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Abstract 

MultiLog is a logging tool that controls, gathers, and combines the output, on-the-fly, 

from existing research and commercial logging applications or ‘loggers’. Loggers record a 

specific set of user actions on a computing device, helping researchers to better understand 

environments or interactions, guiding the design of new or improved interfaces and applications. 

MultiLog reduces researchers’ required implementation effort by simplifying the set up of 

multiple loggers and seamlessly combining their output. This in turn increases the availability of 

logging systems to non-technical experimenters for both short-term and longitudinal observation 

studies. 

MultiLog supports two operating modes: ‘researcher mode’ where experimenters 

configure multiple logging systems, and ‘deployment mode’ where the system is deployed to 

user-study participants’ systems. Researcher mode allows researchers to install, configure log 

filtering and obfuscation, observe near real-time event streams, and save configuration files 

ready for deployment. Deployment mode simplifies data collection from multiple loggers by 

running in the system tray at user log-in, starting loggers, combining their output, and securely 

uploading the data to a web-server. It also supports real-time browsing of log data, pausing of 

logging, and removal of log lines. 

Performance evaluations show that MultiLog does not adversely affect system 

performance, even when simultaneously running several logging systems. Initial studies show 

the system runs reliably over a period of ten weeks. 
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Introduction 

Client-side logging software runs on a computer to automatically gather data on a user’s 

interactions. This is now a standard method for recording user actions to understand behaviour 

and improve future interface design as it provides complete, accurate, and machine processable 

data that catalogues interactions. These loggers may be built into an application, be installed as 

an extension to an application, or run independent of any application. Typically they are focused 

on a particular aspect of user behaviour, such as web-browsing patterns (Montgomery et al., 

2001), window-switching habits (Oliver et al., 2006), or navigation preferences (Juvina et al., 

2004). Increasingly, longitudinal log analyses are also being used to inform the design of new 

interface artefacts: Alexander et al. (2009) derived the design of their Footprints Scrollbar from 

log analysis of within-document revisitation, while Tak et al. (2009) used longitudinal log data to 

inform window-switcher design. Hutchings et al. (2004) used the VibeLog software to log UI 

events in order to assess desktop complexity in single and multiple-monitor users. Unfortunately, 

as loggers typically monitor specific behaviours, researchers can find re-use difficult, as existing 

systems often do not capture all applicable actions. However, while multiple different loggers in 

combination can provide the required dataset, their configuration and management is time-

consuming and combining their output difficult. 

Logging is useful both within and beyond the HCI community. An example of a field 

outside the HCI community where logging is helpful to researchers is Interactive Information 

Retrieval (IIR) which also uses collected log data to analyse and draw conclusions from users’ 

behaviour. Kelly et al. (2013) provide a deep overview of IIR evaluation studies and the use of 

logging as a data collection technique used within them. Other relevant areas which prompted 



4 

 

motivation for this article include: data mining such as work by Iváncsy et al. (2006) and audit 

logging in distributed systems (Yavuz et al., 2009). 

To support experimenters in the deployment of multiple logging systems and ease later log 

analysis by standardising output, we created MultiLog. MultiLog (Figure 1) is a tool that 

simultaneously controls, gathers, standardises, and merges the output from pre-existing logging 

applications. Further, it supports both technical and non-technical experimenters in the 

deployment of longitudinal logging-based user studies by managing logger start-up, log filtering 

and obfuscation, and securely uploading log files. By easily running multiple logging systems 

MultiLog also encourages the re-use of pre-existing loggers. 

The power of MultiLog stems from its ability to combine output from any pre-existing 

logging application (providing it has timestamp data) and automate the output combination in 

near real-time. This enables researchers to understand native PC use in detail by logging actions 

within multiple different applications (e.g. combining an email logger and file system logger 

would allow detailed inspection of how a user processes email attachments).  

Further, MultiLog also provides the ability to log and combine events from outside the 

native PC environment, from devices such as eye-trackers and EEG sensors. This is supported 

through TCP/UDP logging (a common input method for external sensors). This further increases 

MultiLog’s power, allowing researchers to experiment with otherwise complex software and 

hardware logging system setups. Examples include: investigating how applications on the user’s 

PC interact with external devices or inputs (from the user) such as eye trackers, and finger 

pressure input. Logs from both the external devices and internal applications can be combined 

seamlessly in MultiLog to give a rich data set. Researchers could also use MultiLog to 

understand processing inefficiencies by combining CPU usage and number of applications 
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open/application interaction or even web server logs and those describing the temperature in a 

server room for example. MultiLog’s flexibility allows non-technical researchers to quickly and 

easily combine the logging capabilities from pure-software, external sensor-driven, and even 

mobile systems. 

We validated three key aspects of MultiLog: (1) That a diverse range of existing logging 

systems work successfully with MultiLog; (2) That MultiLog maintains data integrity; and (3) 

That resource consumption is acceptable. First, we checked that a wide-range of logging 

applications and external sensor systems were compatible with MultiLog (both in terms of start 

and stop configuration, and data capture). Second, data integrity checks were performed to 

ensure MultiLog successfully parsed and recorded all required data from the logging 

applications. Third, we conducted computing resource consumption tests to ensure MultiLog did 

not cause performance degradation when monitoring multiple loggers.  

In this article we describe MultiLog and its architecture, test MultiLog with a range of off-

the-shelf logging solutions, and conduct a performance analysis of the system. MultiLog is 

available to researchers via www.scc.lancs.ac.uk/MultiLog. The MultiLog software is free to 

download and use for non-commercial and research purposes. 

http://www.scc.lancs.ac.uk/MultiLog


6 

 

  

 

 

Figure 1: MultiLog’s researcher mode with Microsoft PSR, Mozilla Firefox and Tobii Eye 

Tracker loggers enabled. This allows researchers to see the locations on screen users are looking 

while performing their everyday tasks. 

 

Related Work 

Logging of users’ actions is valuable in understanding how people utilise applications and 

interfaces on their computers; the output can then be used to inform their future (re-)design. This 
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section reviews logging systems in general, a range of existing loggers, and previous work into 

merging output from different loggers. 

 

Low-Level Loggers 

Low-level loggers typically just record basic input actions such as mouse movements and 

keystrokes. Examples include Actual Keylogger Software (Actual Keylogger, 2014), REFOG 

Free Keylogger (REFOG, 2014) and A Stealthy GPU-based Keylogger (Ladakis et al., 2013). 

Such loggers allow researchers to analyse, for example, how people use certain keyboard 

shortcuts (Peres et al., 2004) or how fast they type (Kinkead, 1975). The biggest disadvantage of 

low-level loggers is their lack of context. Without knowing which buttons or menu items are 

clicked or which textboxes text is enter into, researchers can only make general statements about 

user behaviour. 

 

High-Level Loggers 

High-level loggers are either application-specific or generic and provide additional 

contextual information to that of low-level loggers. They are either targeted at a particular 

software application or more generally at an operating system. 

 

Application-Specific Loggers 

Application-specific loggers are sometimes developed and shipped as part of a software 

package and often encourage users to ‘opt-in’ to product improvement programmes (e.g. the 

(Adobe Customer Improvement Program, 2014) and (Microsoft Customer Experience 

Inprovement Program, 2009)). Other loggers, such as Microsoft Outlook Logging (Microsoft 
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Corporation, 2003) and Microsoft Visual Studio Logging (Microsoft Visual Studio, 2014) 

support logging for diagnostic and troubleshooting purposes. Log files are saved to disk and can 

be sent to the manufacturer for inspection. Examples from the research community include 

AppMonitor, a logger to document detailed events performed within Microsoft Word and Adobe 

Reader (Alexander et al., 2008) and OpenOffice.org Interceptor, an application which uses a 

hybrid technique to log events inside OpenOffice.org applications (Dostál et al., 2011). 

An increasing number of applications include some form of high-level logging software. 

Browsers such as Google Chrome1 contain an in-built logger that records a list of websites 

visited; such logging is invoked via the command line. Other applications, such as those from the 

Mozilla family, also support this level of logging. Unfortunately these loggers have to be 

manually started and stopped via the command line and work on extracting relevant lines from 

the output (depending on the research being implemented) needs to be conducted, which non-

expert users may struggle with. 

Application-specific loggers’ tight integration with specific software means they can log 

detailed contextual events within the application, but cannot provide insights into the external 

context. 

 

Generic Loggers 

Generic loggers gather information from basic operating system events such as window 

focus changes and detecting when applications are started or stopped. Examples include RUI 

(Kukreja et al., 2006), PyLogger (Tak & Cockburn, 2009) and VibeLog (Oliver et al., 2006) that 

monitors the windows a user switches between. The tool Morae (TechSmith, 2015) is also 

relevant and collects data for market research purposes on usability and other types of pre-release 

                                                 
1 www.google.com/chrome 
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product testing. While these cover a broad spectrum of basic actions users undertake during 

operating system-level interaction, the level of detail differs between loggers. 

Generic loggers have the advantage of providing external contextual information as basic 

events across the whole computer system are monitored and they are not attached directly to a 

specific application. 

 

Screen Recorders 

Screen-recorders collect a series of screenshots or video feeds of the user’s desktop 

providing full details of their actions both within and between applications. They are often 

complemented with a low-level logging system in order to provide accurate timing information 

that would be tedious to extract from the video stream (e.g. Wintective (Wintective, 2014)). The 

main limitation with screen-recorders is their resource requirements: recording for extended 

periods of time can be resource intensive for both CPU usage and storage. Examples include 

CamStudio (CamStudio, 2014), Rylstim (Rylstim Screen Recorder, 2014) and Ezvid (Ezvid, 

2014) which collect video feeds of the user’s desktop. 

 

Log-Merging Software 

Merging the data collected from multiple loggers is not new. IBM have in the past 

worked in the area of autonomic computing where they devised the Generic Adapter Logging 

Toolkit (Grabarnik et al., 2004) which provides a framework for transforming event-based 

system information into a standard format. Although it transforms event data into a generic 

format, it does not control the applications producing the log files, nor does it cater for 

researchers with only basic computer knowledge as an adapter (software module) has to be 
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written or, as seen in further work (Math et al., 2009), a regex defined for each file which is 

performance-intensive. A Generic Log Analyser (Shahzad, 2013) has also been developed as part 

of a master’s project but instead focuses on tracking down issues in the mobile 

telecommunications area, it has no control over the applications, and requires an XML schema to 

be provided in order to parse the files. 

Other commercial applications such as Log Monitor (Log Monitor, 2014) and Tiny Log 

Monitor (Tiny Log Monitor, 2014) bring logger output together into one application. Log 

Monitor allows the user to open multiple log files and watch them for changes while Tiny Log 

Monitor supports the same functionality but with the addition of adding regex patterns to format 

the output. In both these applications, the output from different log files is not saved, merged, 

uploaded, or log lines individually removal, all of which are key features of MultiLog. 

 

Description of MultiLog 

MultiLog is a research tool that controls, gathers, filters, and combines the output, on-the-

fly, from existing research and commercial logging applications. It allows researchers to easily 

deploy multiple software logging systems to observe user behaviour in either short- or long-term 

user studies. Automatic log uploading facilitates large-scale data collection. 

The system gathers log data on-the-fly: when a logger is enabled, MultiLog actively polls 

the corresponding log file (or listens on the specified TCP/UDP port) at an interval configurable 

by the researcher (set to one-minute by default) and checks for updates. If changes are detected 

(or new data is received on the open TCP/UDP socket), the relevant lines are extracted from the 

log file, formatted to MultiLog’s pre-defined format (as shown in Figure 1), presented in the 

main interface, and written to an output database. 
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MultiLog is designed for two groups of users — researchers and study participants — 

with each having a distinct mode of operation: Researcher Mode and Deployment Mode. 

Researcher Mode provides the user with full control and configuration ability, while Deployment 

Mode is intended for user study deployments with settings controlled via a configuration file. 

 

Researcher Mode 

By default, MultiLog runs in Researcher Mode, where the user sees the full user 

interface, is able to add and remove loggers, can start and stop loggers, and can view the log 

output from all currently active loggers, as shown in Figure 1. This mode allows researchers to 

experiment with logger configurations, examine the combined output from loggers, and prepare 

logging environments for deployment during a user study. 

A key feature of MultiLog is its ‘plug and play’ architecture that allows the researcher to 

‘plug-in’ any existing logger, at any time. MultiLog will work with any existing logging 

application as long as the researcher can provide the executable name, start and stop commands, 

the location of the continually-updated log file (or port number if the logger outputs data to a 

TCP/UDP socket), the position of the timestamp within this output (or the attribute/element that 

contains the timestamp if the log is in XML format) and an idea of which log lines are required 

to appear in the output. The ‘plug and play’ architecture allows even non-technical researchers to 

quickly configure a series of logging systems. Once configured, the researcher can manually start 

and stop each logger through MultiLog’s user interface, sending appropriate signals to the 

relevant logger. 
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Researchers can also choose to filter incoming log lines to reduce the amount of 

information collected. MultiLog supports filtering via line matching to include/exclude text 

provided by the researcher at configuration time. 

The log file polling interval is configurable by the researcher. By default, this is set to one 

minute, selected as a result of a trade-off analysis between obtaining real-time data, without 

experiencing degradation in performance (during configuration, researchers will often wish to 

reduce this value to immediately see the result of their changes). Data received from loggers that 

output to TCP/UDP socket is automatically received and processed in real time and thus, the 

polling interval does not apply to these loggers. 

Researchers can ‘save’ the current logger setup (enabled loggers, filters, and polling 

interval) and generate a configuration file ready to deploy the logger in Deployment Mode. 

 

Deployment Mode 

Deployment Mode helps researchers to quickly ‘roll out’ the application to many 

computers using MultiLog’s executable and an editable configuration file. In this mode, no 

interface is displayed and the logger runs ‘silently’ in the user’s system tray. The configuration 

file provides details of each logger to be run (name, executable location, start and stop 

commands, location of the log file (or port number if the logger outputs data to a TCP/UDP 

stream), timestamp, and filtering data). If the relevant flag is set inside this file, its contents are 

read by MultiLog on start-up and the relevant loggers are started with MultiLog minimised to the 

user’s system tray. 

Users can open the interface from the system tray icon, view logged actions, remove 

individual lines if they do not wish these to be uploaded, or pause logging completely. The log 
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lines are stored locally in a database that is automatically uploaded via a secure FTP connection 

to a server once daily. 

In an effort to reduce privacy issues surrounding logging, MultiLog can hash the data part 

of a log line or detect and hash URLs. As an example, when URL hashing is enabled via the add 

logger wizard in Researcher Mode, the URL http://www.bbc.co.uk/news/uk/ could appear 

as http://www.bbc.co.uk/HGTRFDH. When enabled, MultiLog detects and hashes the path part 

of the URL, preventing the exact website address from appearing in the output (although 

identical URLs will hash to the same value). Hashing of the data part of the log line is also set up 

in the add logger wizard where lines containing certain textual phrases can be hashed. 

 

Deployment 

MultiLog saves log data into a local SQLite database that is then uploaded to a server. 

The local database is then truncated to prevent large amounts of log data accumulating on the 

user’s computer. The researcher configures the connection by providing the address, username, 

and password of the remote web server.  Data can be extracted by non-technical researchers by 

using MultiLog’s re-combination software which combines the output for a given user into a text 

file. 

 

Summary 

The main features of MultiLog are: (1) Two distinct modes of operation for different 

audiences; (2) Its ‘plug and play’ architecture allowing on-the-fly addition and removal of 

loggers; (3) On-the-fly gathering, combination, and display of logged data; (4) Fully featured 

Deployment Mode allowing it to start-up and run silently in the user’s system tray, allowing user 



14 

 

‘pausing’ and where necessary removal of log data, and hashing to address privacy issues; (5) 

Log files are securely uploaded to a server on a daily basis. 

 

MultiLog Architecture 

MultiLog is written in C# in Microsoft Visual Studio 2013. It has been built to run on 

Windows 7, Windows 8 and Windows 8.1. MultiLog’s high-level architecture is shown in Figure 

2. 

 

Figure 2: MultiLog architecture 

Overview 

In its simplest terms, the pre-existing logging applications continue to operate as normal 

and MultiLog captures their output and merges it into a single interface and output database. 

MultiLog regularly monitors the logging application’s log file’s contents (by default once a 

minute, but this is configurable) or listens on the specified TCP/UDP port for a stream of 

continuous data. When changes are detected or new data is received, it extracts the data from the 

last line it read to the end of the file or processes the new TCP/UDP data. Internally, MultiLog 
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keeps a record of the last position read in each log file. This reduces the overhead incurred by 

continually reading entire log files (that often become large). 

MultiLog can handle three types of logging applications: Command-Line Loggers, Stand-

Alone Loggers and TCP/UDP Loggers. Command-line loggers use additional flags to enable 

internal logging mechanisms on start-up (e.g. Google Chrome2, Mozilla Firefox3 and Mozilla 

Thunderbird4); stand-alone loggers are either dedicated logging applications or are applications 

that are pre-configured to log events during interaction (e.g. Microsoft PSR); TCP/UDP loggers 

are systems which send continuous data on specified TCP/UDP sockets. Examples of this type of 

loggers from the HCI community include eye trackers or EEG systems. The following sections 

describe how these logger types ‘plug-in’ and interact with MultiLog. 

 

Command-Line Loggers 

Many applications now ship with internal logging mechanisms built into the application. 

These are typically used when trying to trace program bugs and are enabled by setting 

appropriate command-line flags when starting the application. For example, a user can enable 

logging in the Google Chrome browser from the command line by running the command 

chrome.exe --enable-logging --v=1 in the directory that contains the Chrome 

executable file. Chrome then generates a continually updated log file of website visits along with 

other browser events inside the user’s home directory. MultiLog comes pre-configured for 

logging with popular command-line loggers such as Google Chrome, Mozilla Firefox, and 

Mozilla Thunderbird and allows researchers to add additional command-line loggers through the 

add logger wizard. 

                                                 
2 http://www.chromium.org/for-testers/enable-logging 
3 https://developer.mozilla.org/en-US/docs/Mozilla/Debugging/HTTP_logging 
4 https://wiki.mozilla.org/MailNews:Logging 

http://www.chromium.org/for-testers/enable-logging
https://developer.mozilla.org/en-US/docs/Mozilla/Debugging/HTTP_logging
https://wiki.mozilla.org/MailNews:Logging
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The main disadvantage of command-line loggers is that they typically cannot be 

‘stopped’ while the application is running (for example, to stop command-line initiated logging 

in Google Chrome, the user must close and restart the application without the command-line 

arguments). When a user pauses MultiLog logging from its interface, and it is logging from an 

‘unstoppable’ application, MultiLog discontinues log polling of that application and keeps track 

of the last allowable log line. When logging resumes, MultiLog only continues log line reporting 

from the time logging was re-enabled (and does not back-read events that occurred during the 

paused time). When an individual logger is suspended or removed from MultiLog, MultiLog will 

provide appropriate warning messages before attempting to close the application. 

 

Stand-Alone Loggers 

Stand-Alone loggers are independent applications that record activities within one or 

more applications or systems, or themselves generate logging information as part of their normal 

operation. The Microsoft Problem Steps Recorder (PSR) is a typical example that records a wide 

selection of log events across the whole operating system such as clicks and menu selections, 

key-presses and shortcuts. MultiLog can typically start and stop external loggers without 

interfering with monitored applications. Researchers also add stand-alone loggers via the add 

logger wizard. 

 

TCP/UDP Loggers 

 Unlike command-line or stand-alone loggers that record data into log files or databases, 

external sensors typically communicate their data via a TCP/UDP port. MultiLog also supports 
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logging data through this mechanism. Loggers that use TCP/UDP communication are common 

in the HCI community and are often incorporated in devices such as eye trackers or EEG 

systems. MultiLog supports the same add, remove, and pause operations on TCP/UDP loggers as 

with command-line and stand-alone logger. The primary difference in operation is that 

TCP/UDP loggers always update in real-time (and do not require a polling interval)—this 

prevents excess and unnecessary data buffering.  

 

Set up & Use 

 MultiLog allows researchers to add any pre-existing research or commercial logging 

application to its list of active loggers. Loggers are added through a wizard interface by 

specifying certain information about the logging application, such as: its name, log file location 

or TCP/UDP details if the logger uses sockets, how to start and stop it, and an idea of which log 

lines are required to appear in the output. Once added, a logger can be started and stopped via the 

MultiLog interface. Once all required loggers are set up, deployment mode can be configured 

ready for deployment onto participants’ computers. This allows the researcher to generate a 

configuration file for the currently active loggers. Once created, this file, along with the 

MultiLog executable, can be dropped onto multiple participants’ machines ready for data 

collection. The configuration is a plain-text file that can also be manually edited if required. 

 

MultiLog’s Parsing of Log Files 

 MultiLog supports any logging application that produces line-by-line plain text or XML 

log files, or data received on TCP/UDP sockets. MultiLog parses each new log line, extracts the 

timestamp, and treats the remainder of the line as ‘data’. XML data is flattened into a single line 



18 

 

entry (by extracting the elements/attributes marked as ‘timestamp’ and ‘data’ by the researcher at 

configuration time); consistent formatting for all input streams makes post-collection analysis 

simpler. TCP/UDP streams are continuously received (and most are appropriately pre-

timestamped) and therefore can be added to the MultiLog interface and database in real time. 

MultiLog only requires that it can read and understand the timestamp; the ‘data’ portion of the 

log line may be pre-encrypted by the logging application. 

 MultiLog assumes that log files (or TCP/UDP streams) are continually updated by the 

logging application and that data is written in a linear manner (i.e. for loggers using a log file, the 

applications do not rewrite or insert lines earlier in the file). Our testing (see ‘Validation’) 

showed this to be the case for the vast majority of loggers. We built a re-usable ‘work-around’ to 

support Microsoft PSR’s unusual output generation. PSR’s output file is only generated when the 

application is stopped, so MultiLog regularly (currently once a minute – determined by the 

current polling interval) stops and immediately restarts PSR in order to obtain an output file. This 

feature can be increased or reduced by changing MultiLog’s general polling interval value from 

the interface. 

 

MultiLog Validation 

To confirm that MultiLog behaved as expected under various conditions we examined 

three aspects of the system: (1) That a diverse range of existing logging systems work 

successfully with MultiLog; (2) That MultiLog maintains data integrity; and (3) That resource 

consumption is acceptable. 
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Compatibility with Existing Logging Systems 

We tested a diverse range of publically available logging systems to check their 

compatibility with MultiLog. The selection of loggers, and the results of these tests are shown in 

Table 1. The majority (23/33) work successfully with MultiLog. Of the remainder that partially 

worked or did not work the main issues identified were: (1) The log file is locked by the 

Operating System so is inaccessible by MultiLog (Microsoft Visual Studio (Microsoft Visual 

Studio, 2014)); (2) The timestamps in the log files measure time since the logger started, not a 

general measure of time (Inputlog (Leijten et al., 2005), Translog (Hansen, 1997) & WebQuilt 

(University of Washington)); (3) The logger spreads log data across multiple log files (Mendeley 

Desktop log files (Mendeley) & Kidlogger (Kidlogger)); and (4) All data in the file is 

compressed/encrypted so MultiLog cannot access a timestamp to order events (Skype log files 

(Skype), SoftActivity Keylogger (Soft Activity) & Revealer Keylogger (Logixoft)). The first 

(locked log file) and last (encrypted file) issues are outside the control of MultiLog. We solved 

issue 2—timestamps from start time—by adding support for MultiLog to use the last modified 

time on the log file as the timestamp; Issue 3—multiple log files—will be addressed in future 

work. Issue 4 is a limitation of MultiLog’s approach to extracting log information. 

We also include in table 2, output from a text (Google Chrome), XML (Microsoft PSR) 

and UDP (Arduino light sensor) logger providing an example of the raw output data produced by 

the logging application and the data after MultiLog has parsed it.



20 

 

Table 1 

A list of loggers tested with MultiLog. Y = logger works as expected, N = logger does not work, ! = logger partially works but there 

are known issues as detailed in the Notes column. 

Logger Name  Output Notes 

Microsoft Problem Steps Recorder (PSR) 

(Microsoft Corporation) 
Y XML 

 

Google Chrome in-built logger (Google 

Chrome, 2014) 
Y Text 

 

Mozilla Firefox in-built logger (Mozilla 

Firefox) 
Y Text 

 

Mozilla Thunderbird in-built logger 

(Mozilla Thunderbird) 
Y Text 

 

Drag (developed by MultiLog authors) Y Text Records mouse drags. 

Drag-and-Drop (developed by MultiLog 

authors) 
Y Text 

Records Drag-and-Drop actions including the name of the object being dragged, where it was dragged from and 

where it was dragged to. 

Window Switch (developed by MultiLog 

authors) 
Y Text 

Records window switches and the name, dimensions and size of windows. 

Clipboard (developed by MultiLog 

authors) 
Y Text 

Records cut, copy and paste actions. 

Process Start Monitor (developed by 

MultiLog authors) 
Y Text 

Records the time when a new process was started by the user or system. 

WEKA Data Mining (Hall et al., 2009) Y Text  

AppMonitor (Alexander et al., 2008) Y Text  

Windows Update log files (Windows 

Update) 
Y Text 

 

VMWare log files (VMWare) 

 
Y Text 

 

Microsoft Outlook log files (Microsoft 

Outlook, 2014) 
Y Text 

 

Adobe ARM log files (Adobe) 

 
Y Text 

 

Internet Explorer Maintenance (brndlog) 

log files (Internet Explorer) 
Y Text 

 

Windows DTC install log files (Microsoft 

Distributed Transaction Coordinator) 
Y Text 

 

User Logger (User Logger) Y Text  

JEdit (Eklundh et al., 2003) Y Text 
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TeamViewer (TeamViewer, 2014) Y Text 
 

Ubuntu log files (alternatives.log, auth.log, 

dpkg.log, kern.log and syslog) (Ubuntu) 
Y Text 

 

Tobii Eye Tracker Y UDP Data continuously received on UDP port 11000. Processed by MultiLog in real time (as and when received). 

Arduino Sensor Y UDP Data continuously received on UDP port 8888. Processed by MultiLog in real time (as and when received). 

Microsoft Visual Studio (Microsoft Visual 

Studio, 2014) 
! Text 

When this logger runs, the log file is locked. As a result, MultiLog can only process it when the logger is stopped 

and the file is unlocked. 

Inputlog (Leijten & Waes, 2005) ! XML 

The timestamp in the logger is a measure of the time since the logger was started not a general measure of time. As a 

result, MultiLog cannot determine chronological order unless the user/researcher specifies to use the last modified 

date from the file as the timestamp. 

 

Data is created across multiple log files. Only the file listed as the log file when the logger is added will be included 

initially. In order to include subsequent files, new loggers would have to be added via the Add Logger wizard. 

Translog (Hansen, 1997) ! XML 

The timestamp in the logger is a measure of the time since the logger was started not a general measure of time. As a 

result, MultiLog cannot determine chronological order unless the user/researcher specifies to use the last modified 

date from the file as the timestamp. 

 

Data is created across multiple log files. Only the file listed as the log file when the logger is added will be included 

initially. In order to include subsequent files, new loggers would have to be added via the Add Logger wizard. 

Mendeley Desktop log files (Mendeley) ! Text 
Data is created across multiple log files. Only the file listed as the log file when the logger is added will be included 

initially. In order to include subsequent files, new loggers would have to be added via the Add Logger wizard. 

Kidlogger (Kidlogger) ! 
XML/ 

HTML 

Data is shown every minute for a period of one day. After this time, Kidlogger creates a new file and another logger 

would have to be added to MultiLog through the Add Logger wizard to reflect this. 

WebQuilt (University of Washington) ! Text 

The timestamp in the logger is a measure of the time since the logger was started not a general measure of time. As a 

result, MultiLog cannot determine chronological order unless the user/researcher specifies to use the last modified 

date from the file as the timestamp. 

Skype log files (Skype) N Text Data is hashed/encrypted and MultiLog is unable to un-hash/decrypt it. 

PersonalVibe (Microsoft Research) N Database Data is held in a database and MultiLog does not handle databases. 

SoftActivity Keylogger (Soft Activity) N Text Data is hashed/encrypted and MultiLog is unable to un-hash/decrypt it. 

Revealer Keylogger (Logixoft) 

 
N Text 

Data is hashed/encrypted and MultiLog is unable to un-hash/decrypt it. 
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Table 2 

A list of the three loggers (with three different types of output) along with example raw and MultiLog-parsed data. 

Logger Name Raw Data MultiLog-parsed Data 

Google Chrome 

[9056:14968:0806/141932:VERBOSE1:resource_loader.cc(335)] 

OnResponseStarted: 

https://docs.google.com/offline/backgroundshell#ouid=ud3488c2d87270738 

08/06/2015 14:19:32.000 OnResponseStarted: 

https://docs.google.com/offline/backgroundshell#ouid=ud3488c2d87270738 

Microsoft PSR 
<EachAction Time="17:36:43"> and <Description>User left click in 

"MultiLog.docx - Microsoft Word"</Description> 
08/06/2015 17:36:43 User left click in "MultiLog.docx - Microsoft Word" 

Arduino Light Sensor (As 

the logger is written by us, 

data is constructed in 

MultiLog’s universal format 

in the pure logger code.) 

100 08/06/2015 17:18:34 Data: 100 

 

 

https://docs.google.com/offline/backgroundshell#ouid=ud3488c2d87270738
https://docs.google.com/offline/backgroundshell#ouid=ud3488c2d87270738
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Data Integrity 

Data integrity ensures that MultiLog is recording all of the required events and that it is 

recording all of the data associated with these events. The following method was used for 

validating data integrity: (1) MultiLog was configured to run one logger without filtering, see 

Table 3; (2) A series of interactions with the monitored application were performed; (3) The 

resulting events recorded by MultiLog were extracted from its database and the original log file 

generated by the logging software was copied; (4) MultiLog’s output was transformed back into 

the format generated by the logging application by an additional piece of software; (5) The 

original log file and the transformed output from MultiLog were compared using a file difference 

checker5. 

We applied this methodology to a variety of loggers as illustrated in Table 3. For plain 

text output, all files were identical except for blank lines (which MultiLog automatically 

removes) and a handful of characters, such as the single quote, which were removed as they 

interfere with MultiLog’s database. 

Nine further trials were performed on XML loggers. This time, the raw log file was run 

through a third-party XML processor6 to extract the timestamp and data and then formatted to 

match that produced by MultiLog. The difference checker was then used to check for 

differences. On observing the output, all files were identical as described in Table 3. 

Three additional trials were conducted with the Arduino light sensor UDP logger. The 

functionality was altered to also write logs to the Arduino output window so a comparison 

between the raw data and the data received in MultiLog could be completed. Data over a one 

                                                 
5 www.diffchecker.com 
6 www.xpathtester.com/xpath 

http://www.diffchecker.com/
http://www.xpathtester.com/xpath
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minute period was checked and matched (MultiLog did not drop packets and timestamps were 

correct).
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Table 3 

Loggers used for output validation. 

Test Logger Number of test 

repetitions 

Output type 

(text/XML) 

Average length 

of interaction 

Average number of 

log lines produced 

Results 

Google Chrome 3 Text 1 minute 7315 All lines identical except those which were omitted automatically by 

MultiLog because they did not contain a timestamp. 

Mozilla Firefox 3 Text 1 minute 883 All lines identical. 

Mozilla Thunderbird 3 Text 1 minute 353 All lines identical except those which were omitted automatically by 

MultiLog because they did not contain a timestamp, those that 

contained the single quote character which had to be removed to 

avoid database clashing and non-standard ASCII characters. 

Microsoft PSR 3 XML 1 minute 80 Both files identical. 

Inputlog 3 XML 1 minute 2192 Both files identical. 

Translog 3 XML 1 minute 172 Both files identical. 

 



26 

 

Resource Consumption 

Finally, MultiLog’s impact on system performance (% processor time) was tested. 

Various tests were conducted using an average CPU tool7. Table 4 shows average CPU 

utilisation when running MultiLog with a number of different logging applications. These 

loggers were run firstly with user interaction with the PC (so events were generated) and 

secondly with no user interaction (when the PC was idle but the loggers were still running). All 

tests were run with a log polling interval of one minute. We found that, on average, 0.069% CPU 

was used when running MultiLog with one logger. This increased to 1.390% when running four. 

We also observed that increasing logger output directly impacts on performance.

                                                 
7 www.boray.se/software/averagecpu/ 

http://www.boray.se/software/averagecpu/
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Table 4 

Loggers used for performance validation. All tests were run for a period of 15 minutes apart from the Arduino light sensor test which 

was run for 30 minutes. The time intervals selected were relatively short because each test requires continuous interaction within that 

application, something current time constraints did not permit. ‘Interaction’ refers to the PC being utilised for the duration of the test. 

‘No interaction’ means the PC was idle for the duration of the test. The tests performed with the Arduino light sensor were performed 

on a different machine due to hardware constraints. The no interaction figure provides a baseline from which the overheads can be 

calculated. 

Configuration Average CPU usage (%) 

No interaction Interaction 

MultiLog + 1 logger (Microsoft PSR) 0.0169 0.0698 

MultiLog + 2 loggers (Microsoft PSR and Mozilla Firefox) 0.0170 0.6267 

MultiLog + 3 loggers (Microsoft PSR, Mozilla Firefox and Google Chrome) 0.1417 0.8925 

MultiLog + 4 loggers (Microsoft PSR, Mozilla Firefox, Google Chrome and Mozilla Thunderbird) 0.0525 1.3902 

MultiLog + 1 logger (Arduino light sensor) – high frequency data test (every 3 millisecond constant stream) 0.0018 6.8038 
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Initial Deployment 

We also deployed MultiLog to a small number of users over a period of ten weeks to 

observe if it could run over extended periods of time to allow long-term studies to be conducted. 

MultiLog successfully ran for this period of time collecting and uploading data from anywhere 

between one and five loggers. This period of deployment allowed us to correct small interaction 

bugs we discovered such as the red ‘X’ wrongly closing the application rather than minimising it 

to system tray and various start up issues. We found that over the initial deployment period, web 

browser logs for example were producing a substantial amount of data, producing over 1000 

lines in a matter of minutes. Much of this data was simple HTTP requests and not relevant to the 

research questions we are addressing and so it was decided to remove these for future user 

studies. When the appropriate loggers had been selected for the more detailed and extended 

deployment, we observed an average of 2000 log lines per hour with a database size of between 

600 to 1000KB when user interaction is frequent. The loggers we tested with during initial 

deployment (with the average log lines per hour in brackets) were: Microsoft PSR (600), Drag-

and-Drop (0-10), Window Switch (120), Clipboard (0-20) and Process start (450). Generally an 

interaction event is captured by more than one logger (and therefore more than one log line). For 

example, opening a new window would be captured by the Microsoft PSR (general logging), 

Window Switch (when the window came into focus) and Process start (when a new process was 

started) loggers. 
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Discussion 

Approach 

 When evaluating the best approach to combining the output from existing logging 

applications, a trade-off between using log-merging software such as MultiLog has to be 

evaluated against whether it makes sense to develop a new logger from scratch. Under certain 

circumstances, such as when very specific data has to be collected that is not currently available 

from existing loggers, it would make sense (if time and finance permitted) to write a new logging 

application. However for general HCI user-based studies, log-merging software such as 

MultiLog facilitates the re-use of groups of existing logging applications. 

 

Limitations 

While MultiLog is robust and versatile, there are certain types of log output that it cannot 

handle. For example, log data that is split across multiple lines or lines without an accompanying 

timestamp. In order for MultiLog to handle plain text files and data received on TCP/UDP 

sockets, there must be one event per line/packet, each with an accompanying timestamp. 

Currently, only plain-text, TCP/UDP and XML-based loggers are supported. However, this 

could be extended in the future to handle other well-known data formats such as databases and 

encrypted data. 

Certain low-level conditions also prevent or obstruct MultiLog from parsing logs. These 

include applications (such as Microsoft PSR) only generating their log files when the application 

is stopped, writing to log files in a non-linear manner, and locking the log file until the logging is 

terminated by the user. While work-arounds exist for these cases, all result in non-optimal 

presentation of log events to the user. 
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Command-line logging is typically not persistent across sessions—the application must 

always be started with the command line flags for logging to continue across sessions (this 

differs from system-wide loggers that automatically detect when applications of interest are 

started). In these settings, MultiLog will start an application once, but cannot prevent the user 

from starting the application without the flags, e.g. through shortcuts on task or menu bars. To 

achieve full coverage, researchers should alter the command line flags on all shortcuts available 

to the user. Not all logging applications employ this method of functioning (for example 

Microsoft Problem Steps Recorder (Microsoft Corporation), Window Switching, Drag-and-

Drop, Clipboard and Process start (developed by MultiLog authors) and so researchers should 

check how individual loggers are started/stopped and adjust shortcuts accordingly. 

 

Advice for Logger Developers 

MultiLog has been released publically to allow researchers to take advantage of the 

logger control and log merging it facilitates. Developers wishing to make their logging 

application compatible with MultiLog should follow these guidelines: (1) The output is in either 

text or XML format, or writes data continuously to a TCP/UDP stream; (2) If a log file is used, 

data  is written in a linear manner, appending new information to the end; (3) Each element of 

data has an accompanying timestamp and that this timestamp at least includes the year, month, 

day, hour, minute and second of when the event occurred; (4) The log file should not be locked, 

therefore preventing MultiLog from accessing it; (5) Ensure that if the logger is started with 

command-line arguments, it can also be successfully started without these for normal operation. 
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Combining Historical Logs 

 MultiLog’s architecture does not require that the application itself was active during log 

generation. This means researchers can use MultiLog to standardise and combine historical logs, 

offline logs (such as from mobile devices), or data streams. This facilitates an array of new data 

analysis: from the process of revisiting multi-input experimental data-sets (e.g. combining eye-

gaze data with system interactions) to aiding system administrators perform diagnostics by 

combining login, performance, and error logs to better understand failures. 

 

Beyond Desktop Logging 

While initially designed to reduce the technical barriers to multi-logger set up on desktop 

computers, MultiLog enables researchers to go beyond the realms of the desktop, by allowing 

them to easily integrate external data streams. This allows researchers to easily combine 

traditional application logging with environmental or on-body sensors to build a more 

comprehensive understanding of user interactions, contexts, and environments.  

MultiLog’s longitudinal data recording features mean that it can sit at the core of larger-

scale deployments, especially when these are created with bespoke, non-standard components. 

For example, smart homes environments combine multi-manufacturer hardware and software to 

create a single system: MultiLog could, for example, be used to monitor and combine into one 

output: temperature, lighting levels, the temperature of the oven or fridge, which TV channel is 

currently selected, which web page a user is currently browsing on a PC and anything else within 

the house that produces a time stamped log output. 
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Conclusion 

Event logging in desktop applications provides researchers with a tool to help understand 

how people interact with interfaces to facilitate improvements for future development. This 

article described MultiLog, a system which simultaneously controls, gathers, and combines the 

output from multiple existing research and commercial logging applications. MultiLog does not 

require technical expertise to configure or deploy. The MultiLog software is available from the 

website. 
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