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Abstract

Tactical capacity planning relies on future estimates of demand for the

mid- to long-term. On these forecast horizons there is increased uncertainty

that the analysts face. To this purpose, we incorporate macroeconomic vari-

ables into microeconomic demand forecasting. Forecast accuracy metrics,

which are typically used to assess improvements in predictions, are proxies

of the real decision associated costs. However, measuring the direct impact

on decisions is preferable. In this paper, we examine the capacity planning

decision at plant level of a manufacturer. Through an inventory simulation

setup, we evaluate the gains of incorporating external macroeconomic infor-

mation in the forecasts, directly, in terms of achieving target service levels

and inventory performance. Furthermore, we provide an approach to indi-
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cate capacity alerts, which can serve as input for global capacity pooling

decisions. Our work has two main contributions. First, we demonstrate the

added value of leading indicator information in forecasting models, when

evaluated directly on capacity planning. Second, we provide additional evi-

dence that traditional metrics of forecast accuracy exhibit weak connection

with the real decision costs, in particular for capacity planning. We propose

a more realistic assessment of the forecast quality by evaluating both the first

and second moment of the forecast distribution. We discuss implications for

practice, in particular given the typical over-reliance on forecast accuracy

metrics for choosing the appropriate forecasting model.

Keywords: Leading indicators, Inventory, Forecasting, Capacity planning

1. Introduction

In a manufacturing context, production needs to be planned well in ad-

vance, so that production capacity can be pooled on a global scale. A key

requirement in tactical capacity planning is to anticipate the future total de-

mand and ensure availability of adequate production capacity. Volling et al.

(2013) emphasises that the major challenge in this is to identify the right

level of tactical flexibility within a company. This flexibility translates into a

trade-off between investing in additional capacity and the deployment of ca-

pacity adjustment options. A necessary input for the tactical decision making

process are reliable demand predictions for the future periods, which must

also accommodate for the associated supply chain risks (Stadtler, 2005). The
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latter are typically handled by calculating safety stock requirements, which in

turn are based on the variability of the forecast errors (Nahmias and Cheng,

2009), as the future demand is unknown and must be predicted.

Therefore, the total capacity requirements are conditional on demand

forecasts, accounting for forecast error variability. Yet, the selection of fore-

casting models is typically done on accuracy metrics (Fildes, 1992, Ord et al.,

2017), which is a myopic choice as they consider solely the first moment of the

error distribution and ignore higher moments, which can have significant im-

plications for decision making, for instance in inventory management (Barrow

and Kourentzes, 2016). In this paper, we address this issue by performing an

inventory simulation to estimate the demand risk, accommodating specific

company practices, such as the inventory policy. We contrast the perfor-

mance of forecasting models selected in the conventional way, by assuming

that forecast accuracy is an adequate proxy for evaluating the quality of

predictions for capacity planning decisions, and by the proposed inventory

simulation based evaluation, which estimates the demand risk explicitly.

Using inventory performance metrics is in line with the literature that ar-

gues forecasting models used for inventory management should be evaluated

as such, particularly for slow moving items (Babai et al., 2013, Kourentzes,

2013, Wang and Petropoulos, 2016). The motivating difference in this work

is the problem context. In contrast to operational inventory decisions that

are short-term, tactical capacity planning requires longer term forecasts that

have to account for potential changes in the market dynamics. The majority
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of supply chain management forecasting is based on extrapolative methods,

which model demand patterns from the past, with the potential superposi-

tion of market information by experts in the form of judgemental adjustments

(Fildes et al., 2009). This faces two problems, experts have inconsistent per-

formance (Trapero et al., 2013) and extrapolative forecasts are incapable of

capturing changes in market dynamics, as they are based only on past his-

torical observations of the target variable. Furthermore, it could be argued

that using experts can be an expensive and labour intensive task that may

not always be desirable or even feasible. Recent advances in tactical fore-

casting propose using leading indicator information, such as macroeconomic

variables that can provide early indications of changes in market dynamics.

Sagaert et al. (2018) argued that including external macroeconomic leading

indicators can be beneficial in tracking changes in the business environment,

leading to improved tactical-strategic forecasts.

This paper extends this research by investigating the usefulness of lead-

ing macroeconomic indicators for tactical capacity planning, by including

this information on the plant level. Notably, the literature on assessing fore-

cast quality for capacity planning is sparse and our findings highlight both

successful forecasting models for this purpose and provide a valid evaluation

framework. We perform our analysis on a real case of a manufacturer with

multiple plants in different countries and contrast the use of state-of-the-art

extrapolative forecasting methods and models using leading indicators. We

demonstrate that should one choose the best forecasts based on accuracy
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metrics, a suboptimal solution could be reached, as the supply chain risk

would not be accounted for fully. On the other hand, using the proposed

evaluation demonstrates that leading indicators enhance forecasts in a vari-

ety of circumstances. Therefore, the contribution of the paper is two-fold: (i)

we demonstrate the usefulness of leading indicators in forecasts for tactical

capacity planning, and propose a model that identifies and uses them effec-

tively and automatically; and (ii) we demonstrate the benefits of considering

supply chain risk in selecting the appropriate forecasting model.

The rest of the paper is organised as follows. Section 2 provides a brief

literature review, motivating the research questions. Section 3 provides the

theoretical formulations on experimental setup. Section 4 presents the em-

pirical data and the results, and Section 5 contains concluding remarks.

2. Background

The majority of capacity planning work has looked at the operational side

of the problem (for example, Huang et al., 2008, Lee and Kim, 2002). Studies

focus on optimising the production schedule and inventory rules, assuming

the forecasts as given (Goyal and Giri, 2003), or overly simplistic (Silver et al.,

2016). A literature review by Volling et al. (2013) notes that most models for

the planning of tactical capacity assume deterministic demand and focus on

a single production site. He identifies a gap of stochastic approaches in the

context of global planning, and expects that improvements can be obtained

by models that incorporate stochastic influences to assess the risk that is
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inherent to mid- to long-term tactical planning decisions. These risks can

originate from internal effects within the company (e.g. product demands,

product life cycles, market prices or production costs and transport costs;

Vidal and Goetschalckx, 2000) or external effects (e.g. exchange rates Meyer,

2004, political decisions or other macroeconomic factors).

For the long-term strategic capacity planning, Chien et al. (2017) ad-

dresses demand uncertainty via judgemental forecasting for a semiconductor

case. Kourentzes et al. (2014) and Athanasopoulos et al. (2017) demonstrate

that conventional extrapolative forecasting methods perform poorly for such

long-term predictions as both the selection and parametrisation of the models

are based on short-term focused statistics. Bihlmaier et al. (2008) includes

discrete probability distributions of the future demand into their strategic

network planning for an automobile industry case. However, this research

only allows for flexible capacity by closing existing or open new production

sites, as these are the main decisions that are taken on a strategic planning

level (Goetschalckx, 2002).

However, a tactical decisions process focusses on where to manufacture

which product or product family and from where to satisfy the customers

demand. In this paper, we focus on this tactical decision problem, where

having a reliable forecast is more challenging than in an operational setting

due to the horizons involved, the forecast is the primary input for effective

decision making.

The effects of demand uncertainty and forecast errors on supply chain
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planning models have received some attention in the literature. Fildes and

Kingsman (2011) demonstrate that not accounting for the stochastic risk

results in very poor supply chain performance. They also found that in

manufacturing problems that exhibit high demand uncertainty and conse-

quently forecast error, any improvements in accuracy should lead to sub-

stantial percentage improvements in unit costs, by eliminating waste and

inefficient planning. Enns (2002) looked at the effect of forecasting bias and

demand uncertainty on production planning and found mixed effects. He

argued that if bias is unavoidable, it is preferable to under-forecast and han-

dle the demand uncertainty and associated supply chain risk by using safety

stock, instead of being biased towards over-forecasting.

Estimating the uncertainty around a point forecast is indispensable for

tactical capacity planning and inventory control. This can be assessed by re-

viewing the distribution of forecast errors. Yet, to the best of our knowledge

the measures of forecast uncertainty have been neglected in capacity plan-

ning research. Barrow and Kourentzes (2016) looked at the impact of the

distribution of forecast errors on safety stock. They found that more accurate

forecasts, as constructed by combining different forecasts, resulted in more

symmetric distributions that demonstrated more consistent in- and out-of-

sample errors. Naturally, this led to lower safety stock requirements as the

risk was captured better. Kolassa (2016) focussed on evaluating forecasts of

count data in retail, and argued in favour of considering the complete distri-

bution instead of summary accuracy metrics. Wang and Petropoulos (2016)
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compared different statistical, managerially adjusted forecasts and combina-

tions of them in terms of forecast accuracy, bias and inventory performance,

concluding that inventory variance is positively affected by the variance of

the forecast errors. Babai et al. (2013) contrasted the benefit of information

sharing on both forecast accuracy and inventory performance.

It is well established that enhancing extrapolative forecasts with addi-

tional relevant information can result in better behaved and narrower forecast

error distributions. The type of relevant information depends on the forecast-

ing objective, for example, in an operational setting including promotional

(Kourentzes and Petropoulos, 2015, Ma et al., 2016) or point-of-sales (Trap-

ero et al., 2012) information can substantially improve forecasts. At a tactical

level, because of the geographical constraints on manufacturing capacity and

inventory, the supply chain is strongly affected by external changes (Prater

et al., 2001). Research by Chien et al. (2017) states that leading indica-

tors with information from an economic environment aid domain experts in

formulating long-term demand forecasts.

This motivates us to quantify the impact on sales forecasting with external

macroeconomic indicators on the supply chain. This is supported by previ-

ous research that has argued the benefits of using such external information

to improve strategic forecast accuracy (Sagaert et al., 1017). While macroe-

conomic indicators have been used successfully in forecasting macroeconomic

variables (Bai and Ng, 2008, Stock and Watson, 2012, Bulligan et al., 2015),

in this paper, we want to assess their value on tactical capacity planning
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level.

There is a clear gap in the literature in exploring appropriate forecast-

ing models for tactical capacity planning and their impact on the required

capacity decisions, or on the production plan and the inventory on mid-term.

3. Methodology

3.1. Tactical capacity planning

Capacity planning on a tactical level is concerned with the best allocation

of production plant capacity to a production plan on a global scale. Volling

et al. (2013) distinguishes two main elements in tactical capacity: technologi-

cal capacity and organisational capacity. The capacity problem includes then

human resources constraints, actual machine availability, as well as internal

company policies on a global level. At an operational level, capacity planning

can be myopic, due to the short-term focus, and does not guarantee available

resources over longer periods of time. Tactical capacity planning enables to

overcome this problem, by taking the capacity constraints into account on

mid-term planning. The major advantage of tactical capacity planning is

that, the capacity of different production plants can still be reallocated on a

medium to long horizon without causing a large impact on the operational

planning. Naturally, to achieve this accurate tactical forecast are required.

3.2. Indicator forecasting model

Sagaert et al. (2018) proposes a methodology for incorporating leading

indicators to sales forecasting on a strategic-tactical level, based on the Least
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Absolute Shrinkage and Selection Operator (LASSO) methodology (Tibshi-

rani, 1996). Macroeconomic leading indicators are automatically identified,

together with their lead order, i.e. how many periods in advance the indi-

cator provides leading information to explain the movement of sales. The

model can simultaneously select information from the univariate time series

information (e.g. seasonality) as well as external information.

When using exogenous variables in a forecasting context, their future val-

ues will typically be unknown. To overcome this, we formulate unconditional

forecasts, that is we only use information available up until the forecast ori-

gin at period t. This can be achieved by lagging the exogenous variables

accordingly, so that only observed values are used as inputs for the forecasts.

Given h the forecast horizon, and k the lag order for an indicator, the lead-

ing effect should be long enough so that k > h. This ensures that we never

require information that is not observed. Naturally, for each forecast horizon

a different constraint on k is imposed and therefore we construct h different

forecasting models to account for this.

Let Ŷt,h be the forecast of the demand in period t+h, made at t. We can

incorporate leading indicator information to the forecast using a regression

formulation:

Ŷt,h = β0 +
S−1∑
s=1

βsDt,s +
P∑
j=1

L∑
k=h

βjkXj,t−k, (1)

where β0 is a constant, βs is the coefficient for the binary seasonal dummy

Dt,s for seasonal period s. βjk is the coefficient for the j = 1, . . . , P indicator
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Xj,t−k, is lagged by k periods in time. Observed that (1) has two groups of

terms: the first captures seasonality, and the latter consists of the leading

indicators.

The model parameters are optimised using the LASSO cost function:

N∑
i=1

(
Yi −

S−1∑
s=1

βsDi,s −
P∑
j=1

L∑
k=h

βjkXj,i−k

)2

+ λ

(
S−1∑
s=1

|βs|+
P∑
j=1

L∑
k=h

|βjk|

)
,

(2)

where Yi, i = 1, . . . , N , are the in-sample observations. These, together with

the seasonal dummies (Di,s) and the lagged indicators (Xj,i−k) are normalised

to zero mean and unit standard deviation. This ensures that the scale of

the various indicators does not bias the estimation. The scalar λ controls

the amount of shrinkage. In (2) the first term measures the fit using the

standard regression quadratic cost, while the second term penalises the fit

by the absolute size of the various coefficients. This forces them to become

small, and due to the absolute loss even excluded from the model. Therefore,

the LASSO estimates the predictor coefficients and makes a selection of the

most relevant ones. The model is able to select among the predictors, even if

PL� N . When λ is set to zero, all predictors enter the model and becomes

equivalent to conventional ordinary least squares regression. The appropriate

λ is selected using cross-validation. Finally, once all coefficients have been
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estimated the constant β0 is calculated as:

β0 =
1

N

N∑
i=1

Yi −

(
S−1∑
s=1

βs
1

N

N∑
i=1

Di,s +
P∑
j=1

L∑
k=h

βjk
1

N

N∑
i=1

Xj,i−k

)
. (3)

The potential pool of macroeconomic indicators is immense. Sagaert et al.

(2018) showed that LASSO is capable to effectively select useful and relevant

indicators automatically. Note that the selection problem is substantial, as

one has to consider all relevant indicators in all their lagged realisations as

potential inputs. They also showed that the model can take advantage of

expert information, in which case experts can do a coarse pre-filtering for

relevant types of variables, resulting in improved forecasting performance.

3.3. Estimation of forecast uncertainty

The demand process follows an unknown stochastic model, associated

with some uncertainty. Based on the observed values Y1, . . . , Yt, at period t,

the model then proposes a random variable Ŷt,h as the projected demand h

periods later, with distribution Ft,h(x) = Prob[Ŷt,h 6 x].

In the literature two approaches have been advocated to assess the un-

certainty of the stochastic process. One is suggesting to use the variance

of demand to estimate this uncertainty (for example, see Heizer and Ren-

der, 2004), while the other suggests the variability of the forecast error (for

example, Silver et al., 2016). Although there are cases that these two may

converge, the latter is more general. This is easy to exemplify considering a

deterministic seasonal demand pattern, the variance of which is non-zero, yet
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it implies no uncertainty and an appropriate forecasting model would result

in zero errors. Therefore here we follow the second approach.

Nonetheless, in estimating the uncertainty for multi-step-ahead forecasts

there is no single approach. Given a forecasting model, the expectation

of Ŷt,h is the point forecast Ŷt,h, which is associated with a forecast error

et,h. We typically assume that the error is Gaussian with zero mean and

standard deviation σ. When a forecasting model is available, typically there

are analytical expressions of σ for multi-step forecasts (for example Hyndman

et al., 2008, provides such for the exponential smoothing family of models),

which require an estimate of the observed one-step ahead forecast error σ̂1.

This is typically calculated as:

σ̂1 =

√√√√ 1

N

N∑
i=1

(Yi − Ŷi−1,1)2, (4)

on the available N historical demand observations and is the well known Root

Mean Squared Error (RMSE). Although there is research that has demon-

strated that estimating σ1 on the in-sample data will underestimate the size

of the uncertainty, as the same sample is used to parametrise the forecast-

ing model (Barrow and Kourentzes, 2016), it is commonly used to derive

estimates of the multi-step error variance.

However, in the case of the model (1) that utilises the leading indicator

information due to the unconditional forecasting setup, a different model is

produced for each forecast horizon h. Therefore, we can estimate directly
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the standard deviation for each respective horizon, σ̂h directly from each of

the h models as follows:

σ̂h =

√√√√ 1

N − h+ 1

N∑
i=h

(Yi − Ŷi−h,h)2. (5)

Note that the theoretically calculated σh typically inflates for increasing h,

depending on the model form. This is imposed by the iterative nature of how

forecasts are produced, i.e. the forecast for period t+h−1 is used to produce

the t + h period forecast, any errors that occur in periods preceding t + h

propagate to that period, introducing covariances, thus inflating the expected

uncertainty, which leads to the commonly assumed behaviour that forecast

uncertainty increases for multi-step forecasts. This is not the case for the

leading indicator model. For each horizon a different model is used and no

propagation of errors occurs. Therefore, a further advantage of the proposed

forecasting approach is that it avoids the aforementioned introduction of

covariances, retaining the forecast uncertainty to lower levels.

3.4. Inventory simulation

We design an inventory simulation, which allows us to simulate the pro-

duction over a rolling origin and evaluate the evolution of the inventory,

comparing the effect of different forecasts as input. Our assumptions for the

inventory process are the following:

• The inventory of a particular (group of) item(s) has a periodic review
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at fixed periods of 1 month.

• Production of items is Make-to-Stock and happens continuously through-

out the period, but observing the inventory position and satisfying de-

mand with items from the inventory is done once at the end of every

period.

• In our context, the inventory is controlled by the decision of how much

of those items to produce in each period. A variant of the classical ser-

vice level method, see e.g. Thomopoulos (2015), is used which involves

solving a so-called newsboy problem in every period. As a complication

however, there is a production planning stand-off of g−1 periods which

means that at period t (i.e. at the end of period t) the quantities to be

produced in periods t+1 to t+g−1 are already committed in previous

periods and can no longer be altered.

Figure 1 visualises the production environment in monthly buckets.

Figure 1: Allocation of the production in period t+ g, to be decided at the end of period
t, in case of a production standoff of g − 1 periods.

Let Pt be the amount of items produced in period t and the inventory position

(on hand minus backorders) at the end of period t is observed to be It. As in
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previous sections, let Yt be the actual demand in period t and Ŷt,h the random

variable in period t+ h as forecasted at period t, with the point forecast Ŷt,h

and standard deviation σ̂t,h. At t, the future production quantities Pt+1 to

Pt+g−1 are already established so that the inventory position at t+ g− 1 can

be estimated as

Ît,g−1 = It +

g−1∑
h=1

(Pt+h − Ŷt,h) . (6)

The demand at t+ g will be satisfied entirely whenever

It+g−1 + Pt+g > Yt+g . (7)

If we choose to produce Pt+g items, the probability that the demand in period

t+ g is not entirely satisfied can be estimated as

α̂(Pt+g) = Prob[Ît,g−1 + Pt+g < Ŷt,g]

= Prob[It +

g−1∑
h=1

(Pt+h − Ŷt,h) + Pt+g < Ŷt,g]

= Prob[

g∑
h=1

Ŷt,h > Pt+g + It +

g−1∑
h=1

Pt+h]. (8)

Given the (continuous) distribution function

F ∗
t,g(x) = Prob[

g∑
h=1

Ŷt,h 6 x ], (9)

of the summed forecasted demand and a certain acceptable shortage proba-
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bility αt+g for period t+ g, the production quantity Pt+g in that period can

be allocated as

Pt+g = F ∗−1
t,g (1− αt+g)− It −

g−1∑
h=1

Pt+h , (10)

The challenge therefore is to obtain the distribution function (9) from the

forecasting model. Currently the forecasting models do not account for cor-

relation in the demand sequence Y1, . . . , Yt. In fact, it is assumed that the

forecasts Ŷt,h ∼ N(Ŷt,h, σ̂
2
t,h), h > 0, form an independent sequence so the

distribution function F ∗
t,g(x) is again that of a normal random variable

g∑
h=1

Ŷt,h ∼ N
( g∑
h=1

Ŷt,h,

g∑
h=1

σ̂2
t,h

)
. (11)

The above proposes a sequential (period-by-period) way of allocating the

production, assuming there are no constraints on how much the company can

produce in a period. Unless items in stock can be removed by means other

than customer demand (e.g. transfer to other plants), an obvious constraint

on the production would be that it is nonnegative. That is, allocation (10)

becomes

Pt+g = max
(
0, F ∗−1

t,g (1− αt+g)− It −
g−1∑
h=1

Pt+h) . (12)

This strategy aims at producing as late as possible, i.e. in the period where

the demand is. However, if there would be an upper bound on the production

capacity in this period t as Pt 6 CMax , the current sequential ‘myopic’
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planning may not be optimal or even acceptable. For example, suppose the

forecast tells us now that with high certainty there will be a large demand

5 periods later which largely exceeds the upper bound on the capacity. The

myopic strategy would fail to build up the inventory and prepare for this

event, resulting in an unacceptably low fill rate in that period. The problem

would then need to be reformulated using a finite planning horizon of H >

g − 1 periods (see e.g. Özer and Wei, 2004). However, as production plants

in a global network do not face a strict capacity constraint, but merely a

capacity pooling problem, this simulation would need to imply centralised

optimisation. Yet, the decision in our case study is managerial, and plant

specific. So this approach would not anticipate on the decision process in

practice.

For a particular plant and forecasting model, we can simulate the resulting

inventory process It during the forecasting test period, i.e. from period N+1

(right after the training period) to N + T . Throughout the T periods of the

simulation, the actual inventory at the end of each period t is determined as

IN = 0 , It = It−1 + Pt − Yt , N < t 6 N + T ,

where the production quantities Pt are planned period by period, always

using the most recent available forecasts of the future demand. To judge how

well a forecasting model performs, we use average on hand inventory and the

fill rate (FR) achieved over the T periods as performance metrics. Recall
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that fill rate refers to the average fraction of demanded items in a period

which can be obtained immediately from stock, without backordering. Let

Y
(p)
t and I

(p)
t respectively be the actual demand in period t and the inventory

position at the end of period t for plant p. Then

Ī+(p) =
1

T

n+T∑
t=n+g

max(0, I
(p)
t ) , (13)

and

FR(p) =

∑n+T
t=n+g max(0, Y

(p)
t + min(0, I

(p)
t ))∑n+T

t=n+g Y
(p)
t

. (14)

are the average on hand inventory and the fill rate (FR) estimated during the

test period. Note that we left out the first g − 1 periods in these estimates.

4. Empirical Evaluation

4.1. Case Study

The dataset contains real sales data from 5 global plants of a tire man-

ufacturer for the period of 2005-2015 on a monthly frequency. This data is

not adjusted for any seasonal or calendar effects. Two of these plants only

started in April, 2010 and data starts from this point onwards. The period

on which the models are fit is 2005:01-2012:12 and the test period is 2013:01-

2014:12. The time series are found to be trended and seasonal, as verified

by statistical tests and visual inspection. In our experiments, we forecast 6

months ahead, in a rolling origin setting. In the company production, there is
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a production stand-off of 5 months, so forecasts of h = 6 months are needed

to plan production.

The set of potential leading indicators consists of 1,011 monthly variables

and is the result of a coarse pre-filtering by one of the plant managers. All

external data is retrieved from the Federal Reserve Economic Data (FRED).

The indicators consist of different types of data, covering different aspects of

the macroeconomic dynamics. Table 1 provides examples of some of these

groups.

The optimal leading effect of the indicators is determined by LASSO. For

this, the indicators need to be lagged in time, at every potential relevant

lag (1 to L) prior to inputting them to the LASSO. This enlarges the set of

indicators by a factor L. In this paper, we accommodate for leading effects up

to one year ahead and set L = 12. In order to forecast h = 1, the model needs

to select the most relevant predictor from a set of 12,132 shifted indicators

and 11 seasonal dummies. For h = 2, the set becomes smaller, amounting to

11,121 lagged indicators and 11 seasonal dummies, which is necessary due to

the unconditional setup of the LASSO model, as outlined in section 3.2.

4.2. Benchmark models

We compare the forecast model using exogenous indicators with three

traditional forecasting models. First, the Naive model (or Random Walk)

assumes that the sales history is uninformative, and constructs a forecast that

is equal to the last observation for the next h periods. Note that since the
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Table 1: Examples of indicators clusters and their typical units.
Cluster of indicators Unit
Total inventories value at Manufacturers Million of Dollars
Total shipments value at Manufacturers Million of Dollars
Passenger car registrations Index
Diffusion index of national activity Index
National index of consumer prices for
fuel

Index

National index of consumer prices for
electricity

Index

National index of consumer prices for
passenger transport

Index

Consumer price index for motor vehicle
parts

Index or Growth Rate Previous Period

Domestic auto production volume Thousands of Units
Motor vehicle retail sales Thousands of Units
Business and consumer motor vehicle loans
outstanding

Millions of Dollars

Import and export of fuels National currency or Index
Unemployment level Thousands of Persons
Personal income Billions of Dollars

Naive requires no parameters to be estimated, or input from the modeller, it

is a fundamental benchmark that more complex forecasts should out-perform

to be of value.

Second, we use the case company current forecast as a benchmark, which

is the Holt-Winters method. For this evaluation, we implement Holt-Winters

within the state-space exponential smoothing family of models (Hyndman

et al., 2002) that provides both likelihood expression to optimise the model

parameters and analytical expressions for multi-step error variance.

Third, we allow for the complete exponential smoothing (ETS) family of

models, choosing the most appropriate one by Akaike Information Criterion

corrected for sample size (AICc). Given the widespread use of exponential
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smoothing models in supply chain forecasting, we do not present the different

models here and refer the reader to Hyndman et al. (2008) for the details.

Nonetheless, we note that the complete family of models allows for stochastic

trend and seasonality of various forms, and the error term of the model may

interact additively or multiplicatively, resulting in a very wide number of

time series that it performs well. In fact, Gardner (2006) reports the good

performance and widespread use of the models in both academia and practice.

The motivation behind our benchmark choices is to assess the added value

of incorporating leading indicators over well established univariate forecasting

models, as well as the current company forecast, to demonstrate any added

value of the more complex model.

4.3. Performance measures

We evaluate the performance of the competing models on forecast accu-

racy, estimated uncertainty and on inventory performance. From an accuracy

standpoint, we use the Average Relative Root Mean Squared Error (AvgRel-

RMSE):

AvgRelRMSEh = 5

√√√√ 5∏
p=1

(
RMSEA

h

RMSEB
h

)
, (15)

and

RMSEh =

√√√√ 1

N

N∑
t=1

(
Yt+h − Ŷt,h

)2
. (16)

The AvgRelRMSEh is the geometric mean across all five plants (p) of the

RMSE ratio of a forecast over a benchmark, across all evaluation sample,
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for a given horizon h. We use ETS as the benchmark forecast, given its

good performance in the literature. If a forecast outperforms ETS, then

AvgRelRMSEh becomes smaller than one and vice-versa. Furthermore, we

can calculate percentage improvements in accuracy over the benchmark as

1− AvgRelRMSEh.

This metric is based on the Average Relative Mean Absolute Error (Av-

gRelMAE), proposed by Davydenko and Fildes (2013). The AvgRelMAE

has been shown to have desirable statistical properties: it does not exhibit

the bias common in percentage based errors; it is scale independent, allowing

us to summarise across the different plants; it is robust to calculation issues;

and it is easy to interpret. We use RMSE as a basis so as to retain a direct

connection with forecast uncertainty and inventory.

We use a similar metric to compare the estimated forecast uncertainty

between forecasts, as captured by σ̂h (section 3.3). We define AvgRelσ̂h as:

AvgRelσ̂h = 5

√√√√ 5∏
p=1

(
σ̂Ah
σ̂Bh

)
, (17)

where σ̂Ah refers to the evaluated forecast and σ̂Bh to the benchmark that is

again ETS. The values of AvgRelσ̂h are read in the same way as AvgRel-

RMSE, but their key difference is that the former is based on in-sample

estimates of uncertainty, while AvgRelRMSE is calculated on the test set.

Finally to assess inventory performance, a weighted average is taken
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across the different plants:

Ī+α =
5∑
p=1

wpĪ
+(p) , and FRα =

5∑
p=1

wpFR(p) , (18)

with weights according to the actual demanded volumes per plant

wp =

∑n+T
t=n+1 Y

(p)
t∑5

p=1

∑n+T
t=n+1 Y

(p)
t

. (19)

In (18), the index α refers to the constant parameter value α = αt+g used in

the planning rule (12).

4.4. Results

4.4.1. Forecasting accuracy

The accuracy results for AvgRelRMSE for each forecast horizon are pre-

sented in table 2. The results summarises the accuracy for the five plants

and the most accurate result is highlighted in boldface.

Table 2: Summary AvgRelRMSE at plant level.

Forecast
Horizon

1 2 3 4 5 6 Overall

Naive 1.37 1.51 1.46 1.33 1.33 1.44 1.41
Holt-Winters 1.19 1.36 1.29 1.44 1.45 1.56 1.38
ETS 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LASSO 1.09 1.21 1.20 1.14 1.10 1.17 1.15

We find that ETS is consistently performing best, while LASSO that uses

leading indicators is second best. The company’s current forecasting model,
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Holt-Winters, is substantially worse than both, particularly for longer hori-

zons. Nonetheless, all forecasts, on average, outperform the Naive indicating

that they capture some of the structure in the time series. Overall, Holt-

Winters performs worse than ETS by 38% in terms of accuracy, while LASSO

is 15% worse compared to ETS. Similar results were obtained by other ac-

curacy metrics, such as AvgRelMAE and Mean Absolute Percentage Error,

which are not presented here for brevity.

LASSO selects a set of leading indicators for each plant, for each horizon.

These indicators originate from an indicator clusters as shown in table 1.

The most frequent selected indicators are: the wholesalers in motor vehicle

sales, the Consumer Price Index of the OECD group for fuel, electricity and

gasoline for specific countries, the industrial production volume index of fuels

and the number of people employed in specialized freight trucking. These

are all relevant to the sector that the manufacturer operates in.

The accuracy results indicate that although LASSO outperforms the com-

pany benchmark, it does not add value over ETS that is considering only

univariate patterns and no exogenous information. Nonetheless, as argued

before, this evaluation focuses on the point forecasts and ignores the associ-

ated forecast uncertainty.

4.4.2. Forecast uncertainty

Figure 2 plots the AvgRelσ̂h for each model and forecast horizon. The

uncertainty of ETS is always equal to 1 as it is used as basis for the calculation
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of AvgRelσ̂h. Observe that LASSO across all horizons is associated with

smaller uncertainty, effectively indicating that in-sample it has explained

more variance in the series than the competing models.
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Figure 2: AvgRelσ̂h for the competing forecasting models.

On the other hand, the results for Naive and Holt-Winters indicate rapid

deterioration over ETS as the forecast horizon increases. The uncertainty is

intrinsically tied to inventory management, hence we expect these results to

reflect on inventory performance.

4.4.3. Service level and inventory

Figure 3 shows the model performance curves, where 1 − Fill Rate is

plotted against the average inventory on hand. The Naive and Holt-Winters

models have substantially higher average on hand inventory. Notably the

worst performer is the current company forecast, the Holt-Winters.

26



The inventory simulation is performed for a range of α parameters, and

the resulting fill rate (FRα) and inventory (Ī+α ) are shown in figure 3. This

graph can be interpreted as follows: for a given target fill rate of the customer

demand, a certain stock is required. These curves are model-specific. Under

certain assumptions, a higher desired fill rate will result in a lower (1-Fill

rate), which will result for all models in a higher stock on hand. Once a

desired fill rate is chosen, the model then needs to be solved to estimate the

parameter α. This parameter α represents the acceptable shortage probabil-

ity, but this is a model specific parameter which needs to be optimised for

each model separately. This optimisation of the α happens based on the cost

function, where for linearly increasing holding costs and stockout costs, we

can draw the cost function visually as linear decreasing function. The overall

cost minimum is then located near to the origin of the both axes. Moving

along the horizontal axis will cause the stock to increase, and incur higher

stock holding costs. Moving along the vertical axis will induce a lower fill

rate, more shortages to the customer, and higher stockout costs. Here, we

review the general cases, as the holding cost and stockout costs are company

specific. We can see that the LASSO model dominates all other models in

the cost minimisation.

This result contradicts the accuracy findings. The curve in figure 3 is the

result of considering both the forecast uncertainty and the inventory policy

of the company, on top of the point forecasts, hence closer to the relevant

decision. Conversely, the accuracy results in table 2 are shown to be a weak
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Figure 3: Performance curves of fill rate versus the average on hand inventory.

proxy in assessing the quality of the decision.

To further evaluate the quality of the forecasting models we consider the

decision context. In capacity planning it is desirable to have a stable pro-

duction planning. The boxplots in figure 4 represent the different production

amounts Pt as determined by the inventory simulation over the test period

2013:06-2014:12. Based on this graph, we can review the production variabil-

ity among the different models. The plant capacity can be visualised with

a horizontal line. When the decided production amount is above that line,

then the decision makers need to act in order to pool capacity on a global

scale.

On the long term, the mean of the production will approximate the aver-

age demand. For all plants individually, we note that the median line in the
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box plots are approximately the same over all models. However, the vari-

ability is of huge importance for capacity planning. We want the variability

of the production amounts Pt to be as small as possible, as this represents a

more stable production and will lead to fewer capacity problems. As figure 4

indicates, the variation on the decided production is not equal for different

models. The Naive model exhibits the largest deviation in Pt. The produc-

tion from the inventory simulation, based on LASSO forecasts exhibits the

smallest variability. Looking at the upper quantiles of the boxplots, we can

see that the capacity management will be steered better with LASSO models.
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Figure 4: Box plot of different production quantities per plant. An ′o′ marks an outlier
that lies 1.5 IQR (Interquartile Range) away from the median. Upper ′x′ denotes that
there are points outside of the plot area.
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5. Conclusion

Tactical capacity planning requires good performing forecasts. When

managing capacity, production decisions are made on a mid-term level. This

allows companies to perform global capacity pooling, when the available

capacity on the local production plant is insufficient. The difficulty in this

decision process is that mid-term forecasts typically have more uncertainty

than short-term forecasts. This uncertainty can be assessed by estimating

the variance of the forecast errors. This paper reviews models that make use

of external information, such as macroeconomic leading indicators through

direct forecasting. These models are formulated in an unconditional setup

setting, which results in different forecast models for each forecast horizon.

Because of this, the variances of the forecast errors have all the properties

to be independent from one another. In fact, we see that these variances

remain stable over time. This would indicate that formulated forecasts with

external leading indicators have less uncertainty around the point forecasts,

even on longer horizons.

We compared the quality of these forecasts against established univariate

forecasting models, on a plant level in a company case. We demonstrate that

the selection and evaluation of different forecasting models should not happen

merely by evaluating the point forecasts. The entire forecast distribution

should be taken into account. We evaluated the performance of different

models on forecast accuracy, but also directly on measures that are important

for tactical capacity planning, as service level and realised inventory. We

30



found that in this context forecast accuracy was a weak proxy of the forecast

quality.

Therefore this paper has two contributions. First, it establishes the use-

fulness of leading indicators for forecasts that support mid-term capacity

planning decisions. We provide a modelling framework that allows effec-

tively selecting amongst a massive set of potential indicators, while retaining

an unconditional forecast setting. Second, we present evidence that evaluat-

ing models solely on forecast accuracy is not appropriate in this context. We

provide an evaluation framework to quantify the measures of importance for

capacity planning decisions.

Further research should look at the effects of the reviewed models on op-

erational levels, and the impact on SKU inventory. This research does not

incorporate any judgemental available information, or benchmark against

judgementally adjusted statistical forecasts, which are common in supply

chain forecasting, particularly at a tactical level. Furthermore, historical

stockouts truncate the distribution of demand, enlarging the systematic bias

in estimates of mean and variance. Further research could extend the inven-

tory simulation to include capacity constraints.
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