig. 6 we plot the number of edges as a function of time
at two specific smoothness parameters, λ2 = 1 and λ2 = 6.
In addition to this we can visualise the graph directly, plotting
snapshots of estimated graphs (for λ1 = 0.1, λ2 = 6).

IV. DISCUSSION

In the previous sections we have demonstrated how one can
estimate dGGM from NetFlow features. We here present some
conclusions of our analysis and discuss what this means in the
context of cyber-security and network modelling.

Dependency between features can and does change over time

The analysis depicted in Figs. 5,6 clearly shows that depen-
dency structure (i.e. edges in the graph) change as a function
of time. In this particular data-set there are no obvious daily
trends in this graph dependency. Instead, we find two distinctly
similar regimes of activity (over a period of several days)
where the graph estimates are denser than in the surrounding
time-periods. We suggest that these may be used to describe
different processes which are running across the network at
these times.

Some dependency structures are persistent across time

Whilst some dependencies change over time, our analy-
sis suggests that a sub-set of these are persistent (or re-
occurring) over time. In particular, the subset of features
(Packets_SD, Packets_SUM, Bytes_SUM and Bytes_SD) ap-
pear to be highly inter-dependent. This is particularly obvi-
ous during periods of high-activity (see graphs in Fig. 6 at
t = 20, 40, 75, 90). Alternatively, we can also detect variables
which are relatively independent of the other variables, for
example, the number of start events (No_StartEvents) appears

No_Events

No_StartEvents

Bytes_Median

Bytes_MAD

Bytes_SUM Bytes_SD

Packets_Median

Packets_MAD

Packets_SUM

Packets_SD BP_RATIO_Median

BP_RATIO_MAD

BP_RATIO_SUM

BP_RATIO_SD

t=5 t=20 t=40 t=60 t=75 t=90 t=105

0 20 40 60 80 100
Time since start of week (hours)

10

15

20

25

30

35

40

N
u

m
b

e
r

o
f

E
d

g
e

s

Number of Estimated Edges vs Time

λ
1
=0.1,λ

2
=1

λ
1
=0.1,λ

2
=6

Figure 6: Top: Choosing λ1 = 0.1 the number of edges are plotted as a function of time for two solutions, one with high
smoothness λ2 = 6 and one with low smoothness λ2 = 1. Bottom: Some snapshots of graph structure are given at different
points in the week (measured in hours). These graphs correspond to the solution with λ1 = 0.1, λ2 = 6.

to be relatively disconnected throughout the whole analysis
window.

Limitations and Future Directions

In this work we assume feature flows are distributed as a
continuous Gaussian random variable, however, this assump-
tion is unlikely to be met in practice. The requirement of Gaus-
sianity limits the time resolution of our analysis, specifically it
requires us to have a large bin size (10 minutes) so that features
can be treated as continuous random variables. In future work,
one may consider using a different likelihood function, or non-
parametric models which allow more flexibility with respect
to feature distribution.

In this work, we have to be careful not to make very general
statements about feature dependencies, it is entirely plausible
that these are specific to the data-set we analyse. Larger studies
which include more IP addresses or devices are planned and
will investigate the reproducibility of the results obtained here.
To this extent, understanding dependency between features at
different aggregation levels may be important for characteris-
ing network activity, such an analysis might be considered a
multivariate extension of the work by Scherrer et al. [12].

Finally, it may be interesting to consider whether depen-
dency arises between features due to construction (i.e. how
we define the features), or as a product of actual varying
network activity. However, such a study would need access
to information about the processes running on each device
and how these produce network activity.

Conclusion

It is our firm belief that understanding and characterising the
dependency of network activity features, across different time-
periods, and scales, is crucial for building effective generative
anomaly detection systems. In this work we have shown on
real data that such dependencies can and do vary with respect
to time. As such, this serves to highlight the importance of
considering dynamics in statistical models of network traffic.

ACKNOWLEDGEMENTS

We are grateful to Imperial College’s ICT department and
Andy Thomas for facilitating access to the NetFlow data used
in this work. Alex Gibberd acknowledges funding from the
Defence Science Technology Laboratory (Dstl) National PhD
Scheme.

REFERENCES

[1] M. Evangelou and N. M. Adams. Predictability of NetFlow data.
IEEE International Conference on Intelligence and Security Informatics
(submitted), 2016.

[2] P. Fogla, M. Sharif, R. Perdisci, O. Kolesnikov, and W. Lee. Polymorphic
Blending Attacks. 15th USENIX Security Symposium, pages 241–256,
2006.

[3] I. Friedberg, F. Skopik, G. Settanni, and R. Fiedler. Combating advanced
persistent threats: From network event correlation to incident detection.
Computers and Security, 48:35–57, 2015.

[4] J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance
estimation with the graphical lasso. Biostatistics, 9(3):432–41, 2008.

[5] A. J. Gibberd and J. D. B. Nelson. Regularized Estimation of Piecewise
Constant Gaussian Graphical Models : The Group-Fused Graphical
Lasso. http://arxiv.org/abs/1512.06171, pages 1–32, 2015.

[6] A. J Gibberd and J. D. B. Nelson. Estimating Dynamic Graphical Models
from Multivariate Time-series data : Recent Methods and Results.
Lecture Notes in Artificial Intelligence (in press), 2016.

[7] F. Iglesias and T. Zseby. Analysis of network traffic features for anomaly
detection. Machine Learning, 101(1-3):59–84, 2014.

[8] S. L. Lauritzen. Graphical Models. Oxford, 1996.
[9] J. Neil, C. Hash, A. Brugh, M. Fisk, and C. B. Storlie. Scan Statistics for

the Online Detection of Locally Anomalous Subgraphs. Technometrics,
55(4):403–414, 2013.

[10] A. Patcha and J. Park. An overview of anomaly detection techniques:
Existing solutions and latest technological trends. Computer Networks,
51(12):3448–3470, Aug. 2007.

[11] H. Ringberg, A. Soule, J. Rexford, and C. Diot. Sensitivity of PCA for
traffic anomaly detection. Proceedings of the 2007 ACM SIGMETRICS
international conference on Measurement and modeling of computer
systems - SIGMETRICS ’07, page 109, 2007.

[12] A. Scherrer and N. Larrieu. Non-gaussian and long memory statistical
characterizations for internet traffic with anomalies. IEEE Transactions
on Dependable and Secure Computing, 4(1):56–70, 2007.

[13] Z. Tan, A. Jamdagni, X. He, P. Nanda, and R. P. Liu. A System for
Denial-of-Service Attack Detection Based on Multivariate Correlation
Analysis. IEEE Transactions on Parallel and Distributed Systems,
25(2):447–456, Feb. 2014.

[14] S. Zhou, J. Lafferty, and L. Wasserman. Time varying undirected graphs.
Machine Learning, 80(2-3):295–319, Apr. 2010.

