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Abstract 

 

Background: Understanding the number of cases of podoconiosis, its geographical 

distribution and the population at risk are crucial to estimating the burden of this disease in 

endemic countries. We assessed each of these using nationwide data on podoconiosis 

prevalence in Cameroon. 

 

Methods: We analysed data arising from two cross-sectional surveys in Cameroon. The first 

survey was conducted in the North West region of Cameroon in 2014 and the second 

corresponds to a nationwide mapping survey carried out in 2017. The assembled survey 

dataset was combined with a suite of environmental and climate data and analysed within a 

robust statistical framework, which included machine learning-based approaches and 

geostatistical modelling. The environmental limits, spatial variation of predicted prevalence, 

population at risk and number of cases of podoconiosis were each estimated. 

 

 

Results: A total of 214,729 records of individuals screened for podoconiosis were gathered 

from 748 communities in all 10 regions of Cameroon. Of these screened individuals, 882 

(0.41%; 95%CI 0.38-0.44) were living with podoconiosis. High environmental suitability for 

podoconiosis was predicted in three regions of Cameroon (Adamawa, North West and North). 

The national population living in areas environmentally suitable for podoconiosis was 

estimated at 5.2 (95% CI: 4.7-5.8) million, which corresponds to 22.3% of Cameroon’s 

population in 2015. The largest proportion (32.2%) of the population at risk was found in North 

West region. Countrywide, in 2015, the number of adults estimated to be suffering from 

podoconiosis was 41,556 (95% Confidence Interval [CI], 1,170- 240,993). Four regions 

(Central, Littoral, North and North West) contributed 61.2% of the cases. A total of 94 out of 

189 health districts are predicted to have more than 100 podoconiosis cases, however, in only 

20 health districts would the predicted number exceed 500.  

 

Conclusion: In Cameroon, podoconiosis is more widely distributed than was initially 

expected. The number of cases and the population at risk may pose a challenge to the national 

health system. Strengthening of the health system for early diagnosis of podoconiosis, 

morbidity management and follow up of cases is of utmost necessity. Promotion of footwear 

use and regular foot hygiene through social mobilization should be at the forefront of any 

intervention plan. Elimination of podoconiosis requires firm political will, policy formulation, 

operational and financial commitment by the Cameroonian Ministry of Health and donors.                  
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Introduction 

 
At the heart of Sustainable Development Goals (SDGs) for health is the principles of Universal 

Health Coverage (UHC), to promote physical and mental health well-being and to extend life 

expectancy for all [1].Neglected tropical disease affect the bottom billion people and their 

services can be a gateway to UHC[2].  Podoconiosis, a neglected tropical disease is one of 

the principal causes of tropical lymphedema [3, 4], which leads to massive swelling of the 

lower legs with the subsequent suffering to those affected [3, 5]. It is primarily a disease of 

barefooted individuals, who are more exposed to certain soil chemicals that trigger the 

lymphedema [3]. The disease is found in highland areas of tropical Africa, Central America 

and limited areas of India (north-west) and south-eastern Asia, according to the World Health 

Organization (WHO) [6, 7]. However, the actual geographical distribution and burden remain 

unknown in most endemic areas. Determining the burden and geographical distribution of 

podoconiosis is of utmost important to guide resource allocation and to monitor and evaluate 

the impact of prevention and control interventions put in place [3, 6]. Additionally, estimating 

the number of potential cases has shown to help strengthen active surveillance and inform 

national control strategies and case enrolment [8, 9].  

 

Podoconiosis is caused by long-term exposure to red clay soils, with mineral particle-induced 

inflammation on a background of genetic susceptibility [10-15]. Interactions between genetic 

and environmental factors trigger an inflammatory response that leads to lymphoedema and 

fibrosis [3]. It is hypothesized that mineral particles that penetrate bare skin are engulfed by 

macrophages in the lower limb lymphatics and induce an inflammatory response in the 

lymphatic vessels. This is followed by fibrosis and obstruction of the vessel lumen leading to 

oedema of the lower leg, which progresses to elephantiasis [3].  

 

Certain type of soils such as clay and silt soils have proven to be associated with a higher risk 

of podoconiosis [11-13]. Thus, soils with fine texture and sticky in nature are more easily able 

to penetrate the skin and become absorbed into the body [16]. Rainfall, altitude, terrain slope 

and some types of land cover have been found to favour the occurrence of podoconiosis [11-

13]. All these factors ultimately contribute to the type of soils generated [12].   

 

Nowadays, the availability of geographical data on soil composition, climate (i.e. temperature 

and precipitation) and topography, primarily derived from remotely-sensed data, and the 

development of robust statistical and modelling approaches, are making study of the relative 

contribution of all these environmental factors possible [8, 12, 13].  Studies conducted in 

Ethiopia, a country that is thought to bear the highest burden of podoconiosis, have enabled 
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identification of up to eight environmental factors (elevation and derived slope, annual 

precipitation, EVI, clay and silt content of the top soil, population density and distance from 

water bodies) driving the distribution of podoconiosis across the country [12]. Other research 

carried out in Ethiopia, but on a more local scale, showed that soil chemicals such as smectite 

quartz and mica, present in clay-rich soils, were strongly associated with the occurrence of 

podoconiosis [13]. However, it is reasonable to think that these factors, and others that may 

not have been reported yet, do not equally influence the distribution of podoconiosis 

everywhere. Therefore, identifying environmental factors that determine the distribution of 

podoconiosis in distinctive geographic areas should be considered a prerequisite for 

delineating the global distribution of podoconiosis [3, 6, 12].  

 

In Cameroon, another podoconiosis-endemic country, a few studies have been conducted in 

the north-west of the country [17-19]. Yet, the presence of this non-filarial elephantiasis 

elsewhere in the country and the environmental drivers underpinning its distribution remain to 

be determined.  

 

Building upon our previous modelling experience in Ethiopia [8, 11, 12], we used podoconiosis 

prevalence data collected in two surveys in Cameroon to: i) identify the environmental drivers 

of podoconiosis, ii) determine its geographical limits and finally, iii) estimate the disease 

burden in environmentally suitable areas.  

 

 

Methods 

 

Podoconiosis prevalence data 

 

We compiled a database of 748 geo-located prevalence records of podoconiosis in Cameroon 

(Figure 1). Podoconiosis prevalence data were assembled from two cross-sectional surveys 

conducted in Cameroon. The first survey, conducted in the North West region of Cameroon in 

2014, was a cross-sectional study involving stratified and cluster sampling. The sampling 

design and findings of this survey are detailed in a separate publication [20]. Briefly, at least 

50% of the communities from all the health areas in each of the 19 health districts of the region 

were screened for lymphedema of the lower limbs. Preliminary community screening was 

carried out by trained community health workers (CHIs), and final confirmation of podoconiosis 

was done by expert research assistants and health personnel following a standardized clinical 

diagnosis algorithm [19, 21]. Overall, in the 19 Health Districts of the North West region of 

Cameroon, 204,551 individuals from 672 communities were investigated for podoconiosis. 
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The second study was a nationwide cross-sectional survey conducted in 40 Health Districts 

from all 10 regions of Cameroon [22]. In this survey, seventy-six communities were randomly 

selected, with 10,178 individuals from 4,603 households screened for podoconiosis. Field 

workers used the same validated clinical diagnosis algorithm to confirm podoconiosis cases 

as that used in the first survey. 

 

Explanatory environmental variables  

 

Data on extrinsic determinants of podoconiosis was assembled from remotely sensed 

environmental datasets (Figure 1S). Geographic coordinates of each community were used 

to extract from gridded maps estimates on silt and clay soil fraction, pH of the soil, slope, 

precipitation, elevation, land surface temperature, distance to stable lights, enhanced 

vegetation index (EVI), and distance to water surfaces (water bodies and streams).  

 

Raster datasets of averaged Enhanced Vegetation Index (EVI) and land surface temperature 

(LST) for the period 2000-2015 were obtained from the African Soil Information System 

(AfSIS) project [23]. This project generates time series average products for several 

environmental indicators such as vegetation indices and LST using MODIS data.  

 

Information on rainfall was extracted from a synoptic gridded map of annual precipitation 

calculated from monthly total precipitation gridded datasets obtained from WorldClim 

database [24]. This database provides a set of global climate layers obtained by interpolation 

of precipitation data for the period 1950–2000 collected in weather stations distributed across 

the world [25]. From the Consortium for Spatial Information (CGIAR-CSI), we obtained a raster 

dataset of elevation at 1km2 [26]. This elevation layer resulted from processing and resampling 

the gridded digital elevation models (DEM) derived from the original 30-arcsecond DEM 

produced by the Shuttle Radar Topography Mission (SRTM). The elevation raster was 

processed to calculate terrain slope in degrees.  

 

Soil data including silt and clay fraction and soil-pH of the top soil, were obtained from the 

ISRIC-World Soil Information project [27]. This project provides gridded maps of soil 

composition at 250m resolution worldwide. We also generated continuous surfaces of straight 

line distance (Euclidean distance) in km to the nearest water body and permanent rivers based 

on the Global Database of Lakes, Reservoirs and Wetlands [28] and Digital Global Chart [29] 

respectively.  
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Finally, night-light emissivity for 2013 captured by the Operational Linescan System 

instrument on board a satellite of the Defence Meteorological Satellite Programme was used 

as a proxy measure of poverty across Cameroon [30]. This instrument measures visible and 

infrared radiation emitted at night-time, resulting in remote imagery of lights on the ground. 

This information has been correlated with gross domestic product in developed countries [31, 

32]  and, although far from precise, would provide an indirect measure of poverty in developing 

countries [33]. 

 

Input grids were resampled to a common spatial resolution of 1km2 using nearest neighbour 

approach and clipped to match the geographic extent of a map of Cameroon, and eventually 

aligned to it. Raster manipulation and processing was undertaken using raster package in R 

v3.3.2 and final map layouts created with ArcGIS 10.3 software (ESRI Inc., Redlands CA, 

USA).  

 

Environmental modelling using machine learning approaches 

 
An ensemble of distribution models was generated based on the reported occurrence of 

podoconiosis in the surveyed communities and the environmental factors. Communities were 

reclassified as endemic (1) or non-endemic (0) for podoconiosis based on records of 

confirmed podoconiosis cases. We used two machine learning based algorithms available 

within the BIOMOD framework [34] to obtain those ensembles of predicted distribution: 

generalized boosted regression tree modelling (BRT) and random forest (RF). The latter was 

run using the parameters set by default in the biomod2 R package [34] whereas for the former, 

the learning rate (lr) and tree complexity (tc), key parameters in BRT models, were set 

enabling the model to account for up to four potential interactions and slowing it down enough 

(lr: 0.005) to get the model converged without over-fitting the data. This tuning was undertaken 

using the gbm package in R v3.3.2.  

All these models are intended to discriminate the suitability of the environment for the 

presence of podoconiosis, and for this they need to be trained with presence and absence 

records. From this first modelling exercise, we had to make some decisions regarding the 

community data to be used due to differences on sampling design between the two cross-

sectional surveys. Whilst the first survey dataset was obtained during an intensive screening 

exercise in a region known to be endemic for podoconiosis, the nationwide cross-sectional 

survey was intended to be geographically representative of disease distribution across the 

country. Therefore, the unbalanced representation of communities at North West region was 

compensated by selecting a random subset (75%) of “positive” communities (reporting 

podoconiosis cases) from this region and generating a set of background points or pseudo-
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absences [35] for the whole dataset (Figure 1). Background points were randomly selected 

with the underlying geographical bias as the occurrence data, as some authors have 

recommended it [36]. For this, we created a sampling bias surface by counting the number of 

occurrence records within each grid cell (1km x 1km resolution) and then extrapolated these 

data across Cameroon using kernel density estimation. We used kernlab, ks and sm R 

packages for running this process. Lastly, we generated the background points (n=500) from 

random locations weighted by the sampling bias surface [37, 38]. In order to maximise the 

ability of the model to discriminate between suitable and unsuitable areas, regression weights 

were used to down-weight pseudo-absence records, so that the summed weights of the 

absence and pseudo-absence records matched that of the presence records. 

 

Figure 1 approximately here 

 

Models were calibrated using an 80% random sample of the initial data and evaluated against 

the remaining 20% data using the area under the curve (AUC) of the receiver operation 

characteristic (ROC), the true skill statistic (TSS) [39] and the proportion correctly classified 

(PCC). Projections were performed 100 times, each time selecting a different 80% random 

sample while verifying model accuracy against the remaining 20%. The evaluation statistics 

(AUC and TSS) were used to select the models to be assembled based on the matching 

between predictions and observations. Here, models with AUC < 0.8 or TSS values < 0.7 were 

disregarded when assembling the final model. 

 

The final assemble model was obtained by estimating the mean of probabilities across the 

selected models per grid cell. The range of uncertainties was also calculated by estimating 

the confidence intervals around the mean of probabilities across the ensemble per grid cell. 

The resulting predictive map quantifies the environmental suitability for podoconiosis. In order 

to convert this continuous metric into a binary map outlining the distribution limits, a threshold 

value of suitability was determined, above which transmission was assumed to be possible. 

Based on the ROC curve, the threshold value that represents a better trade-off between 

sensitivity, specificity and PCC was determined. 

 

In addition, partial dependence functions were performed separately for both modelling 

approaches (BRT & RF) to visualise dependencies between the probability of podoconiosis 

occurrence and covariates. The partial dependence function shows the marginal effect of each 

covariate on the response after averaging the effects of all other covariates. 
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Geostatistical modelling to estimate disease burden 

 

Empirical data and spatially matched covariates were then used within a geostatistical 

framework. We develop a geostatistical model to predict podoconiosis prevalence in 

environmentally suitable areas, as delineated by first modelling exercise, at village level across 

Cameroon. We let podoconiosis risk depend on the suite of measured risk factors mentioned 

above. We included spatial random effects in order to account for spatial variation in 

podoconiosis prevalence between villages that is not explained by the explanatory variables. 

We carried out validation of the model using a variogram-based procedure which tests the 

compatibility of the adopted spatial structure with the data. More details are provided in the 

supplementary material (Text 1S). The analysis was carried out using the R package 

PrevMap, which implements parameter estimation and spatial prediction of geostatistical 

models. This model was applied to produce continuous predictions of prevalence of 

podoconiosis among adults (≥15 years old) at 1km2 spatial resolution and probability maps of 

exceeding a 1% prevalence threshold, which was used to define podoconiosis endemicity. We 

checked the validity of the assumed covariance model for the spatial correlation using the 

Monte Carlo algorithm and empirical semi-variogram as described in the supplemental file 

(Figure 2S). Additionally, maps of the number of standard errors (SEs) from the posterior mean 

prevalence of podoconiosis (≥15 years) and number of cases were generated for each 1km × 

1km grid location.  

Gridded maps of both population density and age structure were obtained from the WorldPop 

project [40, 41]. We used these gridded surfaces of population estimates to compute the 

potential affected adult population (older than 15). An output raster dataset computing the 

estimated number of podoconiosis cases per grid cell was obtained by multiplying the 1km2 

raster dataset of predictive prevalence with the corresponding adult population density 

surface. The same procedure was used to estimate the uncertainty range of affected 

population using the gridded surfaces of 95% confidence interval for predicted prevalence. 

These surfaces were then used to extract the aggregate number of people with podoconiosis 

and uncertainty range by administrative area (health districts and regions). 

 

 

Results 

 

Main outcomes of surveys 

A total of 214,729 records of individuals screened for podoconiosis in 748 clusters were 

assembled for the current analysis from all 10 regions of Cameroon. Of the 214,729 screened 

individuals, 882 (0.4%; 95%CI 0.38-0.44) were positive for podoconiosis. Of the 748 clusters, 
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59.2% (443/748) recorded zero cases of podoconiosis. On average the number of individuals 

screened per cluster was 273, with 83% screening 100 or more individuals (Table 1).     

 

Table 1 approximately here 

 

Factors associated with podoconiosis occurrence 

Figures 3S to 6S in the supplementary file show the marginal effect of each covariate on the 

probability of podoconiosis occurrence, whilst the relative contribution of each predictor 

variable on the outcome (podoconiosis prevalence) is summarized in Figure 7S 

(supplementary file 2). Both marginal effect plots and covariate contribution have been 

estimated separately for BRT and RF assemble models. Briefly, six of 11 selected 

environmental covariates were the major contributors to the assemble models: silt and clay 

fraction of top soil, precipitation, elevation, slope and distance to stable night lights (Figure 

5S). In both modelling approaches, when the silt fraction exceeds 25% the probability of 

podoconiosis occurrence increases. The association of probability of podoconiosis and annual 

precipitation is steadily high over 1,000mm and sharply decreases when the annual mean 

rainfall goes beyond 2,000mm-2,500mm. Areas located between 1,000masl (meters above 

sea level) and 2,000masl are most suitable for the occurrence of podoconiosis. Slope above 

10 degrees and clay fraction of the top soil exceeding 40% seem to prevent the occurrence of 

podoconiosis (Figures 3S to 6S). 

 

Environmental limits of podoconiosis in Cameroon 

High environmental suitability of podoconiosis was predicted in three Regions of Cameroon 

(Adamawa, North West and North). Absence of podoconiosis was predicted in much of South 

West, Littoral, East, Central and South regions (Figure 2). A suitability cut-off of 0.43 (0.39-

0.45, for 95%CI lower and upper bounds, respectively) with a sensitivity of 99.6% and 

specificity 99.8% provided the best discrimination between presence and absence records in 

the training data, and therefore this threshold value was used to reclassify the predictive risk 

map into a binary map outlining the potential environmental limits of occurrence (Figure 8S, 

supplementary file 2). Uncertainty was calculated as the range of the 95% confidence interval 

in predicted probability of occurrence for each pixel (Figure 2) indicating high uncertainty in 

the northern part of the Extreme North region. Cross-validation analysis for the BRT and RF 

ensemble models using a 20% held-out subsample indicated their high predictive 

performance, with AUC values of 0.92 (95%CI: 0.9-0.94) and 0.96 (95%CI: 0.95-0.97) 

respectively. This high performance is also consistent through the true skill statistic, with TSS 

values of 0.78 (95%CI: 0.75-0.82) and 0.82 (95%CI: 0.8-0.86) for the BRT and RF models 

respectively.  

https://malariajournal.biomedcentral.com/articles/10.1186/s12936-017-1694-2#Tab1
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Figure 2 approximately here 

 

Predicted prevalence, population at risk and estimation of podoconiosis burden  

The national population living in areas environmentally suitable for podoconiosis is estimated 

to be over 5.2 (95% CI: 4.7–5.8) million, which corresponds to 22.3% of Cameroon’s 

population in 2015. The largest portion (32.2%) of the most-at-risk population live in the North 

West Region.  

The predicted prevalence map showed heterogeneous distribution of podoconiosis burden 

across Cameroon (Figure 3). The highest prevalence of podoconiosis is predicted in four 

regions (Adamawa, North West, North and in some part of Extreme North). In the remaining 

regions, the distribution of podoconiosis would be focal and prevalence low. Nationally, we 

estimated 41,556 adults (95%CI, 1,170- 240,993) to be living with podoconiosis in 2015 in 

Cameroon (Table 2). Four regions (Central, Littoral, North and North West) contributed 61.2% 

of the absolute number of cases (Figure 4). The greatest proportion of all individuals with 

podoconiosis resided in the Central Region (17.6%). The South and East regions contributed 

marginally to the total number of people with podoconiosis. At least one case of podoconiosis 

was estimated in 170 of 189 Health Districts. A total of 94 Health Districts reported ≥100 

podoconiosis cases and only 20 had more than 500 predicted cases of podoconiosis (Table 

1S). We have also estimated the continuous probability of exceeding 1% podoconiosis 

prevalence (the threshold considered for intervention) across the endemic areas (Figure 5). 

Most of the areas have low probability of exceeding 1%, and only a few restricted areas at the 

North-West region would potentially exceed that threshold.   

 

Figure 3 & 4 approximately here 

 

Discussion 

 

Podoconiosis is a highly neglected disease that is often underreported in endemic countries 

[3, 42]. Understanding the occurrence of podoconiosis is crucial for identifying populations at 

risk and to estimate the number of cases in order to scale up interventions [3]. Here, we used 

data on podoconiosis prevalence to model the environmental suitability, estimate the 

population at risk and the number of cases of podoconiosis in Cameroon. We quantified the 

relationship of climate, environmental and meteorological factors to the spatial distribution of 

podoconiosis. Our model prediction suggests marked ecological limits separating the broad 

areas of environmental suitability in western, central and northern parts of Cameroon from the 

southern and eastern parts of the country, which are considered to be free of podoconiosis. 
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Despite estimating a large number of individuals living in the predicted podoconiosis risk zone 

(5.2 million), the total number potentially affected would be relatively small (41,556 adults). 

This makes us think that the disease could be controlled and eliminated in Cameroon if the 

appropriate interventions are put in place in the most-at-risk areas. However, current 

intervention efforts in the country cover only a fraction of the population potentially at risk [3].  

We believe this work increases insight into the epidemiology of podoconiosis and 

simultaneously has practical consequences for the Cameroon health system. First, the 

identification of areas at risk and quantification of disease burden presented in this work should 

support more comprehensive plans for podoconiosis control in Cameroon. The risk maps 

presented can help set priority areas for intervention, and lead to more rational use of available 

resources. Health services and surveillance systems in these at-risk areas should be prepared 

to diagnose podoconiosis cases correctly and provide the necessary health care that patients 

require.  Ensuring health workers are well trained in the diagnosis and management of 

podoconiosis is essential.  

Second, we have extended the understanding of the environmental drivers of podoconiosis. 

In addition to the factors identified in previous work [11, 22, 42] such as precipitation, elevation 

and soil composition, we have found that land surface temperature, distance from stable night-

light and pH of the soil may contribute to the risk of podoconiosis occurrence. The results here 

indicate that, although the same suite of environmental and climatic factors drive the 

distribution of podoconiosis in different settings, there is spatial variation in their effect and 

relative contribution. The interplay among podoconiosis risk, climate, environment, and socio-

economic development is inevitably complex. Our analysis highlights the fact that a focus on 

simple, single factors fails to adequately explain the risk of podoconiosis. This study provides 

an analytic framework for developing podoconiosis risk model and estimating the disease 

burden in other potentially endemic countries. Ultimately, it will also contribute to constructing 

continental and global risk maps and to estimation of the actual burden of podoconiosis at 

global scale [6].      

Our results show that podoconiosis is present in other regions of Cameroon besides the 

historical endemic North West region [22]. Most of the areas where high prevalence of 

podoconiosis is documented are in the Cameroon Volcanic Line (CVL) [43]. The CVL is a 

1,600 km chain of volcanoes,  that extends along the border region of eastern Nigeria and 

includes islands such as São Tomé & Príncipe [44], and Bioko [16], which are also endemic for 

podoconiosis. These volcanic activities occurred over 1 million years ago [43], with subsequent 

weathering and generation of soils. Dense tropical forest has flourished over these rich soils 
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for thousands of years, and become highly rich in clay and silt because of the decomposition 

of organic matter. 

Podoconiosis is a significant public health problem in Cameroon, yet is still unknown to the 

formal health system.  Although the disease was reported four decades ago [17, 45], there 

has been no systematic effort to map the distribution and quantify the burden in the country. 

The failure of many national health agencies to prioritize podoconiosis might be because of a 

lack of international donor assistance. Nationally, there are only small-scale interventions 

accessible to a fraction of patients in the North-West region of the country. Exposure to soil is 

common: in rural areas of Cameroon, shoes are not worn regularly [45]. They are preserved 

for special occasions such as attending weddings, church ceremonies and weekly markets 

[46]. In a survey conducted in the North West region only a handful of interviewees reported 

wearing shoes during farm-related activities such as planting, harvesting and working on a 

rice farm [20]. This is likely to have contributed to the continued presence of the disease in 

environmentally suitable areas. The lack of attention by national agencies and international 

partners and difficulties in ensuring access to preventive methods such as shoes [47] are listed 

among the major challenges for podoconiosis elimination.  

This study had some limitations. First, most of the prevalence data gathered for this study 

came from the North West region of the country, which may have introduced geographical 

bias in the analysis. We mitigated the impact of this bias by generating more random 

background points around areas with more dense distribution of communities reporting 

podoconiosis cases. Furthermore, the nationwide mapping survey was designed to capture 

the potential variation of podoconiosis risk across the country. Thus, although sparse, 

surveyed communities were selected from the various ecological settings existing in the 

country. Second, although we accounted for the most significant environmental predictors 

when constructing our models, we did not include important risk factors which operate at 

individual or household level, such as shoe wearing practice and household socioeconomic 

status [11, 13, 48]. We tried to minimize this limitation by including a proxy measure of poverty 

(night-light emissivity) [33]. However, the wide confidence intervals around the estimates of 

prevalence and disease burden point to important risk factors which we may not yet be taking 

into account.  

This is the first comprehensive assembly of contemporary data on podoconiosis occurrence 

and prevalence in Cameroon. We have applied new modelling approaches to maximize the 

predictive power of these data [49, 50]. However, data on podoconiosis is scant both in space 

and time compared to other infectious diseases and NTDs, such as soil-transmitted helminth 

infections [51, 52], malaria [53] and lymphatic filariasis [54]. The production of fine resolution 
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maps of podoconiosis is contingent upon the availability of geo-referenced data. Conducting 

standalone podoconiosis surveys could be costly and integrating podoconiosis surveys with 

other standard surveys such as malaria indicator surveys, demographic and health surveys 

and other ongoing NTD mapping and evaluation surveys could be critical to leverage 

resources. Strengthening the routine surveillance of podoconiosis within the national health 

system framework is important to ensure sustainable data sources and to detect incident 

cases. A simplified case definition of podoconiosis can be included in the integrated diseases 

surveillances systems in endemic countries, to heighten the index of suspicion among health 

care providers.          

Conclusion 

The distribution of podoconiosis in Cameroon is wider than initially thought, according to our 

predictive models. The number of cases and population at risk may pose a challenge to the 

national health system in Cameroon. The findings presented here indicate the need for rapid 

scale up of interventions for those at risk and in need of care services. Promotion of footwear 

and foot hygiene through social mobilization will be important. Morbidity management and 

disability prevention services should be made accessible to those suffering from the condition. 

This can be achieved through the integration of care management services into the primary 

health system and other similar ongoing interventions. The results presented here may help 

decision makers to make evidence-based plans and evaluate performance.  
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Tables & Figures 

 

Table 1. General description of podoconiosis surveys conducted in Cameroon in 2014 and 

2017 

Table 2. Estimated number of podoconiosis cases and population at risk among adults in 

Cameroon in 2015.  

 

Figure 1. Distribution of surveyed community and background points for podoconiosis across 

Cameroon.  

Figure 2. Ensemble of predicted environmental suitability models for podoconiosis and 

corresponding uncertainty of prediction. Uncertainty was calculated as the range of the 95% 

confidence interval in predicted probability of occurrence for each pixel and rescaling to a 0-1 

scale. 

 

Figure 3. Predicted podoconiosis prevalence maps of Cameroon; mean predicted prevalence 

(A) and, lower (B) and upper 95% CI bounds (C). 

 

Figure 4. Estimated number of adults (≥15 years old) with podoconiosis across Cameroon: 
estimated number of cases (A) and, lower (B) and upper 95% CI bounds (C) 
 
Figure 5. Map of probability of exceeding 1% podoconiosis prevalence in Cameroon. 
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Table 1  

Region  Clusters surveyed  Total surveyed  Podoconiosis cases  

Adamawa 2 320 0 

Central 10 1,932 4 

East 8 1,195 4 

Extreme North 5 803 5 

Littoral 9 1,228 4 

North 5 692 7 

North West 681 205664 849 

South 2 435 1 

South West 14 1,137 3 

West 12 1,323 5 

Total  748 214,729 882 
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Table 2 

 Estimated population at risk  Estimated podoconiosis burden  

Regions 
Population 
Estimates 

Lower bound 
Upper 
bound 

Adult estimated 
cases 

Lower 
Bound  

Upper 
Bound  

Adamawa 381,666 361,913 420,270 2,305 49 13,831 

Central 400,747 306,628 431,475 7,303 176 43,138 

East 80,736 72,706 97,824 899 22 5,293 

Extreme North 547,793 493,820 613,170 5,134 112 30,902 

Littoral 618,549 491,969 749,893 6,186 237 34,237 

North 595,335 504,622 757,766 5,840 128 35,152 

North West 1,678,461 1,649,810 1,719,003 6,089 271 32,011 

South 126,695 120,569 131,644 840 19 5,043 

South West 203,965 193,811 229,278 2,521 59 14,867 

West 583,260 546,435 652,894 4,441 99 26,519 

Grand Total 5,217,208 4,742,282 5,803,216 41,556 1,170 240,993 
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Figure 2 
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Figure 5 

 


