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Abstract 25 

Information on the response of vegetation to different environmental drivers, including 26 

rainfall, forms a critical input to ecosystem models. Currently, such models are run based on 27 

parameters that, in some cases, are either assumed or lack supporting evidence (e.g., that 28 

vegetation growth across Africa is rainfall-driven). A limited number of studies have reported 29 

that the onset of rain across Africa does not fully explain the onset of vegetation growth, for 30 

example, drawing on the observation of pre-rain flush effects in some parts of Africa. The 31 

spatial extent of this pre-rain green-up effect, however, remains unknown, leaving a large gap 32 

in our understanding that may bias ecosystem modelling. This paper provides the most 33 

comprehensive spatial assessment to-date of the magnitude and frequency of the different 34 

patterns of phenology response to rainfall across Africa, and for different vegetation types. 35 

To define the relations between phenology and rainfall, we investigated the spatial variation 36 

in the difference, in number of days, between the start of rainy season (SRS) and start of 37 

vegetation growing season (SOS); and between the end of rainy season (ERS) and end of 38 

vegetation growing season (EOS). We reveal a much more extensive spread of pre-rain 39 

green-up over Africa than previously reported, with pre-rain green-up being the norm rather 40 

than the exception. We also show the relative sparsity of post-rain green-up, confined largely 41 

to the Sudano-Sahel region. While the pre-rain green-up phenomenon is well documented, its 42 

large spatial extent was not anticipated. Our results, thus, contrast with the widely held view 43 

that rainfall drives the onset and end of the vegetation growing season across Africa. Our 44 

findings point to a much more nuanced role of rainfall in Africa’s vegetation growth cycle 45 

than previously thought, specifically as one of a set of several drivers, with important 46 

implications for ecosystem modelling.  47 

  48 
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Introduction 49 

The African continent contains the world’s largest area of savanna and around 17% of the 50 

world’s tropical forests. Savannas alone account for 30% of the primary production from 51 

global terrestrial vegetation, underlining the importance of the African vegetation (Grace et 52 

al., 2006). Indeed, African vegetation contributes 38% of the global climate-carbon cycle 53 

feedback (Friedlingstein et al., 2010). In spite of this, African vegetation is relatively under-54 

studied (Adole et al., 2016), and the few existing vegetation models are associated with 55 

significant uncertainties (Scheiter & Higgins, 2009; Hemming et al., 2013). Another 56 

fundamental concern is the vulnerability of African vegetation to climate change, further 57 

worsened by interactions between changes in climatic drivers and anthropogenic land use, 58 

which puts at risk both the condition and the amount of overall vegetation cover (IPCC, 59 

2014). Apart from their role in global carbon sequestration, the savannas and forests of Africa 60 

support a large number of ecosystem services, which are also vulnerable to climatic and 61 

anthropogenic changes; for example, the perceived threat to livestock farming and production 62 

due to expanding woodlands (Skowno et al., 2016), and reduced crop productivity caused by 63 

increasing temperatures and changes in precipitation (Brown & Funk, 2008). These 64 

ecosystem services, in addition to their functions, are influenced heavily by the condition of 65 

vegetation and its seasonality (Brottem et al., 2014), which could lead to multiple feedbacks 66 

into the climate system (Keenan et al., 2014; Buitenwerf et al., 2015; Wu et al., 2016). In the 67 

context of anthropogenic, agro-climatic and climate changes, which may affect future 68 

ecosystem services, greater understanding of vegetation dynamics across Africa and its 69 

drivers is crucial.  70 

 71 

In recent years, the importance of phenology has increased as a result of a wide range of 72 

empirical-, modelling- and meta-analysis-based evidence, suggesting that long-term changes 73 
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in key phenological parameters such as the start of season and end of season are key 74 

indicators of biological impact resulting from climate change (Cleland et al., 2007; 75 

Richardson et al., 2013). Moreover, the role of several climatic factors has been identified in 76 

the seasonal timing and seasonal productivity of vegetation cycles (Ma et al., 2015; Shen et 77 

al., 2016). Specifically, in arid and semi-arid environments water availability is deemed to be 78 

the primary factor controlling vegetation seasonality and growth (Zhang et al., 2005; 79 

Chidumayo, 2015).  Of particular interest is the close linkage between precipitation and 80 

vegetation growth. Studies have suggested that rainfall control of vegetation greening trends 81 

(Hickler et al., 2005; Martínez et al., 2011) was associated with the 1980s recovery of 82 

vegetation growth from the Sahelian droughts (Olsson et al., 2005). Likewise, parameters 83 

estimated from seasonal growth patterns of vegetated land surfaces have been shown to be 84 

correlated with derivatives of rainfall data (Zhang et al., 2005; Guan et al., 2014; Verger et 85 

al., 2016). The start of vegetation growing season (SOS) and start of raining season (SRS) 86 

have been shown to be highly correlated by several researchers (Zhang et al., 2005; Guan et 87 

al., 2014). Despite these general findings, the dynamics of vegetation growth are not identical 88 

in areas with similar rainfall regimes, suggesting that rainfall alone does not satisfactorily 89 

explain vegetation growth patterns. For example, non-climatic greening was observed in 90 

some parts of sub-Saharan Africa (Hoscilo et al., 2014), and no significant relationship was 91 

found between SOS and SRS in the northern Sahara desert (Yan et al., 2016).  92 

 93 

“Pre-rain green-up” is an interesting phenomenon whereby vegetation growth starts at the 94 

end of the dry season, just before the start of the rainy season (Ryan et al., 2017). This 95 

phenomenon has been observed as far back as the 1940s in some woody species at the field 96 

scale (Miller, 1949). With the emergence of remote sensing of land surface phenology (LSP) 97 

(defined as “the seasonal pattern of variation in vegetated land surfaces observed from 98 
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remote sensing” (Friedl et al., 2006)), pre-rain green-up has now been observed across larger 99 

areas, but mostly in African woodlands (Guan et al., 2014; Ryan et al., 2017; Yan et al., 100 

2017).  However, the number of studies is limited and does not describe the nature and extent 101 

of this relationship at the continental scale. Similarly, only a few studies undertaken at the 102 

regional scale have attempted to investigate the lag between the end of rainy season (ERS) 103 

and the end of vegetation growing season (EOS) in Africa (Zhang et al., 2005; Yan et al., 104 

2017). Therefore, detailed quantification of the magnitude and frequency of this pattern 105 

across different vegetation types at the continental scale is currently needed. Consequently, 106 

this research seeks to answer the following questions:  107 

(1) what is the magnitude and spatial distribution of the time lags between vegetation 108 

phenophases and rainfall parameters across the different vegetation types in Africa?  109 

(2) what is the magnitude of the association between vegetation phenological and 110 

rainfall parameters across the different vegetation types in Africa?  111 

 112 

Understanding the relationships between LSP and rainfall parameters is critical in developing 113 

a robust phenological model and LSP representation in terrestrial ecosystem models. 114 

Currently, most global land-atmosphere models have shown varying projections of vegetation 115 

response to climate change, associated with large uncertainties in the terrestrial carbon cycle 116 

(Shao et al., 2013). These uncertainties are known to arise from inaccurate estimation of 117 

seasonal productivity patterns (Restrepo-Coupe et al., 2017), incorrect assumptions in 118 

biosphere–atmosphere process models driven by vegetation growth (Whitley et al., 2016), 119 

and poor understanding of functional responses of vegetation phenology to climate change 120 

(Richardson et al., 2012). Moreover, current climate change models predict uneven rainfall 121 

distribution both in terms of timing and amount across the continent; some areas are expected 122 

to receive excess rainfall, whereas other regions are expected to receive less (Res et al., 2001; 123 
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Niang et al., 2014). This in turn, will affect the vegetation phenology and the resulting 124 

vegetation-atmosphere feedbacks such as albedo, water, energy and gas fluxes across the 125 

region (Wu et al., 2016). 126 

 127 

We used satellite remote sensing and meteorological data to quantify the lag in number of 128 

days between SRS and SOS, and ERS and EOS. We further examined the relationships 129 

between a range of LSP and rainfall parameters, including the length of growing season 130 

(LOS) with length of raining season (LRS), and time of maximum vegetation growth 131 

(VItmax) with time of maximum rain (Rtmax), across all of Africa. The productivity-based 132 

relationship between Integrated EVI (IntEVI) and cumulative annual rainfall (Rcum) was 133 

also explored. 134 

 135 

By investigating the above relationships, we provide the most comprehensive and detailed 136 

view of the response of vegetation phenological variables to rainfall across Africa, by 137 

vegetation type. This greater insight into the mechanisms underlying African vegetation 138 

dynamics provides useful information necessary to support and increase the accuracy of 139 

future terrestrial biosphere models (TBMs) and global ecosystem models.  140 

  141 
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Materials and methods 142 

MODIS data and pre-processing 143 

This study used the Moderate Resolution Imaging Spectroradiometer (MODIS) products 144 

(Justice et al., 1998) for LSP estimation and land cover classification. These products were 145 

downloaded from NASA’s LP DAAC (https://lpdaac.usgs.gov/).  146 

The MODIS/Terra Surface Reflectance 8-Day L3 Global 500 m data (MOD09A1) from 147 

February 2000 to June 2016 were selected for LSP estimation. Apart from the delivery of 148 

relatively fine spatial detail, the 500 m spatial resolution was selected because it has the 149 

spectral bands required to derive the Enhanced Vegetation Index (EVI). These bands are 150 

currently absent in finer spatial resolution MODIS data such as the MOD09Q1 and 151 

MOD13Q1. The EVI was developed with the inclusion of the blue reflectance band (B) to 152 

correct for atmospheric scattering effects and soil background influences (Huete et al., 2011). 153 

It is derived according to the following equation:   154 

 155 

𝐸𝑉𝐼 = 𝐺 ∗
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝐿 + 𝑁𝐼𝑅 + 𝐶1 ∗ 𝑅𝑒𝑑 − 𝐶2 ∗ 𝐵𝑙𝑢𝑒)
  156 

 157 

where the coefficients are L=1 (canopy background adjustment factor); C1= 6 and C2 = 7.5 158 

(aerosol correction factors); and G = 2.5 (gain factor) (Huete et al., 2011).  159 

 160 

The EVI was also designed to increase sensitivity in large vegetative biomass regions, 161 

consequently overcoming the problems associated with vegetation indices like the normalized 162 

difference vegetation index (NDVI) (Huete et al., 2002).  Prior to deriving the EVI, residual 163 

atmospheric and sensor effects were filtered out and only pixels of the highest quality, which 164 

had all possible corrections of MODIS Land Quality Assessment (MODLAND QA), were 165 

retained. This was done using the quality assessment procedure as detailed in 166 

https://lpdaac.usgs.gov/
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https://lpdaac.usgs.gov/sites/default/files/public/modis/docs/MODIS_LP_QA_Tutorial-3.pdf 167 

ensuring that only high quality pixels were used for this analysis. This involved computing 36 168 

different combinations of MODIS land surface reflectance quality parameters from the 32-bit 169 

Science Data Set (SDS) Quality Assurance (QA) layer (the 500 m Reflectance Band Quality). 170 

All measurements not within these 36 parameters were filtered out, ensuring that only pixels 171 

that were atmospherically and adjacently corrected, and of the highest quality on all bands 172 

were retained. To produce a time-series of EVI appropriate to analysing the complex growing 173 

seasons in Africa, a “cycle” of approximately two years (i.e., 86 “stacked” layers) of EVI 174 

data (i.e., the end of July of year 1 to June of year 3) was used.  This long cycle was produced 175 

to capture yearly estimates of seasonal phenological parameters across Africa, because start 176 

of growing season in the northern latitudes commences much earlier in the year than in the 177 

southern latitudes.  178 

 179 

To define the vegetation types in Africa, we used the 17-class International Geosphere 180 

Biosphere Programme (IGBP) global vegetation classification scheme (Friedl et al., 2002, 181 

2010) from the MODIS/Terra Land Cover Type Yearly L3 Global 500 m data (MCD12Q1). 182 

We carried out a reclassification, merging similar classes of plant functional types in the 183 

IGBP scheme that differ based on extent of canopy cover only, but have similar phenological 184 

behaviour. Table 1 shows the 17 classes and the reclassification applied. Croplands and 185 

cropland/natural vegetation mosaic were not merged together because cropland/natural 186 

vegetation mosaic is a mixture of croplands, forests, shrublands, and grasslands, which may 187 

not be sufficiently well defined for use in modelling the pattern of cropland responses to 188 

seasonal rainfall. Homogeneous pixels over the 13 years record of the MCD12Q1 were 189 

extracted and used to stratify the land cover into their different vegetation types. Five major 190 

classes were derived: (1) Croplands, (2) Forest (Deciduous and evergreen forest), (3) 191 

https://lpdaac.usgs.gov/sites/default/files/public/modis/docs/MODIS_LP_QA_Tutorial-3.pdf
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Grasslands, (4) Shrublands (Closed and open shrublands), and (5) Woodlands (Woody 192 

savannas and savannas) (see Table 1 and Figure 1). However, due to the limited spatial extent 193 

of deciduous forest, and persistent clouds in forested areas, further investigation of the forest 194 

category was not considered as estimates of LSP may not be reliable.  195 

 196 

CHIRPS data 197 

This study used the 0.05º gridded rainfall dataset from the Climate Hazards Group InfraRed 198 

Precipitation with Station data (CHIRPS). This dataset was generated by combining satellite 199 

sensor and station data using smart interpolation techniques, and has been shown to have less 200 

bias in examining wet seasons than most other products, especially in data-sparse regions in 201 

Africa (Funk et al., 2015). It has also been shown to be more precise in estimating the entire 202 

seasonal cycle of rainfall because it is spatially more detailed and corresponds more closely 203 

to ground data (Toté et al., 2015). As with the MODIS data, 16 years of daily rainfall data 204 

from 2000 to 2016 were downloaded from CHIRPS (http://chg.geog.ucsb.edu/data/chirps/). 205 

 206 

LSP estimation 207 

Several methods have been used to estimate LSP from time-series of vegetation indices 208 

(VI)(Atkinson et al., 2012). These methods usually involve a stepwise approach beginning 209 

with the removal of “bad” pixels in the time-series, interpolation of the missing values, 210 

smoothing of the complete time-series, and estimation of the LSP parameters. In this 211 

research, we used the algorithm from Dash et al. (2010) and Pastor-Guzman et al. (2018) to 212 

remove “bad” pixels and interpolate missing values in the EVI time-series. Then the Discrete 213 

Fourier Transform (DFT) (Atkinson et al., 2012) was employed to smooth the data 214 

temporally.  215 

 216 

http://chg.geog.ucsb.edu/data/chirps/
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The inflection point-based method, which considers points where maximum rate of change 217 

occurs in the time-series, was used to estimate the LSP parameters. This method, which has 218 

been used extensively, captures explicitly the start and end of growing seasons as there are no 219 

pre-defined thresholds (Dash et al., 2010; Qader et al., 2015). A schematic diagram of the 220 

methodology is shown in Figure 2. Five LSP parameters (Start of growing season (SOS), End 221 

of growing season (EOS), Length of growing season (LOS), time of maximum EVI 222 

(VItmax), and Integrated EVI (IntEVI)) were estimated for each cycle (Figure 3). This led to 223 

yearly estimates of each LSP parameter for a total of 15 years (2001 – 2015). The derived 224 

MODIS Land cover classes were used as a mask to select class-specific LSP parameters. 225 

 226 

Estimation of rainfall parameters 227 

The start of rainy season (SRS) and end of rainy season (ERS) have been determined in a 228 

variety of ways, and there is still no consensus on the most appropriate definition. Examples 229 

can been seen in Liebmann et al. (2012) and Yan et al. (2016) who employed the 230 

climatological anomalous accumulation method in determining the start and end of rainy 231 

season, and Zhang et al. (2005) and Guan et al. (2014) who employed the percentage method. 232 

In this research, we adopted the definition first proposed by Stern et al. (1981), and used by 233 

several researchers and meteorological agencies (Sarria-dodd & Jolliffe, 2001; Segele & 234 

Lamb, 2005; Mupangwa et al., 2011). This method defines SRS as the first period of two to 235 

10 days where specified amounts of rainfall (10, 20, 30 mm) are reached or exceeded 236 

followed by no continuous dry period of specified length (7, 8, 10 days). This approach was 237 

selected as it is designed to also account for sowing dates in croplands to remove false start 238 

dates. To determine the wet and dry periods, a threshold was set to differentiate between wet 239 

and dry days. All wet days had at least 0.1 mm rainfall and others below this threshold were 240 

classed as dry days (Sarria-dodd & Jolliffe, 2001). Two sets of criteria were adopted to 241 
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determine the SRS: (1) the first wet day in a 40-day duration after a dry spell where the total 242 

rainfall in the first consecutive 10 days is 25 mm or more, which is followed by no 243 

consecutive dry period of seven days or more, (2) the first wet day in a 30-day duration after 244 

a dry spell where the total rainfall in the first consecutive three days in a row is 15 mm or 245 

more, which is followed by no consecutive dry period for 10 days or more. If one of the 246 

criteria is not met, then testing resumes considering the other. End of season dates were 247 

defined as dates after the start of season where no rain occurs over a period of 20 days or, in a 248 

30-day duration, the total number of wet days is less than four (Zhang et al., 2005).  249 

 250 

Due to the complexity of rainy seasons in Africa, especially for regions with a bimodal 251 

annual rainfall cycle, results were rigorously cross-checked again for false starts. This 252 

involved an iterative procedure to check if start dates occurred around 10% accumulation of 253 

the total annual precipitation and end dates occurred after 95% accumulation of total annual 254 

precipitation. In addition, spatial agreement was seen in the results when compared with 255 

previous studies on seasonal rainfall onset and end date retrievals (Zhang et al., 2005; Brown 256 

& de Beurs, 2008; Liebmann et al., 2012; Guan et al., 2014). Other rainfall parameters 257 

derived were: the length of rainy season (LRS) which is the number of days between SRS and 258 

ERS, time of maximum rainfall (Rtmax) and cumulative annual rainfall (Rcum). 259 

 260 

Statistical approach 261 

All LSP parameters were aggregated to match the spatial resolution of the rainfall data by 262 

assigning the modal value in 10 by 10 0.0050 grid cells to a 0.050 grid cell. The mode was 263 

used because the mean can be skewed due to the occurrence of outliers, and the median is 264 

less representative of the average of a dataset. Pixels showing no clear vegetation seasonality 265 
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were excluded from the analysis. Pixels with no distinct rainfall seasonality for the entire 266 

time-series were also excluded.  267 

 268 

The lag, which is the time difference in number of days between SOS and SRS, and EOS and 269 

ERS, was calculated for each land cover type. A -10 and 10 days “no change” category was 270 

applied to the start of growing and rainy season lags to account for uncertainties in the SOS 271 

and SRS estimates and the MODIS 8-day composites. This range was selected because lags 272 

of less than 10 days may sometimes arise due to the difference in the Julian date of the 273 

MODIS 8-days composite and the daily rainfall data. Further analysis involved fitting linear 274 

regression models to determine the association of spatial shifts with the means of different 275 

combinations of LSP and rainfall parameters (Table 2).   276 

  277 
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Results 278 

Frequency of lags between LSP and rainfall parameters across Africa 279 

The difference between the SRS and SOS can be classified into three categories: SOS 280 

arriving (a) before, (b) after, and (c) at the same time as the SRS.  Figure 4 presents these 281 

differences for cropland, grassland and woodland.  Croplands fell mostly in the second 282 

category showing SOS arrival after SRS, while grasslands fell into two categories: SOS 283 

arriving at the same time as SRS and SOS arriving before SRS. For woodlands, however, 284 

SOS arrived much before the SRS.  285 

 286 

Across Africa, SOS generally occurred prior to the SRS except in the Sudano-Sahelian region 287 

were SOS occurred after the SRS (Figure 5). The distribution of the pixels seen in Figure 5c 288 

is skewed towards positive lag values with more occurring between 15 and 45 days (i.e., SOS 289 

before SRS). More than 88% of the studied vegetative area had SOS arriving more than 10 290 

days before the SRS, of which 90% was found in woodlands. This phenomenon was 291 

distributed across all of Africa, but was ubiquitous in southern Africa, with longer lags 292 

concentrated in Angola and Zambia. An estimated 9% of pixels had lags of between -10 and 293 

10 days (i.e. SOS and SRS arriving almost at the same time), with over 90% of these 294 

occurring in woodlands. As seen in Figure 5, approximately 3% of the studied vegetation, 295 

mainly along the Sudano-Sahelian region, had SOS arriving 10 days or more after the SRS 296 

(i.e. < -10 days lag), with over 35% of this area belonging to croplands and about 46% to 297 

woodlands. Greater areas of cropland with longer lag times were observed in eastern Africa, 298 

particularly in Ethiopia, while woodlands were mostly located in western Africa.  299 

 300 

Figure 6 shows the distribution of the lag occurrences within each land cover type. Within 301 

cropland, an estimated 10% of pixels had SOS arriving at the same time as the SRS, and over 302 
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80% had SOS arriving after the SRS. The average lag times for croplands were -18 days in 303 

the north and 54 days in the south. In contrast, over 89% of woodlands had SOS arriving 304 

before the SRS, with averages of 29 days in the north and 36 days in the south, with longer 305 

lag times in the southern woodlands (Figure 5). Grasslands and shrublands had very similar 306 

onset lag patterns, with an early SOS before the SRS in over 80% of pixels with average lags 307 

of 38 and 34 days, respectively.  308 

 309 

In contrast to the SOS, the EOS generally lagged behind the ERS across all Africa (Figures 4 310 

and 7) with a longer lag duration in southern Africa. Interestingly, the Sudano-Sahelian 311 

region also exhibited a distinct lag range of between 90 to 120 days with peaks in western 312 

and eastern Africa of 120 to 150 days. In addition, the distribution of pixels (Figure 8c), 313 

unlike that for SOS, had several peaks within a wide range of values (50 to 120 days). Over 314 

90% of pixels had a lag of between 30 to 150 days, with the longest durations occurring in 315 

woodlands.  While most land cover types had varied lags, the lag for over 70% of grasslands 316 

varied between 30 to 60 days.   317 

 318 

In relation to the season lengths (LOS and LRS), areas with SOS arriving after SRS had 319 

shorter LOS (Figure 8), when compared to those with SOS arriving before SRS. The average 320 

LOS within these pixels varied between 220±30 days to 250±40 days while those with SOS 321 

arriving before SRS varied between 270±45 days to 300±30 days. The LRS within both 322 

categories of pixels varied greatly, and no observable pattern was detected.  323 

 324 

Spatial relations between LSP and rainfall parameters 325 

 Table 2 shows the complex set of spatial associations between LSP and rainfall parameters 326 

(all statistically significant at p < 0.0000). While a large association was seen between SOS 327 
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and SRS (R2= 0.92), IntEVI and Rcum (R2= 0.58), and VItmax and Rtmax (R2= 0.52), other 328 

combinations of LSP and rainfall parameters showed very little correlation, especially 329 

between EOS and ERS, and LOS and LRS. Interestingly, for grasslands, EOS and ERS, and 330 

LOS and LRS produced large R2 values of 0.76 and 0.87, respectively. The same large 331 

association was seen across all LSP and rainfall parameters for grasslands. In contrast, only 332 

the timings of onset (i.e., SOS and SRS), maxima (i.e., VItmax and Rtmax) and production 333 

(IntEVI and Rcum) produced large R2 values for woodlands. Although, statistically 334 

significant, the correlations between EOS and ERS, LOS and LRS, and LOS and Rcum were 335 

very small for woodlands. The same association was observed in shrublands between LOS 336 

and Rcum. In contrast, a small association was found between SOS and SRS, and between 337 

IntEVI and Rcum, in shrublands when compared to all other land cover types.  338 

 339 

For croplands, similar to most land cover types (excluding grasslands) the correlation 340 

between LOS and LRS was small. In addition, only a small association was observed 341 

between VItmax and Rtmax for croplands.  However, large correlations were observed for 342 

SOS and SRS, and LOS and Rcum.  343 

  344 
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Discussion 345 

Early and late greening response of vegetation to rainfall 346 

Our results suggest that pre-rain vegetation green-up occurs across most of Africa. The 347 

results are corroborated by the pre-rain green-up reported previously by a limited set of 348 

studies, both ground-based (Childes, 1989; De Bie et al., 1998; Higgins et al., 2011; Seghieri 349 

& Do, 2012; February & Higgins, 2016) and satellite-based (Guan et al., 2014; Ryan et al., 350 

2017; Yan et al., 2017). However, we show that the pre-rain green-up is far more widespread 351 

across the entire African continent than previously reported. In addition, we were able to 352 

determine quantitatively its occurrence across all the major vegetation types studied, 353 

confirming its prevalence mostly in woodlands and grasslands in northern and southern 354 

Africa. Our findings show that more pre-rain green-up occurred in woodlands, sometimes as 355 

much as 3 months before the onset of rain. This pattern of pre-rain green-up in woodlands 356 

was more widespread in the southern part of Africa, consistent with previous work (Ryan et 357 

al., 2017).  358 

 359 

Several explanations have been proposed for the observed pre-rain green-up. It was suggested 360 

that a form of memory mechanism developed from adaptation to previous climatic cues could 361 

be responsible for early greening (by about two months) in Miombo woodland in central and 362 

southern Africa (Goward & Prince, 1995). Also implicated were daylength and temperature 363 

thresholds being responsible for early greening of certain woody plant species in southern 364 

Africa (Van Rooyen et al., 1986). Responses of plants to other anticipatory climatic factors 365 

besides rainfall have also been reported in the Australian savanna (Prior et al., 2004; 366 

Bowman & Prior, 2005).  In Senegal, where we also observed pre-rain green-up, it was 367 

suggested that air relative humidity occasioned by the Inter-Tropical Convergence Zone 368 

(ITCZ) is a major determinant of early leaf flush in this region (Do et al., 2005). Other 369 
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mechanisms primarily located within plants have been proposed by several researchers. One 370 

of these is the rehydration of stem tissues in the dry season caused by reduction in water 371 

stress levels following leaf shedding (Reich & Borchert, 1982; Borchert, 1994; Williams et 372 

al., 1997).  During this rehydration process, when the required water potential for plant 373 

cellular development is attained, early leafing begins (Reich & Borchert, 1982). The 374 

phreatophytic nature of some woody plants (their ability to tap underground water reserves 375 

with deep root systems, and utilize the previous season’s water and nutrients) and low water 376 

consumption have also been suggested to cause early green up (Roupsard et al., 1999; Guan 377 

et al., 2014). Similarly, the ability of some woody plants to withdraw and conserve nitrogen 378 

and carbon for later use to construct new leaves from these stored reserves has been 379 

implicated in early green up (February & Higgins, 2016). These features give savanna trees 380 

competitive advantage over their herbaceous neighbours, which can drive temporal niche 381 

separation; a possible explanation for pre-rain green-up (Higgins et al., 2011; February & 382 

Higgins, 2016; Ryan et al., 2017). Another interesting phenomenon, which may have 383 

influenced the pre-rain green-up observed in western Africa, is the reverse phenology of the 384 

widely distributed Faidherbia albida (Acacia) tree (Roupsard et al., 1999; Seghieri & Do, 385 

2012). This species enters leaf out during the dry season and sheds leaves during the rainy 386 

season. As described above, its unique facultative phreatophytism and low water 387 

consumption are responsible for the reversed phenological pattern. Besides climatic or 388 

endogenously plant-controlled causes of early greening, biotic factors such as pressures from 389 

herbivory have been hypothesised as reasons for early initiation of leafing in some woody 390 

plants (Aide, 1988, 1992). It was suggested that this is an antiherbivore defence mechanism 391 

by plants, essentially to escape seasonally from herbivores in order to avoid nutrient losses 392 

caused by herbivory (Aide, 1992; Rossatto et al., 2009). However, evidence supporting this 393 

strategy in Africa savannas is unavailable (Higgins et al., 2011).   394 
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 395 

Contrary to previous work (Guan et al., 2014), our findings showed pre-rain green-up 396 

occurring in the vast majority of grasslands across Africa, albeit with a short duration, mostly 397 

within 10 to 30 days. This can be attributed to SOS being triggered by the small bouts of 398 

rains that occur just before the actual start of the rainy season. This is possible because 399 

grasslands have very high sensitivity to water fluctuations (Scholes & Archer, 1997; 400 

Whitecross et al., 2017). In addition, the large R2 values in Table 2 also suggest this tight 401 

coupling of grasslands and water availability across the continent. Our results also showed 402 

that pre-rain green-up occurred in some of the shrublands which can be explained by their 403 

deep root systems (Childes, 1989).  404 

 405 

In contrast to other land cover types, post-rain green-up was largely observed in croplands, all 406 

located in the Sudano-Sahelian region (Figures 5 and 6). This region consists mainly of 407 

croplands (Figure 1), and is known to have a short rainy season and prolonged dry season 408 

(Liebmann et al., 2012; Dunning et al., 2016) (Figure 8). This lengthened dry season usually 409 

influences farmers’ decision to begin sowing, because despite relying to some extent on 410 

climatological history, they generally wait for a major burst of rain and ascertain the status of 411 

the soil moisture before commencing sowing (Marteau et al., 2011). The variety of crops 412 

being cultivated can also explain the post-rain green-up observed. For example, the different 413 

species of millet and sorghum sown are largely dependent on water availability for growth, 414 

and these are the main staple crops in the Sudano-Sahelian region, cultivated mostly under 415 

rainfed conditions (Guan et al., 2015).  416 

 417 

Woodlands and shrublands found in the Sudano-Sahelian region revealed post-rain green-up. 418 

Leafing of dominant woody plants in this region is controlled by rainfall and, as mentioned 419 
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above, this is caused by the occurrence of marked shorter rainy seasons (Seghieri et al., 420 

2009). The woody plants in this region endure long dry seasons of over 8 months. Hence, 421 

they depend on the occurrence of the first rains to begin leafing (Seghieri et al., 2009; 422 

Seghieri & Do, 2012).   423 

 424 

The early and late greening responses of vegetation also influence the lag between ERS and 425 

EOS. For example, longer EOS lags were evident in vegetation with pre-rain green-up 426 

phenological patterns. According to several researchers, this early greening before the onset 427 

of rains enables plants to obtain early access to, and optimally utilize, nutrients released 428 

during the first rains; hence, the longer growing season for such plants (Do et al., 2005).  429 

Nevertheless, long EOS lag durations were observed in the Sudano-Sahelian region, 430 

especially in croplands with post-rain green-up. As mentioned above, the variety of crops 431 

affects the phenological pattern. Crops such as cassava, grown mostly in western Africa, are 432 

usually harvested 9 to 18 months after sowing (Ezui et al., 2016), thus, leading to long lags 433 

between the ERS and EOS. 434 

 435 

Relationships between LSP and rainfall parameters 436 

Consistent with previous studies (Zhang et al., 2005; Guan et al., 2014), our analysis revealed 437 

large correlations between SOS and SRS across Africa. Notwithstanding this large 438 

correlation, vegetation green-up is not driven by rainy season onset as plants green-up early, 439 

prior to the rainy season onset. This phenomenon suggests that other factors may have a 440 

much greater influence over the onset of the vegetation growing season. However, large 441 

correlations were observed for all the major vegetation types in this study, except for 442 

shrublands (  443 
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Table ), and this is influenced by the spatial variability in SOS dates across Africa (Adole et 444 

al., 2018).  445 

 446 

The EOS and ERS had a small association for woodlands and croplands, but large association 447 

for shrublands and grasslands. This was expected as the EOS for woodlands extends much 448 

later than for ERS. Similarly, because the end of the crop growing season depends largely on 449 

sowing date and the variety of crops grown (Brown & de Beurs, 2008), only a small 450 

correlation between ERS and crop EOS was expected. The tight coupling of grasslands to 451 

water explains the large correlation observed for grasslands, and the large associations 452 

between all other grassland LSPs and rain parameters analysed in this study (Table 2).  453 

 454 

The LOS and the total amount of annual rainfall across Africa produced a large association. 455 

However, only a small association was observed for woodlands between LOS and the total 456 

amount of annual rainfall, and between LOS and LRS. This suggests that the length and total 457 

amount of annual rainfall does not significantly influence the length of growing season for 458 

woody vegetation. One reason for this could be the ability of woody plants to minimise 459 

transpiration over a long period, especially during dry seasons and at the same time maximise 460 

photosynthesis (De Bie et al., 1998), thus, leading to a longer LOS than LRS. Nevertheless, 461 

the time of maximum greenness produced a large association with time of maximum rainfall, 462 

and seasonal integrated EVI produced a large association with total amount of annual rainfall 463 

(Table 2). This suggests that rainfall amount affects the seasonal productivity of woodlands. 464 

This is in broad agreement with reported increases in productivity in areas with larger 465 

amounts of rainfall in some woody species in South Africa (Shackleton, 1999).  466 

 467 
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From this research, it is evident that while pre-rain green-up is ubiquitous in Africa, post-rain 468 

green-up was limited to the Sudano-Sahelian region. From previous studies (Berg et al., 469 

2011; Marteau et al., 2011) and the results of this research, it can be inferred that the post-470 

rain green-up pattern observed in the Sudano-Sahelian region can be explained by the very 471 

short, marked rainy season in the region. 472 

 473 

The above observations pose serious challenges for existing terrestrial biosphere models 474 

(TBMs) and climate change predictions (Ryan et al., 2017).  Currently, TBMs like the 475 

dynamic global vegetation models (DVGM) use only precipitation or soil moisture thresholds 476 

in modelling the response of dry deciduous plants to climatic factors (Sitch et al., 2008; Zhao 477 

et al., 2013). Some examples of phenological models are the meteorological data-based 478 

phenology model (Jolly et al., 2005) and the carbon–nitrogen dynamics (CN) model (Wang 479 

et al., 2016). They both depend on seasonal water availability as a cue for vegetation 480 

phenology in the tropics. This potentially creates a large bias in estimating phenological 481 

events because the parametrisation process in these models does not account for the 482 

ubiquitous pre-rain greening phenomenon, which may be triggered by other environmental 483 

factors.  484 

Another aspect worthy of consideration in these global change models is the feedback role of 485 

phenology on climate, mostly through CO2 uptake (Peñuelas et al., 2009; Wu et al., 2016). 486 

As previously mentioned, the African vegetation contributes 38% of the global climate-487 

carbon cycle feedback, mostly coming from its savanna comprised mainly of woodlands 488 

(Friedlingstein et al., 2010).  In a changing climate of projected increases in temperatures, 489 

droughts, soil moisture drying, and decreases in precipitation in Africa, especially southern 490 

Africa (Niang et al., 2014), there could be an accompanying shift in precipitation seasonality 491 

and intensity. This could result in the delay or absence of the anticipated moisture support for 492 
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plant growth at the time needed in pre-rain green up woodlands, with likely consequences on 493 

net primary productivity. Consequently, this may influence the vegetation-mediated 494 

feedbacks on climate systems (a positive feedback on climate change), because of the 495 

possible reduction in CO2 uptake from the African savannas. Similarly, increasing 496 

temperatures may influence vegetation-mediated feedbacks on climate change estimates in 497 

pre-rain green up plants. Studies have suggested that temperature increases might have 498 

caused increased productivity and growth in some southern African woodlands (Bunting et 499 

al., 2016; Davis et al., 2017), therefore, potentially leading to greater CO2 uptake.  500 

 501 

In summary, this research presents a comprehensive classification of the different patterns of 502 

LSP responses to rainfall in Africa. It confirms the prevalence of pre-rain green-up in Africa, 503 

and further demonstrates that this pattern is more widespread across the continent than 504 

previously reported. Additionally, we found that both pre-rain and post-rain green-up had a 505 

significant influence on EOS lags across different vegetation types. We were also able to 506 

quantify the frequencies of these LSP responses (pre-rain and post-rain) across different 507 

vegetation types in Africa and provided supporting evidence from previous studies, mostly 508 

ground-based. These findings and other advances in phenological studies were possible 509 

because of remote sensing methods (Archibald & Scholes, 2007; Studer et al., 2007). As 510 

such, the findings are subject to the common limitations associated with these techniques. 511 

Examples of limitations are the potential influences from smoothing and LSP estimation 512 

techniques, and influences from the type of sensor (Atzberger et al., 2013). Notwithstanding 513 

these limitations, the findings and the supporting literature suggest that rainfall is not the only 514 

major environmental factor controlling initiation and cessation of vegetation seasonality in 515 

Africa. It proposes that although rainfall is important in vegetation growth (as seen in the 516 

large correlations between the rainfall and phenological parameters), other environmental 517 
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factors, and the interplay between these factors, are likely to exert a greater influence on the 518 

onset and end of seasonal vegetation growth patterns. Temperature and photoperiodicity have 519 

been suggested to be among the most important factors triggering onset of growing season 520 

across Africa. The effect of these other factors and the related role of rainfall in seasonal 521 

vegetation growth needs to be investigated at the continental scale to advance our 522 

understanding of natural ecosystem processes in Africa and their representation in terrestrial 523 

biosphere models. This is especially important, considering the need to understand the likely 524 

responses of pre-rain green-up under a changing climate, and how these responses might 525 

influence global climate change on vegetation-atmosphere feedbacks.   526 
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Tables 804 

Table 1: Reclassification of land cover types into broad categories based on the International 805 

Geosphere Biosphere Programme (IGBP) global vegetation classification scheme. 806 

IGBP 

number 

Initial land cover types Merged land cover type 

1 Evergreen needleleaf forest  Forest 

2 Evergreen broadleaf forest  

3 Deciduous needleleaf forest 

4 Deciduous broadleaf forest 

5 Mixed forest 

6 Closed shrublands Shrublands 

7 Open shrublands 

8 Woody savannas Woodlands 

9 Savannas 

10 Grasslands Grasslands 

12 Croplands Croplands 

14 Croplands/natural vegetation mosaic Croplands/natural vegetation mosaic  

11 Permanent wetlands Non-vegetative cover 

13 Urban and built-up land 

15 Permanent snow and ice 

16 Barren or sparsely vegetated 

17 Water 

807 

 808 

  809 
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Table 2: Correlation between LSP and rainfall across space. The associations are reported in 810 

R2 values all at p-value <0.000.  811 

Pheno-rain 

combinations 

Correlation (R2) (p-value<0.000) by land cover class 

 

All Croplands Grasslands Shrublands Woodlands 

SOS and SRS 0.92 0.70 0.95 0.31 0.97 

EOS and ERS 0.10 0.23 0.76 0.50 0.07 

LOS and LRS 0.27 0.18 0.87 0.28 0.09 

LOS and Rcum 0.34 0.79 0.82 0.04 0.09 

IntEVI and Rcum 0.58 0.37 0.55 0.12 0.57 

VItmax and Rtmax 0.52 0.28 0.75 0.72 0.69 
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Figure captions 814 

Figure 1:  Reclassified 2013 MODIS land cover product (MCD12Q1). 815 

 816 

Figure 2: Flowchart describing the study methodology in three major steps: (1) data 817 

processing, (2) data analysis and (3) statistical analysis. 818 

 819 

Figure 3: An illustration of LSP parameters used in this research. Black line illustrates 820 

smoothed time-series, (a) Start of season (SOS), (b) End of season (EOS), (c) Length of 821 

season (LOS), (d) Time of maximum EVI (VItmax), and (e) Integrated EVI (IntEVI). 822 

 823 

Figure 4: Examples of pixel profiles for a complete cycle of EVI and daily rainfall time-824 

series. EVI time-series is represented by green curved lines while rainfall is represented by 825 

black bars. Vertical dashed lines show LSP and rainfall parameters (SOS and EOS in green 826 

and SRS and ERS in blue). (a) Croplands in the Sudano-Sahelian region showing SOS 827 

arriving after SRS, (b) Grasslands in the Sudano-Sahelian region showing SOS and SRS 828 

arriving approximately at the same time, (c) Grasslands in southern Africa showing SOS 829 

arriving before SRS, and (d) Woodlands in southern Africa showing SOS arriving well before 830 

SRS.  831 

 832 

Figure 5: Difference in days between SRS and SOS (i.e., SRS - SOS in days). Positive 833 

values indicate SOS arriving before SRS while negative values indicate SOS arriving after 834 

SRS. (a) Spatial distribution of SOS and SRS difference in number of days. (b) Proportion of 835 

pixels by land cover type in different categories of SOS and SRS lag. (c) Frequency 836 

distribution of SRS and SOS difference. 837 

 838 



38 
 

Figure 6: Proportion of pixels in each land cover type in the different categories of SOS and 839 

SRS lag. 840 

 841 

Figure 7: Differences in days between EOS and ERS (i.e., EOS - ERS in days). Positive 842 

values indicate EOS arriving after ERS while negative values indicate EOS arriving before 843 

ERS. (a) Spatial distribution of EOS and ERS difference in number of days, (b) Proportion of 844 

pixels by land cover type in different categories of EOS and ERS lag, (c) Frequency 845 

distribution of EOS and ERS difference. 846 

 847 

Figure 8: Spatial pattern of the average of LSP and rainfall parameters between 2001 and 848 

2015. (a) SOS and SRS and (b) EOS and ERS (shown in months of the year). (c) LOS and 849 

LRS (shown in number of days).  850 

 851 


