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Abstract—Optimization of stochastic epidemic information
dissemination plays a significant role in enhancing the reliability
of epidemic networks. This letter proposes a multi-stage decision-
making optimization model for stochastic epidemic information
dissemination based on dynamic programming, in which un-
certainties in a dynamic environment are taken into account.
We model the inherent bimodal dynamics of general epidemic
mechanisms as a Markov chain, and a state transition equation
is proposed based on this Markov chain. We further derive
optimal policies and a theoretical closed-form expression for the
maximal expected number of successfully delivered messages.
The properties of the derived model are theoretically analyzed.
Simulation results show an improvement in reliability, in terms
of accumulative number of successfully delivered messages, of
epidemic information dissemination in stochastic situations.

Index Terms—Epidemic mechanisms, information dissemina-
tion, dynamic programming, Markov chain.

I. INTRODUCTION

EPIDEMIC algorithms emerge as an effective bio-inspired
mechanism for information dissemination in large-scale

distributed systems as they possess the characteristics of
simplicity in implementation, robustness and high resilience
to failures [1]. In an epidemic-based routing protocol, a
communication terminal usually forwards a certain number
of messages to a randomly selected subset or all of its
neighboring nodes during a finite time period. This period
is generally divided into successive time stages. The fan-out
number in each epidemic stage, as a key control parameter,
should be properly set to achieve high reliability in epidemic
information dissemination.

So far, extensive variants of epidemic routing methods have
been proposed, such as the strategic learning combining game
theory gossip scheme [2], the optimal energy management
strategies combing optimal control of activation and transmis-
sion [3], the random-efficient spreading with Markov chain
[4], the sociality-aided adaptive recovery epidemic routing
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scheme [5]. We refer the interested readers to [6] and [7]
for a comprehensive understanding of epidemic mechanisms
and routing protocols. Taken together, most previous studies
base their modeling on deterministic ordinary differential
equations (ODEs) to describe epidemic behaviors, thereby
falling within the deterministic modeling paradigms in which
modeling-related parameters are usually determined without
consideration of uncertainties inherent in a targeted system,
whereas in real scenarios of mobile communications such as
DTNs and VANETs, uncertainties come from many coupled
environmental factors. At this point, a stochastic modeling can
be more appealing to deal with a decision-making problem in
dynamic environments. Different to these works, taking into
account uncertainties in epidemic dissemination, we derive
our dynamic programming model by incorporating a proba-
bilistic formulation into the epidemic dynamics motivated by
epidemic bimodal behavior [1]. Therefore, our work actually
falls within the probabilistic paradigm that allows us to cope
with uncertain dynamic environments.

In this letter, we focus on modeling the optimal control of
the fan-out of epidemic information dissemination in one node
as a sequential multi-stage decision-making process. How to
compute the optimal fan-out number of different messages
from one node in each time stage so as to maximize the
number of messages successfully delivered within the whole
process is the core issue in our research. We introduce a
state variable of two dimensions, one of which corresponds
to the accumulative number of messages that are successfully
forwarded to the destination nodes from one node, which
could be varying randomly, the other being the predicted
success in delivering the messages originated during each
forwarding stage. A Markov chain is then constructed to model
the stochastic dynamics of successive state transitions based
on the inherent bimodal behavior of epidemic algorithms.
With the Markov chain, we use the dynamic programming
technique to develop the optimization model for stochastic
epidemic information dissemination. Based on this, the op-
timal epidemic policies as well as the theoretical closed-form
expression for optimal expected utility are derived. Further,
simulations are conducted to prove the validity of the optimal
epidemic policies and the closed-form expression.

II. SYSTEM MODEL

Consider that epidemic information dissemination occurs
during a finite time period. We discretize the time horizon of
information dissemination of one node into finite time stages,
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i.e., n ∈ {0, 1, . . . , N} where n is a time stage index. At
the beginning of each stage n, a communication node always
makes a decision on the number of messages that it would
like to fan out, denoted by in. It is worth highlighting that
our model focuses on the decision-making process of the
individual node rather than the multi-hop epidemic process.
Since increasing in would lead to communication link con-
gestion, high occupancy of the node’s storage buffer, high
transmission power consumption, especially when the network
is dense, the fan-out of the node should be limited by a certain
threshold. Thus, we can limit in within [0, in] where in should
be appropriately specified as the upper bound of in. In stage n,
the accumulative number of successfully delivered messages
originated from the information source can be represented
by cn . To quantify the benefit resulting from reliability
and efficiency of epidemic information dissemination, we
introduce a general nonnegative utility function, S(cn), as a
performance measure, which maps cn to an expected utility.
S(cn) can be prespecified according to a specific application
scenario, which should be a monotonically increasing function
of cn due to the fact that more messages successfully delivered
indicate better reliability and higher efficiency achieved by
the epidemic mechanism. Then, the optimization objective of
epidemic information dissemination is formulated as

max {S(cN ) |S(cn), n = 0, 1, . . . , N − 1} . (1)

With the objective (1), a node would like to make a series
of optimal decisions on in for ∀n ∈ {0, 1, . . . , N}. Thus,
we formulate the problem as an N -stage dynamic decision-
making process, in which a set of optimal in, denoted by
{i∗n, n = 0, 1, . . . , N}, needs to be computed and adopted.
Since maximizing cn is key to optimizing epidemic informa-
tion dissemination, therefore, determining the optimal fan-out
number in every time stage is a primary goal in our research.

As stated in Ref. [1], epidemic mechanisms are inherently
bimodal, which means that one node would exhibit two types
of behavior in a time stage. One is convergence to the endemic,
which means that almost all other nodes in the network are
infected and all messages can be successfully propagated
epidemically from the original node to the destination nodes.
The other case is disease-free equilibrium, which implies
that only negligible nodes in the network are infected and
no epidemic information is delivered successfully to other
nodes. We introduce the concept of an ideal state in epidemic
information dissemination in a time stage resulting from the
first case of the bimodal behavior. We call this state “full
messages delivery” hereafter. Considering uncertainties in a
dynamic epidemic environment resulting from many complex
factors including the evolving topology and different moving
speed of nodes, we assume that full messages delivery is
stochastic: the full messages delivery in each stage n can either
be realized or not in a random way. We further define by a
random variable Mn the possibility that full messages delivery
can be realized in stage n, which follows a certain random
distribution characterized by a cumulative distribution function
(CDF) FM (m) over [0, 1]. Correspondingly, Mn is observed
by mn ∈ [0, 1] varying along with n. We point out that since
multiple factors in the network have influence on the bimodal
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Figure 1. Markov chain diagram that defines the stochastic epidemic bimodal
behavior. In a stochastic state (cn,mn), cn is the accumulative number
of successfully delivered messages at the beginning of n, while mn is the
probability of the full messages delivery in n.

dynamics, their comprehensive effect is aggregated into this
single variable mn.

With the mathematical notations given above, the stochastic
epidemic bimodal behavior in an uncertain dynamic environ-
ment is consequently modeled as a binary Markov chain, as
illustrated in Fig. 1, where we introduce a two-dimensional
variable to capture the stochastic state in each time stage
n ∈ {0, 1, . . . , N}, (cn,mn). The probability of transition be-
tween any two connected states in two successive time stages
n and n+ 1 is then parameterized by mn. Then we introduce
sn (cn, in) to denote the full delivery response in stage n.
Logically, a larger fan-out number or a larger accumulative
number would imply more full delivery response. Therefore,
we assume for n ∈ {0, 1, . . . , N}:

∂sn (cn, in)

∂in
≥ 0,

∂sn (cn, in)

∂cn
≥ 0. (2)

Therefore, based on the stochastic bimodal dynamics in Fig.
1, we derive the following state transition equation for n =
0, 1, . . . , N − 1:

cn+1 =

{
cn + sn (cn, in) , with a probability Mn;

cn, with a probability 1−Mn.
(3)

Now, we use Rn (cn,mn) to denote the maximal expected
accumulative number of messages that can be successfully
delivered in the remaining N − n stages when the node is
currently in the state (cn,mn). Then, the utility function S(cn)
in stage n can be expressed as

S(cn) =

{
Rn+1(cn + sn(cn, in), t), with a probability Mn;

Rn+1(cn, t), with a probability 1−Mn.
(4)

Based on dynamic programming [8] and considering ran-
domness represented by probability distribution FM (m), we
propose the following Bellman equation as Rn denotes the
maximal expected value of Sn:

Rn(cn,mn) = max0≤in≤iE [S(cn)]

= sup
0≤in≤i

∫ 1

0

{
mnRn+1(cn + sn(cn, in), t)

+ (1−mn)Rn+1(cn, t)

}
dFM (t);

RN (cN ,mN ) = S(cN ).
(5)

To transform (1) into a dynamic programming formulation.
Hence, by backward induction using the Bellman equation (5),
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we are allowed to derive the optimal value of Rn (cn,mn)
from the optimal decisions in the remaining N−n stages, i.e.,
from {i∗k, k = N,N − 1, . . . , n+ 1}. With prior knowledge
on s(cn, in) and FM (n) under specific application scenarios,
we will be able to derive the maximal expected utility S (cN )
and the optimal policy i∗n in each decision making stage.

III. MODEL ANALYSIS

In this section, we analyze the theoretical properties of the
dynamic programming model proposed above.

Lemma 1: Rn(e, t) is an increasing function of e for any
n ∈ {0, 1, . . . , N} and t ∈ [0, 1].

Proof: For n = N , we have RN (cN , t) = S(cN ). Ac-
cording to the definition of S(cn), we can see that RN (cN , t)
is an increasing function of the variable cN and independent
of t, which indicates that the lemma holds in this case. As
for n = N − 1, N − 2, . . . , 1, due to induction and the
fact that mnRn+1(cn + sn(cn, in), t) + (1−mn)Rn+1(cn, t)
is a convex combination of Rn(·), Rn(cn,mn) is also an
increasing function of cn for mn ∈ [0, 1].

Lemma 2: Suppose ∂Rn+1 (e, t)/∂e exists. Given a specific
stage n and a fixed accumulative number of successfully
delivered messages cn, in is an implicitly nondecreasing
function, in (mn), of mn.

Proof: From Lemma 1, it sees that ∂Rn+1 (e, t)/∂e ≥
0 for any e and t ∈ [0, 1]. It follows this result and
∂sn(cn, in)/∂in ≥ 0 that

∂

∂in
[Rn+1(cn + sn(cn, in), t)−Rn+1(cn, t)]

=
∂Rn+1(cn + sn(cn, in), t)

∂(cn + sn(cn, in))

∂sn(cn, in)

∂in

=
∂Rn+1(e, t)

∂e

∂sn(cn, in)

∂in
≥ 0.

(6)

The inequality (6) further indicates that

∂

∂in
Rn+1(cn + sn(cn, in), t)− ∂

∂in
Rn+1(cn, t) ≥ 0. (7)

Therefore we can have

∂2

∂in∂mn

{
mnRn+1(cn + sn(cn, in), t)

+ (1−mn)Rn+1(cn, t)

}
≥ 0. (8)

According to Topkis’ Characterization Theorem in the
field of economics and game theory [9], mnRn+1(cn +
sn(cn, in), t) + (1−mn)Rn+1(cn, t) has the supermodularity,
implying that an increase in mn will increase the marginal
payoff, i.e., the partial derivative ∂Sn (mn, in)/∂in with re-
spect to in. That is, a larger mn will make an incentive for
the transmitter to raise in in order to maximize Sn (mn, in).
Hence, we arrive at Lemma 2.

IV. A CASE STUDY

To show how to apply the proposed model (5), we consider
a specific epidemic scenario where we assume that the full
delivery response sn equals in, i.e, sn(cn, in) = in, and

the probability of full messages delivery Mn is uniformly
distributed within [0, 1], i.e., Mn ∼ U [0, 1] and

FM (m) =


0,m < 0;

m,m ∈ [0, 1);

1,m ≥ 1.

(9)

Furthermore, we introduce a nonnegative parameter, γ ≥ 0,
to capture the individual decision-making preference of a node:
the value of γ = 1 refers to the case that the node is neutral in
resource consumption incurred by forwarding information; in
contrast, γ ∈ [0, 1) indicates that the node, acting in its self-
interest, prefers to conserving its communication resources,
while γ > 1 implies that the node is more likely to consume
more resources for information dissemination in the uncertain
dynamic environment. A higher γ indicates more effort the
mobile node would like to make in order to maximize the
epidemic reliability and can increase in for any stage n. Next,
we are ready to derive Theorem 1 to characterize the optimal
epidemic policy and the corresponding optimal value function.
Theorem 1 can perform as a significant guidance to solve
R∗

n (cn,mn) step by step.
Theorem 1: Suppose Mn ∼ U [0, 1] for n = 0, 1, . . . , N ,

S (cN ) = cN , and γ ≥ 0. The optimal information dissemina-
tion policy in any time stage n, i∗n, can be expressed as

i∗n = γmnin, (10)

and the optimal expected value given by (5) is formulated as

R∗
n (cn,mn) = mni

∗
n +

1

2

N−1∑
k=n+1

i∗k + cn. (11)

Proof: Given Mn ∼ U [0, 1] for n = 0, 1, . . . , N , we
can easily see dFM (t) = dt for t ∈ [0, 1]. According to the
definitions of mn and γ, we can further modify the upper
bound of in as γmnin, i.e., in ∈

[
0, γmnin

]
.

From Equation (2), it is obvious that ∂cn+1/∂in ≥ 0. At
this point, cn+1 is a nondecreasing function of in. Accord-
ing to Lemma 1 and (5), the increase of cn will improve
Rn (cn,mn). In other words, any node should adopt the
maximum potential policy of in, i∗n = γmnin, as its optimal
policy for epidemic information dissemination in any time
stage n in order to maximize its expected utility Rn (cn,mn)
as much as possible. Such a form of the optimal policy is
also consistent with Lemma 2. Then, by applying the optimal
policy of i∗n to the solution of optimal expected value of
accumulative number of delivered messages, we can conduct
a backward mathematical induction to derive R∗

n (cn,mn) and
prove Theorem 1.

We point out in other application scenarios, sn(cn, in) and
FM (m) would have different forms, which may be more
complex. Once their formulation can be well defined according
to the targeted scenario of interest, we can use the model above
to determine the optimal policies and maximal expected utility.

V. NUMERICAL RESULTS

To evaluate our proposed multi-stage dynamic programming
model in an uncertain dynamic environment, we have set up
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Figure 2. Distribution pattern of the
accumulative number of successfully
delivered messages at the end of the
final stage in different environments
with different intercontact rates.
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Figure 3. Comparison of the accumulative number of successfully delivered messages obtained by calculating the
closed-form optimal value function R∗

0 (c0,m0) along with the optimal policy i∗n = γmnin in each stage n and by
Monte Carlo simulations under different parameter settings.

a simulation scenario, where Num mobile nodes are assumed
to follow a random waypoint mobility model and the rate of
pairwise contact between any two mobile nodes is denoted by
β. Two nodes, uniformly and randomly selected from these
nodes, are treated as an information source and a destination.
We divide the total simulation duration of 3600s into N = 6
successive stages each with a time interval of ∆T = 600s.
According to [6], the probability that a message is successfully
forwarded to the destination in the basic epidemic fashion
(i.e. without any immunization or adaptive mechanisms) dur-
ing a given time stage can be analytically approximated
by Prob (∆T ) = 1 − Num/ [Num − 1 + exp(βNum∆T )].
Considering randomness in each stage n, we further simulate
mn using mn = Prob (∆T ) + (1− Prob (∆T )) ηn in our
experiment where ηn is assumed a random variable uniformly
distributed over [0, 1].

To show the influence of randomness in the epidemic
environment consisting of Num = 200 mobile nodes each
with an individual forwarding preference γ = 0.5 on the
final accumulative number of successfully delivered messages,
cN , we have conducted Monte Carlo simulations where we
set β ∈

{
0.1× 10−4, 0.55× 10−4, 1× 10−4

}
and in = 100

for each n. Allowing for stochasticity, we set the policy for
basic epidemic information dissemination in stage n, in, as
in = γmninηn. Interestingly, it can be observed from Fig.
2 that the distribution pattern of stochastic cN under different
settings of β is bell-shaped, suggesting that the sum of multiple
random variables {I1, . . . , In . . . , I6} in six successive time
stages (where each In is used to denote the random number of
successfully delivered messages in stage n),

∑6
n=1 In, would

have an approximately normal distribution under the dynamic
environment. This is consistent with the central limit theorem.

Furthermore, we provide a diverse array of figures in Fig. 3
that shows the influence of different parameters and compares
the results offered by computing the theoretical model with
those obtained by the basic epidemic simulations. In Fig. 3,
we have also performed Monte Carlo simulations with 105

replications per parameter point, and the results are illustrated
with a series of boxplots where the expected performance is
marked by a red median bar. Notably, it can also be found
that our R∗

0 (c0,m0), determined by using the optimal policy
(10) and the closed-form optimal utility (11) at each parameter

point in any case, is always higher than the value of cN at the
third quartile of the corresponding box. The observation indi-
cates that our proposed optimal policy based on multi-stage
dynamic programming can achieve more than about 25% of
where the mean reliability of the basic epidemic mechanism in
the uncertain dynamic environment simulated under different
environmental conditions characterized by Num, β and γ.

VI. CONCLUSION

In this letter, we have studied the issue of epidemic in-
formation dissemination in a dynamic uncertain environment
and considered stochastic epidemic bimodal dynamics. The
theoretical properties of the proposed model were investigated,
and a closed-form optimal expected utility function as well as
the underlying optimal policy for epidemic information dis-
semination was derived. Numerical results have demonstrated
that our model can bring an improvement in terms of reliability
in epidemic information dissemination when compared to the
basic epidemic mechanism.
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[3] E. Altman, A. P. Azad, T. Başar, and F. D. Pellegrini, “Combined
optimal control of activation and transmission in delay-tolerant networks,”
IEEE/ACM Transactions on Networking, vol. 21, no. 2, pp. 482–494,
April 2013.

[4] Z. Guo and H. Sun, “Gossip vs. markov chains, and randomness-efficient
rumor spreading,” pp. 411–430, 2015.

[5] L. Galluccio, B. Lorenzo, and S. Glisic, “Sociality-aided new adaptive
infection recovery schemes for multicast dtns,” IEEE Transactions on
Vehicular Technology, vol. 65, no. 5, pp. 3360–3376, May 2016.

[6] X. Zhang, G. Neglia, J. Kurose, and D. Towsley, “Performance modeling
of epidemic routing,” Computer Networks, vol. 51, no. 10, pp. 2867–2891,
2007.

[7] C. Esposito, M. Platania, and R. Beraldi, “Reliable and timely event
notification for publish/subscribe services over the internet,” Networking
IEEE/ACM Transactions on, vol. 22, no. 1, pp. 230–243, 2014.

[8] R. E. Bellman and S. E. Dreyfus, Applied dynamic programming. Prince-
ton university pre, 1962.

[9] P. Milgrom and J. Roberts, “Rationalizability, learning, and equilibrium
in games with strategic complementarities,” Econometrica, vol. 58, no. 6,
pp. 1255–1277, 1990.


