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Abstract

Multiple hypothesis testing is widely used to evaluate scientific studies involving statis-
tical tests. However, for many of these tests, p-values are not available and are thus often
approximated using Monte Carlo tests such as permutation tests or bootstrap tests. This ar-
ticle presents a simple algorithm based on Thompson Sampling to test multiple hypotheses.
It works with arbitrary multiple testing procedures, in particular with step-up and step-down
procedures. Its main feature is to sequentially allocate Monte Carlo effort, generating more
Monte Carlo samples for tests whose decisions are so far less certain. A simulation study
demonstrates that for a low computational effort, the new approach yields a higher power
and a higher degree of reproducibility of its results than previously suggested methods.

Keywords: Multiple hypothesis testing, Monte Carlo, Thompson sampling, Bonferroni correc-
tion, Benjamini-Hochberg procedure

1 Introduction

Scientific studies are often evaluated by correcting for multiple comparisons. Several methods
published in the literature are used to correct for multiple tests, for instance the Bonferroni
(1936) correction or the Benjamini and Hochberg (1995) procedure.

Often, for instance in studies involving biological data, p-values cannot be computed analyt-
ically. They are approximated using Monte Carlo tests such as permutation tests or bootstrap
tests (Lourenco and Pires, 2014; Mart́ınez-Camblor, 2014; Liu et al., 2013; Wu et al., 2013; Aso-
maning and Archer, 2012; Dazard and Rao, 2012). Permutation tests are widely used in practice
as underlying models for biological phenomena are rarely known. The evaluation of multiple
hypotheses by applying a multiple testing procedure to Monte Carlo based p-value estimates is
the focus of this article.

We are interested in evaluating multiple hypotheses using Monte Carlo samples while ensur-
ing the reproducibility and objectivity of all findings. Gleser (1996) called this the first law of
applied statistics: “Two individuals using the same statistical method on the same data should
arrive at the same conclusion.”

We measure this reproducibility in the following way. We generate a set of fixed p-values
for all hypotheses as underlying truth and consider methods approximating the p-value of each
hypothesis using independent Monte Carlo samples under the null. Using the approximated p-
values, we aim to reproduce the test result obtained by applying a multiple testing correction to
the fixed p-values. We are interested in minimising the number of switched classifications, that
is the number of decisions of individual hypotheses based on estimates which differ from the ones
obtained with the fixed p-values. Algorithms achieving a low number of switched classifications
lead to consistent results even when applied repeatedly and thus ensure reproducibility of their
decisions, a feature desired in practice. Moreover, we aim to achieve a high power in multiple
testing in order to obtain meaningful test results, especially for low computational effort. The
algorithm developed in this article outperforms many existing methods in both regards.
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A simple and widely used method to implement a multiplicity correction in the aforemen-
tioned scenario is to draw a constant number of samples per hypothesis, approximate all p-values
using a conservative p-value estimator and finally use these estimates as input for the multi-
ple testing procedure, thus treating them as if they were the p-values (Nusinow et al., 2012;
Gusenleitner et al., 2012; Rahmatallah et al., 2012; Zhou et al., 2013; Li et al., 2012).

The naive approach does not take into account that hypotheses whose p-values clearly lie
in the rejection or non-rejection area of the multiple testing procedure should be allocated less
samples than hypotheses whose p-values are closer to the testing threshold and whose decision
is thus more difficult to compute. This leaves considerable scope to improve upon the accuracy
of the naive method.

We introduce a sampling algorithm based on Thompson Sampling (Thompson, 1933) to
compute decisions on multiple hypotheses. Our approach, called QuickMMCTest, uses a Beta-
binomial model on each p-value to adaptively decide which hypotheses need to receive more and
which need less samples to obtain fairly clear decisions (rejections and non-rejections) on all tests.
It avoids computing discrete p-value estimates at any stage, thus circumventing imprecisions
observed in methods using such discrete estimates. The algorithm works with a variety of
commonly used multiple testing procedures at both constant testing thresholds as well as variable
testing thresholds, that is thresholds which are functions of the unknown p-values underlying
the tests.

The article is organised as follows. Section 2 introduces the set-up and presents QuickMMCTest.
In Section 3 we discuss a real-data application using gene expression data. We show that rejec-
tions computed with existing methods can lead to high uncertainty concerning the significance
of individual hypotheses.

A simulation study (Section 4) shows that in comparison to the naive approach, QuickMMCTest
yields considerably less switched classifications for popular multiple testing procedures (Bonfer-
roni, 1936; Sidak, 1967; Holm, 1979; Simes, 1986; Hochberg, 1988; Benjamini and Hochberg,
1995; Benjamini and Yekutieli, 2001).

As highlighted in a second simulation study (Section 4.3), the main advantage of QuickMMCTest
in comparison to existing methods (Besag and Clifford, 1991; Guo and Peddada, 2008; Sandve
et al., 2011; Jiang and Salzman, 2012; Gandy and Hahn, 2014) is its better finite sample be-
haviour, thus achieving the same accuracy with less computational effort. However, in contrast
to MMCTest of Gandy and Hahn (2014), it does not provide any guarantees on the correctness
of its results.

Section 4.4 conducts power studies. We show for selected multiple testing procedures that
QuickMMCTest yields a higher power than the naive method and than the aforementioned existing
methods, especially for low sample sizes.

We conclude with a discussion in Section 5. Supplementary Material is available for this
article which contains further simulation studies for a variable testing threshold as well as an
assessment of the dependence of QuickMMCTest on its parameters. The QuickMMCTest algorithm
is implemented in an R package (simctest, available on CRAN, the Comprehensive R Archive
Network).

2 Methods

2.1 The setting

We would like to test m hypotheses H01, . . . , H0m for statistical significance, for each of which we
have a statistical test (and some data) available. The hypotheses are evaluated using a multiple
testing procedure given by a mapping (Gandy and Hahn, 2014)

h : [0, 1]m × [0, 1]→ P({1, . . . ,m})
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which takes a vector of m p-values p ∈ [0, 1]m and a threshold α ∈ [0, 1] and returns the set
of indices of hypotheses to be rejected, where P denotes the power set. Amongst others, the
procedures of Bonferroni (1936), Holm (1979), Shaffer (1986), Simes (1986), Hochberg (1988),
Rom (1990), Benjamini and Hochberg (1995) as well as Benjamini and Yekutieli (2001) fit into
this framework.

We assume that the p-values p∗ = (p∗1, . . . , p
∗
m) of the tests for H01, . . . , H0m are not available

analytically. Instead, we assume that it is possible to draw samples under each null hypothesis.
For each of the samples, we can compute the test statistic and compare it to the observed test
statistic, thus enabling us to approximate the p-values. We denote the total number of samples
drawn for H0i by ki and the total number of exceedances of the sampled test statistic over
the observed test statistic among these ki samples by Si, where i ∈ {1, . . . ,m}. Moreover, the
threshold α is allowed to either be constant α(p∗) = α∗ ∈ R or a function α(p∗) of the p-values
p∗. In the latter case, α∗ is itself unknown.

2.2 The QuickMMCTest algorithm

QuickMMCTest (Algorithm 1) is based on an idea related to Thompson Sampling (Thompson,
1933; Agrawal and Goyal, 2012) and updates a Beta-Binomial model for each p-value in each
iteration.

Starting with a Beta(1, 1) prior on each p-value, observing Si exceedances among ki samples
results in a Beta(1+Si, 1+ki−Si) posterior. In each iteration of the algorithm, allm p-values are
resampled from the posterior distributions, the multiple testing procedure is evaluated on the m
resampled p-values and the decision of each hypothesis is recorded. Repeating the above a fixed
number of R times allows to compute an empirical probability that each H0i, i ∈ {1, . . . ,m}, is
rejected (pri ) and non-rejected (1−pri ). The quantity wi = min(pri , 1−pri ) can then be viewed as
a stability measure for the current decision on H0i, where i ∈ {1, . . . ,m}. We weight rejections
and non-rejections equally when computing the weights wi in line 10 of Algorithm 1. However,
one might be interested in weighting the rejections ri and non-rejections R − ri differently and
incorporate this into the computation of the weights.

QuickMMCTest sequentially draws samples for all hypotheses. The number of further samples
drawn for each H0i is proportional to wi in each iteration, where i ∈ {1, . . . ,m}. This ensures
that hypotheses already having a very stable decision only receive few new samples.

QuickMMCTest has five parameters chosen by the user. The first two are the total number
of samples K ∈ N the algorithm is allowed to spend as well as the algorithm’s total number of
iterations nmax ∈ N (and thus the number of posterior updates). These two parameters deter-
mine ∆ = K/nmax, the number of samples allocated in each iteration. Alternative approaches in
which ∆ varies over time are possible. Furthermore, the parameter R ∈ N needs to be provided
which controls the number of replicates used to estimate the weights wi and QuickMMCTest

depends on the choice of the multiple testing procedure h as defined in Section 2.1. Last, the
testing threshold is provided as a function α : [0, 1]m → R which may either be constant (that
is, α(p) = α∗ ∈ R independent of p, where α∗ is a known constant) or a function of the p-values
p = (p1, . . . , pm). In the latter case, the threshold function α is used in Algorithm 1 to compute
a point estimate of the unknown testing threshold α(p∗) in each iteration of the inner loop
computing the weights (lines 6− 9).

QuickMMCTest uses residual sampling (Liu and Chen, 1998) to guarantee a deterministic
minimal allocation of samples to each hypothesis. After normalising the weights wi, we first draw
⌊wi∆⌋ samples for each H0i, i ∈ {1, . . . ,m}. The remaining ∆−

∑m
j=1⌊wj∆⌋ samples are then

allocated one sample at a time with weights proportional to (w1∆−⌊w1∆⌋, . . . , wm∆−⌊wm∆⌋).
Alternatively, one could replace the residual sampling by simple multinomial sampling or

other methods used in, for instance, particle filters.
Calculating the weights is computationally fast as it only requires R draws from each of them

Beta distributions as opposed to drawing samples from the data (for instance via permutations
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Algorithm 1: QuickMMCTest

input: K, nmax, R, h, α
1 ∆← ⌊K/nmax⌋, ki ← 0, Si ← 0 for all i ∈ {1, . . . ,m};
2 for n← 1 to nmax do
3 if n = 1 then wi ← 1/m for all i ∈ {1, . . . ,m} ;
4 else
5 ri ← 0 for all i ∈ {1, . . . ,m};
6 repeat R times
7 pi ∼ Beta(1 + Si, 1 + ki − Si) independently for all i ∈ {1, . . . ,m};
8 For all i ∈ {1, . . . ,m}: if i ∈ h(p, α(p)) then ri ← ri + 1, where

p = (p1, . . . , pm);

9 end
10 wi ← min(ri/R, 1− ri/R) for all i ∈ {1, . . . ,m};
11 if

∑m
j=1wj = 0 then wi ← 1/m, i ∈ {1, . . . ,m} ;

12 end
13 Use residual sampling with weights proportional to (w1, . . . , wm) to decide how to

distribute the ∆ additional samples among the hypotheses;
14 Draw the ∆ samples and update all ki, Si, i ∈ {1, . . . ,m};
15 end
16 return (S1, . . . , Sm), (k1, . . . , km);

which can be costly).
Decisions on all hypotheses can be obtained in various ways with QuickMMCTest. Naively, one

could compute h(p̂, α(p̂)), where p̂ = (p̂1, . . . , p̂m) is a vector of estimates p̂i = (Si +1)/(ki +1),
i ∈ {1, . . . ,m}, computed with a pseudo-count (Davison and Hinkley, 1997).

We do not consider unbiased p-value estimates Si/ki, i ∈ {1, . . . ,m}, computed without a
pseudo-count as such estimates lead to tests not keeping the prescribed error level (Davison and
Hinkley, 1997; Manly, 1997; Edgington and Onghena, 1997).

A more sophisticated approach to obtain final rejections and non-rejections is to recompute
decisions on all hypotheses R times using draws from the final Beta posteriors after termination
of Algorithm 1. Recording the number of rejections ri per hypothesis allows to compute empirical
rejection probabilities as done for the computation of the weights wi in lines 6 to 9 of Algorithm 1,
where i ∈ {1, . . . ,m}. Each hypothesis H0i, i ∈ {1, . . . ,m}, is rejected if and only if ri/R > 0.5,
that is if H0i was predominantly rejected based on resampled p-values. The cutoff of 0.5 is
arbitrary and can be replaced by higher (lower) values to make QuickMMCTest more (less)
conservative.

We recommend computing decisions for all hypotheses using the latter approach based on
empirical rejection probabilities as such test results contain less switched classifications and
hence ensure a higher degree of reproducibility than the ones based on p-value estimates. We
demonstrate this in Section ?? of the Supplementary Material. Moreover, QuickMMCTest with
empirical rejection probabilities has a higher power than its variant with point estimates (Section
?? of the Supplementary Material).

In the simulation studies of Section 4 we employ QuickMMCTest with parameters nmax = 10
and R = 1000 and determine decisions on all hypotheses using empirical rejection probabilities
computed with a cutoff of 0.5. In Sections ?? and ?? of the Supplementary Material we inves-
tigate the choice of these parameters, showing that there is no strong case to increase nmax and
R further as it does not considerably improve performance.

The choice of K and nmax affects the performance of Algorithm 1: To be precise, nmax needs
to be large enough (around nmax = 10 to nmax = 100) to allow QuickMMCTest to iteratively
adjust the weights according to the stability of the decision on each hypothesis. At the same
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Figure 1: Plot of the probability of a random decision min(pri , 1−pri ) for each hypothesis ordered
by the rank of their p-value (naive method with 1000 permutations (1) and 10000 permutations
(3) per hypothesis, QuickMMCTest with total effort K = 1000m (2) and K = 10000m (4)). Top
shows all hypotheses, bottom shows a zoomed-in region around the last significant hypothesis.

time, ∆ = K/nmax has to be large enough to ensure that in line 13 of Algorithm 1, new samples
are drawn even for hypotheses with very low weights – this is needed to ensure that especially
in the first iterations of Algorithm 1, no hypothesis is excluded preliminarily from receiving new
samples in line 13. The influence of K and nmax (and thus of ∆ = K/nmax) on the accuracy of
QuickMMCTest is exemplarily demonstrated in Section ?? of the Supplementary Material.

For an example run on generated p-values, Section ?? of the Supplementary Material visu-
alises how the sample allocation computed by QuickMMCTest compares to the p-values and the
testing threshold.

3 An application of multiple testing to gene expression data

We consider a dataset of gene modifications (so-called H3K4me2 -modifications) of Pekowska
et al. (2010): This dataset defines certain regions on a genome and specifies the midpoints of
gene modifications within each region.

We are interested in testing whether the gene modifications appear more often in the lower
half of the gene regions using the test of Sandve et al. (2011). For this, Sandve et al. (2011)
first norm the beginning and the end of each region to 0 and 1, respectively. The midpoints of
k ∈ N gene modifications then correspond to k random points X1, . . . , Xk in the interval [0, 1].
We test the null hypothesis H0 : E(T ) ≥ 0.5 against the alternative H1 : E(T ) < 0.5 using the
test statistic T = 1

k

∑k
i=1Xi in connection with a permutation test. For each gene region and

its set of midpoints, a permutation is generated by permuting the locations of the midpoints in
[0, 1] while preserving all inter-point distances. Sandve et al. (2011) first filter the dataset for
regions with at least 10 midpoints and define each such region to be one hypothesis. This leads
to m = 3465 hypotheses under consideration.

We are interested in the probability of a random decision, meaning the probability that a
single hypothesis switches between being significant and non-significant in repeated test results.
For this, we generated both 1000 (“low effort“) and 10000 (“high effort“) permutations per hy-
pothesis, approximated its p-value with a pseudo-count in both the numerator and denominator
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and then tested all hypotheses by applying the Benjamini and Hochberg (1995) procedure with
threshold 0.1. This was repeated r = 2000 times.

When applying the Benjamini and Hochberg (1995) procedure with a fixed threshold of 0.1,
the allocation strategy based on Beta posteriors in QuickMMCTest is not yet used in the first
iteration; instead, an equal weight is placed on each hypothesis (line 3 of Algorithm 1). Only
after the inital batch of ∆ samples is drawn, the Benjamini and Hochberg (1995) procedure
can be applied in all subsequent iterations to resampled p-values from the Beta posteriors and
the constant threshold of 0.1 (line 8) in order to compute new weights (line 10) and to allocate
further samples (lines 13 and 14 of Algorithm 1).

As done in Section 2.2 we quantify the uncertainty in these r test results by computing
empirical probabilities pri (1 − pri ) that hypothesis i is rejected (non-rejected) among the r
repetitions. We define min(pri , 1− pri ) ∈ [0, 0.5] as the probability of a random decision.

We repeat this experiment with QuickMMCTest on the same dataset an equal number of times
and compute probabilities of a random decision. To ensure a fair comparison, we allow at most
the same total number of samples the naive method had used, thus K = 1000m for low effort
and K = 10000m for high effort, where m is the number of hypotheses.

Figure 1 displays the probabilities min(pri , 1− pri ) of a random decision for the entire range
of genes (top) in the Pekowska et al. (2010) dataset as well as for a zoomed-in region around
the last significant hypothesis (bottom) occuring within the ranks 600 − 800. These curves
correspond to the following methods: the naive method with 1000 permutations (1) and 10000
permutations (3) per gene as well as the QuickMMCTest algorithm with a total effort K = 1000m
(2) and K = 10000m (4). Hypotheses are ordered according to the rank of their p-value estimate
computed with 107 permutations. Due to the finite computational effort and the very low p-
values the ordering of the hypotheses exhibits a certain noise.

Figure 1 (bottom) shows that QuickMMCTest yields test results at a low effort (K = 1000m)
with a level of uncertainty which is comparable to the one of the naive method at a high effort
(10000 permutations per hypothesis). Using K = 10000m samples, QuickMMCTest yields test
results which are considerably more stable and contain less random decisions than the ones of
the naive method over the entire range of hypotheses.

Notably, comparing the location of the last rejected hypothesis (and thus the location of the
peaks) in Figure 1 shows that, using the same computational effort, QuickMMCTest is able to re-
ject more hypotheses than the naive method. This is a desired feature for practical applications.
For datasets with few significant hypotheses, the number of rejections increases when spending
more samples (or when allocating samples more efficiently as in the case of QuickMMCTest) due
to the fact that higher numbers of samples (in connection with a pseudo-count in the numerator
and denominator) give a higher resolution and capture more low p-values below the threshold.

4 Simulation study

We evaluate QuickMMCTest on a simulated dataset in three ways. First, the performance of
QuickMMCTest is compared to the one of the naive method using a variety of commonly used
multiple testing procedures at a constant testing threshold (Section 4.2). Second, we fix the
procedures of Bonferroni (1936) and Benjamini and Hochberg (1995) as multiple testing proce-
dures and compare QuickMMCTest to a variety of common methods published in the literature
(Section 4.3). Third, we conduct power studies for QuickMMCTest and the naive method for
selected multiple testing procedures, showing that QuickMMCTest yields a higher power even for
low samples sizes.
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Table 1: Average numbers of switched classifications (average numbers of switched rejections in
brackets) for the naive method compared to QuickMMCTest (Alg. 1) for common multiple testing
procedures. Constant testing threshold 0.1.

low effort (s = 1000) high effort (s = 10000)
naive Alg. 1 naive Alg. 1

Bonferroni (1936) 87 (0) 43.8 (2.6) 87 (0) 3 (1.7)
Simes (1986) 32 (9.6) 2 (0.9) 9 (3.8) 0.1 (0.1)

Hochberg (1988) 87 (0) 43.4 (2.5) 87 (0) 3.2 (2)
Benjamini and Hochberg (1995) 31.9 (9.5) 2 (1) 9.1 (3.8) 0.1 (0.1)
Benjamini and Yekutieli (2001) 162 (0) 14.5 (3.3) 22 (5.5) 0.6 (0.6)

Sidak (1967) 90 (0) 36.3 (2.9) 90 (0) 3.5 (1.6)
Holm (1979) 88 (0) 39.5 (3.2) 88 (0) 3.4 (2.1)

4.1 The simulation setting

In order to be able to compute numbers of switched classifications we need to simulate ex-
ceedances of the sampled test statistic over the observed test statistic. For this it suffices to
fix a set of p-values and simulate exceedances for the tests by sampling independent Bernoulli
random variables with success probability being equal to the p-value of each test.

In Sections 4.2 and 4.3 we use one fixed set ofm = 5000 p-values. These p-values are indepen-
dent realisations from a mixture distribution with a proportion 0.9 coming from a Uniform[0, 1]
distribution and the remaining proportion 0.1 coming from a Beta(0.25, 25) distribution. A large
proportion of p-values coming from the null would also be expected in practice. This model was
used in Sandve et al. (2011).

Comparing the test result returned by any algorithm to the result obtained by applying the
multiple testing procedure to the fixed set of m p-values allows to compute numbers of switched
classifications (see Section 2.1) with respect to the fixed p-values.

In Section 4.4, in each repetition of the experiment, we draw m Bernoulli random variables
with probability 0.1. These random variables serve as indicators for the falseness of the null
hypothesis. We then draw the p-value for each false null hypothesis from a Beta(0.25, 25)
distribution, and all remaining p-values from a uniform distribution in [0, 1]. Comparing the
decisions on all hypotheses computed by any algorithm to the falseness indicators thus allows
to compute averages of type I error and power. In our multiple testing setting, we compute the
per-pair power, defined as the average probability of rejecting a false null hypothesis.

All results are based on 1000 repetitions. The error of the simulations is less than the least
significant digit we report in the tables presented in this section.

4.2 Comparison to a naive method for various multiple testing procedures

We compare QuickMMCTest to the naive method (Section 1) for a variety of commonly used mul-
tiple testing procedures using the constant threshold α∗ = 0.1. These procedures are the step-up
procedures of Bonferroni (1936), Simes (1986), Hochberg (1988), Benjamini and Hochberg (1995)
and Benjamini and Yekutieli (2001) as well as the step-down procedures of Sidak (1967) and
Holm (1979).

The naive method draws a fixed number of s samples per hypothesis, estimates each p∗i as
p̂i = (ei+1)/(s+1) (Davison and Hinkley, 1997) and returns h(p̂, α(p̂)), where ei is the number
of exceedances observed for H0i, i ∈ {1, . . . ,m}, among s samples and p̂ = (p̂1, . . . , p̂m).

We repeatedly apply the naive method at both a low effort (defined as using s = 1000
samples to estimate the p-value of each hypothesis) and a high effort (s = 10000) and in both
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cases apply QuickMMCTest with a matched effort.
As stated in Section 2.2, computing final decisions on all hypotheses with QuickMMCTest by

using empirical rejection probabilities as opposed to point estimates leads to both less switched
classifications as well as a higher power (Sections ?? and ?? of the Supplementary Material).
Results in this section (presented in Table ??) are therefore given for empirical rejection proba-
bilities only. Nevertheless, analogous results to the ones in Table 1 obtained with QuickMMCTest

in connection with point estimates can be found in Section ?? of the Supplementary Material.
Table 1 presents simulation results. When applying the naive method to the procedures of

Bonferroni (1936) and Hochberg (1988) as well as Benjamini and Yekutieli (2001), Sidak (1967)
and Holm (1979), the following phenomenon can be observed. Using a pseudo-count causes all
p-value estimates p̂i to be bounded below by 1/(ki + 1), where i ∈ {1, . . . ,m}. Due to the low
threshold used by the Bonferroni (1936) correction, this lower bound is larger than the testing
threshold itself, leading to all hypotheses being consistently non-rejected and thus to meaningless
results (see Section ?? in the Supplementary Material for more details). The number of recorded
switched classifications is hence equal to the number of undetected rejections. For the Benjamini
and Yekutieli (2001) procedure, results are meaningful only at a high effort.

The naive method is able to compute meaningful results at a low effort for the two procedures
of Simes (1986) and Benjamini and Hochberg (1995) only, even though results still contain
around 30 switched classifications on average. Most importantly, the naive method erroneously
rejects considerably more hypotheses than QuickMMCTest (in the cases where rejections can be
observed), thus reporting more false findings which is undesired in practice.

In contrast to the naive method, QuickMMCTest does not rely on computing p-value estimates
and therefore computes meaningful results for all procedures at both a low and a high effort.
At a low effort, these are very accurate for the procedures of Simes (1986) and Benjamini
and Hochberg (1995). For all other methods, our approach yields around 35 to 45 switched
classifications.

Applying the naive method at a high effort with s = 10000 samples per hypothesis is still not
sufficient to observe any rejections for the procedures of Bonferroni (1936), Hochberg (1988),
Sidak (1967) or Holm (1979). For all other procedures, the naive method yields around 10 to
20 switched classifications.

At a high effort, QuickMMCTest yields considerably less switched classifications than the
naive method for all multiple testing procedures under consideration and essentially no switched
classifications for the two procedures of Simes (1986) and Benjamini and Hochberg (1995).
Similarly to the comparison at a low effort, our algorithm erroneously rejects considerably less
hypotheses than the naive method, a feature desired for practical use.

The results of Table 1 are confirmed by a second study using a variable testing threshold
which depends on the unknown p-values. To be precise, we correct the testing threshold using
α(p∗) = α∗/π̂0(p

∗), where α∗ = 0.1 and π̂0(p) = min (1, 2/m
∑m

i=1 pi) is a robust estimate
of the proportion π0 of true null hypotheses of Pounds and Cheng (2006). Section ?? in the
Supplementary Material shows that the results for this variable testing threshold are qualitatively
similar to the ones in Table 1.

4.3 Comparison to a variety of common methods

We now compare QuickMMCTest to previously suggested algorithms to test multiple hypotheses
based on Monte Carlo sampling. These algorithms are the naive method and the algorithms of
Besag and Clifford (1991), Guo and Peddada (2008), Sandve et al. (2011), Jiang and Salzman
(2012) as well as Gandy and Hahn (2014). All methods are run with standard parameters sug-
gested by their authors (the precise parameters are also listed in Section ?? of the Supplementary
Material).

The Bonferroni (1936) correction applied at a constant threshold α∗ = 0.1 is used to evaluate
the m = 5000 p-values fixed in Section 4.1. All methods are run at a low and a high effort,
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Table 2: Average numbers of switched classifications (average numbers of switched rejections in
brackets) for common methods compared to QuickMMCTest using the Bonferroni (1936) correc-
tion. Constant threshold 0.1.

low effort high effort

Naive method 87 (0) 87 (0)
Besag and Clifford (1991) 87 (0) 4.9 (2.4)
Guo and Peddada (2008) 87 (0) 4.5 (2.1)

Sandve et al. (2011) 87 (0) 19 (1.6)
Jiang and Salzman (2012) 87 (0) 16.3 (3.7)
Gandy and Hahn (2014) 87 (0) 5 (2.2)

QuickMMCTest 43.7 (2.6) 3 (1.7)

Table 3: Average numbers of switched classifications (average numbers of switched rejections in
brackets) for common methods compared to QuickMMCTest using the Benjamini and Hochberg
(1995) procedure. Constant threshold 0.1.

low effort high effort

Naive method 31.9 (9.7) 9.1 (3.7)
Besag and Clifford (1991) 18.3 (7.5) 18.3 (7.4)
Guo and Peddada (2008) 4.5 (2.1) 0.3 (0.3)

Sandve et al. (2011) 10 (4) 2.8 (1.3)
Jiang and Salzman (2012) 13.2 (4.9) 3.5 (1.6)
Gandy and Hahn (2014) 9.9 (4.1) 0.8 (0.6)

QuickMMCTest 2 (1) 0.1 (0.1)

where the naive method is used as a reference to set the total effort K. We define low effort as
K = 1000m, the effort equivalent to spending s = 1000 samples per hypothesis, and similarly
high effort as K = 10000m. Results are displayed in Table 2.

For a low effort, Table 2 demonstrates that due to the very low threshold of the Bonferroni
(1936) correction, all methods except for QuickMMCTest are unable to compute p-value estimates
with a resolution sufficient to detect any rejections. They are thus unable to compute meaningful
decisions, leading to switched classification numbers equal to the 87 rejections observed when
applying the Bonferroni (1936) correction to the fixed p-values.

QuickMMCTest does not suffer from this problem and yields roughly 40 (out of m = 5000)
switched classifications with a very low number of false findings. If the computation of weights
in QuickMMCTest was replaced by alternative approaches relying on discrete p-value estimates,
QuickMMCTest would be susceptible again to not being able to record any rejections like the
other methods considered in Table 2.

At a high effort, most methods compute acceptable test results with around 5 switched clas-
sifications with the exception of the naive method which is still unable to detect any rejections.
QuickMMCTest yields a slightly lower average of switched classifications than the other methods.

Table 3 repeats the previous comparison using the Benjamini and Hochberg (1995) procedure
controlling the false discovery rate. Due to the less conservative nature of the Benjamini and
Hochberg (1995) procedure, all methods are able to compute meaningful test results at both a
low and a high effort. The naive method and the one of Besag and Clifford (1991) perform poorly
in this new scenario. The method of Guo and Peddada (2008) performs very well and is only
outperformed by QuickMMCTest at a low effort (yielding half as many switched classifications
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Figure 2: Average per-pair power against number of samples per hypothesis. Comparison of the
naive method against QuickMMCTest for the Bonferroni (1936) correction (left) and the Simes
(1986) procedure (right). Log-scale on the x-axis.

as Guo and Peddada (2008) and a multiple fold decrease compared to all other methods). At a
high effort, Guo and Peddada (2008) perform comparably to QuickMMCTest.

These results are again consistent for a variable testing threshold as demonstrated in Section
?? in the Supplementary Material (using the threshold of Pounds and Cheng (2006), see Section
4.2).

The similar performance of the algorithms of Guo and Peddada (2008), Gandy and Hahn
(2014) as well as QuickMMCTest is not a coincidence. Both Guo and Peddada (2008) as well
as Gandy and Hahn (2014) use a monotonicity property of step-up and step-down procedures
of Tamhane and Liu (2008) to stop the sampling process for certain hypotheses in order to
allocate the remaining samples equally to hypotheses whose decisions are computationally more
demanding to compute. Neither of them uses any weights to fine-tune this equal allocation.

QuickMMCTest is able to both concentrate available samples on hypotheses whose decisions
are harder to compute as well as to fine-tune this allocation to individual hypotheses using
weights, a feature which yields another improvement in accuracy compared to the other two
methods.

4.4 QuickMMCTest yields a higher power

We compare the power of QuickMMCTest to the one of the naive method and selected algorithms
used in Section 4.3 as a function of the number of samples per hypothesis. For this we use the
simulation setting described in Section 4.1. As in Section 4.2, QuickMMCTest is applied with a
matched total effort.

Figure 2 shows the average (per-pair) power of both the naive method and QuickMMCTest as
a function of the number of samples. As seen previously in Table 2, due to the very low threshold
of the Bonferroni (1936) correction, the naive method is not able to detect any rejections even
for large numbers of samples (left plot in Figure 2). Its power is therefore zero. QuickMMCTest
initally suffers from the same problem, but is able to gain power when using an effort equivalent
to 500 samples per hypothesis onwards. For the less conservative Simes (1986) procedure (right
plot in Figure 2), the naive method gains power from 200 samples per hypothesis onwards.
QuickMMCTest achieves the same power as the naive method a lot faster with less samples: for
instance, the power of QuickMMCTest with 100 samples per hypothesis is comparable to the one
of the naive method with 1000 samples.

Figure 3 repeats the power study for two fixed multiple testing procedures and compares
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Figure 3: Left: Average per-pair power against number of samples per hypothesis. Com-
parison of the algorithms of Guo and Peddada (2008) and Besag and Clifford (1991) against
QuickMMCTest. Multiple testing with the Bonferroni (1936) correction. Right: One minus the
average false non-discovery proportion against number of samples per hypothesis. Comparison
of the naive method and the algorithm of Guo and Peddada (2008) against QuickMMCTest.
Multiple testing with the Benjamini and Hochberg (1995) procedure. Log-scale on the x-axis.

QuickMMCTest to four selected existing methods already considered in Section 4.3.
Figure 3 (left) shows that for the Bonferroni (1936) correction, QuickMMCTest yields a much

earlier incease in power for low samples sizes than the algorithms of Besag and Clifford (1991) and
Guo and Peddada (2008), which in Table 2 both performed comparably well to QuickMMCTest.

Figure 3 (right) repeats this comparison for the fdr analogue of the power, precisely 1−fnp,
where fnp is the false non-discovery rate, defined as the proportion of false negatives among the
accepted null hypotheses. The plot shows that when controlling the false discoveries using the
Benjamini and Hochberg (1995) procedure, both the algorithm of Guo and Peddada (2008) as
well as QuickMMCTest achieve a higher power than the naive approach for low samples sizes,
with a slight advantage for Guo and Peddada (2008).

In all comparisons presented in this section, the procedures kept the familywise error rate
or the false discovery proportion at the α = 0.1 level, respectively.

The plots for power comparison of the naive method to QuickMMCTest using the other multi-
ple testing procedures considered in Section 4.2 are qualitatively similar to the ones in Figure 2.
Similar to the left plot in Figure 3, QuickMMCTest also outperforms all other methods considered
in Section 4.3 in terms of the per-pair power when controlling the familywise error. With the
exception of Guo and Peddada (2008), the same holds true when comparing QuickMMCTest to
the methods considered in Section 4.3 in terms of 1−fnp similar to the right plot in Figure 3.

All comparisons in this article use QuickMMCTest with empirical rejection probabilities to
determine decisions. Section ?? of the Supplementary Material repeats the power studies of
Figures 2 and 3 when employing QuickMMCTest with both empirical rejection probabilities as
well as point estimates to obtain decisions on all hypotheses after stopping. We show that
empirical rejection probabilities lead to a higher power, especially for low computational effort.

5 Discussion

We considered multiple testing in a realistic scenario in which it is not possible to compute
p-values analytically for all tests. Instead, we assumed that it is possible to draw independent
samples under the null for each hypothesis in order to approximate its p-value. Our aim is to use
Monte Carlo samples to approximate the analytical test result (rejections and non-rejections),
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obtained if all p-values were known, as accurately as possible.
This article proposed to use an idea based on Thompson (1933) Sampling to efficiently

allocate samples to multiple hypotheses. Our iterative QuickMMCTest algorithm is based on this
principle and adaptively allocates more samples to hypotheses whose decisions are still unstable
at the expense of allocating less samples to hypotheses whose decision can easily be computed.
The algorithm works for a variety of common multiple testing procedures for both a constant
as well as a variable testing threshold.

QuickMMCTest has two main features: First, it never computes any p-value estimates during
its run, thus avoiding to incur consistently non-rejecting all hypotheses as observed in other
methods published in the literature. Second, its final decisions are based on empirical rejection
probabilities instead of p-value estimates.

QuickMMCTest was evaluated in a simulation study. By comparing its performance to both a
widely used naive sampling method for a variety of commonly used multiple testing procedures as
well as to a variety of algorithms published in the literature, we demonstrated that QuickMMCTest
yields meaningful test results even at a low computational effort and up to a multiple fold
decrease in the number of switched classifications at a high effort. For a low computational
effort, QuickMMCTest yields a higher per-pair power across all methods considered in this study
and, apart from the algorithm of Guo and Peddada (2008), a lower false non-discovery proportion
when employed with various multiple testing procedures.

Supplementary Material

The Supplementary Material compares the performance of both QuickMMCTest variants using
p-value estimates and empirical rejection probabilities. Moreover, it contains further simulation
studies assessing the dependence of QuickMMCTest on its parameters: the total number of sam-
ples K to be spent, the number of updates nmax (and thus the number of samples ∆ = K/nmax

spent in each iteration) as well as the parameter R controlling the accuracy with which weights
are computed. Moreover, the Supplementary Material repeats the simulation studies conducted
in Section 4 for the variable testing threshold of Pounds and Cheng (2006).

Acknowledgements

We would like to thank the two referees for their constructive comments on the manuscript. The
second author was supported by the EPSRC.

References

Agrawal, S. and Goyal, N. (2012). Analysis of Thompson Sampling for the Multi-armed Bandit
Problem. JMLR: Workshop and Conference Proceedings of the 25th Annual Conference on
Learning Theory, 23(39):1–26.

Asomaning, N. and Archer, K. (2012). High-throughput dna methylation datasets for evaluating
false discovery rate methodologies. Comput Stat Data An, 56:1748–1756.

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and
powerful approach to multiple testing. J Roy Statist Soc Ser B, 57(1):289–300.

Benjamini, Y. and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing
under dependency. Ann Stat, 29(4):1165–1188.

Besag, J. and Clifford, P. (1991). Sequential Monte Carlo p-values. Biometrika, 78(2):301–304.

12



Bonferroni, C. (1936). Teoria statistica delle classi e calcolo delle probabilità. Pubblicazioni del
R Istituto Superiore di Scienze Economiche e Commerciali di Firenze, 8:3–62.

Davison, A. and Hinkley, D. (1997). Bootstrap Methods and Their Application. Cambridge
University Press.

Dazard, J.-E. and Rao, S. (2012). Joint adaptive meanvariance regularization and variance
stabilization of high dimensional data. Comput Stat Data An, 56:2317–2333.

Edgington, E. and Onghena, P. (1997). Randomization tests. Fourth Edition, Chapman &
Hall/CRC, Boca Raton, FL.

Gandy, A. and Hahn, G. (2014). MMCTest – A Safe Algorithm for Implementing Multiple
Monte Carlo Tests. Scand J Stat, 41(4):1083–1101.

Gleser, L. (1996). Comment on ’Bootstrap Confidence Intervals’ by T. J. DiCiccio and B. Efron.
Statist. Sci., 11:219–221.

Guo, W. and Peddada, S. (2008). Adaptive choice of the number of bootstrap samples in large
scale multiple testing. Stat Appl Genet Mol Biol., 7(1):1–16.

Gusenleitner, D., Howe, E., Bentink, S., Quackenbush, J., and Culhane, A. (2012). iBBiG:
iterative binary bi-clustering of gene sets. Bioinformatics, 28(19):2484–2492.

Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple tests of significance.
Biometrika, 75(4):800–802.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scand J Stat, 6(2):65–
70.

Jiang, H. and Salzman, J. (2012). Statistical properties of an early stopping rule for resampling-
based multiple testing. Biometrika, 99(4):973–980.

Li, G., Best, N., Hansell, A., Ahmed, I., and Richardson, S. (2012). BaySTDetect: detect-
ing unusual temporal patterns in small area data via bayesian model choice. Biostatistics,
13(4):695–710.

Liu, J. and Chen, R. (1998). Sequential monte carlo methods for dynamic systems. J Amer
Statist Assoc, 93(443):1032–1044.

Liu, J., Huang, J., Ma, S., and Wang, K. (2013). Incorporating group correlations in genome-
wide association studies using smoothed group Lasso. Biostatistics, 14(2):205–219.

Lourenco, V. and Pires, A. (2014). M-regression, false discovery rates and outlier detection with
application to genetic association studies. Comput Stat Data An, 78:33–42.

Manly, B. (1997). Randomization, bootstrap and Monte Carlo methods in biology. Second
Edition, Chapman & Hall, London.

Mart́ınez-Camblor, P. (2014). On correlated z-values distribution in hypothesis testing. Comput
Stat Data An, 79:30–43.

Nusinow, D., Kiezun, A., O’Connell, D., Chick, J., Yue, Y., Maas, R., Gygi, S., and Sunyaev,
S. (2012). Network-based inference from complex proteomic mixtures using SNIPE. Bioin-
formatics, 28(23):3115–3122.

Pekowska, A., Benoukraf, T., Ferrier, P., and Spicuglia, S. (2010). A unique h3k4me2 profile
marks tissue-specific gene regulation. Genome Research, 20(11):1493–1502.

13



Pounds, S. and Cheng, C. (2006). Robust estimation of the false discovery rate. Bioinformatics,
22(16):1979–1987.

Rahmatallah, Y., Emmert-Streib, F., and Glazko, G. (2012). Gene set analysis for self-contained
tests: complex null and specific alternative hypotheses. Bioinformatics, 28(23):3073–3080.

Rom, D. (1990). A sequentially rejective test procedure based on a modified Bonferroni inequal-
ity. Biometrika, 77(3):663–665.

Sandve, G., Ferkingstad, E., and Nyg̊ard, S. (2011). Sequential Monte Carlo multiple testing.
Bioinformatics, 27(23):3235–3241.

Shaffer, J. (1986). Modified sequentially rejective multiple test procedures. J Amer Statist
Assoc, 81(395):826–831.

Sidak, Z. (1967). Rectangular confidence regions for the means of multivariate normal distribu-
tions. J Amer Statist Assoc, 62(318):626–633.

Simes, R. (1986). An improved Bonferroni procedure for multiple tests of significance.
Biometrika, 73(3):751–754.

Tamhane, A. and Liu, L. (2008). On weighted Hochberg procedures. Biometrika, 95(2):279–294.

Thompson, W. (1933). On the Likelihood that One Unknown Probability Exceeds Another in
View of the Evidence of Two Samples. Biometrika, 25(3/4):285–294.

Wu, H., Wang, C., and Wu, Z. (2013). A new shrinkage estimator for dispersion improves
differential expression detection in rna-seq data. Biostatistics, 14(2):232–243.

Zhou, Y.-H., Barry, W., and Wright, F. (2013). Empirical pathway analysis, without permuta-
tion. Biostatistics, 14(3):573–585.

14


