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Abstract—A control theory approach to the management
of the blood clotting speed using the anticoagulant Warfarin
is investigated. Controllers are developed and analysed using
hospital data from patients with chronic conditions under
Warfarin anticoagulation treatment. Proportional Integral (PI)
and Model Predictive (MPC) controllers are used to estimate
treatment decisions. These controllers are adapted in a novel
manner, to enable their use with missing or irregularly sampled
data. The performance of the controllers is evaluated both using
a simulation of the system and by retrospectively comparing
actual decisions in the data to those suggested by the control
algorithms. It is shown that when the blood clotting speed is
within a target range, the decisions suggested by the control
algorithms are similar to those actually made (by medical staff),
so would likely have led to similar desirable outcomes. When
the blood clotting speed is outside the desirable range and
too high or too low, the control algorithms on average suggest
lower, or higher inputs respectively. These suggestions are likely
to lead to improved outcomes.

Keywords-Adaptive Treatment; Anticoagulation; Missing
Measurements; Proportional Integral (PI); Model Predictive
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I. INTRODUCTION

The problem of determining effective medical treatments
for individual patients can be treated as a control problem.
Using control theory to determine medical treatments is
appealing as it provides a systematic way of achieving
desired performance in the presence of uncertainty, external
disturbances and noise [1]. The question of determining
individually tailored treatments has also been considered
in the biostatistical literature, where the problem is cast
as an optimal dynamic treatment (ODT) problem [2], [3],
[4]. The ODT biostatistical literature focuses on modelling,
estimation and inference, as opposed to control.

Algorithms from control theory have been applied to
various medical treatments. These include: i) the control
of blood glucose levels by adjusting insulin inputs using
proportional-integral-derivative (PID) [5], [6] and model pre-
dictive control (MPC) [7], [8]; ii) anaesthetic drug delivery
using PI, PID and robust control [9], [10], [11], [12]; and
iii) behavioural research to develop interventions using MPC
[13], [14], [15].

In this article, we consider the control of the blood
clotting speed using the anticoagulant Warfarin. Anticoag-
ulants are one of the most commonly prescribed group of
drugs and Warfarin is probably the most used anticoagulant.
Simplified pharmacodynamic models for the Warfarin dose
response have been developed using methods from control
theory [16]. However, with the exception of recent work by
the present authors [1], regulating the blood clotting speed
has not been considered using a control theory approach.

We use observational data from patients undergoing War-
farin anticoagulation treatment to design and evaluate control
algorithms based on both MPC and PI control. A PI con-
troller was selected for this research, since it is ubiquitous
and remains one of the main controllers used for industrial
applications. MPC was selected because of its ability to
handle constraints and, like PI control, has a track record
of use for various medical control applications.

In control theory it is often assumed that observations
and inputs occur at fixed intervals, with uniform sampling
intervals pre-determined by the sampling period T . However,
in practice, medical treatments are rarely measured and
applied at such fixed times. Appointment times (or mea-
surements) may be scheduled without constant time gaps,
planned visits may not be adhered to, and individuals may
drop out from trials [17]. Indeed, the Warfarin data evaluated
in this contribution is not uniformly sampled.

We consider a non-minimal state space (NMSS) frame-
work for both PI and MPC design. For further details
on NMSS methods, see e.g. [18], [19] and the references
therein. We show how these controllers can be adapted
to enable their application to blood clotting speed, where
output data are missing or irregularly sampled. Here, the
conventional integral–of-error state used for NMSS de-
sign, is replaced by a new form that facilitates application
to irregular data. Control performance is evaluated with
missing measurements on a simulated system, as well as
retrospectively using observational data. In the latter case,
we compare decisions made by the healthcare provider to
those suggested by the algorithms. This provides a useful
comparison since we can reasonably expect the healthcare
practitioners to have made good decisions on input doses.



Hence, the novel contributions of the article are the appli-
cation of control methods to Warfarin data, the adaptation
of these methods for irregularly sampled data, and the use
of a retrospective data analysis. The remainder of the paper
is structured as follows: Section 2 provides the methods,
including details on the Warfarin data and model, the PI
and MPC control algorithms, and how these are adapted
to deal with missing data, as well as information about the
simulations and retrospective data analysis. Subsequently, in
Section 3 we present the results, followed by the discussion
in Section 4 and conclusions in Section 5.

II. METHODS

In this section, the data, model, control algorithms and
simulation methods are all described. The system model was
developed in R and control simulations were implemented
using Matlab.

A. Patient Data

Data from 152 patients with chronic conditions under
Warfarin anticoagulation treatment were used. The con-
trolled variable is the blood clotting speed, which is mea-
sured through the International Normalised Ratio (INR). The
INR is a standardised measure, with high values indicating
long clotting times. Usually the aim is to achieve INR values
in the range 2–3 units [20]. The input used to achieve control
is the Warfarin dose, which is measured in mg. Available
covariates include age and sex, with the mean age of patients
84 and range of ages 75–97. The data were recorded in
Newcastle upon Tyne, UK between 1995–2013. Treatment
periods for each patient varied from 186 to 5925 days and
involved 6 to 215 clinic visits. The gaps between visits were
not regular. For all patients, 67% of observations were within
15% of either 7, 14, 21 or 28 days, with 27% of intervals in
excess of 32 days. Measurements recorded as INR=0 were
assumed to be missing and so are excluded from the analysis.

B. System Model

The Warfarin data was used to estimate a simulated model
as detailed in [1]. The model structure was chosen as it is
simple, but provides a reasonable description of the data.
Note that, in contrast to [1], the present article develops
PI and MPC designs that address the missing data problem.
The output y(k) is the log(INR) and the input u(k) the dose
(mg) of Warfarin. The output is modelled as,

y(k) = a1y(k − 1) + b1u(k − 1) + ε (1)

where, based on a typical patient and obtained using the lm
function in R, a1 = 0.4 and b1 = 0.25, ε ∼ N(0, σ2) with
σ = 0.25.

C. PI Control Algorithm for Missing Data

The PI control algorithm was based on state variable
feedback methods, with a non–minimal state vector x(k) =[
y(k) q(k)

]′
, where q(k) is an integral–of–error state used

to provide steady state tracking of the target or set point (see
definition below). Proportional (kp) and integral (kI ) gains
were calculated using standard linear quadratic optimisation
and weights we = wx = wu = 1; for further details on these
weights and NMSS control design, see Section 5.4 in [18].
The control input or dose is determined as follows,

u(k) = −kpy(k) + kIq(k) (2)

Previous research into NMSS design has used a simple
backwards rectangular integration to define the integral–of–
error state [18], [19]. By contrast, the present work uses a
trapezoidal integration to improve accuracy when data are
missing. Here the integral–of–error is,

q(k) = q(k − 1) + 0.5T (e(k) + e(k − 1)) (3)

where e(k) = yd(k)−y(k) and yd(k) is the desired set point
and T is the sampling time. In the nominal case, T = 1 is
assumed. In the case of missing data, e(k− 1) and q(k− 1)
may not be available. Hence, we can write,

q(k) = q(k −N) + 0.5NT (e(k) + e(k −N)) (4)

where y(k − N) is the previous measurement and N is
the number of samples between the current and previous
measurement. When data are not missing N = 1. The
following notation is introduced:

z−1q(k) = q(k − 1) ; z−Nq(k) = q(k −N)

q(k)− q(k −N) = q(k)(1− z−N )

(1− z−N ) = ∆N

Using the above notation Eq. (4) can be written as,

q(k) =
NT

2∆N
(e(k) + e(k −N)) (5)

Substituting this into Eq. (2) yields an expression for the
input in terms of available data,

u(k) = −kpy(k) + kI
NT

2∆N
(e(k) + e(k −N)) (6)

To implement control, the input was expressed in incremen-
tal form, to avoid wind-up problems, i.e.,

u(k) = u(k −N)− kp(y(k)− y(k −N))+

kINT

2
(e(k) + e(k −N)) (7)

but with the constraint that u(k) ≥ 0. This approach yields
an input in terms of the available signals, and is used to
appropriately update u(k) when data are missing. The input
dose is only updated if data are available, otherwise the input
is held at the last observed value, i.e. u(k) = u(k −N)



D. MPC Algorithm for Missing Data

The NMSS–based MPC algorithm described by [21] was
used, rather than alternatives such as [22]. This algorithm
was selected since it provides integral action without re-
quiring an explicit estimation of the integral–of–error state
(which is unavailable when analysing retrospective data). For
the model (1), the state is xm(k) =

[
∆1y(k) y(k)

]′
where

∆1y(k) = y(k)− y(k − 1). The MPC cost function is,

J = γ

Np∑
i=1

(Cxm(k + i|k)− yd(k + i))
2

+

λ

Nc−1∑
i=0

(∆1u(k + i|k))
2 (8)

where C =
[
0 1

]
. For the results presented below,

the control and input horizon were equal, with Np =
Nc = 10, while γ = 1 and λ = 1. This MPC
problem can be cast as a quadratic program at each
sampling instant k, i.e. to find the vector ∆1U =[
∆1u(k) ∆1u(k + 1|k) · · · ∆1u(k +Np − 1|k)

]
that

minimises the cost function in Eq. (8) subject to constraints.
Constraints on the change in input ∆1U were imposed such
that the input dose could never be zero, and (for illustrative
purposes) the change in dose was always less than unity. The
constrained quadratic program was solved using the Matlab
function quadprog. This yields a suggested dose sequence
that was calculated as a function of the previous input and
the current state xm(k).

In MPC, generally only the first element of the sequence
of suggested inputs is applied, while subsequent inputs are
recalculated by re-estimating the optimal input sequence at
each sampling instant. For MPC with missing data, one
approach is to hold the control input constant and equal
to the first element, which is updated only when data
become available. This is a similar approach to that used
for PI control above, and is termed ‘MPC hold’ in the
results below. Alternatively, the sequence of MPC inputs
determined via ∆1U can be used until more data becomes
available. This is termed ‘MPC tail’ in the results. When
data are missing y(k − 1) was unavailable. We therefore
made the approximation that y(k − 1) ≈ y(k − N) and so
∆1y(k) ≈ ∆Ny(k) ≈ y(k)− y(k−N). The approximation
of ∆1y(k) is used in the estimate of the current state.

E. Control Simulations

The performance of the PI and MPC control algorithms
was evaluated in simulation. Here, the plant was modelled
using Eq. (1) and the estimated model parameters were
varied from the data-based estimated values using a Monte-
Carlo simulation, with standard deviation of 0.01 for both a1
and b1. Missing data were simulated as missing completely
at random (MCAR) [1], such that for each sample the
probability that the output was missing was 50%.

The desired INR yd(k) was 2.5 for 50 samples, then 3.5
for a further 50 samples. These are the normal targets for
patients with occasional and recurrent deep vein thrombosis
respectively [20], while the increase mimics a change in the
diagnosis. The percentage of measurements within ±0.5 of
the desired INR was used as a performance metric. Perfor-
mance metrics were based on 1000 different simulations,
each with 100 data points.

F. Retrospective Data Analysis

At each visit, the inputs suggested by the control algo-
rithms (based on previous measured output and input) were
compared to those made by healthcare providers in the data
set. Control estimates were made corresponding to each visit
using the PI and MPC controllers described above. The PI
input was calculated in terms of the data measured at the
current and previous visit using Eq. (7), and the MPC input
calculated by solving the quadratic programme Eq. (8).

In the actual data, the majority of measurements were
separated by 7, 14, 21 or 28 days, hence we define dsep =[
7 14 21 28

]
. In calculating the control input, the sam-

pling period T was set to 1/mean(dsep). This is because on
average the sampling period of the control model (i.e. that
the controllers were optimised for) was ≈ 1/mean(dsep)
times that of the actual data.

We first considered instances where the heathcare provider
made a ‘good’ decision – this was defined as a dose decision
that resulted in a INR in the range 2–3 at the subsequent
visit. For such good decisions, a percentage difference (pdu)
was estimated as,

pdu(k) =
|ua(k)− us(k)|

(ua(k) + us(k))/2
(9)

where ua(k) is the actual input from the data, and us(k) is
the suggested control input from the algorithms.

Instances where the healthcare provider made a ‘bad’
decision were then considered. These were split into de-
cisions that led to too high an outcome (e.g. dose decision
that resulted in an INR above 3), and decisions that led to
too low an outcome (e.g. dose decision that resulted in an
INR below 2). In these cases, the proportion of decisions
in which the controllers suggested a lower preceding dose
for high outcomes, or a higher dose for low outcomes, was
calculated. In these cases, we assume that the control input
would have improved the outcome; however, as the analysis
of data is retrospective, this of course cannot be tested.

III. RESULTS

A. Simulated Control

Three different control algorithms were implemented in
simulation. These were i) a PI controller with inputs held
constant when data are missing; ii) MPC with inputs held
constant when data are missing (MPC hold); and iii) MPC
with the sequence of optimal inputs used when data are



missing (MPC tail). The performance of each is evaluated
for 1000 simulations in Table I. An example dose and INR
sequence for each control method is shown in Fig. 1.

In the best case scenario, the target range is only achieved
in 45% of measurements1. This is due to the simulated (but
realistic) high levels of random noise. As might be expected,
these results show that MPC outperforms the PI controller.
Under missing data, MPC hold yields improved results in
comparison to MPC tail. This is unexpected and requires
further research. However, it is likely to be related to the
high noise to signal ratio, and the fact that there is only
one change in the desired set point in these simulations. In
fact, when no noise was added to the simulations (ε = 0),
then MPC tail yields the best performance. In this case, with
zero noise and missing data, 90% of the results are in range
when holding the input (MPC hold) and 94% when using
the optimal sequence (MPC tail). Fig. 2 illustrates a typical
example of the latter scenario, and demonstrates that using
the tail of the input sequence improves control when the
reference signal changes – especially when data are missing
around this change in the reference signal.

B. Comparison with Actual Decisions

The dose inputs in the data set, determined by healthcare
practitioners, were compared to those suggested by MPC
and PI control algorithms. Table II compares the suggested
and actual doses for fifteen patients when the actual doses
led to good outcomes (i.e. INR=2–3), taken from the full set
of 152 patients at random. In general the inputs suggested by
the control algorithms are within a similar range to the actual
decisions. Figure 3 plots the suggested and actual doses for
two patients: one where the percentage change in dose was
usually small, and the other where it was often large. The
larger percentage differences in Fig. 3b) can be attributed to
the lower mean dose level. In general input changes are more
frequent in the control decisions. This is because a set point
of 2.5 was being tracked by the control algorithms but, in
practice, the medical aim is to keep the INR within the range
2–3. Further constraints could be incorporated into the MPC
algorithm to prevent small dose changes (other than zero)
since the actual doses tend to vary at fixed increments. There
are occasionally large variations between the PI suggestion
and the actual dose, suggesting MPC control may be more
appropriate, due to its ability to handle constraints.

Table III compares the suggested and actual doses for
fifteen patients when the actual doses led to poor outcomes
(INR<2 or INR>3). When the dose led to too high a
response the proportion of times the controller suggestion is
lower (so may have improved the actual medical outcome)
is given, and vice-versa when the dose led to too low
a response. For all patients, the controllers suggested a

1For the actual data, 54% of measurements are within the target range
of 2–3 INR; this discrepancy is because the real data do not encompass a
change in the set point.

dose that may have improved outcomes over 60% of the
time, implying that the controller may have outperformed
the medical decision takers. However, as the analysis is
retrospective this cannot be confirmed in practice.

Method No Data Missing 50% of Data Missing
MPC hold 45 42
MPC tail 45 38

PI 37 32

Table I
PERCENTAGE OF MEASURED INR VALUES WITHIN DESIRED RANGE.
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Figure 1. Example of INR and warfarin inputs for each control method.
Only the available data are plotted.
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Figure 2. Example of INR and warfarin inputs for each control method.
In these simulations, the noise ε = 0. Only the available data are plotted.

IV. DISCUSSION

In applying control to medical treatments a key issues
is ensuring patient safety. Hence, in many areas the use of



Patient No. No. of No. of good Input difference (%)
obs. decisions MPC PI

8 34 22 4.64 6.75
14 125 93 2.77 4.51
38 25 16 8.44 5.98
45 41 28 4.59 4.34
47 26 14 10.98 11.32
54 29 17 4.44 8.82
57 22 13 3.85 8.89
79 113 59 8.92 6.83
82 174 119 5.27 6.11
91 97 40 8.26 5.57

100 64 50 2.79 4.27
107 61 29 13.52 13.19
110 50 31 10.70 9.11
130 109 65 19.30 21.21
139 14 11 13.73 14.59

Mean 60 38 7.93 8.83
Weighted Mean - - 7.48 8.04

Table II
COMPARISON OF ACTUAL AND SUGGESTED DOSES (CALCULATED

USING EQ. (9)) FOR FIFTEEN EXAMPLE PATIENTS WHEN THE ACTUAL
DOSES LED TO GOOD OUTCOMES. AVERAGE MEANS ARE GIVEN FOR

THE FULL SET OF 152 PATIENTS, THE WEIGHTED MEAN IS WEIGHTED
TO TAKE INTO ACCOUNT THE NUMBER OF OBSERVATIONS.
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Figure 3. INR and dose, with comparison to doses suggested by MPC
and PI control methods at each visit: a) Patient 14 and b) Patient 130.

automatic controllers is not standard practice and decisions
are made by health practitioners. However, control theory
could help to guide decisions. The controllers evaluated
in this paper led to similar or improved decisions when
compared to the decisions made by the healthcare prac-
titioner. Given that we can expect the health practitioners
to make good, experienced decisions, this motivates further
investigation into the potential use of control theory in
determining individual medical treatments.

In the biostatistical literature, research into ODTs has
progressed rapidly from the papers of Murphy [2] and
Robins [3], with methods including Q-learning and A-
learning [4]. However, there have been very few attempts
to make use of control theory in optimal dynamic selection.
Hence, our overarching aim is to combine ideas from well
established approaches in control with the statistical theory
of ODT regimes. Progress has been made towards this by

using robust control theory in ODT selection [23].
One of the challenges in developing a medical control

strategy is the fact that data are not uniformly sampled
and patients may miss appointments. As a first step, in
the present article we have considered the case where data
are missing completely at random (MCAR). However, the
missingness mechanism is important when dealing with
observational data, as discussed in more depth by [1]. In
the present study, the model order was low and so only the
current and previous measurements were needed to calculate
the control inputs. The proposed method needs extending
to the case when more history is required by the control
algorithm to calculate the inputs, in which case there is more
potential for useful information to be missing. Hence, future
work also aims to look at developing a more general method
to implement control when measurements are missing from
the history vector.

V. CONCLUSIONS

In this paper PI and MPC controllers were applied to the
problem of controlling blood clotting speed using Warfarin.
These controllers were adapted to enable application to
data which was not uniformly sampled. Retrospective data
analysis suggests that control theory could be applied to the
problem of dose assignment to achieve as good, or better
decisions than those made by the health care practitioner.
However, this is only determined from retrospective analysis.
Due to patient safety issues it is difficult to analyse online
performance in a real system. The underlying model used
to develop the controllers was a relatively simple first order
model. Future work aims to extend the control algorithms
and analysis to more complex system models.
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