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Abstract

Software packages usually report the results of statistical tests using p-values. Users
often interpret these by comparing them to standard thresholds, e.g. 0.1%, 1% and 5%,
which is sometimes reinforced by a star rating (***, **, *). In this article, we consider an
arbitrary statistical test whose p-value p is not available explicitly, but can be approx-
imated by Monte Carlo samples, e.g. by bootstrap or permutation tests. The standard
implementation of such tests usually draws a fixed number of samples to approximate
p. However, the probability that the exact and the approximated p-value lie on different
sides of a threshold (the resampling risk) can be high, particularly for p-values close to
a threshold. We present a method to overcome this. We consider a finite set of user-
specified intervals which cover [0, 1] and which can be overlapping. We call these p-value
buckets. We present algorithms that, with arbitrarily high probability, return a p-value
bucket containing p. We prove that for both a bounded resampling risk and a finite run-
time, overlapping buckets need to be employed, and that our methods both bound the
resampling risk and guarantee a finite runtime for such overlapping buckets. To interpret
decisions with overlapping buckets, we propose an extension of the star rating system.
We demonstrate that our methods are suitable for use in standard software, including for
low p-values occurring in multiple testing settings, and that they can be computationally
more efficient than standard implementations.

Keywords: Algorithms, Bootstrap/resampling, Hypothesis Testing, Sampling

1 Introduction

Software packages usually report the significance of statistical tests using p-values. Most users
will base further steps of their analyses on where those p-values lie with respect to certain
thresholds. To facilitate this, many tests in statistical software such as R (R Development
Core Team, 2008), SAS (SAS Institute Inc., 2011) or SPSS (IBM Corp., 2013) translate
the significance to a star rating system, in which typically p ∈ (0.01, 0.05] is denoted by *,
p ∈ (0.001, 0.01] is denoted by ** and p ≤ 0.001 is denoted by ***.

In this article, we consider a statistical test whose p-value p can only be approximated by
sequentially drawn Monte Carlo samples. Among others, this scenario arises in bootstrap or
permutation tests, see e.g. Lourenco and Pires (2014); Mart́ınez-Camblor (2014); Liu et al.
(2013); Wu et al. (2013); Asomaning and Archer (2012); Dazard and Rao (2012).

Standard implementations of Monte Carlo tests in software packages usually take a fixed
number of samples and estimate p as the proportion of exceedances over the observed value
of the test statistic. Examples of this include the computation of a bootstrap p-value inside
the function chisq.test in R or the function t-test in SPSS. However, there is no control of
the resampling risk, the probability that the exact and the approximated p-value lie on two
opposite sides of a testing threshold (usually 0.1%, 1% or 5%).

Sequential methods to approximate p-values have been studied in the literature. Early
works provided ad hoc attempts to reduce the computational effort without focusing on a
specific error criterion (Besag and Clifford, 1991; Silva et al., 2009).
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Further developments aimed at a uniform bound on the resampling risk for a single
threshold (Davidson and MacKinnon, 2000; Andrews and Buchinsky, 2000, 2001; Gandy,
2009). Gandy (2009) shows that such a uniform bound necessarily results in an infinte
running time.

There are also approaches that aim to bound an integrated resampling risk for a single
threshold (Fay and Follmann, 2002; Kim, 2010; Silva and Assunção, 2013). Such an error
criterion is weaker that a uniform bound on the resampling risk and can be achieved with
finite effort.

In this article, we present algorithms that work with multiple thresholds, aim for uniform
bounds on the error and, under conditions, have finite running time. We first generalize
testing thresholds to a finite set of user-specified intervals (called “p-value buckets”) which
cover [0, 1] and which can be overlapping. Our algorithms return one of those p-value buckets
which is guaranteed to contain the unknown (true) p up to a uniformly bounded error.

We prove that methods achieving both a finite runtime and a bounded resampling risk
need to operate on overlapping p-value buckets. In order to report decisions computed with
overlapping buckets, we propose to use an extension of the classical star rating system (*,
**, ***) used to indicate the significance of a hypothesis.

Our methods rely on the computation of a confidence sequence for p. We present two ap-
proaches to compute such a confidence sequence, prove that both approaches indeed bound
the resampling risk and achieve a finite runtime for overlapping buckets. We compare both
approaches in a simulation section and demonstrate that they achieve a competitive compu-
tational effort which is close to a theoretical lower bound on the effort we derive.

The article is structured as follows. Section 2 introduces the mathematical setting of
our article (Section 2.1), the rationale behind overlapping p-value buckets (Section 2.2),
our proposed extension of the traditional star rating system (Section 2.3) and a general
algorithm to compute a decision for p with respect to a set of p-value buckets (Section 2.4).
The general algorithm relies on the construction of certain confidence sequences for p for
which we present two approaches: one based on likelihood martingales (Robbins, 1970; Lai,
1976) in Section 3.1 and one based on the Simctest algorithm (Gandy, 2009) in Section 3.2.
In Section 4 we first derive a theoretical lower bound on the expected effort (Section 4.1) and
demonstrate that our methods achieve a computational effort which stays within a multiple
of the optimal effort (Sections 4.2, 4.3). An application to multiple testing is considered in
Section 4.4. The article concludes with a discussion in Section 5. All proofs can be found in
Appendix A. The Supplementary Material includes R-code to implement the algorithms as
well as to reproduce all figures and tables.

2 General algorithm

2.1 Setting

We consider one hypothesis H0 which we would like to test with a given statistical test.
Let T denote the test statistic and let t be the evaluation of T on some given data. For
simplicity, we assume that H0 should be rejected for large values of t. In this case the p-
value is commonly defined as the probability of observing a statistic at least as extreme as
t, i.e.

p = P(T ≥ t), (1)

where P is a probability measure under the null hypothesis.
We assume that the p-value p is not available analytically but can be approximated

using Monte Carlo simulation, by drawing independent data under H0 and evaluating the
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Bucket [0, 0.1%] (0.1%, 1%] (1%, 5%] (5%, 1]
Code *** ** *

Bucket (0.05%, 0.2%] (0.8%, 1.2%] (4.5%, 5.5%]
Code **∼ *∼ ∼

Table 1: Extended star rating system for the p-value buckets J ∗.

test statistic T on them. Comparing the result to the observed realization of T then allows
to approximate the p-value as p̂ = Pn(T ≥ t), where Pn is the estimated null-distribution
based on n samples (for instance, using bootstrap tests). The exceedances over the observed
realization of T can equivalently be modeled using a stream of independent random variables
Xi, i ∈ N, having a Bernoulli(p) distribution.

Let J be a set of sub-intervals of [0, 1] of positive length that cover [0, 1], i.e.
⋃
J∈J J =

[0, 1]. We call any such J a set of p-value buckets. For example,

J = J 0 := {[0, 10−3], (10−3, 0.01], (0.01, 0.05], (0.05, 1]} (2)

is a set of p-value buckets. Finding a bucket I ∈ J 0 such that p ∈ I is equivalent to deciding
where p lies in relation to the traditional levels 0.001, 0.01 and 0.05.

The goal of our algorithms is to find a bucket I ∈ J containing p. A natural error
criterion is the risk of a wrong decision Pp(p /∈ I), which we call the resampling risk. Our
methods bound the resampling risk uniformly in p at a given ε ∈ (0, 1), i.e.

Pp(p /∈ I) ≤ ε for all p ∈ [0, 1]. (3)

We will show that there is no algorithm achieving this for J 0 with finite expected effort –
for finite effort we need overlapping p-value buckets, which we discuss in the next section.

2.2 Overlapping buckets

We say that the buckets J are overlapping if any p ∈ (0, 1) is contained in the interior of a
J ∈ J . For instance, the buckets J 0 in (2) are not overlapping, whereas the buckets

J ∗ = J 0 ∪
{

(5 · 10−4, 2 · 10−3], (0.008, 0.012], (0.045, 0.055]
}
,

employed in the remainder of this article, are overlapping.
We let τ be the random effort of an algorithm, defined as the number of exceedance indi-

cators Xi used. The following theorem shows that overlapping buckets are both a necessary
and sufficient prerequisite for a finite time algorithm satisfying (3) to exist.

Theorem 1. The following statements are equivalent:

1. There exists an algorithm satisfying (3) with Ep[τ ] <∞ for all p ∈ [0, 1].

2. The p-value buckets J are overlapping.

3. There exists an algorithm satisfying (3) with τ < C for some deterministic C > 0.

2.3 Extended Star Rating System

It is commonplace to report the significance of a hypothesis using a star rating system: strong
significance is encoded as *** (p < 0.1%), significance at 1% is encoded as ** and weak
significance (p < 5%) as a single star. This classification, recommended in the publication

3



Figure 1: Left: Non-stopping region (gray) to decide p with respect to Je (corresponding to
a 5% threshold). Right: Non-stopping region for the overlapping buckets Je ∪{(0.03, 0.07]}.

manual of the American Psychological Association (American Psychological Association,
2010, page 139), is the de facto standard for reporting significance. As we have seen in
Theorem 1, it is impossible to produce such a star rating for Monte Carlo tests with finite
effort, but it is possible to report results with overlapping buckets with finite effort.

We propose to extend the star rating system to overlapping buckets as described in
Table 1, using the p-value buckets J ∗ as example. If the algorithm gives a clear decision
with respect to the classical thresholds, we report the classical star rating. Otherwise, i.e.
if the reported bucket I equals (0.05%, 0.2%], (0.8%, 1.2%] or (4.5%, 5.5%], we propose to
report significance with respect to the smallest classical threshold larger than max I and to
indicate the possibility of a higher significance with a tilde symbol.

For instance, suppose an algorithm returns the bucket I = (0.05%, 0.2%] for p upon
stopping. Since in this case a decision with respect to all classical thresholds larger than
max I = 0.2% is available, we know that p ≤ 1% and can safely report a ** significance.
However, as p could either be smaller or larger than the next smaller classical threshold
0.1% ∈ J , we report **∼ to indicate the possibility of a higher significance.

2.4 The general construction

We suppose that for each n ∈ N, we can compute a confidence interval In for p based on
X1, . . . , Xn such that the joint coverage probability of the sequence In, n ∈ N, is at least
1− ε, where ε > 0 is the desired uniform bound on the resampling risk, i.e. we require

Pp(p ∈ In ∀n ∈ N) ≥ 1− ε for all p ∈ [0, 1]. (4)

In Sections 3.1 and 3.2 we consider two constructions satisfying (4).
For a given set J of p-value buckets, we define the stopping time

τJ = inf {n ∈ N : ∃I ∈ J : In ⊆ I} (5)

which denotes the minimal number of samples n needed until a confidence interval In is fully
contained in a bucket I ∈ J . The result of our algorithm is this bucket I if τJ < ∞. If
τJ =∞ we let I be an arbitrary element of J such that limn→∞

Sn
n ∈ I, where Sn =

∑n
i=1Xi

denotes the cumulative sum of exceedances observed among the first n samples.
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Figure 2: Non-stopping region for J 0 (left) and J ∗ (right).

The random interval I constructed in this way satisfies the uniform bound on the resam-
pling risk (3) due to the strong law of large numbers and due to (4).

If τJ is bounded, meaning if there exists N ∈ N such that τJ < N , we can relax (4) to

Pp(p ∈ In ∀n < N) ≥ 1− ε for all p ∈ [0, 1]. (6)

Example 1. Suppose we are solely interested in the 5% threshold. Testing at 5% corresponds
to the two classical buckets Je = {[0, 0.05], (0.05, 1]}. Using the approach of Section 3.2 with
ε = 10−3 to compute a confidence sequence for p, we arrive at the non-stopping region (gray)
displayed in Figure 1 (left).

Sampling progresses until the sampling path (n, Sn) hits either (lower or upper) boundary
of the non-stopping region. As displayed in Figure 1 (left), we report the interval [0, 0.05]
((0.05, 1]) upon hitting the lower (upper) boundary first.

Adding the bucket (0.03, 0.07] to Je results in overlapping buckets with a finite non-
stopping region displayed in Figure 1 (right). In Figure 1 (right), the sample path can leave
the non-stopping region in three ways: Either to the top via the former upper boundary of
Figure 1 (left), in which case we report the classic interval (0.05, 1], to the bottom via the
former lower boundary corresponding to the bucket [0, 0.05], or to the middle corresponding
to the added bucket (0.03, 0.07].

Example 2. Similarly to Example 1, Figure 2 shows the non-stopping region for J 0 and J ∗.
Again, the stopping region is infinite for the non-overlapping J 0 and finite for J ∗ consisting
of overlapping p-value buckets.

How likely is it to observe the different decisions possible when testing with J ∗? Figure 3
shows the probability of obtaining each decision in the extended star rating system for J ∗ as a
function of p. These probabilities are computed as follows: For a given p, we iteratively (over
n) compute the distribution of Sn conditional on not stopping. This allows us to compute
the probability of stopping and the resulting decision.

Figure 3 shows that intermediate decisions (∼, *∼, **∼) only occur with appreciable
probability for a narrow range of p-values. For most p-values, a decision in the sense of the
classical star rating system is reached.
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Figure 3: Probabilities of observing each possible decision with J ∗ as a function of p.

3 Construction of Confidence Sequences

We now present two approaches to computing confidences sequences and show that, for
overlapping buckets, the resulting stopping times are bounded.

3.1 The Robbins-Lai approach

Confidence sequences can be constructed from likelihood martingale inequalities (Robbins,
1970; Lai, 1976). To be precise, Robbins (1970) proves that the following inequality

Pp
(
∃n ∈ N : b(n, p, Sn) ≤ ε

n+ 1

)
≤ ε (7)

holds true for all p ∈ (0, 1) and ε ∈ (0, 1), where b(n, p, x) =
(
n
x

)
px(1− p)n−x. The statement

(7) is trivially true for p ∈ {0, 1}. Therefore, In = {p ∈ [0, 1] : (n + 1)b(n, p, Sn) > ε} is a
sequence of confidence sets for p with the desired coverage probability of 1− ε.

Lai (1976) further shows that In are intervals. Indeed, if 0 < Sn < n we have In =
(gn(Sn), fn(Sn)), where gn(x) < fn(x) are the two distinct roots of (n + 1)b(n, p, x) = ε. In
the case Sn = 0, the equation (n+1)b(n, p, x) = ε has only one root rn, leading to In = [0, rn).
Likewise for the case Sn = n, which leads to In = (rn, 1].

For overlapping buckets J , the stopping time τJ can always be bounded by a determinis-
tic positive constant. Indeed, the following two lemmas show that the length of In uniformly
goes to zero and, moreover, that once an interval is below a certain length, it is guaranteed
to be contained in one of the buckets, ensuring that the general algorithm stops.

Lemma 1. Let n ∈ N and |In| be the length of the interval In. Then |In| ≤
[
2
n log

(
n+1
ε

)]1/2
.

Lemma 2. If J is an overlapping set of p-value buckets then there exists c > 0 s.t. for all
intervals I ⊆ [0, 1] with length less than c there exists J ∈ J such that I ⊆ J .

The two roots gn(Sn) and fn(Sn) need not be computed explicitly to determine if In ⊆ J .
Indeed, for every J ∈ J , it suffices to first check if (n+1)b(n, α, Sn) > ε at α ∈ {min J,max J}
to see if any boundary of J is contained in In. If this is not the case, one can use the derivative
of (n+ 1)b(n, α, Sn) with respect to α at α ∈ {min J,max J} together with the unimodality
of (n + 1)b(n, α, Sn) in α to check if In ⊆ J . Details are given in Appendix B. For a single
threshold this approach has been suggested in Ding et al. (2016).
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3.2 The Simctest approach

Gandy (2009) constructed stopping boundaries to compute a decision for a p-value with
respect to a single threshold α ∈ [0, 1]. We revisit this method before showing how it can be
extended to p-value buckets.

Before observing Monte Carlo samples, two integer sequences (Li)i∈N and (Ui)i∈N serving
as lower and upper stopping boundaries are computed. The algorithm then proceeds to draw
samples (Xi)i∈N until the trajectory (n, Sn) hits either boundary. The stopping time for this
method is thus τ = inf{k ∈ N : Sk ≥ Uk or Sk ≤ Lk}.

The two boundaries (Li)i∈N and (Ui)i∈N are a function of both the threshold α and some
bound on the resampling risk ρ. They are computed recursively in such a way that, given
p ≤ α (p > α), the probability of hitting the upper (lower) boundary is less than ρ. Starting
with U1 = 2, L1 = −1, the two sequences are recursively defined as

Un = min {j ∈ N : Pα(τ ≥ n, Sn ≥ j) + Pα(τ < n, Sτ ≥ Uτ ) ≤ εn} ,
Ln = max {j ∈ Z : Pα(τ ≥ n, Sn ≤ j) + Pα(τ < n, Sτ ≤ Lτ ) ≤ εn} , (8)

where (εn)n∈N is a non-decreasing sequence satisfying εn → ρ as n→∞ and 0 ≤ εn ≤ ρ. It
controls how the overall error ρ is spent over all iterations of the algorithm (called a spending
sequence in Gandy (2009)). In the remaining sections of this article we use

εn = ρ
n

n+ k
(9)

with k = 1000, which is the default spending sequence suggested in Gandy (2009).
The aforementioned method has a finite expected stopping time (for p 6= α) and the

probability of hitting the wrong boundary (leading to a decision not equal to the one obtained
based on the unknown p) is bounded by ρ (under the conditions ρ ≤ 1/4 and log(εn−εn−1) =
o(n) as n → ∞, see (Gandy, 2009, Theorem 1)). Thus, upon stopping we define I = [0, α]
in case of hitting the lower boundary (Sτ ≤ Lτ ) and I = (α, 1] in case of hitting the upper
boundary (Sτ ≥ Uτ ). By construction, the interval I has a coverage probability of 1− ρ.

To extend the approach of Gandy (2009) to multiple thresholds we proceed as follows.
We first define the set of boundaries of the intervals in J that are in the interior of [0, 1]:

AJ := {min J, max J : J ∈ J } \ {0, 1},

where minJ (max J) denote the lower (upper) limit of the interval J , respectively. Then we
construct the above stopping boundaries for each α ∈ AJ , denoted as Ln,α and Un,α, using
the same ρ.

We define corresponding stopping times σα = inf{k ∈ N : Sk ≥ Uk,α or Sk ≤ Lk,α}
(based on the same sequence Xj , j ∈ N, see Section 2.1). We then define

In,α =


[0, 1] if n < σα,

[0, α) if n ≥ σα, Sσα ≤ Lσα,α,
(α, 1] if n ≥ σα, Sσα ≥ Uσα,α,

and let In =
⋂
α∈AJ

In,α.
The following theorem shows that In has the desired joint coverage probability given in

(4) or (6) when setting ρ = ε/2.

Theorem 2. Let N ∈ N ∪ {∞}. Suppose that Un,α ≤ Un,α′ and Ln,α ≤ Ln,α′ for all
α, α′ ∈ AJ , α < α′, and n < N (computed as in (8) with overall error ρ for each α ∈ AJ ).
Then for all p ∈ [0, 1],

Pp(p ∈ In ∀n < N) ≥ 1− 2ρ.

7



Allowing N < ∞ is useful for stopping boundaries constructed to yield a finite runtime
(see (6)).

The condition on the monotonicity of the boundaries (Un,α ≤ Un,α′ and Ln,α ≤ Ln,α′ for
all n ∈ N and α, α′ ∈ J with α < α′) can be checked for a fixed spending sequence εn in
two ways: For finite N , the two inequalities can be checked manually after constructing the
boundaries. For N =∞, the following lemma shows that under conditions, the monotonicity
of the boundaries holds true for all n ≥ n0, where n0 ∈ N can be computed as a solution to
inequality (15), given in the proof of Lemma 3 in Appendix A. For n < n0, the inequalities
again have to be checked manually.

Lemma 3. Suppose ρ ≤ 1/4 and log(εn − εn−1) = o(n) as n → ∞. Let α, α′ ∈ AJ with
α < α′. Then there exists n0 ∈ N such that for all n ≥ n0,

Ln,α ≤ Ln,α′ , Un,α ≤ Un,α′ .

The condition on the spending sequence in Lemma 3 is identical to the condition im-
posed in Theorem 1 of Gandy (2009) and is satisfied by the default spending sequence (9).
Therefore, our default spending sequence (9) with the p-value buckets used in this article
(J 0 and J ∗) satisfies the boundary conditions of Theorem 2.

The following theorem shows that for overlapping buckets the algorithm has a bounded
stopping time.

Theorem 3. Suppose the conditions of Theorem 2 and Lemma 3 hold true with N =∞. If
J is a finite set of overlapping p-value buckets then the general construction of Section 2.4
has a bounded stopping time τJ , i.e. there exists c <∞ s.t. τJ ≤ c.

4 Computational effort

This section investigates the expected computational effort of the algorithm of Section 2.4.
We start by deriving a theoretical lower bound on the expected effort in Section 4.1. We
then compare both the Simctest and Robbins-Lai approach of Section 3 in terms of their
expected effort as a function of p (Section 4.2). Integrating this effort for certain p-value
distributions of practical interest allows to compare both approaches in practical situations
(Section 4.3). Section 4.4 shows that the algorithm can be used for small p-values arising in
multiple testing settings.

4.1 Lower bounds on the expected effort

In this section we construct lower bounds on the expected number of steps of sequential
procedures satisfying (3). The key idea is to consider hypothesis tests implied by (3) and then
to use the lower bounds for the expected effort of sequential tests (Wald, 1945, eq. (4.80)).

We suppose that I is the (random) bucket reported by a sequential procedure that re-
spects (3). Let p̃ ∈ [0, 1]. We give a basic and an improved lower bound on Ep̃[τ ].

First, let J̃ =
⋃
J∈J ,p̃∈J J be the union of all buckets that p̃ is contained in. For any

q ∈ [0, 1] \ Ĩ, we can consider the hypotheses H0 : p = p̃ against H1 : p = q and the test that
rejects H0 iff p /∈ I. By (3), the type I error of such a test is at most ε. Also, the type II
error is at most ε, as Pq(p ∈ I) ≤ Pq(q /∈ I) ≤ ε. Hence, Ep̃[τ ] is bounded from below by the
lower bound in (Wald, 1945, eq. (4.80)), which we call a(q). Thus we get

Ep̃[τ ] ≥ max
q /∈J̃

a(q). (10)

The maximum in (10) can be evaluated by looking at the boundary points of J̃ .

8



Figure 4: Basic (gray) and improved (black) lower bounds on the effort Ep[τ ] for the buckets
J ∗.

The bound (10) can be improved if the number of elements of J containing p̃ is exactly
two, say J1 and J2. Suppose that for a given sequential procedure, η = Pp̃(I1). Let q1 ∈
[0, 1] \ J1. Consider the hypotheses H0 : p = p̃ and H1 : p = q1 and the corresponding test
that rejects H0 iff I 6= J1. This test has type I error 1− η and type II error ε. Again, using
(Wald, 1945, eq. (4.80)) we get a lower bound on Ep̃[τ ], which we call b1(q, η). Similarly, for
any q2 ∈ [0, 1] \ J2, we can test the hypotheses H0 : p = p̃ and H1 : p = q2 by rejecting H0

iff I 6= J2. This test has type I error of at most η + ε and type II error of at most ε. Again,
using (Wald, 1945, eq. (4.80)) we get a lower bound on Ep̃[τ ], which we call b2(q, η).

As η is dependent on the specific procedure, we can get a universal lower bound on Ep̃[τ ]
by minimizing over η, thus

Ep̃[τ ] ≥ max

(
max
q /∈J̃

a(q), min
η∈[0,1]

max

{
max
q /∈J1

b1(q, η),max
q /∈J2

b2(q, η)

})
. (11)

The maxima in (11) can be evaluated by looking at the boundary points of J̃ , J1 and
J2. The minimum can be bounded from below by looking at a grid of values for η and
conservatively replacing b2(q, η) by b2(q, η + δ), where δ is the grid width.

Figure 4 gives an example of both the basic and the improved lower bound on Ep̃[τ ] for
the buckets J ∗. The improved bound is much higher (and thus better) in the areas where
there are overlapping buckets.

4.2 Expected effort for (non-)overlapping buckets

This section investigates both the non-overlapping p-value buckets J as well as the overlap-
ping buckets J ∗ with respect to the implied expected effort as a function of p.

Using the non-stopping regions depicted in Figure 2, Figure 5 shows the expected effort
(measured in terms of the number of samples drawn) to compute a decision with respect
to J (left) and J ∗ as a function of p ∈ [10−6, 1]. For any given p, the expected effort is
computed by iteratively (over n) updating the distribution of Sn conditional on not having

9



Figure 5: Expected effort to compute a decision with respect to J (left) and J ∗ (right) as
a function of p. Both Simctest and Robbins-Lai are used to compute confidence sequences.
Lower bound on the effort given as dashed line.

stopped up to time n. Using this distribution, we work out the probability of stopping at
step n and add the appropriate contribution to the overall effort.

The effort diverges as p approaches any of the thresholds in J . For J ∗ the effort stays
finite even in the case that p coincides with one of the thresholds (Figure 5, right). The
effort is maximal in a neighborhood around each threshold, while in-between thresholds, the
effort slightly decreases. For p-values larger than the maximal threshold in J ∗, the effort
decreases to zero. The effort for Simctest seems to be uniformly smaller than the one for
Robbins-Lai for both J and J ∗.

Figure 5 also shows the lower bound (dashed line) on the effort derived in Section 4.1. In
connection with Simctest, the effort of our algorithm of Section 2.4 differs from the theoretical
lower bound by roughly a factor of three.

4.3 Expected effort for three specific p-value distributions

The expected effort of the proposed methods for repeated use can be obtained by integrating
the expected effort for fixed p (Figure 5, right) with respect to certain p-value distributions.

Here, we consider using the overlapping buckets J ∗ with three different p-value distribu-
tions. These are a uniform distribution in the interval [0, 1] (H0), as well as two alternatives
given by the density 1

2 +10I(x ≤ 0.05) (H1a) and by a Beta(0.5, 25) distribution (H1b), where
I denotes the indicator function.

Table 2 shows the expected effort as well as the lower bound on the expected effort.
The Simctest approach (Section 3.2) dominates the one of Robbins-Lai (Section 3.1) for
this specific choice of distributions. As expected, the effort is lowest for a uniform p-value
distribution, and more extreme for the alternatives having higher probability mass on low
p-values. Using Simctest, the expected effort stays within roughly a factor of two of the
theoretical lower bound derived in Section 4.1.
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Robbins-Lai Simctest Lower bound

H0 2228 1853 975
H1a 16878 13837 7126
H1b 40059 30896 15885

Table 2: Expected (integrated) effort for both Robbins-Lai and Simctest applied to J ∗. Ex-
pectations are taken over three different p-value distributions: a uniform U [0, 1] distribution
(H0) and two mixture distributions H1a and H1b.

4.4 Application to multiple testing

We consider the applicability of our algorithm of Section 2.4 to the (lower) testing thresholds
occurring in multiple testing scenarios. In the following example, we demonstrate that our
algorithm is well suited as a screening procedure for the most significant hypotheses: Even
for small threshold values, it is capable of detecting more rejections than a näıve sampling
procedure that uses an equal number of samples.

We assume we want to test n = 104 hypotheses using the Bonferroni (1936) procedure
to correct for multiplicity. In order to be able to compute numbers of false classifications,
we assign nA = 100 hypotheses to the alternative, the remaining n− nA = 9900 hypotheses
are from the null. The p-values of the alternative are then set to 1− F (X), where F is the
cumulative distribution function of a Student’s t-distribution with 100 degrees of freedom
and X is a random variable sampled from a t-distribution with 100 degrees of freedom and
noncentrality parameter uniformly chosen in [2, 6]. The p-values of the null are sampled from
a uniform distribution in [0, 1].

We apply our algorithm from Section 2.4 with ε = 10−3 and confidence sequences com-
puted with the Simctest approach (Section 3.2). To speed up the Monte Carlo sampling,
we sample in batches of geometrically increasing size aib in each iteration i, where b = 10
and a = 1.1. Likewise, both the stopping boundaries and the stopping condition (hitting of
either boundary) in Simctest are updated (checked) in batches of the same size.

In order to screen hypotheses, we aim to group them by the order of magnitude of their
p-values. For this we employ the overlapping buckets

J s =
{[

0, 10−7
]}
∪
{(

10i−2, 10i
]

: i = −6, . . . , 0
}

which group the p-values in buckets spanning two orders of magnitude each (and
[
0, 10−7

]
).

We now report the results from a single run of this setup. Our algorithm draws N =
3.2 ·105 samples per hypothesis. Of the 104 hypotheses, 28 are correctly allocated to the two
lowest buckets. As expected, the p-values from the null are all allocated to larger buckets
(covering values from 10−4 onwards).

An alternative approach would be to draw an equal number of N samples per hypothesis
and to compute a p-value using a pseudo-count (Davison and Hinkley, 1997). Due to this
pseudo-count, this näıve approach is incapable of observing p-values below N−1 = 3.125 ·
10−6, and in particular incapable of observing any p-values in the lower bucket.

5 Discussion

In this article we investigate methods capable of computing a decision for a single hypothesis
H0 with unknown p-value p (approximated via Monte Carlo sampling) that achieve both
a bounded resampling risk and a finite runtime. We first generalize testing thresholds to
p-value buckets and prove that methods having both aforementioned properties necessarily
need to operate on overlapping p-value buckets (Section 2).
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In order to report decisions when testing with overlapping buckets, we propose to use an
extension of the traditional star rating system used to report the significance of a hypothesis.

Our algorithms rely on the computation of a confidence sequence for the unknown p. We
give two constructions of such confidence sequences (Section 3), prove that both approaches
indeed satisfy the bound on the resampling risk and yield a finite runtime for overlapping
buckets. We (empirically) demonstrate that our methods achieve a competitive computa-
tional effort that is close to a theoretical lower bound on the effort (Section 4).

The choice of (overlapping) p-value buckets we employ in our article is arbitrary. However,
a variety of (heuristic) techniques can be used to obtain overlapping buckets from traditional
thresholds T = {t0, . . . , tm}. These include:

1. The bucket overlapping each threshold t ∈ T can be chosen as a fixed proportion
ρ ∈ (0, 1), leading to the interval [ρt, ρ−1t].

2. Since the length of a confidence interval for a binomial quantity p behaves proportion-
ally to

√
p(1− p) ∈ O

(√
p
)

as p → 0, a bucket around any t ∈ T can be chosen as

J := [t− ρ
√
t, t+ ρ

√
t], where ρ > 0 is such that 0 /∈ J .

3. The buckets can be chosen to match the precision of a näıve sampling method which
draws a fixed number of samples n ∈ N per hypothesis. For this we compute all n+ 1
possible confidence intervals (one for each possible Sn ∈ {0, . . . , n}) for each threshold
t ∈ T and record all confidence intervals which cover t. The union of those intervals
can then be used as a bucket for t.

The tuning parameter ρ can be chosen, for instance, to minimize the maximal (worst case)
effort for the resulting overlapping buckets.

The present article leaves scope for a variety of future research directions. For instance,
how can overlapping p-value buckets be chosen to maximize the probability of obtaining
a classical decision (*, ** or ***), subject to a suitable optimization criterion? How can
the lower bound on the computational effort derived in Section 4.1 be improved? Which
algorithm (possibly based on our generic algorithm in connection with Simctest) is capable
of meeting the lower bound effort?

A Proofs

Proof of Theorem 1. We prove a circular equivalence of the three statements.
(1.) ⇒ (2.): Suppose the buckets J are not overlapping. This implies that there exists

α ∈ (0, 1) that is not contained in the interior of any J ∈ J .
Let I ∈ J be the (random) interval reported by an algorithm satisfying (3).
Let n ∈ N such that α− 1/n ≥ 0 and α+ 1/n ≤ 1.
Consider the hypotheses H0 : p = α− 1/n and H1 : p = α+ 1/n and the test that rejects

H0 iff α − 1/n /∈ I. As I cannot contain both α − 1/n and α + 1/n (otherwise α would be
in the interior of the interval I) and because of (3), this test has type I and type II error of
at most ε. Hence, by the lower bound on the expected number of steps of a sequential test
given in (Wald, 1945, equation (4.81)) (see also (Gandy, 2009, section 3.1)), we have

Eα+1/n[τ ] ≥
ε log( ε

1−ε) + (1− ε) log(1−εε )

(α+ 1
n) log(α+1/n

α−1/n) + (1− α− 1
n) log(1−α−1/n1−α+1/n)

.

As n→∞, the right hand side converges to ∞, contradicting (1.).
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(2.)⇒ (3.): We construct an explicit (but not very efficient) algorithm for this.
Let a0 < a1 < . . . < ak be the set of boundaries of buckets in J , i.e. {a0, . . . , ak} =

{max J : J ∈ J } ∪ {min J : J ∈ J }. Let ∆ = min{ai − ai−1 : i = 1, . . . , k} be the minimal
gap between those boundaries.

Let I(S, n) be the two-sided Clopper and Pearson (1934) confidence interval with coverage
probability 1− ε for p when n is the number of samples and S is the number of exceedances.
Let n ∈ N be such that the length of all Clopper-Pearson intervals is less than ∆, i.e.
n = min{m ∈ N : ∀S ∈ {0, . . . ,m} : |I(S,m)| < ∆}. This is well-defined as the length of the
Clopper Pearson confidence interval I(S, n) decreases to 0 uniformly in S as n→∞; see e.g.
the proof of Condition 2 in Lemma 2 of Gandy and Hahn (2014) for this.

Consider the algorithm that takes n samples X1, . . . , Xn and then returns an arbitrary
interval I ∈ J that satisfies I ⊇ I(

∑n
i=1Xi, n) (to be definite, order all elements in J

arbitrarily and return the first element satisfying the condition. Such an I always exists as
the buckets are overlapping by (2.) and as |I(

∑n
i=1Xi, n)| < ∆, implying that it overlaps with

at most one possible boundary. This algorithm satisfies (3) due to the coverage probability
of 1− ε of the Clopper-Pearson interval.

(3.)⇒ (1.): Since finite effort implies expected finite effort, (1.) follows immediately.

Proof of Lemma 1. If 0 ≤ p ≤ Sn
n −

[
1
2n log

(
n+1
ε

)]1/2
then, by Hoeffding’s inequality (Ho-

effding, 1963),

b(n, p, Sn) = P(X = Sn) ≤ P
(
X

n
− p ≥ Sn

n
− p
)
≤ exp

(
−2(Sn − np)2

n

)
≤ ε

n+ 1
,

where X ∼ Bin(n, p) is a binomial random variable. Hence, p /∈ In. A similar argument can

be made for Sn
n +

[
1
2n log

(
n+1
ε

)]1/2 ≤ p ≤ 1. Thus, |In| ≤
[
2
n log

(
n+1
ε

)]1/2
.

Proof of Lemma 2. Suppose this is not true. Then for all n ∈ N there exists an interval
In ⊂ [0, 1] with 0 < |In| < 1

n s.t. ∀J ∈ J : In 6⊆ J . Let an be the mid points of In. As (an)
is a bounded sequence, there exists a convergent subsequence (ank). Let b = limk→∞ ank .

If b ∈ (0, 1) then, as J is overlapping, there exists ε > 0 and J ∈ J : (b − ε, b + ε) ⊆ J .
For large enough k we have Ink ⊆ (b− ε, b+ ε), contradicting Ink 6⊆ J .
If b = 0 then, as J is a covering of [0, 1] consisting of intervals of positive length there exists
ε > 0 and J ∈ J s.t. [0, ε) ⊆ J . For large enough k we have Ink ⊆ [0, ε), again contradicting
Ink 6⊆ J . If b = 1 a contradiction can be derived similarly.

Proof of Theorem 2. For a given threshold α ∈ AJ , let

E
N
α = {Sτα ≥ Uτα,α, τα < N}

be the event that the upper boundary is hit first before time N and likewise let

ENα = {Sτα ≤ Lτα,α, τα < N}

be the event that the lower boundary is hit first. Then, for all α, α′ ∈ AJ with α < α′ the
following holds:

E
N
α ⊇ E

N
α′ and ENα ⊆ ENα′ . (12)

Indeed, to see E
N
α ⊇ E

N
α′ , we can argue as follows. On the event E

N
α′ , as Un,α ≤ Un,α′

for all n ∈ N, the trajectory (n, Sn) must hit the upper boundary Un,α of α no later than
τα′ , hence τα ≤ τα′ < N . It remains to prove that the trajectory does not first hit the lower
boundary Ln,α of α. Indeed, if the trajectory does hit the lower boundary of α before hitting
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its upper boundary, it also hits the lower boundary of α′ (as Ln,α ≤ Ln,α′ for all n < N)

before time τα′ , thus contradicting being on the event E
N
α′ . Hence, we have E

N
α ⊇ E

N
α′ . The

proof of ENα ⊆ ENα′ is similar.
Using this notation, for all p ∈ [0, 1],

Pp(∃n < N : p /∈ In) ≤ Pp(∃n < N,α ∈ AJ : p /∈ In,α)

=Pp

 ⋃
α∈AJ :α≤p

ENα ∪
⋃

α∈AJ :α≥p
E
N
α

 ≤ Pp
 ⋃
α∈AJ :α≤p

ENα

+ Pp

 ⋃
α∈AJ :α≥p

E
N
α

 .
(13)

If p < minAJ then the first term is equal to 0. Otherwise, let α′ = max{α ∈ AJ : α ≤ p}.
Then, by (12),

Pp

 ⋃
α∈AJ :α≤p

ENα

 = Pp
(
ENα′

)
≤ ρ.

The second term on the right hand side of (13) can be dealt with similarly.

Proof of Lemma 3. By arguments in (Gandy, 2009, Proof of Theorem 1), we have

Un,α − nα
n

≤ ∆n + 1

n
→ 0,

Ln,α′ − nα′

n
≥ −∆n + 1

n
→ 0 (14)

as n → ∞, where ∆n =
√
−n log(εn − εn−1)/2. Since ∆n = o(n) there exists n0 ∈ N such

that

2

(
∆n

n
+

1

n

)
≤ α′ − α for all n ≥ n0. (15)

Splitting 2
n = 1

n + 1
n and multiplying by n yields nα + ∆n + 1 ≤ nα′ −∆n − 1 from which

Un,α ≤ Ln,α′ follows by (14).
By definition, we have Ln,α ≤ Un,α and Ln,α′ ≤ Un,α′ for all n ∈ N, thus implying

Ln,α ≤ Ln,α′ , Un,α ≤ Un,α′ for all n ≥ n0 as desired.

Proof of Theorem 3. By (14) and as ∆n = o(n) there exists n0 ∈ N such that

|{α ∈ AJ : σα > n0}| ≤ 1. (16)

We will show that τJ ≤ n0.
First, the assumption on the ordering of Ln and Un exclude the possibility of In0 = ∅.

Second, (16) implies |In0 ∩AJ | ≤ 1.
If |In0 ∩AJ | = 1 then let α ∈ AJ be such that α ∈ In0 . As J is overlapping, there exist

J ∈ J such that α is in the interior of J . Hence, α cannot be a boundary of J , implying
In0 ⊆ J due to |In0 ∩AJ | = 1, thus showing τJ ≤ n0.

If |In0 ∩ AJ | = 0 then let β be in the interior of In0 . As J is overlapping, there exists
J ∈ J such that β ∈ J . As In0 ∩AJ = ∅ this implies In0 ⊆ J , showing τJ ≤ n0.

B A simple stopping criterion for Robbins-Lai

The following describes a simple criterion to determine whether a confidence interval com-
puted via Robbins-Lai (Section 3.1) is fully contained in a bucket. Let interval In and bucket
J ∈ J as well as n, Sn and ε be as in Section 3.1. Then In ⊆ J if and only if

(n+ 1)b(n, Sn, p) = (n+ 1)

(
n

Sn

)
pSn(1− p)n−Sn ≤ ε (17)
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for p ∈ {min J,max J}.
As (17) is also satisfied if I and J are simply disjoint, we verify that (n+ 1)b(n, Sn, p) is

indeed increasing at min J and decreasing at maxJ using the derivative of (n+ 1)b(n, Sn, p)
with respect to p. This then proves that the two limits of bucket J are indeed not both
smaller than min I or larger than max I. We first apply a (monotonic) log transformation,

log [(n+ 1)b(n, Sn, p)] = log(n+ 1) + log

(
n

Sn

)
+ Sn log p+ (n− Sn) log(1− p),

and then take the derivative with respect to p:

Sn
p
− n− Sn

1− p

{
≥ 0 p = min J,

≤ 0 p = max J.
(18)

If (17) and (18) are satisfied, then In ⊆ J .
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