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SUMMARY

The Whittle likelihood is a widely used and computationally efficient pseudo-likelihood. How- 15

ever, it is known to produce biased parameter estimates with finite sample sizes for large classes
of models. We propose a method for de-biasing Whittle estimates for second-order stationary
stochastic processes. The de-biased Whittle likelihood can be computed in the same O(n log n)
operations as the standard Whittle approach. We demonstrate the superior performance of the
method in simulation studies and in application to a large-scale oceanographic dataset, where 20

in both cases the de-biased approach reduces bias by up to two orders of magnitude, achieving
estimates that are close to those of exact maximum likelihood, at a fraction of the computational
cost. We prove that the method yields estimates that are consistent at an optimal convergence rate
of n−1/2 for Gaussian, as well as certain classes of non-Gaussian or non-linear processes. This is
established under weaker assumptions than standard theory, where the power spectral density is 25

not required to be continuous in frequency. We describe how the method can be readily combined
with standard methods of bias reduction such as tapering and differencing, to further reduce bias
in parameter estimates.

Some key words: Parameter estimation; Pseudo-likelihood; Fast Fourier Transform; Frequency Domain; Computa-
tional efficiency 30

1. INTRODUCTION

This paper introduces an improved computationally-efficient method of estimating time series
model parameters of second-order stationary processes. The standard approach is to maximize
the exact time-domain likelihood, which in general has computational efficiency of order n2 for
regularly-spaced Gaussian observations (where n is the length of the observed time series) and 35

produces estimates that are asymptotically efficient, converging at a rate of n−1/2. A second
approach is the method of moments, which in general has a computational efficiency of smaller

C© 2017 Biometrika Trust
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order but with poorer statistical performance (Brockwell & Davis, 1991, p.253), exhibiting both
bias and often a higher variance. A third approach of approximating the exact likelihood, often
referred to as quasi-, pseudo-, or composite-likelihoods, is receiving much recent attention across40

statistics, see e.g. Fan et al. (2014) and Guinness & Fuentes (2017). In time series analysis, such
likelihood approximations offer the possibility of considerable improvements in computational
performance (usually scaling as order n log n), with only small changes in statistical behaviour,
see e.g. Anitescu et al. (2016). Here we introduce a pseudo-likelihood that is based on the Whittle
likelihood (Whittle, 1953) which offers dramatic decreases in bias and mean-squared error in45

applications, yet with no significant increase in computational cost, and no loss in consistency or
rate of convergence. We refer to our pseudo-likelihood as the de-biased Whittle likelihood.

The Whittle likelihood of Whittle (1953) is a frequency-domain approximation to the exact
likelihood. This method is considered a standard method in parametric spectral analysis on ac-
count of its order n log n computational efficiency (Choudhuri et al., 2004; Fuentes, 2007; Mat-50

suda & Yajima, 2009; Krafty & Collinge, 2013; Jesus & Chandler, 2017). However, it has been
observed that the Whittle likelihood, despite its desirable asymptotic properties, may exhibit
poor properties when applied to real-world, finite-length time series, particularly in terms of es-
timation bias (Dahlhaus, 1988; Velasco & Robinson, 2000; Contreras-Cristan et al., 2006). Bias
is caused by spectral blurring, sometimes referred to as spectral leakage (Percival & Walden,55

1993). Furthermore, when the time series model is specified in continuous time, but observed
discretely, then there is the added problem of aliasing (see also Eckley & Nason, 2018), which if
unaccounted for will further increase bias in Whittle estimates. The challenge is to account for
such sampling effects and de-bias Whittle estimates, while retaining the computational efficiency
of the method. We here define such a procedure, which can be combined with tapering and ap-60

propriate differencing, as recommended by Dahlhaus (1988) and Velasco & Robinson (2000).
This creates an automated procedure that incorporates all modifications simultaneously, without
any hand-tuning or reliance on process-specific analytic derivations such as in Taniguchi (1983).

We compare pseudo-likelihood approaches using simulated and real-world time series. In our
example from oceanography, the de-biased Whittle likelihood results in parameter estimates that65

are significantly closer to maximum likelihood than standard Whittle estimates, while reducing
the computational runtime of maximum likelihood by a factor of 100, thus demonstrating the
practical utility and scalability of our method. Additionally, the theoretical properties of our
new estimator are studied under relatively weak assumptions, in contrast to Taniguchi (1983),
Dahlhaus (1988), and Velasco & Robinson (2000). Taniguchi studies autoregressive processes70

that depend on a scalar unknown parameter such that analytic calculations are possible. Dahlhaus
examines processes whose spectral densities are the product of a known function with peaks that
increase with sample size, and a latent spectral density that is twice continuously differentiable in
frequency. Velasco and Robinson investigate processes that exhibit power-law behaviour at low
frequencies and require continuous differentiability of the spectrum (at all frequencies except75

zero). Our assumptions on the spectral density of the time series will be milder. In particular, we
will not require that the spectral density is continuous in frequency. This is a useful generalisation
as discontinuous spectra frequently arise for example in oceanography (e.g. Polzin & Lvov, 2011,
p. 11). Despite these weaker assumptions, we are able to prove consistency of de-biased Whittle
estimates, together with a convergence rate matching the optimal n−1/2, for large classes of80

Gaussian as well as non-Gaussian or non-linear processes.
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2. DEFINITIONS AND NOTATION

We shall assume that the stochastic process of interest is modelled in continuous time, how-
ever, the de-biased Whittle likelihood can be readily applied to discrete-time models, as we shall
demonstrate later. We define {Xt} as the infinite sequence obtained from sampling a continuous- 85

time real-valued process X(t; θ) with zero mean (or a known non-zero mean such that it can
be subtracted a priori), where θ is a length-p vector that specifies the process. That is, we let
Xt ≡ X(t∆; θ), where t is a positive or negative integer, t = . . . ,−2,−1, 0, 1, 2, . . ., and ∆ > 0
is the sampling interval. If the process is second-order stationary, we define the autocovariance
sequence by s(τ ; θ) ≡ E{XtXt−τ} for τ = . . . ,−2,−1, 0, 1, 2, . . ., where E{·} is the expecta- 90

tion operator. The power spectral density of {Xt} forms a Fourier pair with the autocovariance
sequence, and is almost everywhere given by

f(ω; θ) = ∆

∞∑
τ=−∞

s(τ ; θ) exp(−iωτ∆), s(τ ; θ) =
1

2π

∫ π/∆

−π/∆
f(ω; θ) exp(iωτ∆)dω. (1)

As {Xt} is a discrete sequence, its Fourier representation is only defined up to the Nyquist fre-
quency ±π/∆. Thus there may be departures between f(ω; θ) and the continuous-time process
spectral density, denoted as f̃(ω; θ), which for almost all ω ∈ R is given by 95

f̃(ω; θ) =

∫ ∞
−∞

s̃(λ; θ) exp(−iωλ)dλ, s̃(λ; θ) =
1

2π

∫ ∞
−∞

f̃(ω; θ) exp(iωλ)dω. (2)

Here s̃(λ; θ) ≡ E{X(t)X(t− λ)} (for λ ∈ R) is the continuous-time process autocovariance,
which is related to s(τ ; θ) via s̃(τ∆; θ) = s(τ ; θ), when τ is an integer. It follows that

f(ω; θ) =

∞∑
k=−∞

f̃

(
ω + k

2π

∆
; θ

)
, ω ∈ [−π/∆, π/∆], (3)

see Percival & Walden (1993). Thus contributions to f̃(ω; θ) outside of the range of frequencies
±π/∆ are said to be folded or wrapped into f(ω; θ). We have defined both f(ω; θ) and f̃(ω; θ),
as both quantities are important in separating aliasing from other artefacts in spectral estimation. 100

In addition to these theoretical quantities, we will also require certain quantities that are com-
puted directly from a single length-n sample {Xt}nt=1. A widely used but inconsistent estimate
of f(ω; θ) is the periodogram, denoted I(ω), which is the squared absolute value of the Discrete
Fourier Transform defined as

I(ω) ≡ |J(ω)|2 , J(ω) ≡
(

∆

n

)1/2 n∑
t=1

Xt exp(−iωt∆), ω ∈ [−π/∆, π/∆]. (4)

Note that I(ω) and J(ω) are taken to be properties of the observed realisation and are formally 105

not regarded as functions of θ.

3. MAXIMUM LIKELIHOOD AND THE WHITTLE LIKELIHOOD

Consider the discrete sample X = {X}nt=1, which is organized as a length n column vector.
Under the assumption that X is drawn from X(t; θ), the expected n× n autocovariance matrix
is C(θ) ≡ E

{
XXT

}
, where the superscript “T ” denotes the transpose, and the components of 110

C(θ) are given by Cij(θ) = s (i− j; θ). Exact maximum likelihood inference can be performed
for Gaussian data by evaluating the log-likelihood function (Brockwell & Davis, 1991, p.254)
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given by

`(θ) ≡ − log |C(θ)| −XT C−1(θ)X, (5)

where the superscript “−1” denotes the matrix inverse, and |C(θ)| is the determinant of C(θ).
We have removed additive and multiplicative constants not affected by θ in (5). The optimal115

choice of θ for our chosen model to characterize the sampled time series X is then found by
maximizing the log-likelihood function in (5) such that

θ̂ = arg max
θ∈Θ

`(θ),

where Θ defines the parameter space of θ. Because the time-domain maximum likelihood is
known to have optimal properties, any other estimator will be compared with the properties of
this quantity.120

A standard technique for avoiding expensive matrix inversions is to approximate (5) in the
frequency domain, following the seminal work of Whittle (1953). This approach approximates
C(θ) using a Fourier representation, and utilizes the special properties of Toeplitz matrices.
Given the observed sampled time series X , the Whittle likelihood, denoted `W (θ), is

`W (θ) ≡ −
∑
ω∈Ω

{
log f̃(ω; θ) +

I(ω)

f̃(ω; θ)

}
, (6)

where Ω is the set of discrete Fourier frequencies given by125

Ω ≡ (ω1, ω2, . . . , ωn) =
2π

n∆
(−dn/2e+ 1, . . . ,−1, 0, 1, . . . , bn/2c) . (7)

The subscript “W ” in `W (θ) is used to denote “Whittle.” We have presented the Whittle like-
lihood in a discretized form here, as its usual integral representation must be approximated for
finite-length time series. The Whittle likelihood approximates the time-domain likelihood, i.e.
`(θ) ≈ `W (θ), and this statement can be made precise (Dzhaparidze & Yaglom, 1983). Its com-
putational efficiency is O(n log n), as the periodogram can be computed using the Fast Fourier130

Transform, thus explaining its popularity in practice. Exact maximum likelihood, on the other
hand, will require O(n2) computations for regularly-sampled Gaussian processes (using the
Trench algorithm (Trench, 1964) for example to compute (5)), and often higher complexity
for non-Gaussian processes, as demonstrated in our non-Gaussian simulation example in Sec-
tion S1·3 of the Supplementary Material.135

The Whittle likelihood (6) is calculated using the periodogram, I(ω). This spectral estimate,
however, is known to be a biased measure of the continuous-time process’s spectral density for
finite samples, due to blurring and aliasing effects (Percival & Walden, 1993), as discussed in
the introduction. Aliasing results from the discrete sampling of the continuous-time process to
generate an infinite sequence, whereas blurring is associated with the truncation of this infinite140

sequence over a finite-time interval. The desirable properties of the Whittle likelihood rely on
the asymptotic behaviour of the periodogram for large sample sizes. The bias of the periodogram
for finite samples, however, will translate into biased parameter estimates from the Whittle like-
lihood, as has been widely reported (see e.g. Dahlhaus, 1988). In the next section we propose a
procedure for de-biasing Whittle estimates.145
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4. MODIFIED PSEUDO-LIKELIHOODS

4·1. The de-biased Whittle likelihood
We introduce the following pseudo-likelihood function given by

`D(θ) ≡ −
∑
ω∈Ω

{
log fn(ω; θ) +

I(ω)

fn(ω; θ)

}
, (8)

fn(ω; θ) =

∫ π/∆

−π/∆
f(ν; θ)Fn,∆ (ω − ν) dν, Fn,∆(ω) ≡ ∆

2πn

sin2(nω∆/2)

sin2(ω∆/2)
, (9) 150

where the subscript “D” stands for “de-biased.” Here f̃(ω; θ) in (6) has been replaced by
fn(ω; θ) ≡ E{I(ω)}, which is the expected periodogram, and may be shown to be given by
the convolution of the true modelled spectrum with the Fejér kernel Fn,∆(ω). We call (8) the
de-biased Whittle likelihood, where the set Ω is defined as in (7).

Replacing the true spectrum f̃(ω; θ) with the expected periodogram fn(ω; θ) in (8) is a 155

straightforward concept, however, our key innovation lies in formulating its efficient computa-
tion without losingO(n log n) efficiency. If we directly use (9), then this convolution would usu-
ally need to be approximated numerically, and could be computationally expensive. Instead we
utilize the convolution theorem to express the frequency-domain convolution as a time-domain
multiplication (Percival & Walden, 1993, p.198), such that 160

fn(ω; θ) = 2∆ · <

{
n−1∑
τ=0

(
1− τ

n

)
s(τ ; θ) exp(−iωτ∆)

}
−∆ · s(0; θ), (10)

where <{·} denotes the real part. Therefore fn(ω; θ) can be exactly computed at each Fourier
frequency directly from s(τ ; θ), provided its functional form is known for τ = 0, . . . , n− 1, by
using a Fast Fourier Transform in O(n log n) operations. Care must be taken to subtract the
variance term, ∆ · s(0; θ), to avoid double counting contributions from τ = 0. Both aliasing
and blurring effects are automatically and conveniently accounted for in (10) in one operation; 165

aliasing is accounted for by sampling the theoretical autocovariance function at discrete times,
while the effect of blurring is accounted for by the truncation of this sequence to finite length, and
the inclusion of the triangle function (1− τ/n) in the expression. The result is that fn(ω; θ) is a
blurred and aliased version of the true spectrum f̃(ω; θ), which reflects the blurring and aliasing
artefacts present in the periodogram. 170

The de-biased Whittle likelihood can also be used with discrete-time processes, as (10) can
be computed from the theoretical autocovariance sequence of the discrete process in exactly the
same way. If the analytic form of s(τ ; θ) is unknown or expensive to evaluate, then it can be ap-
proximated from the spectral density using Fast Fourier Transforms, thus maintainingO(n log n)
computational efficiency. 175

Computing the standard Whittle likelihood of (6) with the aliased spectrum f(ω; θ) defined
in (1), without accounting for spectral blurring, would in general be more complicated than using
the expected periodogram fn(ω; θ). This is because the aliased spectrum f(ω; θ) seldom has an
analytic form for continuous processes, and must be instead approximated by either explicitly
wrapping in contributions from f̃(ω; θ) from frequencies higher than the Nyquist as in (3), or 180

via an approximation to the Fourier transform in (1). This is in contrast to the de-biased Whittle
likelihood, where the effects of aliasing and blurring have been computed exactly in one single
operation using (10). Thus addressing aliasing and blurring together using the de-biased Whittle
likelihood is simpler and computationally faster to implement than accounting for aliasing alone.
This will become further apparent in the simulation studies of Section 5·1. 185
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4·2. Combining with differencing or tapering
A standard technique for reducing the effects of blurring on Whittle estimates is to apply the

Whittle likelihood to the differenced process (Velasco & Robinson, 2000), as often differencing
will decrease the dynamic range of the spectrum and hence decrease broadband blurring. The
de-biased Whittle likelihood can be readily implemented with differenced data. If we denote the190

differenced process byUt = Xt+1 −Xt, then the expected periodogram of (10) can be computed
using the autocovariance of Ut, which is found from the autocovariance of Xt via sU (τ) ≡
E{UtUt−τ} = 2sX(τ)− sX(τ + 1)− sX(τ − 1), such that the procedure remains O(n log n).

Another standard approach of ameliorating the effects of blurring is to pre-multiply the data
sequence with a weighting function known as a data taper (Thomson, 1982). The taper is chosen195

to have spectral properties such that broadband blurring will be minimized, and the variance of
the spectral estimate at each frequency is reduced, although the trade-off is that tapering increases
narrowband blurring as the correlation between neighbouring frequencies increases.

The tapered Whittle likelihood (Dahlhaus, 1988) corresponds to replacing the direct spectral
estimator formed from I(ω) in (4) with one using the taper h = {ht}200

J(ω;h) ≡ ∆1/2
n∑
t=1

htXt exp(−iωt∆), I(ω;h) ≡ |J(ω;h)|2 ,
n∑
t=1

h2
t = 1, (11)

where ht is real-valued. Setting ht = 1/n1/2 for t = 1, . . . n recovers the periodogram estimate
of (6). To estimate parameters we then maximize

`T (θ) ≡ −
∑
ω∈Ω

{
log f̃(ω; θ) +

I(ω;h)

f̃(ω; θ)

}
, (12)

where the subscript “T ” denotes that a taper has been used. Velasco & Robinson (2000) demon-
strated that for certain discrete processes it is beneficial to use this estimator, rather than the
standard Whittle likelihood, for parameter estimation, particularly when the spectrum exhibits a205

high dynamic range. Nevertheless, tapering will not remove all broadband blurring effects in the
likelihood, because we are still comparing the tapered spectral estimate against the theoretical
spectrum, and not against the expected tapered spectral estimate. Furthermore, there remain the
issues of narrowband blurring, as well as aliasing effects with continuous sampled processes.

Our de-biasing procedure can be naturally combined with tapering. We define the pseudo-210

likelihood

`TD(θ) ≡ −
∑
ω∈Ω

{
log fn(ω;h, θ) +

I(ω;h)

fn(ω;h, θ)

}
, (13)

fn(ω;h, θ) =

∫ π/∆

−π/∆
f(ν; θ)H∆ (ω − ν) dν, H∆(ω) ≡ ∆

∣∣∣∣∣
n∑
t=1

ht exp(−iωt∆)

∣∣∣∣∣
2

,

with I(ω;h) as defined in (11) such that fn(ω;h, θ) ≡ E{I(ω;h)}. We call `TD(θ) the de-
biased tapered Whittle likelihood and fn(ω;h, θ) the expected tapered spectral estimate. The
function fn(ω;h, θ) can be computed exactly using a O(n log n) calculation similar to (10), i.e.

fn(ω;h, θ) = 2∆ · <

{
n−1∑
τ=0

s(τ ; θ)

(
n−τ∑
t=1

htht+τ

)
exp(−iωτ∆)

}
−∆ · s(0; θ).

Accounting in fn(ω;h, θ) for the particular taper used accomplishes de-biasing of the tapered215

Whittle likelihood, just as using the expected periodogram does for the standard Whittle likeli-
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hood. The time-domain kernel
∑n−τ

t=1 htht+τ , for τ = 0, . . . , n− 1, can be pre-computed using
FFTs or using a known analytical form. Then during optimization, an FFT of this fixed kernel
multiplied by the autocovariance sequence is taken at each iteration. Thus the de-biased tapered
Whittle likelihood is also an O(n log n) pseudo-likelihood estimator. 220

Both the de-biased Whittle and de-biased tapered Whittle likelihoods have their merits, but the
trade-offs are different with nonparametric spectral density estimation than they are with para-
metric model estimation. Specifically, although tapering decreases the variance of nonparametric
estimates at each frequency, it conversely may increase the variance of estimated parameters.
This is because the taper is reducing degrees of freedom in the data, which increases correlations 225

between local frequencies. On the other hand, the periodogram creates broadband correlations
between frequencies, especially for processes with a high dynamic range, which also contributes
to variance in parameter estimates. We explore these trade-offs in greater detail in Section 5·1.

5. SIMULATIONS AND APPLICATIONS

5·1. The Matérn Process 230

In this section we investigate the performance of the de-biased Whittle likelihood in a Monte
Carlo study using observations from a Matérn process (Matérn, 1960), as motivated by the simu-
lation studies of Anitescu et al. (2012) who investigate the same process. The Matérn process is a
three-parameter continuous Gaussian process defined by its continuous-time unaliased spectrum

f̃(ω) =
A2

(ω2 + c2)α
, ω ∈ R. (14)

The parameterA ≥ 0 sets the magnitude of the variability, 1/c > 0 is the damping timescale, and 235

α > 1/2 controls the rate of spectral decay, or equivalently the smoothness or differentiability of
the process. For large α the power spectrum exhibits a high dynamic range, and the periodogram
will be a poor estimator of the spectral density due to blurring. Conversely, for small α there
will be departures between the periodogram and the continuous-time spectral density because of
aliasing. We therefore investigate the performance of estimators over a range of α values, and 240

this motivates why the Matérn in a suitable process to study.
In Table 1 we display the average percentage bias, standard deviation and RMSE (relative

to the true parameter values) for six different pseudo-likelihoods: standard Whittle likelihood
with both the observed and differenced processes (6), the tapered Whittle likelihood (12), and
the de-biased versions of each (equations (8) and (13)). Our choice of data taper is the Discrete 245

Prolate Spheroidal Sequence (DPSS) taper (Slepian & Pollak, 1961), with bandwidth parame-
ter equal to 4, where performance was found to be broadly similar across different choices of
bandwidth (not shown). We also include results for exact maximum likelihood (5). The results
are averaged over estimates of the three parameters {A,α, c} which are all assumed unknown,
where the true α varies from [0.6, 2.5] in intervals of 0.1, and we fix A = 1 and c = 0.2. This is 250

to explore performance over spectra that have aliasing artefacts as well as high dynamic range.
For each value of α, we simulate 10,000 time series each of length n = 1000. The optimization
is performed in MATLAB using fminsearch, and uses identical settings for all likelihoods.
Initialized guesses for the slope and amplitude are found using a least squares fit in the range
[π/4∆, 3π/4∆], and the initial guess for the damping parameter c is set at a mid-range value of 255

100 times the Rayleigh frequency (i.e. c = 100π/n = π/10.)
The performance of all standard Whittle methods are significantly contaminated by bias. The

de-biased variants remove this bias by an order of magnitude. The standard deviation is broadly
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Table 1: Average percentage bias, standard deviation (SD), and root-mean-square-error (RMSE) (rela-
tive to the true parameter values) for a Matérn process across all estimates of {A,α, c} with n = 1000

Inference Method Eqn Bias SD RMSE
Standard Whittle (periodogram) (6) 23.69% 10.34% 26.66%
De-Biased Whittle (periodogram) (8) 3.96% 12.97% 13.75%
Standard Whittle (tapered) (12) 18.11% 12.23% 23.12%
De-Biased Whittle (tapered) (13) 2.60% 14.15% 14.41%
Standard Whittle (differenced) (6) 18.99% 9.33% 22.09%
De-Biased Whittle (differenced) (8) 1.19% 8.90% 8.99%
Maximum Likelihood (5) 1.10% 7.60% 7.68%

similar across all Whittle methods, where tapering results in standard deviations that are approx-
imately twice that of maximum likelihood, which is consistent with the loss of information from260

using a data taper. Of all pseudo-likelihood estimators considered, the de-biased Whittle like-
lihood using the differenced process performs best, and yields results close to exact maximum
likelihood. Overall, of the three modifications to the standard Whittle likelihood—de-biasing, ta-
pering and differencing—the de-biasing method proposed here is the single procedure that yields
the greatest overall improvement in parameter estimation.265

In Figure S1 of the supplementary material, we provide a figure which separates out the bias
and RMSE improvements over different values of α, demonstrating that the de-biased Whittle
likelihood can effectively address bias from aliasing when α is low, and bias from blurring when
α is high. Furthermore, in Table S1 of the supplementary material, we include a comparison
with a time-domain O(n log n) estimator from Anitescu et al. (2012) which is found to perform270

similarly to the de-biased Whittle likelihood with differenced data in terms of bias and RMSE,
although we note that the latter is computed in a fraction of the computational time.

In the next section we will prove that the de-biased Whittle likelihood is a consistent estima-
tor converging at the optimal n−1/2 rate, under assumptions which are satisfied by the Matérn
process. Motivated by this, we perform an additional experiment over different lengths of time275

series n = 2k, with k taking integer values from 7 to 13, such that n ranges from 128 to 8192. To
isolate the convergence of the parameter estimate, we fix A = 1 and c = 0.2 as before but this
time assume these are known, and now only estimate the slope parameter which we set to α = 2.

The average bias, standard deviation and RMSE of each estimator are displayed in Fig. 1,
together with average CPU times. We include results for the standard and de-biased Whittle like-280

lihood, as well as exact maximum likelihood. Motivated by Table 1, we include the de-biased
Whittle likelihood with differenced data. Finally, we include results for the standard Whittle like-
lihood using an approximated aliased spectrum, which we find using (3) by truncating the sum-
mation limits to ±5 to keep the computation efficient. The reason for including an approximate
aliased version of standard Whittle is to show that bias corrections are made by the de-biased285

Whittle with regards to both blurring and aliasing. Here we see that the standard Whittle likeli-
hood using the unaliased spectrum of (14) performs poorly with increasing n due to bias—this is
because for growing domain asymptotics, bias due to aliasing does not decrease as n increases.

The standard deviations of all estimates converge at a rate consistent with n−1/2, as Theorem 1
of Section 6·1 will prove for de-biased methods. Overall, the de-biased approaches provide a290

good balance between statistical and computational efficiency over all sample sizes, where in
contrast exact maximum likelihood is only computed up to n = 2048 due to rapidly increasing
computational costs. Standard Whittle with differenced data is not included for clarity of presen-
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Fig. 1: Performance of five different likelihoods: Standard Whittle unaliased (- - -), Standard Whit-
tle aliased (-·-·-) De-biased Whittle periodogram (—), De-biased Whittle differenced (—) and exact
maximum likelihood (—). Repeated 1,000 times over various values of n when estimating the slope pa-
rameter (α = 2) of a Matérn process. Note the axes are on a log-log scale. CPU times are as performed
on a 2.2 GHz Intel Core i7 processor.

tation, but was found to perform worse than de-biased Whittle with differenced data, consistent
with Table 1. 295

5·2. Application to Large-Scale Oceanographic Data
In this section we examine the performance of our method when applied to a real-

world large-scale dataset, by analysing data obtained from the Global Drifter Program
(http://www.aoml.noaa.gov/phod/dac/index.php), which maintains a publicly-
downloadable database of position measurements obtained from freely-drifting satellite-tracked 300

oceanic instruments known as drifters. In total over 23,000 drifters have been deployed, with in-
terpolated six-hourly data available since 1979 and one-hourly data since 2005 (see Elipot et al.,
2016), with over 100 million data points available in total. The collection of such data is pivotal
to the understanding of ocean circulation and its impact on the global climate system (Griffa
et al., 2007); it is therefore essential to have computationally efficient methods for their analysis. 305

In Fig. 2, we display 50-day position trajectories and corresponding velocity time series for
three drifters from the one-hourly data set, each from a different major ocean. These trajectories
can be considered as complex-valued time series, with the real part corresponding to the east/west
velocity component and the imaginary part corresponding to the north/south velocity component.
We then plot the periodogram of the complex-valued series, which has different power at positive 310
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Fig. 2: The top row displays 50-day trajectories of Drifter IDs: #2339255 (Atlantic Ocean), #49566
(Pacific Ocean), and #43577 (Indian Ocean). The second row displays the east/west (red-solid) and
north/south (blue-dashed) velocity time series for each trajectory. The third row displays the peri-
odograms of the complex-valued velocity series, with the non-inertial side of the spectrum in red-solid,
and the inertial side in blue-dashed. The expected periodogram, fn(ω; θ̂), from the de-biased Whittle
likelihood is overlaid in black. Note that the frequency axis is on a logarithmic scale.

Table 2: Estimated Matérn parameters (with corresponding estimated standard errors in parenthesis)
using the maximum, de-biased Whittle, and standard Whittle, likelihoods for the velocity time series
of Fig. 2; the parameters are given in terms of the damping timescale (1/c), the slope (2α) and the
diffusivity (κ); CPU times are as performed on a 2.8 GHz Intel Core i7 processor

Drifter Inference Damping Slope Diffusivity CPU
location method (days) (dimensionless) (m2/s×103) (s)

ML 10.65 (2.49) 1.460 (0.023) 0.49 (0.18) 7.42
Atlantic De-biased Whittle 9.84 (5.51) 1.462 (0.062) 0.44 (0.28) 0.16

Standard Whittle 30.19 (16.2) 1.097 (0.043) 0.65 (0.36) 0.04

ML 10.62 (1.85) 1.829 (0.024) 5.09 (1.71) 7.47
Pacific De-biased Whittle 11.82 (4.64) 1.827 (0.048) 6.00 (3.83) 0.10

Standard Whittle 19.59 (6.51) 1.575 (0.036) 7.18 (3.60) 0.02

ML 21.76 (4.83) 1.825 (0.025) 30.48 (12.9) 10.06
Indian De-biased Whittle 19.90 (9.41) 1.802 (0.053) 22.70 (17.2) 0.10

Standard Whittle 39.99 (16.9) 1.545 (0.038) 31.19 (19.7) 0.02
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and negative frequencies, distinguishing directions of rotation on the complex plane (Schreier &
Scharf, 2010). The de-biased Whittle likelihood for complex-valued proper processes is exactly
the same as (8)–(10) (see also Sykulski et al., 2016), where the autocovariance sequence of a
complex-valued process Zt is s(τ ; θ) = E{ZtZ∗t−τ}. For proper processes the complementary
covariance is r(τ ; θ) = E{ZtZt−τ} = 0 at all lags (Schreier & Scharf, 2010), and can thus be 315

ignored in the likelihood, as s(τ ; θ) captures all second-order structure in the zero-mean process.
We model the velocity time series as a complex-valued Matérn process, with power spectral

density given in (14), as motivated by Sykulski et al. (2016) and Lilly et al. (2017). To account
for a type of circular oscillations in each time series known as inertial oscillations, which create
an off-zero spike on one side of the spectrum, we fit the Matérn process semi-parametrically to 320

the opposite “non-inertial” side of the spectrum (as displayed by the red-solid line in the figure).
We overlay the fit of the de-biased Whittle likelihood to the periodograms in Fig. 2. For a full
parametric model of surface velocity time series, see Sykulski et al. (2016). We have selected
drifters without noticeable tidal effects; for de-tiding procedures see Pawlowicz et al. (2002).

We estimate the Matérn parameters for each time series using the de-biased and regular Whittle 325

likelihood, as well as exact maximum likelihood. The latter of these methods can be performed
over only positive or negative frequencies by first decomposing the time series into analytic and
anti-analytic components using the discrete Hilbert transform, see Marple (1999), and then fitting
the corresponding signal to an adjusted Matérn autocovariance that accounts for the effects of
the Hilbert transform. The details for this procedure are provided in the online code. 330

The parameter estimates from the three likelihoods are displayed in Table 2, along with the cor-
responding CPU times. We also provide estimated parameter standard errors using the methodol-
ogy described in Section 6·2, with more details in the online code. We reparametrize the Matérn
to output three important oceanographic quantities: the damping timescale, the decay rate of the
spectral slope, and the diffusivity (which is the rate of particle dispersion) given by κ ≡ A2/4c2α

335

(Lilly et al., 2017, eq.(43)). From Table 2 it can be seen that the de-biased Whittle and maximum
likelihoods yield similar values for the slope and damping timescale, however, regular Whittle
likelihood yields parameters that underestimate the slope by around 15%, and overestimate the
damping timescale by a factor of two, which if used would incorrectly specify under-damped
and rougher trajectories than expected. These biases are consistent with the significant biases re- 340

ported in Section 5·1. Diffusivity estimates vary across all estimation procedures and have large
standard errors, and this variability is likely due to the fact that diffusivity is a measure of the
spectrum at frequency zero, hence estimation is performed over relatively few frequencies.

Maximum likelihood is two orders of magnitude slower to execute than de-biased Whittle.
When this is scaled to fitting all time series in the Global Drifter Program database, then time- 345

domain maximum likelihood becomes impractical. The de-biased Whittle likelihood, on the
other hand, retains the speed of Whittle likelihood, while returning estimates that are close to
maximum likelihood. This section therefore serves as a proof of concept of how the de-biased
Whittle likelihood is a useful tool for efficient parameter estimation from large datasets.

5·3. Autoregressive Processes 350

Here we investigate the performance of the de-biased Whittle likelihood when estimating
parameters of a discrete-time autoregressive (AR) process, Xt =

∑p
k=1 φkXt−k + εt, where

εt ∼iid N (0, σ2). Specifically, we generate time series from the AR(4) process studied in Per-
cival & Walden (1993), used throughout the book as a motivating example of a process that
generates high spectral blurring in spectral density estimation. As the process is discrete-time, 355

then there is no issue with aliasing, and this example therefore assesses how well the de-biased
Whittle likelihood accounts for bias purely due to blurring.
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Table 3: Average parameter estimates and root mean square errors of estimating all five AR(4) param-
eters using different estimation methods, for n = 256 and n = 1024. Results are obtained over 1,000
replicated time series for each time series length

AR(4) Parameters: φ1 = 2.7607 φ2 = −3.8106 φ3 = 2.6535 φ4 = −0.9238 σ = 1

n = 256
Average parameter estimate

Yule-Walker 1.7669 -1.6555 0.6081 -0.1685 4.3621
Standard Whittle 1.8989 -1.9485 0.8895 -0.2746 4.0231
De-Biased Whittle 2.5309 -3.3065 2.1754 -0.7439 1.5341
Maximum Likelihood 2.7478 -3.7490 2.5799 -0.8798 1.0525

Root mean square error
Yule-Walker 1.0591 2.2725 2.1473 0.7861 3.6499
Standard Whittle 0.9800 2.0775 1.9523 0.7076 3.5326
De-Biased Whittle 0.5136 1.0539 0.9777 0.3456 1.7368
Maximum Likelihood 0.0330 0.1618 0.2031 0.1318 0.2320

n = 1024
Average parameter estimates

Yule-Walker 2.1959 -2.5237 1.4004 -0.4328 2.9207
Standard Whittle 2.2642 -2.6878 1.5644 -0.5008 2.7092
De-Biased Whittle 2.7030 -3.6704 2.5161 -0.8665 1.0370
Maximum Likelihood 2.7574 -3.8006 2.6428 -0.9185 1.0028

Root mean square error
Yule-Walker 0.6409 1.4513 1.4094 0.5489 2.1214
Standard Whittle 0.6225 1.3923 1.3441 0.5164 2.0663
De-Biased Whittle 0.2001 0.4346 0.4133 0.1550 0.6632
Maximum Likelihood 0.0131 0.0438 0.0526 0.0326 0.0623

In Table 3 we display the average parameter estimates and root mean square errors when esti-
mating all five parameters of the AR(4) process {φ1, φ2, φ3, φ4, σ}. We contrast four approaches:
maximum likelihood, the standard Whittle likelihood, the de-biased Whittle likelihood, and the360

standard Yule-Walker estimation procedure; the latter of which is used to initialise parameter es-
timates for the likelihood-based methods. We do not include results using the differenced process
as this was not found to yield improved parameter estimates for this particular example.

Yule-Walker and standard Whittle estimates perform similarly and quite poorly with both
sample sizes considered, which is consistent with the fact that the former uses the biased sample365

autocovariance to solve the Yule-Walker equations, and the latter uses the periodogram, which is
the Fourier pair of the biased sample autocovariance. The de-biased Whittle likelihood accounts
for this bias and yields average estimates that are close to exact maximum likelihood and the
true values, and eliminates around half the root mean square error when n = 256, and two thirds
when n = 1024. The de-biased Whittle likelihood is therefore an effective pseudo-likelihood for370

discrete-time as well as continuous-time processes. In Section S1 of the supplementary material
we include further simulation results, including a performance comparison for a non-Gaussian
process, where again the de-biased Whittle likelihood is found to provide a good trade-off be-
tween statistical and computational efficiency.
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6. PROPERTIES OF THE DE-BIASED WHITTLE LIKELIHOOD 375

6·1. Consistency and optimal convergence rates
In this section, we establish consistency and optimal convergence rates for de-biased Whittle

estimates with Gaussian and certain classes of non-Gaussian or non-linear processes. To show
that de-biased Whittle estimates converge at the optimal rate, the main challenge is that although
our pseudo-likelihood accounts for the bias of the periodogram, there is still present the correla- 380

tion between different frequencies caused by the leakage associated with the Fejér kernel. This
is what prevents the de-biased Whittle likelihood from being exactly equal to the time-domain
maximum likelihood for Gaussian data. To establish optimal convergence rates, we bound the
asymptotic behaviour of this correlation. The statement is provided in Theorem 1, with the proof
provided in Section S2 of the supplementary material. The proof is composed of several lemmas 385

which, for example, place useful bounds on the expected periodogram, the variance of linear
combinations of the periodogram at different frequencies, and also the first and second deriva-
tives of the de-biased Whittle likelihood. Together these establish that the de-biased Whittle
likelihood is a consistent estimator with estimates that converge in probability at an optimal rate
of n−1/2, under relatively weak assumptions. 390

THEOREM 1. Assume that {Xt} is an infinite sequence obtained from sampling a zero-mean
continuous-time real-valued process X(t; θ), which satisfies the following assumptions:

1. The parameter set Θ ⊂ Rp is compact with a non-null interior, and the true length-p param-
eter vector θ lies in the interior of Θ.

2. For all θ ∈ Θ and ω ∈ [−π, π], the spectral density of the sequence {Xt} is bounded below 395

by f(ω; θ) ≥ fmin > 0, and bounded above by f(ω; θ) ≤ fmax.
3. θ1 6= θ2 implies f(·; θ1) 6= f(·; θ2) on a set of positive Lebesgue measure.
4. f(ω; θ) is continuous in θ and Riemann integrable in ω.
5. The expected periodogram fn(ω; θ), as defined in (9) of the main body, has two continuous

derivatives in θ which are bounded above in magnitude uniformly for all n, where the first 400

derivative in θ also has Θ(n) frequencies in Ω that are non-zero.
6. {Xt} is a fourth-order stationary process with finite fourth-order moments and absolutely

summable fourth-order cumulants.

Then the estimator

θ̂ = arg max
θ∈Θ

`D(θ),

for a sample {Xt}nt=1, where `D(θ) is the de-biased Whittle likelihood of (8), satisfies 405

θ̂ = θ +OP
(
n−1/2

)
.

The fourth-order cumulant is formally defined in (2) in Section S2 of the supplementary mate-
rial. All stationary Gaussian processes automatically satisfy Assumption 6 as the fourth-order
cumulant is identically zero. In Section S3 of the supplementary material, we provide a class of
non-linear processes and prove that this class satisfies Assumption 6. Specifically, we study the
process Yt = X2

t where Xt is a Gaussian process with bounded spectral density and absolutely 410

summable autocovariance.

6·2. Standard error estimation
Here we provide a novel method of obtaining standard error estimates for de-biased Whittle

estimates. This method was used to calculate standard errors in our application example in Ta-
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ble 2. From equations (24), (27), and (28) in the supplementary material we see that the p× p415

covariance matrix of the estimated vector θ̂ satisfies

var
{
θ̂
}

= E{H(θ)}−1 var {∇`D(θ)}E{H(θ)}−1 (1 + o(1)) , (15)

where ∇ = [∂/∂θ1 ∂/∂θ2 . . . ∂/∂θp]
T , ∇`D(θ) is known as the score. The p× p matrix H(θ),

known as the Hessian, is defined entrywise by Hij(θ) = ∂2`D(θ)/∂θi∂θj , and its expecta-
tion can be approximated either analytically or numerically at θ̂. The remaining term in (15),
var{∇`D(θ)}, is the p× p covariance matrix of the score. The diagonal elements in this matrix,420

which are variances of individual components of the score, can be expressed from (8) as

var

{
∂

∂θi
`D(θ)

}
= var

{∑
ω∈Ω

∂fn (ω; θ)

∂θi
· I(ω)

f
2
n(ω; θ)

}
= var


n∑
j=1

aij(θ)I(ωj)


=

n∑
j=1

n∑
k=1

aij(θ)aik(θ) cov {I(ωj), I(ωk)} ,

where wj are the elements of Ω as defined in (7) and we have defined

aij(θ) ≡
∂fn (ωj ; θ)

∂θi
· 1

f
2
n(ωj ; θ)

.

Here we have made use of the fact that the ∂ log{fn(ω; θ)}/∂θ term is deterministic and there-425

fore has no variance. As we have established asymptotic efficiency for θ̂ we can now use the
invariance principle of maximum likelihood (Casella & Berger, 2002, p.320) to construct an
estimator of the variance, that is

v̂ar

{
∂

∂θi
`D(θ)

}
=

n∑
j=1

n∑
k=1

âij(θ)âik(θ)ĉov {I(ωj), I(ωk)} ,

and by the same reasoning we can approximate âij(θ) by aij(θ̂). Then to estimate the covariance
of the periodogram we compute430

ĉov {I (ωj) , I (ωk)} =

∣∣∣∣ 1

2πn

∫ π

−π
f
(
ω′; θ̂

)
Dn

(
ωj − ω′

)
D∗n
(
ωk − ω′

)
dω′
∣∣∣∣2 ,

where the asterisk denotes the complex conjugate and Dn(ω) is the (non-centred) Dirichlet ker-
nel defined by

Dn(ω) ≡ sin (nω/2)

sin (ω/2)
exp(−iω(n+ 1)/2),

such that we arrive at estimates of the diagonal elements of var {∇`D(θ)}. Estimates of
cov {∂/∂θi(`D(θ)), ∂/∂θj(`D(θ))}, which are the off-diagonal terms of var {∇`D(θ)}, can be
found in the same way. Then substituting all estimated entries of var{∇`D(θ)} into (15), along435

with the estimate of the Hessian, provides estimates of the variance of the estimators.

6·3. Discussion
Standard theory shows that standard Whittle estimates are consistent with optimal conver-

gence rates if the spectrum (and its first and second partial derivatives in θ) are continuous in
ω and bounded from above and below (see Dzhaparidze & Yaglom, 1983), as well as being440
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twice continuously differentiable in θ. In contrast, we have not required that the spectrum nor its
derivatives are continuous in ω; such that Theorem 1 will hold for discontinuous spectra, as long
as the other assumptions are satisfied such as Riemann integrability. As detailed in Lemma 9
of the supplementary material, this is possible because the expectation of the score is now zero
after de-biasing (equation (19) in the supplementary material), which would not be the case for 445

the standard Whittle likelihood, such that we only need to consider the variance of the score and
Hessian. To control these variances we make repeated use of a bound on the variance of linear
combinations of the periodogram (Lemma 8)—a result previously established in Theorem 3.1
of Giraitis & Koul (2013) under a different set of assumptions.

It can be easily shown that the assumptions in Theorem 1 are weaker than standard Whittle as- 450

sumptions, despite requiring statements on the behaviour of the expected periodogram fn(ω; θ)
in Assumption 5. This is because if the spectral density f(ω; θ) (and its first and second partial
derivatives in θ) are continuous in both ω and θ, then it can be shown by applying the Leibniz’
integration rule to the first and second derivatives of (9) in θ, that f(ω; θ) twice continuously dif-
ferentiable in θ implies that fn(ω; θ) is twice continuously differentiable in θ. To show this we 455

make use of Proposition 3.1 in Stein & Shakarchi (2003), which states that the convolution of two
integrable and periodic functions is itself continuous. This result can also be used to show that
fn(ω; θ) is always continuous in ω, even if f(ω; θ) is not, as from (9) we see that fn(ω; θ) is the
convolution of f(ω; θ) and the Fejér kernel—two functions which are integrable and 2π-periodic
in ω. Therefore, not only does fn(ω; θ) remove bias from blurring and aliasing, and is computa- 460

tionally efficient to evaluate, but it also has desirable theoretical properties leading to consistency
and optimal convergence rates of de-biased Whittle estimates under weaker assumptions.

ACKNOWLEDGMENTS

We would like to thank the Associate Editor and anonymous referees for their extremely
helpful suggestions in improving the paper. The work of A. M. Sykulski and S. C. Olhede 465

was supported by the U.K. Engineering and Physical Sciences Research Council under Grant
EP/I005250/1 and Grant EP/L025744/1. A. M. Sykulski and S. C. Olhede also acknowledge sup-
port from the 7th European Community Framework Programme via a Marie Curie International
Outgoing Fellowship (Sykulski), and via a European Research Council Fellowship via Grant
CoG 2015-682172NETS (Olhede). The work of J. M. Lilly was supported by Award #1459347 470

from the Physical Oceanography program of the United States National Science Foundation.

SUPPLEMENTARY MATERIAL

The supplementary material contains: addition simulation results (Section S1), technical
proofs (Section S2), and details of a class of non-Gaussian processes satisfying the assump-
tions of our theory (Section S3). All reported simulation and application results in Section 5 can 475

be exactly reproduced in MATLAB, and all data can be freely downloaded, using the software
available at https://github.com/AdamSykulski/SPG. As part of the software we pro-
vide a simple package for estimating the parameters of any time series observation modelled as
a second-order stationary stochastic process specified by its autocovariance.
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CONTRERAS-CRISTAN, A., GUTIÉRREZ-PEÑA, E. & WALKER, S. G. (2006). A note on Whittle’s likelihood.

Commun. Stat.-Simul. C. 35, 857–875.490

DAHLHAUS, R. (1988). Small sample effects in time series analysis: A new asymptotic theory and a new estimate.
Ann. Stat. 16, 808–841.

DZHAPARIDZE, K. O. & YAGLOM, A. M. (1983). Spectrum parameter estimation in time series analysis. In
Developments in Statistics, P. R. Krishnaiah, ed. Academic Press, Inc., pp. 1–96.

ECKLEY, I. A. & NASON, G. P. (2018). A test for the absence of aliasing or white noise in locally stationary wavelet495

time series. Biometrika (in press) .
ELIPOT, S., LUMPKIN, R., PEREZ, R. C., LILLY, J. M., EARLY, J. J. & SYKULSKI, A. M. (2016). A global surface

drifter data set at hourly resolution. J. Geophys. Res. Oceans 121, 2937–2966.
FAN, J., QI, L. & XIU, D. (2014). Quasi-maximum likelihood estimation of GARCH models with heavy-tailed

likelihoods. J. Bus. Econ. Stat. 32, 178–191.500

FUENTES, M. (2007). Approximate likelihood for large irregularly spaced spatial data. J. Am. Stat. Soc. 102, 321–
331.

GIRAITIS, L. & KOUL, H. L. (2013). On asymptotic distributions of weighted sums of periodograms. Bernoulli 19,
2389–2413.
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