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Workload Control in Dual Resource Constrained High-Variety 

Shops: An Assessment by Simulation 

  

Abstract 

Workload Control (WLC) seeks to align capacity with demand, where capacity is typically 

assumed to be restricted by a single constraint – machine capacity. In practice however, shops are 

often restricted by dual resource constraints: labor and machines. This study therefore uses 

simulation to investigate the performance of WLC in Dual Resource Constrained (DRC) high-

variety shops with fully interchangeable labor. By considering several environmental factors and 

different labor assignment and dispatching rules, it is demonstrated that the order release function 

of WLC maintains its positive impact on performance in a DRC shop under different staffing 

levels. The positive effect of considering labor availability at release, as proposed in previous 

research, could not however be confirmed. Thus, the original release method can be applied if 

labor is fully interchangeable. In terms of labor assignment, we show that a distinct assignment 

pattern that differs between upstream and downstream stations improves performance if the 

routing is directed. Meanwhile, dispatching plays a less important role but creates important 

interaction effects with the assignment rule. Finally, the results suggest that increasing the service 

rate is a better response to the reduction in capacity that results from labor absenteeism than 

lowering the input frequency of work. 

 

Keywords:  Workload Control; Order Release; Worker Assignment, Job Shop; Dual Resource 

Constrained Shop. 
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1. Introduction 

This study is motivated by a major issue encountered when implementing Workload Control in 

make-to-order shops that produce a wide variety of products. That is, how to handle fluctuations 

in the supply of labor caused, for example, by attrition, a high labor turnover, or absenteeism. Most 

of the literature that assesses labor fluctuations focuses on the efficiency losses that occur from 

substituting in replacement workers (e.g. Fry et al., 1995; Slomp & Molleman, 2002; Blumenfeld 

& Inman, 2009; Bukchin & Cohen, 2013; Nembhard, 2014). The presence of replacement workers 

means that a new worker is hired or surplus labor exists to ensure a 100% (or full) staffing level is 

maintained. In contrast, we assume that no replacement workers are available, which leads to a 

situation in which capacity is constrained by two resources, i.e. machines and labor. This is 

typically referred to in the literature as a Dual Resource Constrained (DRC) shop (Bobrowski & 

Park, 1989; Felan et al., 1993; Malhotra et al., 1993; Fredendall et al., 1996; Bokhorst et al., 2004). 

The assumption of no labor replacement is motivated by the limited resources typical of small 

companies that prohibit the creation of a ‘labor buffer’. Therefore, in this paper we use controlled 

simulation experiments to assess the impact on Workload Control performance of adding a labor 

constraint, e.g. less than 100% staffing, to the standard machine capacity constraint, thus creating 

dual resource constraints under different labor assignment and dispatching rules. 

Workload Control is a production planning and control concept specifically developed for high-

variety make-to-order shops (Zäpfel & Missbauer, 1993; Stevenson et al., 2005). It has been shown 

to significantly improve the performance of high-variety shops both through simulation (e.g. 

Thürer et al., 2012, 2014a) and, on occasions, in practice (e.g. Wiendahl, 1992; Bechte 1994; 

Hendry et al., 2013). A major aim of Workload Control research is to align demand (or workload) 

with capacity. Most Workload Control research thereby assumes that capacity is a single variable, 

defined by machine availability only. However, in practice most manufacturing systems are not 

only constrained by machines but also by labor capacity or availability (Bokhorst & Gaalman, 

2009; Stevenson et al., 2011). Machines need an operator and operators have to be assigned to 

machines. In addition, workers may possess different skills, levels of proficiency, or experience 

and therefore operate machines at different speeds. This type of highly complex shop – constrained 

by machines and human resources – is what we refer to as a DRC shop. 

Given its practical importance, a large body of literature has emerged on the problem of DRC 

shops. This research typically focuses on labor assignment rules, i.e. on decisions concerning when 
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to move workers to cope with a labor shortfall, where workers should be moved to, and who to 

move (e.g. Bobrowski & Park, 1993; Malhotra & Kher, 1994; Fredendall & Melnyk, 1996; Jensen 

2000; Kher, 2000a; Kher & Fry, 2001; Bokhorst et al., 2004; Salum & Araz, 2009; Sammarco et 

al., 2014). In contrast, there is very limited research on the performance impact of order release 

control methods in DRC shops (Bobrowski & Park 1989; Park & Bobrowski, 1989; Fredendall et 

al., 1996). Moreover, this small body of work does not consider recent advances in the order 

release literature and typically focuses on simple forward/backward loading based release 

mechanisms only. 

The above means that managers that apply Workload Control order release methods in practice 

are not provided with any guidance on how best to handle the absence of labor or how to make 

release decisions in the context of multiple resource constraints. In response, this study synthesizes 

two streams of literature – on Workload Control and DRC shops – by assessing the performance 

of Workload Control in DRC high-variety shops through a broad set of simulation experiments. 

By considering different labor assignment rules (When and Where rules), dispatching rules, shop 

types (undirected and directed routings), staffing levels, and two different approaches to handling 

the resulting overload – a decrease in the arrival rate of jobs and an increase in the service rate (i.e. 

the operating speed or efficiency) – we seek to provide guidance to managers on how best to handle 

fluctuations in labor availability. For example, while prior literature has highlighted the need to 

adjust the arrival and/or service rate in response to changes in the staffing level (e.g. Nelson, 1967; 

Hogg et al., 1975; Yang, 2007), the operational impact of the two approaches has, to the best of 

our knowledge, never been compared. 

The remainder of this paper is structured as follows. In Section 2, we review relevant literature, 

including on labor assignment rules and methods for controlling the workload, and we outline the 

research questions that motivate our study. The specific Workload Control approach and the 

simulation model used to evaluate performance are then described in Section 3. The results are 

presented, discussed, and analyzed in Section 4 before conclusions are presented in Section 5. 

 

2. Literature Review 

This section provides an overview of the literature on DRC shops from an operational perspective; 

for a more detailed review, the reader is referred to Hottenstein & Bowman (1998), Treleven 

(1989), and Xu et al. (2011). From an operational perspective, three elements need to be aligned 
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in a DRC shop: (i) machine capacity; (ii) worker capacity; and, (iii) the workload (or demand). 

Most research has assumed that the machine capacity is fixed and has therefore focused on the 

remaining two elements: worker capacity and associated labor assignment rules driven by 

questions concerning when, where, and who to (re)assign to a station; and, the workload, which is 

controlled by dispatching and order release rules. These two streams of literature will be reviewed 

in Section 2.1 and Section 2.2, respectively. A discussion of the literature is then provided in 

Section 2.3. 

Note that there is another stream of research that seeks to combine control of the workload with 

the labor assignment decision, i.e. the literature on advanced scheduling techniques (e.g. El 

Maraghy et al., 2000; Araz & Salum, 2010; Jaber & Neumann, 2010; Lei & Guo, 2014; Lei & 

Guo, 2015; Li et al., 2016; Zheng & Wang, 2016; Zhang et al., 2017). But this stream of research 

presupposes that demand and capacity availability are known in advance and therefore 

deterministic. In contrast, we consider an environment where processing times, routings, and the 

inter-arrival times of orders follow a stochastic process. Advanced scheduling techniques, which 

presuppose a deterministic context, are therefore not considered further in our study. 

 

2.1. Labor Assignment Rules 

Most of the literature on DRC shops focuses on staffing decisions, labor efficiency, or labor 

assignment. For example, Felan et al. (1993) assessed the impact of labor flexibility in terms of 

the number of machines a worker can operate and compared the impact of a flexible labor force 

with a general increase in labor capacity (or the staffing level). They highlighted that the two 

decisions, labor flexibility and staffing level, should play complementary roles. Later, Felan & Fry 

(2001) assessed different levels of flexibility across workers, i.e. where some workers are able to 

work on all machines and some workers are only able to work on one machine. They showed that 

having a small number of highly flexible workers may be a better option than having all workers 

with an average level of flexibility. These findings however are in the context of perfectly 

interchangeable workers, i.e. efficiency at a machine was considered to be either 100% or zero. 

The first study that questioned the assumption of perfectly interchangeable workers was by 

Bobrowski & Park (1993) who introduced a labor efficiency matrix that determined the efficiency 

of a certain worker at a certain machine. Bobrowski & Park (1993) also investigated five “when” 

and seven “where” rules, demonstrating that a simple “where” rule that moves a worker to the 

station where the worker is most efficient dominates all other Where and When rules. In addition 
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to deciding when a worker should be transferred and where the worker should be transferred to, 

managers also have to decide who (i.e. which worker) to transfer; but this need to decide who is 

assigned to a station was only later emphasized by Bokhorst et al. (2004).  

In general, there are only two types of When Rule used in the literature: a ‘centralized’ rule that 

may transfer a worker each time a job is completed; and, a ‘decentralized’ rule that only transfers 

a worker after all jobs at the current station (both in-process and queuing) have been completed. 

In contrast, there is a broad set of different Where rules available, but the literature has typically 

argued that the Where Rule has less of an impact on DRC shop performance than the When Rule 

(Xu et al. 2011). Finally, Who rules appear to be dominated by efficiency considerations 

(Bobrowski & Park, 1993). In this study, we will therefore only consider When and Where rules 

since we assume all workers are fully trained and interchangeable, thus no efficiency differences 

exist. This simplification is justified by the need to keep our study to a manageable number of 

experimental variables. The simplification also leads us to omit another important stream of 

literature on labor assignment, specifically in the context of cross-trained workforces that may 

possess different skill levels – that on learning/forgetting (e.g. Malhotra et al., 1993; Fry et al., 

1995; Kher et al., 1999; Kher, 2000b; Kannan & Jensen, 2004; Zamiska et al., 2007; Yue et al., 

2008). 

 

2.2 Control of the Workload – Order Release 

While there is a broad literature on DRC shops, literature specifically on the impact of order release 

in DRC shops is scarce. To the best of our knowledge, there are only three relevant studies: 

Bobrowski & Park (1989), Park & Bobrowski (1989), and Fredendall et al. (1996). All three use 

a similar shop model with the same staffing level: 50%. Bobrowski & Park (1989) assessed the 

impact of four different order release rules (Immediate Release, Backward Infinite Loading, 

Forward Finite Loading, and Maximum Shop Load) and two dispatching rules (Modified 

Operation Due Date and Critical Ratio) on a DRC job shop. The authors showed that Backward 

Infinite Loading and Forward Finite Loading can improve performance compared to Immediate 

Release, i.e. no order release control. These two release methods were also considered by Park & 

Bobrowski (1989) along with three levels of labor flexibility (modeled by labor efficiency matrices) 

and two labor assignment rules. The authors’ results revealed no statistically significant 

performance differences between the release methods. Finally, Fredendall et al. (1996) highlighted 

the positive impact of a triggering mechanism that limits the workload compared to release 



 7 

methods based on infinite loading, as applied in Bobrowski & Park (1989) and Park & Bobrowski 

(1989). However, this triggering mechanism does not lead to load balancing, one of the major 

strengths of workload control order release (Thürer et al., 2014b). No study to date has assessed 

the impact of the more effective load limiting workload control release methods that have been 

recently presented in the literature in the context of a DRC shop. 

 

2.3 Discussion of the Literature 

From the above review it becomes evident that although a broad literature exists on DRC shops, 

literature on the impact of order release in DRC shops is scarce. While this literature (Bobrowski 

& Park 1989; Park & Bobrowski, 1989; Fredendall et al., 1996) generally agrees on the potential 

of order release to improve performance in DRC shops, all use a similar shop model and the same 

staffing level. Hence, it does not assess how fluctuations in the staffing level affect order release 

performance. Moreover, the few prior studies all precede recent advances on order release control 

that have led to more effective load-limiting order release methods, specifically in the context of 

the Workload Control concept (e.g. Thürer et al., 2012). Yet the Workload Control literature 

typically considers only a single capacity constraint. In fact, further research that supports the 

implementation of Workload Control in DRC shops in practice was outlined as an important future 

study direction by Stevenson et al. (2011). In response, this paper seeks to combine both streams 

of literature – on Workload Control and DRC shops – by first asking: 

 

RQ1:  What is the impact of Workload Control order release on the performance of a DRC shop 

under different staffing levels? 

 

An important finding from previous literature on order release in DRC shops is that order release 

performance can be improved by incorporating labor information into the release decision 

(Fredendall et al., 1996). This finding however was in the context of backward infinite loading 

and simple triggering mechanisms. These mechanisms do not consider load balancing and they 

were recently shown to be outperformed by Workload Control release mechanisms. Therefore, our 

second research question asks: 

 

RQ2:  Can the inclusion of information on labor availability further improve the performance of 

Workload Control order release in a DRC shop? 
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Controlled simulation experiments will be used next to answer our two research questions. By 

considering different labor assignment rules (When and Where rules), dispatching rules, shop 

types (undirected and directed routings), staffing levels, and two different approaches to handling 

an overload – a lower inter-arrival rate of jobs and an increase in the service rate – we seek to 

provide guidance to managers on how best to make control decisions in the context of multiple 

resource constraints. The following section outlines the simulation model used in the experiments 

and the Workload Control order release methods incorporated in our study. 

 

3. Simulation 

A stylized standard model will be used in this study to avoid interactions that may otherwise 

interfere with our understanding of the main experimental factors. While any individual DRC shop 

in practice will differ in many aspects from our stylized environment, the model used in this study 

captures the job and shop characteristics of high variety make-to-order shops, i.e. high routing 

variability, high processing time variability, and high arrival time variability. The shop and job 

characteristics modeled in the simulations are first summarized in Section 3.1. How we model the 

order release methods considered in this study is then outlined in Section 3.2 before the different 

labor assignment rules are discussed in Section 3.3. The priority dispatching rules applied for 

controlling the progress of orders on the shop floor are then described in Section 3.4. Finally, the 

experimental design is outlined and the measures used to evaluate performance are presented in 

Section 3.5. 

 

3.1 Overview of Modeled Shop and Job Characteristics 

A simulation model of a randomly routed job shop (or pure job shop) and of a general flow shop, 

where the routing is directed, has been implemented in Python© using the SimPy© module. We 

have kept our DRC shop relatively small since this allows causal factors to be identified more 

easily. Small systems provide a better insight into the role of operating variables and, in practice, 

large systems can often be decomposed into several smaller systems (Bokhorst et al. 2004). At the 

same time, we decided on a size that allows for comparison with previous studies on Workload 

Control (e.g. Melnyk & Ragatz, 1989; Land & Gaalman, 1998; Thürer et al., 2012). Thus, the shop 

contains six stations, where each is a single resource with constant capacity; and, as in previous 

DRC research, we consider machine capacity to be constant and focus on different levels of labor 

capacity. We experimented with three different staffing levels: 5 workers, 4 workers, and 3 
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workers (50% staffing). As in previous studies, a 50% staffing is the lowest level (e.g. Felan et al., 

1993). We assume that workers are fully trained and fully interchangeable. This simplification is 

justified by the need to keep the number of experimental factors manageable. 

The routing of a job is determined by first drawing the routing length (i.e. the number of stations 

in the routing) from a discrete uniform distribution that varies from one to six operations; and, 

second, by selecting the stations by randomly drawing the required number from the set of stations 

without replacement. All stations have an equal probability of being visited and a particular station 

is required at most once in the routing of a job. The resulting routing vector is sorted for the general 

flow shop. Operation processing times follow a truncated 2-Erlang distribution with a maximum 

of 4 time units and a mean of 1 time unit after truncation. Set-up times are considered sequence 

independent and part of the operation processing time.  

The inter-arrival time of jobs follows an exponential distribution. Workers are, on average, 

occupied 95% of the time. While this is higher than the 87.5% or 90% utilization typically applied 

in this kind of shop model under full staffing (e.g. Melnyk & Ragatz, 1989; Land & Gaalman, 

1998; Thürer et al., 2012), it is justified by the potential to shift labor from idle stations to stations 

with work. Two approaches are used to ensure equal worker utilization for the different staffing 

levels: (i) the inter-arrival rate is adjusted (as in Yang, 2007); and, (ii) the service rate is adjusted 

(as in Nelson, 1967; Hogg et al., 1975), which is modeled by multiplying the processing time by 

a factor given by the number of workers divided by 6 (i.e. the number of stations). Adjusting the 

inter-arrival rate at a higher level of the planning system (as in Fredendall & Melnyk, 1995) can 

be achieved in practice by delaying orders (see, e.g. Melnyk et al. (1991) and Park & Salegna 

(1995)). This takes advantage of the lead time allowance. Meanwhile, the adjustment to the service 

rate takes advantage of the capacity buffer inherent in each worker; see, for example, Schultz et al. 

(1998) who demonstrated the phenomenon of speeding up behavior through a laboratory 

experiment.   

Finally, due dates are set exogenously by adding a random allowance factor, uniformly 

distributed between 28 and 36 time units, to the job entry time. The minimum due date allowance 

of 28 time units corresponds to the requirements for the longest routing length of 6 operations (24 

time units) plus an allowance for queuing and the pool waiting time. 
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3.2 Order Release and Refinements 

There are many order release methods in the Workload Control literature; for examples, see the 

reviews by Wisner (1995), Land & Gaalman (1996), Bergamaschi et al. (1997), and Fredendall et 

al. (2010). In this paper, the LUMSCOR (Lancaster University Management School Corrected 

Order Release) method is used because it was recently shown to be the best order release solution 

for Workload Control (Thürer et al., 2012). LUMSCOR uses a periodic release procedure executed 

at fixed intervals to control and balance the shop floor workload. This procedure keeps the 

workload 𝑊𝑠 released to a station s within a pre-established workload norm, as follows: 

(1) All jobs in the set of jobs J in the pre-shop pool are sorted according to their planned release 

date.  

(2) The job 𝑗 ∈ 𝐽 with the earliest planned release date is considered for release first. 

(3) Take Rj to be the ordered set of operations in the routing of job j. If job j’s processing time pij 

at the ith operation in its routing – corrected for station position i – together with the workload 

𝑊𝑠released to station s (corresponding to operation i) and yet to be completed fits within the 

workload norm 𝑁𝑠 at this station, that is 
𝑝𝑖𝑗

𝑖
+𝑊𝑠 ≤ 𝑁𝑠  ∀𝑖 ∈ 𝑅𝑗, then the job is selected for 

release. That means it is removed from J, and its load contribution is included, i.e. 𝑊𝑠 ≔ 𝑊𝑠 +

𝑝𝑖𝑗

𝑖
  ∀𝑖 ∈ 𝑅𝑗 . Otherwise, the job remains in the pool and its processing time does not contribute 

to the station load. 

(4) If the set of jobs J in the pool contains any jobs that have not yet been considered for release 

then return to Step 2 and consider the job with the next highest priority. Otherwise, the release 

procedure is complete and the selected jobs are released to the shop floor. 

 

A released job contributes to 𝑊𝑠 until its operation at this station has been completed. Therefore, 

the load contribution to a station in LUMSCOR is calculated by dividing the processing time of 

the operation at a station by the station’s position in the job’s routing. This “corrected” aggregate 

load method (Oosterman et al., 2000) recognizes that a job’s contribution to a station’s direct load 

is limited to only the proportion of the total time the job spends on the shop floor that it is actually 

at the station.  

In addition to the above periodic release mechanism, LUMSCOR incorporates a continuous 

workload trigger. If the load of any station falls to zero, the first job in the pool sequence with that 

station as the first in its routing is released irrespective of whether this would exceed the workload 



 11 

norms of any station. When the continuous workload trigger releases a job, its workload 

contribution to a station is calculated using the same corrected aggregate load approach as used 

for the periodic release time element of LUMSCOR.  

 

3.2.1 Proposed Order Release Refinements  

Two release methods will be considered in this study: the original LUMSCOR approach, as 

described above, and a refined version of LUMSCOR that takes labor availability into account. As 

in Fredendall et al. (1996), jobs are released on a continuous basis under the refined version of 

LUMSCOR when a station is idle and a worker for that station is available, i.e. processing can 

start immediately. There is no refinement to the periodic element since future labor availability 

remains unknown. 

 

3.2.2 Implementation of Order Release in the Simulation 

As in previous simulation studies on Workload Control and DRC shops, it is assumed that all jobs 

are accepted, materials are available, and all necessary information, e.g. regarding shop floor 

routings and processing times, is known. Jobs flow into a pre-shop pool to await release according 

to the original LUMSCOR and the refined LUMSCOR, which considers labor availability as part 

of its continuous release element. The main experimental factor for the release decision that is 

considered in our experiments is the workload norm. Seven workload norm levels are considered: 

from 4 (the maximum possible processing time) to 10 time units. The time interval between 

releases for the periodic element is set to 4 time units (based on the maximum possible processing 

time). Only one level is considered since a larger release interval led to worse performance in 

previous studies (Perona & Portioli, 1998; Land, 2006). The constant allowance for the operation 

throughput time used for calculating planned release dates is set to 3 time units based on 

preliminary simulation experiments. Finally, as a baseline measure, experiments without 

controlled order release have also been executed, i.e. where jobs are released onto the shop floor 

immediately upon arrival. This is referred to as Immediate Release (IMM). 

 

3.3 Labor Assignment Rules 

Two When rules are considered: (i) Centralized, where a worker is eligible for transfer after each 

job completion; and, (ii) Decentralized, where a worker is eligible for transfer once the queue of 

the current station is empty. We also consider two Where rules: (i) the Maximum number of jobs 

in queue (MaxJob) rule, where a worker is transferred to the station with the longest queue 
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measured in terms of the number of jobs (which may be the current station or a station without 

labor); and, (ii) the Earliest Due Date (EDD) rule, where a worker is transferred to the station with 

the queue that contains the job with the most urgent due date (which may be the current station or 

a station without labor). Note that, for MaxJob, a tie may occur, i.e. several stations may have the 

same (maximum) number of jobs. This tie is resolved by using the EDD rule.  

The MaxJob rule was included as it is a standard rule that has been widely applied in previous 

research. The EDD rule was included due its good performance in Jensen (2000). Other rules, such 

as the shortest processing time rule, were not considered since they did not lead to performance 

improvements in previous studies (see, e.g. Park 1991). Since we consider workers to be fully 

interchangeable, no Who Rule is applied. Finally, if all stations without labor are empty, the worker 

goes to the central foreman to await work. 

 

3.4 Shop Floor Dispatching Rules 

The job that should be selected for processing next from the queue in front of a particular station 

is determined by a shop floor dispatching rule. In this study, two rules are applied: (i) the Earliest 

Due Date (EDD) rule, which prioritizes the job with the most urgent due date; and, (ii) the 

Modified Operation Due Date (MODD) rule (see, e.g. Baker & Kanet, 1983). The MODD rule 

prioritizes jobs according to the lowest priority number, which is given by the maximum of the 

operation due date δij and earliest finish time. In other words, max(δij, t+pij) for an operation with 

processing time pij, where t refers to the time when the dispatching decision is taken. The MODD 

rule shifts between a focus on ODDs to complete jobs on time and a focus on speeding up jobs – 

through a focus on shortest processing times – during periods of high load, i.e. when multiple jobs 

exceed their ODD (Land et al., 2015).  

The calculation of the operation due date δij for the ith operation of a job j follows Equation (1) 

below. The operation due date for the last operation in the routing of a job is equal to the due date 

δj, while the operation due date of each preceding operation is determined by successively 

subtracting an allowance c from the operation due date of the next operation. This allowance is set 

to 3 time units based on the operation throughput times realized in preliminary simulation 

experiments. 

 

cin jjij  )(  i:1... jn        (1) 

nj – number of operations in the routing of job j 
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3.5 Experimental Design and Performance Measures 

The experimental factors are summarized in Table 1. A full factorial design with 

(2x2x2x2x8x2x2x3) 1,536 scenarios was used, and each scenario was replicated 100 times. Results 

were collected over 10,000 time units following a warm-up period of 3,000 time units. These 

parameters allowed us to obtain stable results while keeping the simulation run time to a reasonable 

level. 

 

[Take in Table 1] 

 

Three main performance measures are used to assess both workload balancing and delivery 

performance: (i) the lead time (i.e. the time when a job is completed minus the time when it arrived 

at the company); (ii) the percentage of tardy jobs; and, (iii) the mean tardiness – that is 

),0max( jj LT  , with jL  being the lateness of job j (i.e. the actual delivery date minus the due 

date of job j). In addition to these three main performance measures, we also measure the average 

shop floor throughput time as an instrumental performance variable. While the lead time includes 

the time that a job waits in the pool prior to release, the shop floor throughput time only measures 

the time after release to the shop floor. 

 

4. Results 

Statistical analysis of our results was first conducted using an ANOVA (Analysis of Variance). 

ANOVA is here based on a block design, which is typically used to account for known sources of 

variation in an experiment. In our ANOVA, we treat the workload limit, shop type, adjustment 

type (to ensure 95% worker occupation), and staffing level as blocking factors. This allows the 

main effects of these factors and the main and interaction effects of our four control related factors 

– the release method, our two types of labor assignment rules (i.e. the When and Where rules), and 

the dispatching rule – to be captured. The results are presented in Table 2 and Table 3 for lead time 

performance and tardiness related performance, respectively. All main effects, except for the 

Where Rule in terms of the percentage tardy, and the majority of the two-way interactions were 

shown to be statistically significant at α=0.05. The two-way interaction between release method 

and Where Rule was not shown to be statistically significant for any of the performance measures 
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considered. There are also some significant three-way interactions while all four-way interactions 

were found not to be statistically significant.  

 

[Take in Table 2 & Table 3] 

 

To further assess these performance differences, detailed performance results will be presented 

next in Section 4.1. Here we focus on the release method, When Rule, Where Rule, and dispatching 

rule for one setting of the shop type, adjustment type, and staffing level. The impact of these three 

blocking factors is then examined in Section 4.2 to assess the robustness of our results. Finally, a 

discussion of the results is presented in Section 4.3. 

 

4.1 Performance Assessment 

To aid their interpretation, the results are presented in the form of performance curves. The left-

hand starting point of the curves represents the lowest workload norm (4 time units). The workload 

norm increases step-wise by moving from left to right in each graph, with each data point 

representing one norm level (from 4 to 10 time units). Loosening the norm increases the level of 

work-in-process and, as a result, lengthens the shop floor throughput time. In addition, the results 

for immediate release are given by a single data point. These results are located to the right in each 

graph since they lead to the highest level of work-in-process. Figures 1a, 1b, 1c, and 1d show the 

lead time, percentage tardy, and mean tardiness over the shop floor throughput time results for the 

different combinations of When and Where rules. Figure 1a and Figure 1b present the results for 

the original and refined LUMSCOR release rules under EDD dispatching, respectively. Figure 1c 

and Figure 1d represent the same results under MODD dispatching. Only results for the pure job 

shop, an adjustment to the inter-arrival rate, and a staffing level of 4 workers are shown here, with 

the impact of changing these three factors assessed in the next section (Section 4.2). In the 

remainder of this section we discuss the results in terms of labor assignment rules, order release, 

and dispatching rule in Section 4.1.1 to 4.1.3, respectively. 

 

[Take in Figure 1] 

 

4.1.1 Labor Assignment Rules (When and Where Rules) 

The performance of the different combinations of When and Where rules in isolation can be 

observed from the results for immediate release (i.e. the single right-hand data points in each 

graph). Results show a superior performance of the centralized When Rule. If a decentralized 
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When Rule is applied, a worker is only eligible for transfer once the queue of the current station is 

empty. This favors jobs with short routings since low priority jobs (according to the Where Rule) 

may also be processed. In contrast, if the centralized When Rule is applied, a worker is eligible for 

transfer after each job completion. This favors jobs with long routings compared to a decentralized 

When Rule, as can be observed from Table 4, which gives the immediate release results from 

Figure 1 collected for each routing length. Favoring jobs with long routings leads to performance 

improvements overall since jobs with long routings are at a higher risk of becoming tardy than 

jobs with short routings. 

 

[Take in Table 4] 

 

Meanwhile, specifically for a decentralized When Rule, the more jobs there are in a queue the 

more likely it is that the most urgent job is also present in this queue. This explains why the 

performance of the EDD rule is similar to that of the MaxJob rule. However, under MODD 

dispatching (Figure 1c and Figure 1d), performance differences due to the Where Rule increases. 

If there is a long queue, many jobs are urgent. While EDD dispatching selects the most urgent job, 

MODD dispatching selects the job with the lowest processing time among urgent jobs. 

 

4.1.2 Impact of Order Release 

The impact of order release can be observed by comparing the single right-hand data points in each 

graph with the corresponding performance curves. Results suggest that significant performance 

improvements can be obtained through order release control for all performance measures except 

the percentage tardy and the scenario where a centralized When Rule, the MaxJob Where Rule, 

and MODD dispatching are applied (Figure 1c and Figure 1d). This is the experimental setting in 

which the strong focus on shortest processing times discussed in Section 4.1.1 above occurred. 

Meanwhile, tightening the norm (i.e. moving from right to left along each curve) reduces 

performance differences across When and Where rules, as somewhat expected, since queues 

become smaller and consequently selection possibilities are reduced. This reduction in queues is 

also likely to lead to more labor transfers if a decentralized When Rule is applied. 

The impact of the refinement to the release method, i.e. only releasing a job through the 

continuous element of LUMSCOR if there is labor available, can be observed by comparing the 

results in Figure 1a with those in Figure 1b and by comparing Figure 1c with Figure 1d. Compared 



 16 

to the original release method, no significant performance improvements can be observed. This 

means the original LUMSCOR method can be retained in a DRC shop.  

 

4.1.3 Priority Dispatching 

The dispatching rule has relatively little direct impact on performance since labor assignment rules 

and order release restrict the selection possibilities. However, dispatching may lead to significant 

interaction effects, influencing the performance of the Where Rule (see Section 4.1.1 above). 

Dispatching also has a significant effect on the number of labor transfers incurred by the different 

combinations of When and Where rules. This can be observed from Table 5, which gives the 

number of labor transfers per 100 time units for the immediate release results from Figure 1. Table 

5 provides the results for labor transfer caused by the Where Rule, labor transfer caused by a station 

being idle, and we indicate the total number of labor transfers (i.e. the sum of both), and the number 

of transfers to the central foreman (i.e. no transfer to another station). 

 

[Take in Table 5] 

 

From the table, a noteworthy reduction in labor transfers for the centralized When Rule and 

EDD Where Rule can be observed if MODD dispatching is applied instead of EDD dispatching. 

Under EDD dispatching, the most urgent job is selected for processing. This means that, after 

processing, the most urgent job is no longer in this queue. In contrast, for MODD dispatching, the 

job with the shortest processing time in the set of urgent jobs is chosen. Therefore, the most urgent 

job may still be in this queue. Finally, and as expected, the decentralized When Rule leads to fewer 

labor transfers than the centralized When Rule. 

 

4.2 Robustness Analysis 

In this section we discuss the results in terms of our three blocking factors – shop type, adjustment 

type, and staffing level – in Section 4.2.1 to 4.2.3, respectively. 

 

4.2.1 Impact of the Shop Type (Undirected vs. Directed Routing) 

Figure 2a to Figure 2d present the results for the same setting as in Figure 1 but for the general 

flow shop where the routing is directed.  

 

[Take in Figure 2] 
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In terms of labor assignment rules, it can be observed that the relative performance of the 

different combinations of When and Where rules is not affected by the shop type. However, the 

performance difference between the EDD Where Rule and MaxJob Where Rule increases 

significantly for a centralized When Rule if EDD dispatching is applied on the shop floor (Figure 

2a and 2b). As we shift from an undirected to a directed routing, the likelihood of the Where Rule 

shifting to a station differs across stations. In a general flow shop, the last station (Station 6) is 

more likely to have the most urgent job in the queue than the first station. Meanwhile, although 

the last station also has higher variability in terms of the size of the queue, the likelihood that the 

last station is the one with the longest queue is less than the likelihood that the last station is the 

one with the most urgent job. As a result, the correlation between the station with the longest queue 

and the station with the most urgent job in the queue is weaker in the general flow shop, and two 

different patterns of labor transfer occur. For MaxJob, labor transfers are still relatively equally 

distributed since all stations are still more or less equally likely to have the longest queue; but for 

EDD, a distinct pattern occurs – labor stays longer at the last station and shifts more often to/from 

upstream stations. This can be observed from Table 6, which gives the number of labor transfers 

per 100 time units for the concerned scenario for each station. It is argued that the distinctive 

pattern created by the EDD When Rule explains the performance improvement observed. 

 

[Take in Table 6] 

 

In terms of order release control, the results in Figure 2 confirm the positive performance effect 

of order release and that tightening the norm (i.e. moving from right to left on each curve) reduces 

the performance differences between labor assignment rules. Meanwhile, no performance 

improvement can again be observed from using the refined release method. Finally, the interaction 

effects created by dispatching in the pure job shop are also maintained in the general flow shop. 

 

4.2.2 Impact of the Adjustment Type 

Our results are also robust to the different approaches to maintaining average labor occupation at 

a 95% level: adjusting the inter-arrival rate and adjusting the service rate. This can be observed 

from Figure 3, which gives the results for the same scenarios as in Figure 1 (where we adjusted 

the inter-arrival rate) but with an adjusted service rate.  

 

[Take in Figure 3] 
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Importantly, while the relative performance of the order release control methods and the labor 

assignment rules appears to be unaffected, a general performance improvement can be observed 

for adjustments in the service rate. A first explanation of this effect is the lower processing time. 

For example, for a staffing level of three, the average processing time reduces from 3.5 time units 

to 1.75 time units. However, this decrease is relatively small compared to the actual reduction in 

the lead time that can be observed. Hence, some other explanation is needed. In response, we 

recorded the workload contribution over time. While the average amount of workload in the system 

is the same for a given staffing level (as the labor utilization is the same), adjusting the service rate 

leads to a smoother workload over time, as can be seen from Figure 4 where a snapshot of the 

workload over time is provided. This in turn leads to improved performance. Another important 

observation that can be made by comparing Figure 4a, which gives the workload distribution for 

a centralized When Rule, and Figure 4b, which gives the distribution for a decentralized When 

Rule, is that the latter leads to a smoother workload distribution over time. 

 

[Take in Figure 4] 

 

4.2.3 Impact of the Staffing Level 

In general, performance improves compared to full staffing since labor can be shifted from idle 

stations to stations with work. This allowed for higher labor utilization (but lower station utilization) 

in our study when compared to studies that use a similar shop model but without a labor constraint. 

Meanwhile, the positive performance effect of adjusting the service rate instead of the inter-arrival 

rate can also be observed from Figure 5, which gives the performance results for the two different 

adjustment types and different staffing levels. Only results for the original LUMSCOR release 

method and EDD dispatching are given since performance effects are qualitatively similar. In fact, 

while lower staffing levels lead to a worsening of performance when the inter-arrival rate is 

adjusted (seen by comparing Figure 5a with Figure 5b), lower staffing levels lead to better 

performance if a reduction in staffing can be compensated for by an increase in service rate by the 

remaining labor (seen by comparing Figure 5c with Figure 5d). This comes somewhat as a surprise 

since the labor occupation for both the inter-arrival rate adjustment and service rate adjustment is 

deliberately the same - 95%. It is partly explained by the actual reduction in processing time and, 

most importantly, the impact of processing time adjustments on the distribution of the incoming 
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workload overtime. Both adjustments impact the distribution of the work input, and the difference 

in the distribution explains the majority of the performance differences.  

 

[Take in Figure 5] 

4.3 Discussion of Results 

In general, it is argued in the literature that the Where Rule has less of a performance impact than 

the When Rule (Xu et al., 2011). Our results support this argument in the context of a pure job 

shop (i.e. undirected routing). More specifically, if the parameters that drive the Where Rule are 

highly correlated, such as the maximum number of jobs in a queue (MaxJob) and the most urgent 

job in the queue (EDD) in the context of our study, then performance differences between Where 

rules become negligible. However, our results question Xu et al.’s (2011) argument in settings 

where this correlation is weaker, as is the case in the general flow shop (i.e. when routings are 

directed).  

 In terms of order release control, Fredendall et al. (1996) highlighted the potential of including 

information on labor availability in the release decision for improving performance. This finding 

could not however be confirmed in the context of more effective order release methods that have 

emerged since Fredendall et al. (1996). Meanwhile, it was argued in the literature that more 

sophisticated dispatching rules lose their advantage when labor flexibility increases (Park, 1991). 

Our results support this argument, but they also highlight that the choice of dispatching rule leads 

to important interaction effects with the Where Rule. While order release, the When Rule, and the 

Where Rule limit the set of eligible jobs to choose between, it is still the dispatching rule that 

decides which job to process.  

 Finally, our results confirm Fredendall & Melnyk’s (1995) findings on the importance of the 

input distribution. Fredendall & Melnyk (1995) showed that any reduction in variance through 

higher planning levels has the potential to dominate performance improvements achievable at 

order release, dispatching, and via a worker assignment rule. Our results complement those of 

Fredendall & Melnyk (1995) as they focused on higher planning levels while we have highlighted 

that the input distribution is also influenced by lower level processing time adjustments, i.e. 

adjustments to the service rate. If labor is absent, the input of work to the shop needs to be reduced 

or capacity should be adjusted to avoid an overload (i.e. a worker occupation level in excess of 

100%). Capacity adjustments can be realized, for example, by working faster (i.e. reduced 

processing times) or through overtime by the remaining worker(s). Our study highlights that 
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capacity adjustments are a better choice than adjusting the input distribution since this leads to 

workload smoothing. 

 

5. Conclusions 

A major aim of production planning and control concepts such as Workload Control is to align 

demand (or workload) and capacity. Most research on Workload Control (and other concepts) has 

assumed that capacity is a single variable, i.e. constrained by a single resource, namely machine 

capacity. In practice, most manufacturing systems are not only constrained by machine capacity 

but also by labor capacity. This type of highly complex shop is known in the literature as a Dual 

Resource Constrained (DRC) shop. Although a broad literature on DRC shops exists, literature 

specifically on order release in DRC shops is scarce. In response, our first research question asked: 

What is the impact of Workload Control order release on the performance of a DRC shop under 

different staffing levels? Using simulation we have demonstrated that order release has the 

potential to significantly improve DRC shop performance and that results are robust to changes in 

the staffing level. However, in response to our second research question – Can the inclusion of 

information on labor availability further improve the performance of Workload Control order 

release in a DRC shop? – our results have demonstrated that refining the order release method to 

incorporate labor information in the release decision does not provide any positive performance 

effects. This means managers can implement the original Workload Control release method (i.e. 

LUMSCOR) if labor is fully interchangeable. Further, by considering different labor assignment 

rules (When and Where rules), dispatching rules, shop types (undirected and directed routings), 

staffing levels, and two different approaches for handling an overload – a lower inter-arrival rate 

of jobs and an increase in service rate – we sought to not only contribute to the literature (as 

discussed in Section 4.3 above) but also to provide guidance to managers on how best to handle 

the absence of labor and make release decisions in the context of multiple resource constraints. 

This will be briefly discussed next before the paper closes with the limitations of our study and 

future research directions. 

 

5.1 Managerial Implications 

Our study was motivated by an important issue encountered when implementing Workload 

Control in practice: how to handle fluctuations in the supply of human resources caused, for 

example, by attrition, high labor turnover, or absenteeism. Our results suggest that the original 
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Workload Control system can be implemented in DRC shops with fully interchangeable labor, i.e. 

LUMSCOR can be used whether there is a single or a dual constraint as refining the method to 

also incorporate labor information does not lead to any further improvements in release 

performance. LUMSCOR has the potential to improve performance regardless of the staffing level. 

In terms of transfer policy, a centralized When and urgency-based Where Rule should be applied 

to assign labor to stations. However, if transfer costs are high then a decentralized When Rule may 

be a better solution since it leads to significantly fewer transfers. Meanwhile, dispatching should 

be kept simple and, because of the interaction between dispatching and the Where Rule, the choice 

of dispatching rule should be aligned with the choice of Where Rule in terms of the priority value 

that determines the assignment and dispatching decision. Finally, the best way of handling labor 

absenteeism is by increasing the service rate enabling the remaining workers to work faster or 

undertake overtime.  

 

5.2 Limitations and Future Research 

A limitation of our study is that we assume workers are fully interchangeable, and we omit 

behavioral factors such as learning and forgetting. While this is justified by the need to keep our 

study focused, future research could take these factors into account. Meanwhile, our study has 

highlighted the potential of dynamic labor assignment rules that create a specific pattern that 

reflects, for example, routing characteristics. Future research is needed to design and test rules that 

support this aim. Araz & Salum (2010) provided a first contribution in this direction by presenting 

a scheduling mechanism that dynamically reschedules labor assignments using alternative labor 

assignment rules. However, the authors did not consider the creation of a labor transfer pattern, as 

has been demonstrated here to significantly improve performance if the routing is directed. Finally, 

not having full staffing improves performance (when compared to having full staffing) since labor 

can be shifted from idle to loaded machines. This means that performance can be improved by 

increasing labor utilization at the expense of station utilization. This may provide the starting point 

for future research on staffing. 
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Table 1: Experimental Settings 

 

Factors Levels 

Release Methods Original and Refined LUMSCOR 

When Rules Centralized and Decentralized 

Where Rules EDD (Earliest Due Date) and MaxJob (Maximum Number of Jobs) 

Dispatching Rules EDD and MODD (Modified Operation Due Date) 

Norm Levels IMM, 10, 9, 8, 7, 6, 5, 4 

Shop Types 
Pure Job Shop (random, undirected routing) and General Flow Shop 
(random, directed routing) 

Adjustment Types  
(to ensure 95% worker occupation) 

Inter-arrival rate adjusted and service rate adjusted 

Staffing Levels 5, 4, and 3 workers 

 

 

 

 

Table 2: ANOVA Results (Lead Time Performance) 
 

 Source of Variance 
Sum of 

Squares 
Degree of 
Freedom 

Mean 
Squares 

F-Ratio 
p-

Value 

Lead Time 

Release Method (RM) 36059.21 1 36059.21 2329.57 0.00 

When Rule 23277.32 1 23277.32 1503.81 0.00 

Where Rule 704.84 1 704.84 45.54 0.00 

Dispatching (Disp) 6827.89 1 6827.89 441.11 0.00 

Norm 16028.42 7 2289.77 147.93 0.00 

ShopType 23211.94 1 23211.94 1499.59 0.00 

Adjustment 1428000.90 1 1428000.90 92254.69 0.00 

Staffing 224122.35 2 112061.17 7239.61 0.00 

RM x When 495.07 1 495.07 31.98 0.00 

RM x Where 2.80 1 2.80 0.18 0.67 

RM x Disp 433.07 1 433.07 27.98 0.00 

When x Where 130.33 1 130.33 8.42 0.00 

When x Disp 203.01 1 203.01 13.12 0.00 

Where x Disp 1.07 1 1.07 0.07 0.79 

RM x When x Where 5.85 1 5.85 0.38 0.54 

RM x When x Disp 113.80 1 113.80 7.35 0.01 

RM x Where x Disp 2.01 1 2.01 0.13 0.72 

When x Where x Disp 19.98 1 19.98 1.29 0.26 

RM x When x Where x Disp 0.95 1 0.95 0.06 0.80 

Residual 2377140.70 153573 15.48   
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Table 3: ANOVA Results (Tardiness Performance) 
 

 Source of Variance 
Sum of 

Squares 
Degree of 
Freedom 

Mean 
Squares 

F-Ratio 
p-

Value 

Percentage 
Tardy 

Release Method (RM) 5.47 1 5.47 1360.15 0.00 

When Rule 17.22 1 17.22 4284.22 0.00 

Where Rule 0.01 1 0.01 3.22 0.07 

Dispatching (Disp) 29.83 1 29.83 7423.05 0.00 

Norm 4.65 7 0.66 165.26 0.00 

Shop Type 11.71 1 11.71 2912.92 0.00 

Adjustment 314.91 1 314.91 78368.38 0.00 

Staffing 12.75 2 6.37 1586.15 0.00 

RM x When 0.16 1 0.16 39.62 0.00 

RM x Where 0.00 1 0.00 0.37 0.54 

RM x Disp 0.14 1 0.14 35.95 0.00 

When x Where 0.27 1 0.27 68.15 0.00 

When x Disp 0.14 1 0.14 34.62 0.00 

Where x Disp 0.44 1 0.44 108.56 0.00 

RM x When x Where 0.00 1 0.00 0.09 0.76 

RM x When x Disp 0.02 1 0.02 4.65 0.03 

RM x Where x Disp 0.00 1 0.00 0.04 0.84 

When x Where x Disp 0.21 1 0.21 51.45 0.00 

RM x When x Where x Disp 0.00 1 0.00 0.04 0.84 

Residual 617.11 153573 0.00   

Mean 
Tardiness 

Release Method (RM) 3712.52 1 3712.52 639.93 0.00 

When Rule 12902.63 1 12902.63 2224.03 0.00 

Where Rule 1335.30 1 1335.30 230.17 0.00 

Dispatching (Disp) 30.81 1 30.81 5.31 0.02 

Norm 16662.43 7 2380.35 410.30 0.00 

Shop Type 7016.01 1 7016.01 1209.35 0.00 

Adjustment 147488.24 1 147488.24 25422.64 0.00 

Staffing 13753.27 2 6876.64 1185.33 0.00 

RM x When 215.51 1 215.51 37.15 0.00 

RM x Where 5.90 1 5.90 1.02 0.31 

RM x Disp 127.30 1 127.30 21.94 0.00 

When x Where 410.60 1 410.60 70.77 0.00 

When x Disp 225.77 1 225.77 38.92 0.00 

Where x Disp 20.72 1 20.72 3.57 0.06 

RM x When x Where 5.83 1 5.83 1.01 0.32 

RM x When x Disp 80.93 1 80.93 13.95 0.00 

RM x Where x Disp 1.38 1 1.38 0.24 0.63 

When x Where x Disp 63.69 1 63.69 10.98 0.00 

RM x When x Where x Disp 1.04 1 1.04 0.18 0.67 

Residual 890946.59 153573 5.80   
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Table 4: Performance Analysis – Centralized vs. Decentralized When Rule for Different Routing 

Lengths of Jobs under Immediate Release (Pure Job Shop, Inter-arrival Rate Adjusted, and a 

Staffing Level of 4 Workers) 
 

 Dispatching 

Rule 

Where  

Rule 

When  

Rule 

Routing Length (RL) of Jobs 

RL1 RL2 RL3 RL4 RL5 RL6 

Lead  

Time 

EDD 

EDD 

 

Centralized 10.77 14.85 17.51 19.57 21.35 22.97 

Decentralized 7.88 13.76 18.52 22.55 26.12 29.34 

MaxJob 

 

Centralized 9.89 14.34 17.38 19.75 21.76 23.59 

Decentralized 7.78 13.59 18.31 22.36 26.08 29.52 

MODD 

EDD 

 

Centralized 11.76 15.55 17.98 19.92 21.59 23.16 

Decentralized 8.79 14.26 18.41 22.09 25.51 28.78 

MaxJob 

 

Centralized 11.42 15.37 17.76 19.58 21.19 22.67 

Decentralized 8.75 14.22 18.34 22.03 25.51 29.00 

Percentage  

Tardy 

EDD 

EDD 

 

Centralized 7.13% 10.23% 12.73% 15.02% 17.32% 19.66% 

Decentralized 2.77% 8.19% 14.57% 20.80% 26.47% 31.73% 

MaxJob 
Centralized 6.18% 9.86% 13.05% 15.87% 18.63% 21.26% 

Decentralized 2.63% 7.93% 14.17% 20.54% 26.49% 32.13% 

MODD 

EDD 

 

Centralized 3.30% 6.64% 9.63% 12.64% 15.16% 17.46% 

Decentralized 1.46% 5.52% 10.86% 16.50% 21.77% 26.50% 

MaxJob 

 

Centralized 3.01% 4.87% 6.63% 8.28% 9.85% 11.29% 

Decentralized 1.33% 5.52% 10.88% 16.56% 21.98% 26.80% 

Mean  

Tardiness 

EDD 

EDD 
Centralized 0.92 1.32 1.64 1.96 2.25 2.54 

Decentralized 0.32 1.16 2.36 3.82 5.36 6.93 

MaxJob 

 

Centralized 0.82 1.35 1.79 2.24 2.64 3.04 

Decentralized 0.29 1.10 2.28 3.70 5.34 7.06 

MODD 

EDD 
Centralized 0.53 1.15 1.84 2.62 3.38 4.14 

Decentralized 0.25 0.99 2.21 3.90 5.81 7.82 

MaxJob 

 

Centralized 0.90 1.53 2.20 2.97 3.78 4.53 

Decentralized 0.22 0.96 2.14 3.82 5.77 7.97 
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Table 5: Performance Analysis – Number of Labor Transfers under Immediate Release (Pure 

Job Shop, Inter-arrival Rate Adjusted, and a Staffing Level of 4 Workers) 
 

Dispatching 

Rule 

Where  

Rule 

When  

Rule 

Labor transfer per 100 time units 

Where Rule1 Idle2 Total3 Foreman4 

EDD 

EDD 

 

Centralized 116.76 67.32 184.08 27.46 

Decentralized 0 73.14 73.14 27.31 

MaxJob 

 

Centralized 120.88 55.81 176.69 26.79 

Decentralized 0 71.28 71.28 27.03 

MODD 

EDD 

 

Centralized 75.70 61.65 137.35 26.40 

Decentralized 0 69.68 69.68 26.58 

MaxJob 

 

Centralized 124.30 50.83 175.13 25.78 

Decentralized 0.00 67.83 67.83 26.38 

1) Labor transfer from a station due to the Where Rule priority 
2) Labor transfer from a station caused by the station being idle  

3) Total number of labor transfers 
4) Labor transfer to the central foreman   

 

 

 

Table 6: Performance Analysis – Number of Labor Transfers per Station under Immediate 

Release, the Centralized When Rule, and EDD Dispatching (General Flow Shop, Inter-arrival 

Rate Adjusted, and a Staffing Level of 4 Workers) 
 

 Where Rule 
Labor transfers per 100 time units 

Station 1 Station 2 Station 3 Station 4 Station 5 Station 6 

Labor transfer from a station 
due to the Where Rule priority 

EDD 25.03 23.23 20.91 18.44 15.36 7.00 

MaxJob 21.71 22.63 22.35 21.69 20.65 17.41 

Labor transfer from a station 
caused by the station being idle 

EDD 6.65 10.62 13.51 15.80 17.87 20.38 

MaxJob 7.37 8.38 9.09 9.67 10.16 10.77 

Labor transfer to the central 
foreman   

EDD 4.44 5.03 5.06 4.91 4.82 4.70 

MaxJob 4.90 4.57 4.48 4.42 4.37 4.28 
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 (a) Original & EDD (Disp.) (b) Refined & EDD  (Disp.) (c) Original & MODD  (Disp.) (d) Refined & MODD  (Disp.)  

 

 
 

Figure 1: Performance Results (Pure Job Shop, Inter-arrival Rate Adjusted, and a Staffing Level of 4 Workers) 
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 (a) Original & EDD (Disp.) (b) Refined & EDD (Disp.) (c) Original & MODD (Disp.) (d) Refined & MODD (Disp.)  

 

 
 

Figure 2: Performance Results (General Flow Shop, Inter-arrival Rate Adjusted, and a Staffing Level of 4 Workers) 



 33 

 
 

 
 

 
 
 (a) Original & EDD (Disp.) (b) Refined & EDD (Disp.) (c) Original & MODD (Disp.) (d) Refined & MODD (Disp.) 

 

 
 

Figure 3: Performance Results (Pure Job Shop, Service Rate Adjusted, and a Staffing Level of 4 Workers) 
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(a) Centralized When Rule, EDD Where Rule, and EDD Dispatching 

 

 
(b) Decentralized When Rule, EDD Where Rule, EDD Dispatching 

 

Figure 4: Analysis of Workload Over Time under Immediate Release (Pure Job Shop and a 

Staffing Level of 4 Workers) 
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 (a) 5 Workers & Inter-Arrival (b) 3 Workers & Inter-Arrival (c) 5 Workers & Service Rate (d) 3 Workers & Service Rate  

 

 
 

Figure 5: Performance Results for Different Adjustment Types and Staffing Levels (Pure Job Shop, Original Release, and EDD Dispatching) 

 


