
1

Stability of Evolving Fuzzy Systems based on Data
Clouds

Hai-Jun Rong, Member, IEEE, Plamen Angelov, Fellow, IEEE,
Xiaowei Gu, Student Member, IEEE, and Jian-Ming Bai

Abstract—Evolving fuzzy systems (EFSs) are now well devel-
oped and widely used thanks to their ability to self-adapt both
their structures and parameters online. Since the concept was
firstly introduced two decades ago, many different types of EFSs
have been successfully implemented. However, there are only
very few works considering the stability of the EFSs, and these
studies were limited to certain types of membership functions
with specifically pre-defined parameters, which largely increases
the complexity of the learning process. At the same time, stability
analysis is of paramount importance for control applications and
provides the theoretical guarantees for the convergence of the
learning algorithms. In this paper, we introduce the stability proof
of a class of EFSs based on data clouds, which are grounded at the
AnYa type fuzzy systems and the recently introduced empirical
data analysis (EDA) methodological framework. By employing
data clouds, the class of EFSs of AnYa type considered in this
work avoids the traditional way of defining membership functions
for each input variable in an explicit manner and its learning
process is entirely data-driven. The stability of the considered
EFS of AnYa type is proven through the Lyapunov theory, and
the proof of stability shows that the average identification error
converges to a small neighborhood of zero. Although, the stability
proof presented in this paper is specially elaborated for the con-
sidered EFS, it is also applicable to general EFSs. The proposed
method is illustrated with Box-Jenkins gas furnace problem,
one nonlinear system identification problem, Mackey-Glass time
series prediction problem, eight real-world benchmark regression
problems as well as a high frequency trading prediction problem.
Compared with other EFSs, the numerical examples show that
the considered EFS in this paper provides guaranteed stability
as well as a better approximation accuracy.

Index Terms—Evolving Fuzzy Systems, Data Clouds, AnYa
type fuzzy systems, Stability

I. INTRODUCTION

Consisting of a number of IF-THEN rules, fuzzy infer-
ence systems (FISs) can deal with ill-defined and uncertain
problems without precise quantitative analysis [1]. They have
been applied to a wide range of areas [1]–[3]. Conventional
FISs are typically built by domain experts and lack the
learning capability [2], [3]. Thus, it is likely for these FISs
to suffer from poor performance if inappropriate fuzzy rules
are introduced. Some optimization techniques, such as back-
propagation [1] or genetic algorithm [4], [5] were further
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applied to ensure the learning capability of the fuzzy systems.
These works involve structure identification and parameter
adjustment of the fuzzy systems. The structure identification of
FISs aims to determine the number of fuzzy IF-THEN rules
while the parameter adjustment realizes the modification of
the antecedent parameters of the “IF” part and consequent
parameters of the “THEN” part.

These methods, however, need to assume that all the data
is available at the beginning of the training process and their
training involves cycling/iterations over a number of epochs.
Therefore, they are suitable for offline applications since it
is hard to guarantee that these pre-trained systems have a
satisfactory performance for online applications with nonsta-
tionary and changeable behavior over time. To tackle this
problem, in 21st century, intensive research works have been
concentrated on developing evolving fuzzy systems (EFSs)
[6]–[22] aiming at adapting system structure and parameters
simultaneously online to capture the dynamical changes of
data patterns. These include evolving rule-based models [6],
dynamic evolving neuro fuzzy inference system (DENFIS)
[7], a family of evolving Takagi-Sugeno (eTS) models [8]–
[11], a meta-cognitive neuro-fuzzy inference system (McFIS)
[12], sequential adaptive fuzzy inference system (SAFIS)
[13], extended SAFIS (ESAFIS) [14], evolving possibilistic
fuzzy modeling approach (ePFM) [15], multivariable Gaussian
evolving fuzzy modeling system (eMG) [16], evolving fuzzy
model (eFuMo) [17], incremental learning machine (PANFIS)
[18], effective localist network (GENEFIS) [19], flexible fuzzy
inference systems (FLEXFIS) [20], sparse fuzzy inference
systems (SparseFIS) [21] and generalized smart evolving fuzzy
systems (Gen-Smart-EFS) [22], etc. All these algorithms re-
quire specified types of membership function to calculate the
firing strength of each rule. Also, these algorithms propose
different rule evolving schemes, such as density/potential
criterion [6]–[11], distance criterion [16], [17], [20]–[22], error
criterion [12]–[14], statistical contribution of the rule [13],
[14], [18], [19]. To achieve better performance, some works
further update the parameters of the membership functions
using some optimization techniques, such as extended Kalman
filter [12], [13]. However, these optimization techniques large-
ly increase the computation complexity.

Although, the algorithms mentioned above have their suc-
cessful applications, they lack a thorough stability analysis.
In real applications, the stability is very important. Some
identification algorithms, such as gradient descent and least
square methods are stable in ideal conditions [23]. However, in
the cases of unmodeled dynamics, they may become unstable.
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Such unmodeled dynamics are caused by non-linearities, non-
Gaussian distributions that are much more likely to present
in real problems. Some robust modification algorithms [23]
are proposed to assure the stability of FISs in dealing with
uncertainties. However, in these work, the fuzzy structure
includes explicit membership functions which need to be fixed
in advance and cannot self-evolve during training. As one of
the very few examples of exiting works on stability of EFSs, an
online self-organizing fuzzy modified least square (SOFMLS)
network [24] was recently proposed. In this algorithm, struc-
ture and parameters learning are conducted at the same time.
The proposed network considers the stability analysis, but it
uses unidimensional membership functions for each rule and
a modified least-square algorithm to train the antecedent and
consequent parameters of the system. As another example, in
[25], a growing-and-pruning fuzzy neural network (GPFNN)
with concurrent structure learning and parameter training is
proposed, which discusses the convergence of the learning
process. However, it relies on a supervised gradient decent
method to update the center and width vectors of the Gaussian
membership functions as well as the corresponding consequent
parameters. In these works, the determination of membership
function and the adjustment of antecedent parameters leads
to a more complicated computation process. In both works,
which are the only works on stability of EFSs we identified,
explicit membership functions are considered.

Recently, a simplified type of fuzzy rule-based system
was introduced, called AnYa [26], which offers a new way
of defining the “IF” part of the rules without defining the
membership functions per variable in an explicit manner. The
antecedent parts of fuzzy rules are formed upon the data
clouds, which are the sets of data samples attracted around
focal points. The data clouds in the AnYa system can be
formed “from scratch”. The self-evolving mechanism of the
data clouds is based on determination of the focal points. In
the original paper, introducing AnYa [26], focal points were
identified using eClustering [27] algorithm. The importance
of this approach is that AnYa type of fuzzy systems can
be considered as the third alternative type of fuzzy systems
to Mamdani and Takagi-Sugeno type models (both of which
share same type of antecedent/IF part) with a different, explicit
membership function free antecedent/IF part [27].

In this paper, we introduce a stability proof for the class of
EFSs, which are based on data clouds. The systems considered
in this paper differ from the one in [26] as they form data
clouds based on the empirical data analytics (EDA) [28]
computational framework and empirical fuzzy sets (εFSs) [29].
EDA is a nonparametric, assumptions-free, entirely data-driven
methodological framework [28] which is entirely based on
the empirical observations and the ensemble properties of the
data. It is close to statistical learning in its nature but is
free from the assumptions required by traditional probability
theory and statistical learning methods [30]. The stability
of the EFS based on data clouds considered in this paper
is proven through the Lyapunov theory and the proof of
stability shows that the average identification error converges
to a small neighborhood of zero and the parameter error is
bounded by the initial parameter error. Although, the stability

proof presented in this paper specially refers to the EFSs
based on data clouds, it is applicable to some EFSs that are
comprised of the structure learning of the ’IF’ part and the
fuzzily weighted recursive least square parameter update of
the ’THEN’ part as well.

The rest of the paper is organized as follows. The EFS
based on data clouds is introduced in Section II. The learning
process of the considered EFS including the formation of the
data clouds according to EDA and the parameter learning is
described in Section III. Section IV gives the stability and
convergence analysis of the EFS based on data clouds. Section
V presents the performance evaluation of the proposed system.
This paper is concluded by Section VI.

II. EFS BASED ON DATA CLOUDS

Let’s consider a nonlinear system in a discrete time frame-
work expressed by:

yk = f(xk) (1)

where yk denotes the system output, xk = [xk1, · · · , xkn]
T is

the input vector of the system, f(·) is an unknown nonlinear
function. Subscript k ∈ ℵ is the discrete time index.

In practical cases, the exact analytical expression of the
function f(·) is hard to identify due to nonlinear and dynamic
characteristics of the system. Thus, the system (1) considered
in the study is unknown. To achieve the estimation of the
system output yk, a fuzzy system is used to approximate the
function f(·) as follows

ŷk = f̂(xk) (2)

where ŷk is the output of the fuzzy system.
In this study, we consider the EFS based on data clouds to

approximate f(·) with f̂(·). The concept of this class of EFSs
we consider is grounded at the recently introduced AnYa type
fuzzy system [26].

An AnYa type fuzzy rule has the following form:
Rule i: IF (xk ∼ γi

k) THEN (ŷk is aik)
where γi

k is the focal point of the ith data cloud in the input
space. aik(i = 1, 2, · · · , N) represents the crisp consequence
of the ith rule that can be a constant or a linear combination
of input variables. In this study, a linear consequence aik =
qik0+ qii1xk1+ · · ·+ qiknxkn is used. N represents the number
of data clouds.

The structure of the EFS we consider is depicted in Fig. 1(a)
and the structure of a traditional TS fuzzy system is given in
Fig. 1(b) for comparison. One can see the difference between
the two figures. The considered EFS based on data clouds
consists of four layers. Layer 1 extracts the local density of
each data cloud. The value of the local density is normalized
in layer 2. Layer 3 is for applying the weighted average
defuzzification. The approximated output is represented in
layer 4.

It is well-known that complex systems can be decomposed
into a number of loosely connected local simpler systems
aggregated in a fuzzy way. In the EFS that we considier, each
local sub-system is represented by a data cloud that describes
a certain sub-set of the entire data set. Thus, the proposed
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(a) EFS based on data clouds (b) TS fuzzy system

Fig. 1. Structure of EFS based on data clouds (AnYa type) and traditional TS fuzzy system

approach replaces the scalar membership functions with a non-
parametric function that is represented by the local densities.
Considering Euclidean type of distance, in this paper, the local
density of the ith data cloud is defined as follows [28]:

γi
k =

1

1 +
∥xk − Γi

k∥2

Ξi
k − ∥Γi

k∥2

(3)

Other types of distances can also be considered in principle,
but without limiting the concept, we consider the Euclidean
type of distance due to its simplicity. Here Γi

k and Ξi
k are the

mean and the scalar product of the data samples within the
ith data cloud. They can be updated recursively by [27]:

Γi
k =

M i − 1

M i
Γi
k−1 +

1

M i
xk, Γi

1 = x1

Ξi
k =

M i − 1

M i
Ξi
Mi−1 +

1

M i
∥xk∥2, Ξi

1 = ∥x1∥2
(4)

M i denotes the number of data samples within the ith data
cloud.

Assuming there are N data clouds, the normalization value
of the local density for each data cloud is expressed as:

λi
k =

γi
k∑N

i=1 γ
i
k

, i = 1, 2 · · · , N (5)

With the weighted average defuzzification, the output of the
EFS that we consider is equal to

ŷk =
N∑
i=1

λi
ka

i
k; a

i
k = xT

e q
i
k (6)

where xe = [1,xT
k ]

T ∈ ℜ(n+1)×1 is the extended input vector
by appending the input vector xk with 1; qi

k is the vector
representing the consequent parameters of the kth data cloud
and given by

qi
k =

[
qik0, · · · , qikn

]T ∈ ℜ(n+1)×1 (7)

The output ŷk in Eq.(6) is further rewritten in a compact
matrix form as,

ŷk = HT
kQk (8)

where Qk is the consequent parameter vector of all N data
clouds and Hk is the inputs weighted by the normalized local
density vector of all data clouds. They are reformulated as,

Qk =
[
q1
k, · · · ,qN

k

]T
N(n+1)×1

Hk =
[
xT
e λ

1
k, · · · ,xT

e λ
N
k

]T
N(n+1)×1

(9)

Remark 1: In this EFS, the antecedent part of the fuzzy
system is represented by the data clouds, and the mem-
bership degree to a particular data cloud is measured by
the normalized local density of the current data sample as
shown in Eq. (5). This is different from the traditional fuzzy
systems where the membership degree to a certain rule is
determined by the normalized firing strength computed from
specifically predefined membership functions based on sum-
product composition. Indeed, the EFS considered in this paper
does not require membership functions (also see the difference
in the dashed line boxes in Figs. 1(a) and 1(b)).

III. LEARNING OF EFS BASED ON DATA CLOUDS

A. Formation of Data Clouds

In this study, the number of data clouds, N are determined
automatically during the learning process. This enables the
EFS based on data clouds to have a self-evolvable structure
and to be independent from the prior knowledge about the
system model. The global density defined within the EDA
framework [28] is applied here as the mechanism to evolve
the structure of the EFS in an online manner. Similar to the
centers of fuzzy sets, each data cloud has one focal point ξ
with the highest local density. For the first data sample, it
is selected as the focal point of the first data cloud, that is
ξ1 = x1. Then, with more data samples arriving, data clouds
are formed based on the global densities that are calculated at
the focal points of the existing data clouds. For the ith data
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cloud, its global density at the kth time instance according to
EDA [28] is expressed as :

γ
i(G)
k =

1

1 +
∥Γi

k − ΓG
k ∥2

ΞG
k − ∥ΓG

k ∥2
(10)

where ΓG
k and ΞG

k are the global mean and the global scalar
product of the observed data samples. The global density γ

i(G)
k

is similar to the local density, but ΓG
k and ΞG

k consider all the
samples including xk at the current time instant, k and all the
previously observed samples xj , j = 1, 2, · · · , k − 1.

When the new data sample appears, the global densities of
all the existing data clouds are influenced and are updated ac-
cordingly. The global density produced by the new observation
xk according to EDA [28] is given as,

Υk =
1

1 +
∥xk − ΓG

k ∥2

ΞG
k − ∥ΓG

k ∥2

(11)

The global density of the new data sample is compared to
the updated global densities of the existing focal points to
judge whether a new data cloud needs to be formed. If the
global density of the new observation is higher than the global
densities of the existing focal points, the new observation is
more descriptive and has a stronger summarization power than
all the existing focal points. In this case, the new data sample
may initialize a new data cloud. On the other hand, if the
new data xk is sufficiently far from the existing data clouds,
it has a smaller global density. However, the new data sample
is possible to represent a new operating regime and the new
data pattern. In this case, the new data sample may be accepted
as a new data cloud, even though its global density is lower
than the global densities of the existing focal points. The first
case is descried as follows:

(Υk−γ
i(G)
k > 0) OR (Υk−γ

i(G)
k < 0);∀i ∈ 1, · · · , N (12)

Besides the global density, the new data xk is required to
be sufficiently far from the focal points of the existing data
clouds. The second case is described as:

ζki > ρik; ∀i ∈ 1, · · · , N (13)

where ζki denotes the distance between the current input data
xk and the focal point of the ith data clouds ξi, that is
∥xk−ξi∥. ρik represents the radius describing the spread of the
data cloud. It is noteworthy that the radius represents only an
approximated spread of the data cloud in the input data space
because these data clouds lack a specific shape or boundary.
In real implementation, the radius is hard to pre-determined
and, thus, is recursively calculated based on the local ensemble
information. It is updated as [11]:

ρik =
1

2
(ρi(k−1) + ϱik); ρi0 = 1 (14)

where ϱik represents the local scatter of the ith data cloud over
the input data space at the kth time instance and is expressed
as,

ϱik =
√
Ξi
k − ∥Γi

k∥2 (15)

The global density and distance information are used to
evolve dynamically the data clouds. When the condition (12)
and condition (13) are both satisfied, a new data cloud is
formed and the current data sample is assigned as its focal
point, ξN+1 = xk. If the condition (12) and condition
(13) are not satisfied, the focal point of the nearest “data
cloud” is updated by the new data, that is ξf = xk; f =
argminNi=1∥xk − ξi∥. When the focal points are obtained, all
other data samples are then assigned to the nearest focal point
so that data clouds are generated according to the following
condition:

cloud label = argmini=1,2,··· ,N∥xk − ξi∥ (16)

After a new data cloud is formed or an existing data cloud
is updated, xk is further utilized to update the consequent
parameters Qk of the fuzzy system (this is described in the
next subsection).

Remark 2: The system output and the evolution of the data
clouds considered in this paper are based on local and global
densities. But different from [26], the local and global densities
used (Eq. (3) and Eq. (10)) are derived from the EDA as in
[28] and in εFSs [29].

Remark 3: The EFS considered in this paper employs the
global density of the new data sample and its distances to
all existing focal points together as criteria to trigger the
formation of new data clouds. The intrinsic self-evolving
learning mechanism ensures that these data clouds are more
general to represent all the empirically observed data samples.
While condition (13) guarantees that the data clouds initialised
by outliers play a negligible role due to their much lower
activation levels and it further avoids the overlap or conflict
between data clouds.

B. Parameter Learning

In this subsection, the approximation mechanism of the
considered EFS of the unknown nonlinear function is studied.
Eq. (1) is further expressed as,

ŷk = HT
kQk (17)

According to the universal approximation property of fuzzy
systems, there exists optimal parameters Q∗ that approximate
the nonlinear dynamic function f(·) as

yk = HT
kQ

∗ + ϵk (18)

where ϵk is the inherent approximation error. By definition,
EFSs are capable to dynamically evolve their structure. With
the number of data clouds increased, the inherent approxima-
tion error can be reduced arbitrarily. Therefore, it is reasonable
to assume that ϵk caused by approximating f(x) is bounded
with the constant ε, which is given by

|ϵk| ≤ ε (19)

On the basis of Eqs. (17) and (18), the system error becomes:

ek = yk − ŷk = HT
k Q̃k + ϵk (20)

where Q̃k = (Q∗ −Qk) is the parameter error. Since, there
are no antecedent parameters to be adjusted, the parameter
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optimization of this EFS is simply equivalent to finding a least-
square solution of the parameters Qk of the consequent linear
model, which is defined as,

Jk = min

k∑
l=1

(yl −HT
l Ql)

2 (21)

The fuzzily weighted recursive least square algorithm in-
troduced in [9] is applied to update the parameters (Qk). The
adaption laws for updating the parameters Qk is defined as,

Qk+1 = Qk + αkΣkHkek

Σk+1 = Σk − αkΣkHkH
T
kΣk

(22)

where αk is the time-varying learning rate defined as,

αk =
1

1 +HT
kΣkHk

(23)

When a data cloud is added, the consequent parameters Qk

becomes:
Qk = [Qk−1,qN+1]

T (24)

with the parameters of the new data cloud determined by:

q(N+1)i = 0, i = 0, 1, 2, ..., n (25)

Also, in the case that a new data cloud is added, the
dimensionality of the covariance matrix Σk increases to:

Σk =

[
Σk−1 0
0 p0In+1×n+1

]
(26)

where p0 is an initial value of the uncertainty assigned to the
newly allocated rule. In the paper, p0 is set to 500 for all the
cases. When the focal point of a data cloud is replaced by
a new data sample, the parameters Qk and covariance matrix
Σk are inherited from the previous time step.

The pseudo-code of the EFS based on data clouds consid-
ered in the paper is summarized in Algorithm 1.

Algorithm 1 Parameter Learning of EFS based on data clouds
Sample: xk ∈ Rn, yk ∈ R
Initialize: setting N = 0, ξ1 = x1

1. Calculate the system output and error according to Eqs. (8)
and (20).
2. Compute the global density of the existing data clouds and
the new data point based on Eqs.(10)-(11).
3. Apply the rule addition criteria

if {(Υk − γ
i(G)
k > 0) or (Υk − γ

i(G)
k < 0)};∀i ∈ 1, · · · , N

and ζki > ρik then
form a new data cloud with

N = N + 1, ξN+1 = xk,M
N+1 = 1

q(N+1)i = 0, i = 0, 1, 2, ..., n

else
The new data sample replaces the focal point of the near-
est cloud by applying ξf = xk; f = argminNi=1∥xk−ξi∥.

end if
4. Adjust the consequent parameters using Eqs. (22) and (23).

IV. STABILITY AND CONVERGENCE ANALYSIS

The main contribution and novelty/originality of this paper
is the theoretical proof of the stability of this class of EFSs
considered here. Before describing the theorems, a useful
lemma is firstly described below.

Lemma 1 [31]: Define V (s) : ℜn → ℜ ≥ 0 as a Lyapunov
function for a nonlinear system. If there exists K∞ functions
δ1(·), δ2(·), δ3(·) and K function δ4(·), and for any s ∈ ℜn,
each νk ∈ ℜn, σ ∈ ℜ satisfies

δ1(s) ≤ V (s) ≤ δ2(s)

Vk+1 − Vk = ∆Vk ≤ −δ3(∥νk∥) + δ4(σ)
(27)

then the nonlinear system is uniformly stable.
Theorem 1: Consider the EFS described by Eq. (8) with the

self-evolving data cloud-based structure as described in sec-
tion III.A. The updating equations for the parameters (Qk) are
described by Eq.(22). Then, the uniform stability of the fuzzy
system described by Eq. (8) is ensured. The error between the
system output and the reference output converges to a small
neighborhood of zero in which the average identification error
satisfies limT→∞

1
T

∑T
k=1 e

2
k ≤ (ε/τ)2. Here, τ is the lower

bound of αk in Eq. (23) satisfying τ = min(αk), and ε is
the upper bound of the uncertainty ϵk satisfying |ϵk| < ε.
Besides, the parameter error ∥Q̃k∥ is bounded and satisfies
the inequality condition ∥Q̃k∥ ≤ ∥Q̃1∥.

Proof : Consider the following Lyapunov function

Vk = Q̃T
kΣ

−1
k Q̃k (28)

According to the matrix inversion lemma ( [32], p. 258),

(A+BCBT )−1 = A−1 − A−1BBTA−1

C−1 +BTA−1B
(29)

and by selecting A−1 = Σk, B = Hk and C−1 = 1, one can
get

Σ−1
k+1 = Σ−1

k +HkH
T
k (30)

Combining Eqs.(28) and (29), we get

Vk+1 = Q̃T
k+1Σ

−1
k+1Q̃k+1

= Q̃T
k+1(Σ

−1
k +HkH

T
k )Q̃k+1

= Q̃T
k+1Σ

−1
k Q̃k+1 + (Q̃T

k+1Hk)
2

= (Q̃k − αkΣkHkek)
TΣ−1

k (Q̃k − αkΣkHkek)

+ (Q̃T
k+1Hk)

2

= Vk − 2αkQ̃
T
kHkek +HT

kΣkHkα
2
ke

2
k + (Q̃T

k+1Hk)
2

(31)

From Eqs.(20), (22) and (23), the following relationship is
obtained as,

HT
k Q̃k+1 + ϵk = αk(H

T
k Q̃k + ϵk) = αkek (32)

Substituting Eq. (32) into Eq. (31) yields,

Vk+1 = Vk − 2Q̃T
kHk(H

T
k Q̃k+1 + ϵk)

+HT
kΣkHk(H

T
k Q̃k+1 + ϵk)

2 + (Q̃T
k+1Hk)

2
(33)

Considering Eq. (32), Eq. (33) becomes:

Vk+1 = Vk − (HT
k Q̃k+1)

2 −HT
kΣkHk(H

T
k Q̃k+1 + ϵk)

2

− 2HT
k Q̃k+1ϵk

(34)
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Because HT
kΣkHk(H

T
k Q̃k+1 + ϵk)

2 > 0, Eq. (34) can be
further transformed to:

Vk+1 ≤ Vk − (HT
k Q̃k+1)

2 − 2HT
k Q̃k+1ϵk

≤ Vk + ϵ2k − (HT
k Q̃k+1 + ϵk)

2

≤ Vk + ϵ2k − α2
ke

2
k

(35)

Since ϵ2k ≤ ε2, Eq. (35) is further expressed as,

∆Vk ≤ −α2
ke

2
k + ε2 (36)

For the K∞ functions δ1(·) and δ2(·) [23]

δ1(·) = N(n+ 1)min(∥Q̃k∥2)
δ2(·) = N(n+ 1)max(∥Q̃k∥2)

(37)

the following inequality holds

N(n+ 1)min(∥Q̃k∥2) ≤ Vk ≤ N(n+ 1)max(∥Q̃k∥2) (38)

In the inequality (36), α2
ke

2
k is a K∞ function and ϵ2k is a

K function. It is shown that both inequalities (36) and (38)
satisfy the conditions of (27). According to the Lemma 1,
the uniform stability of the considered EFS is ensured. By
summing up both sides of inequality (36) from 1 up to T , we
get:

T∑
k=1

(α2
ke

2
k − ε2) ≤ V1 − VT (39)

Since VT > 0 is bounded, Eq. (39) is re-written as,

1

T

T∑
k=1

α2
ke

2
k ≤ ε2 +

1

T
V1 (40)

As T → ∞, we obtain

lim
T→∞

1

T

T∑
k=1

α2
ke

2
k ≤ ε2 (41)

Taking τ = min(αk), one can get

lim
T→∞

1

T

T∑
k=1

e2k ≤ (ε/τ)2 (42)

Since Vk ≤ V1, this implies that

Q̃T
kΣ

−1
k Q̃k ≤ Q̃T

1 Σ
−1
1 Q̃1 (43)

Combining with Eq. (30), we get:

λmin(Σ
−1
k ) ≥ λmin(Σ

−1
k−1) ≥ λmin(Σ

−1
1 ) (44)

The inequality (44) can be further transformed into

λmin(Σ
−1
1 )∥Q̃k∥2 ≤ λmin(Σ

−1
k )∥Q̃k∥2 ≤ Q̃T

kΣ
−1
k Q̃k

≤ Q̃T
1 Σ

−1
1 Q̃1 ≤ λmin(Σ

−1
1 )∥Q̃1∥2

(45)

Apparently, the following inequality holds:

∥Q̃k∥ ≤ ∥Q̃1∥ (46)

Therefore, one can conclude that ∥Q̃k∥ is bounded.
Remark 4: Theorem 1 states that the average error of

the system converges to a small neighborhood of zero. The
approximation error is caused by the parameter errors. Ideally,
when the parameters of the system converge to their optimal

values, the approximation error becomes zero. In practice,
zero approximation error is hard to be achieved. Instead, the
approximation error obtained is only expected to be smaller
than a small nonzero value. Although, the parameters cannot
converge to their optimal values, the average identification
error will converge to a very small value around zero. This can
be further verified through the simulation studies described in
the next section.

In the EFS that we consider, the number of data clouds N
is determined by the learning process. To further demonstrate
that the stability and convergence properties will not be
affected by adding of the new data cloud, we provide and
prove the following theorem.

Theorem 2: Considering the EFS described by Eq. (8), when
a new data cloud is added, Qk and Σk are updated by Eqs.
(24) and (26). The stability of the system described by Eq. (8)
is still ensured.

Proof : Consider the following Lyapunov function

Vk = Q̃T
kΣ

−1
k Q̃k (47)

A new data cloud (N + 1) is added. Based on Eqs. (24)
and (26), Eq. (47) becomes,

Vk+1 = Q̃T
k+1Σ

−1
k+1Q̃k+1

= [ Q̃T
k qT

N+1 ]

[
Σk 0
0 p0In+1×n+1

]−1

[
Q̃k

qN+1

]
= Q̃T

kΣ
−1
k Q̃k +

1

p0
qT
N+1qN+1

= Vk

(48)

From Eq. (48), it can be found that the newly added data
cloud has no influence on the Lyapunov function Vk. Based
on Theorem 1, the stability of the EFS described by Eq. (8)
is ensured.

Remark 5: The stability proof presented in this study is
specifically applicable to the EFS considered and described in
this paper. However, it is also applicable to more general EFSs
satisfying Eq. (8) that are comprised of the structure learning
and the fuzzily weighted recursive least square parameter
update method, such as eTS [9], Simpl eTS [10], ESAFIS
[14], AnYa [26] and so on.

V. NUMERICAL EXAMPLES

In this section, a number of numerical examples are carried
out for evaluating the EFS based on data clouds considered
in the work and the convergence of the error is visualized.
The performance evaluation is based on the Box-Jenkins
gas furnace problem, one system identification problem, one
Mackey-Glass time series prediction problem, eight real-world
benchmark regression problems and one high frequency trad-
ing prediction problem. The results from other published self-
evolving fuzzy system algorithms, such as SAFIS [13], E-
SAFIS [14], eTS [9], Simpl eTS [10], SONFNN [33], McFIS
[12], DENFIS [7], SOFMLS [24], FlexFIS [20], CEFNS [34],
SparseFIS [21], Gen-Smart-EFS [22] and AnYa (using eClus-
tering) [26] are used for comparison. All the algorithms go
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through the training data sample by sample sequentially in an
online scenario, and performance comparison is conducted in
terms of the testing accuracy as well as the system complexity
(the number of data clouds for the proposed system and the
original AnYa, the number of rules for other algorithms).

A. Box-Jenkins gas furnace problem

Box-Jenkins gas furnace problem is a well-known bench-
mark problem [12], [24]. The detailed description of this
problem is given in supplementary material.

TABLE I
RESULTS OF BOX-JENKINS GAS FURNACE PROBLEM

Algorithms Testing RMSE No. of Rules
AnYa (eClustering) [26] 0.0166 1
CEFNS [34] 0.0207 2
eTS [9] 0.049 5
DENFIS [7] 0.1774 18
SAFIS [13] 0.071 5
Simpl eTS [10] 0.0485 3
SOFMLS [24] 0.047 5
SONFNN [33] 0.48 4
this paper 0.0107 10

Table I compares the performance of the EFS based on data
clouds in this paper and the other algorithms. The root mean
square error (RMSE) for the testing data is applied as the
learning accuracy index. From the table, one can see that
the considered EFS in this paper achieves the best testing
accuracy compared with other algorithms. Moreover, its has
a guaranteed, proven convergence, see Fig. 2(c) (and later
supplementary Figs. 1(c) and 2(c)). In addition, it does not
require an explicit membership function to be defined per
feature/variable. For all alternative algorithms, certain type of
membership functions has to be determined in advance. In
SAFIS, eTS and CEFNS, Gaussian membership functions are
required, while Cauchy membership function is required for
the Simpl eTS. Then the parameters of membership functions
are updated according to the evolving learning procedure. The
focal points of the EFS described in the original AnYa paper
are automatically determined through the eClustering method.
Due to the different mechanisms for data clouds formation (
[26] vs [28]), the EFS in this paper achieves better testing
accuracy. Fig. 2(a) shows the identified focal points and the
data clouds around them. From the figure, one can see that
the EFS considered in this paper generates a somewhat large
number of fuzzy rules during the system identification process
than other algorithms except DENFIS but achieves much better
testing accuracy than all other algorithms.

Fig. 2(c) shows the evolution of the average error during
the learning process. From this figure it can be observed
that the average error is bounded and converges to a small
neighborhood of zero, as stated in Theorem 1. Fig. 2(d) gives
the evolution of the parameter αk and illustrates that the
parameter has a lower bound satisfying αk ≥ 0.5. The learning
error at each time index is depicted in Fig. 2(b), from which
it can be seen that the error is bounded and converges to a
small neighborhood of zero.

B. Nonlinear System Identification

We further consider the nonlinear system identification
problem [13], [24] as a benchmark. The problem description
is given in supplementary material in details.

TABLE II
PERFORMANCE COMPARISON FOR NONLINEAR IDENTIFICATION PROBLEM

Algorithms Testing RMSE No. of Rules
AnYa (eClustering) [26] 0.0546 2
CEFNS [34] 0.0183 12
DENFIS [7] 0.2599 3
ESAFIS [14] 0.0338 15
eTS [9] 0.0212 49
FlexFIS [20] 0.0171 8
SAFIS [13] 0.0221 17
Simpl eTS [10] 0.0225 22
SOFMLS [24] 0.0201 5
this paper 0.0020 9

Table II gives the testing accuracy and the number of rules
obtained by different algorithms. It indicates that the EFS
considered in this paper achieves much better testing accuracy
with less fuzzy rules than SAFIS, ESAFIS, eTS, Simpl eTS
and CEFNS, and with slightly more fuzzy rules than SOFMLS,
FlexFIS and DENFIS. This table further states that the EFS
considered here produces much better testing accuracy than the
original AnYa. Supplementary Fig. 1(a) depicts the reference
outputs and the prediction outputs of the considered EFS. The
evolution of the error and the average error at each time index
are presented in supplementary Fig. 1(b) and Fig. 1(c), which
clearly show that they are bounded and converge to a small
neighborhood of zero. The evolution of the parameter αk is
shown in supplementary Fig. 1(d) and it is clear that the error
is bounded, satisfying αk ≥ 0.5.

C. Mackey-Glass Time Series Prediction

The fuzzy system is further evaluated by predicting the
chaotic Mackey-Glass time series [13]. The detailed problem
description is presented in supplementary material.

TABLE III
PERFORMANCE COMPARISON FOR MACKEY-GLASS TIME SERIES

PREDICTION

Algorithms Testing NDEI No. of Rules
AnYa (eClustering) [26] 0.501 1
CEFNS [34] 0.303 8
DENFIS [7] 0.276 58
eTS [9] 0.356 99
FlexFIS [20] 0.157 89
ESAFIS [14] 0.312 10
SAFIS [13] 0.380 21
Simpl eTS [10] 0.376 21
this paper 0.124 17

The prediction accuracy and the number of rules obtained
by different algorithms are presented in Table III. The Non-
Dimensional Error Index (NDEI), which is defined as the
RMSE divided by the standard deviation of the true output
values, is utilized as the performance index here. From Table
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Fig. 2. Evolution of focal points, averaged identification error, training error at each time index and αk for Box-Jenkins furnace problem.

III, one can find that the EFS considered in this paper achieves
a better prediction accuracy with slightly more fuzzy rules
than ESAFIS, CEFNS and AnYa with eClustering, and with
less rules than DENFIS, eTS, FlexFIS, SAFIS and Simpl eTS.
Supplementary Fig. 2(a) and Fig. 2(b) show the evolution of
the average error and error at each time index. From these
figure, one can find that they are bounded. The parameter αk

is shown in supplementary Fig. 2(c) and it is clear that it is
also bounded, satisfying αk ≥ 0.5. Supplementary Fig. 2(d)
depicts the reference outputs and the prediction outputs for the
EFS that we consider, which indicates that they match very
well.

D. Regression Problems

In this subsection, five real-world regression problems are
further considered to evaluate the performance of the proposed
EFS based on data clouds. Details of the problems including
the attributes of input and output, the number of training
and testing data are listed in supplementary Table I. In these
problems, the input and output attributes are normalized in
the range [0, 1]. All of the training data as listed in the table
is used for training and the testing data is used for verifying
the generalization performance of the algorithms. Table IV
presents the performance comparison between different algo-
rithms. From the table, it can be found that the EFS considered
here produces better testing accuracy than all other algorithms
for all the problems. For the Trazines problem, DENFIS failed
because of the high-dimensional input attributes and, thus, its
results for this problem are not provided here. Besides, it is

obvious that in this problem the EFS considered in this paper
achieves much better testing accuracy and also requires less
fuzzy rules than other algorithms except CEFNS and AnYa
with eClustering. This further demonstrates the advantage
of the considered EFS on the high dimensional problems,
in which the antecedent part of fuzzy rules is represented
in a vector form and is, thus, suitable for high-dimensional
problems. The curse of dimensionality problem is not going
to happen for this type of EFSs thanks to the AnYa type fuzzy
rules it employs.

Moreover, the same three data sets as in [22] are further
considered to assess the performance of the considered EFS
from statistical point of view. The characteristics of these data
sets used in this evaluation are summarized in supplementary
Table II. As in [22], the evaluation is on the basis of the
accuracy of the models obtained by applying tenfold cross-
validation (CV). The results from different algorithms on the
three data sets are summarized in table V. As in [22], the
table includes the minimal cross validation error in terms of
mean absolute error (MAE) between reference and estimated
values, together with the standard deviation (STD) over the
CV-folds (after the ± symbol), the maximal error between
reference and estimated over all training data samples and the
average model complexity corresponding to the minimal CV
error and the average number of rules and parameters over the
CV-folds. From the table, it can be seen that the EFS based
on data clouds has the least CV error compared with all the
other algorithms on the three datasets and also obtains the
lower maximal error than all other algorithms on the Auto-
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TABLE V
STATISTICAL RESULT COMPARISON BETWEEN DIFFERENT ALGORITHMS ON THREE UCI DATA SETS.

Algorithms Auto-MPG Concrete Boston Housing
MAE±STD Max Rules/Params MAE±STD Max Rules/Params MAE±STD Max Rules/Params

ANFIS [35] 2.41±0.84 4.07 16/104 11.25±9.98 39.13 8/50 3.59±1.39 6.56 4/24
AnYa (eClustering) [26] 2.50±3.17 4.57 11/88 4.84±6.45 18.16 8/64 4.38±3.77 10.26 7/98
FMCLUST [36] 2.35±0.91 3.99 20/200 7.75±2.06 12.11 3/30 2.84±1.08 5.38 6/60
FLEXFIS [20] 2.17±0.73 3.59 11/143 7.73±1.97 11.96 8/80 2.98±1.27 6.09 6/60
genfis2 [37] 2.23±0.85 3.88 6/114 8.37±1.70 11.52 3/30 3.14±1.31 6.53 4/40
Gen-Smart-EFS [22] 2.09±0.62 3.60 5.8/* 6.35±0.52 7.14 3.8/* 2.94±1.18 5.84 4.9/*
SparseFIS [21] 2.01±0.55 3.29 9/144 7.73±1.77 21.01 7/70 3.02±1.19 6.04 6/60
SparseFIS uncon. [21] 2.14±0.78 4.08 22/352 8.05±1.85 12.52 11/110 3.60±1.56 6.86 19/180
this paper 1.83±0.58 2.58 13/104 4.80±1.62 16.13 11/99 2.07±1.99 3.70 14/196

TABLE IV
PERFORMANCE COMPARISON FOR REGRESSION BENCHMARK PROBLEMS

Datasets Algorithms Testing RMSE No. of Rules

Auto-MPG

AnYa (eClustering) [26] 0.0958 2
CEFNS [34] 0.0750 2
DENFIS [7] 0.1458 7
ESAFIS [14] 0.0731 33

eTS [9] 0.0864 6
McFIS [12] 0.0806 4
SAFIS [13] 0.0993 2

Simpl eTS [10] 0.0765 5
this paper 0.0725 8

Autos

AnYa (eClustering) [26] 0.0604 3
CEFNS [34] 0.0666 2
DENFIS [7] 0.4516 8
ESAFIS [14] 0.0604 3

eTS [9] 0.0535 3
McFIS [12] 0.0687 3
SAFIS [13] 0.1184 5

Simpl eTS [10] 0.0689 10
this paper 0.0399 8

AnYa (eClustering) [26] 0.0818 3
CEFNS [34] 0.0878 2

California DENFIS [7] 0.0715 14
Housing ESAFIS [14] 0.0892 6

eTS [9] 0.0772 3
McFIS [12] 0.0822 15
SAFIS [13] 0.0988 12

Simpl eTS [10] 0.0773 3
this paper 0.0711 11

AnYa (eClustering) [26] 0.0515 1
CEFNS [34] 0.0502 3

Delta DENFIS [7] 0.0497 11
Ailerons ESAFIS [14] 0.0506 13

eTS [9] 0.0513 4
McFIS [12] 0.0509 15
SAFIS [13] 0.0549 14

Simpl eTS [10] 0.0512 4
this paper 0.0491 14

Triazines

AnYa (eClustering) [26] 0.0224 6
CEFNS [34] 0.0452 6
ESAFIS [14] 0.0331 19

eTS [9] 0.0179 9
McFIS 0.0556 12

SAFIS [13] 0.0581 9
Simpl eTS [10] 0.0197 9

this paper 0.0086 7

MPG and Boston housing datasets.

E. High Frequency Trading (HFT) Prediction Problem
In this subsection, a HFT prediction problem is considered

to verify the performance of the EFS based on data clouds
in handling non-stationary data. The dataset is obtained from
the QuantQuote Second Resolution Market Database [38] and
contains tick-by-tick data on all NASDAQ, NYSE, and AMEX
securities from 1998 to the present moment in time. The
frequency of the tick data varies from one second to few
minutes. This dataset is comprised of 19144 data samples.
The input xk includes the following five attributes: 1) Time;
2) Open price; 3) High price; 4) Low price, and 5) Close
price. The task considered in the work is to predict the future
8 and 24 step values of high price, namely yk = xk+8,2 and
yk = xk+24,2, respectively. The data samples are standardized
online before prediction.

For comparison, two algorithms widely used in the fields
of finance and economy, that is, least square linear regression
(LSLR) algorithm and sliding window least square linear re-
gression (SWLSLR) algorithm are considered here. Moreover,
other evolving fuzzy algorithms like AnYa with eClustering,
eTS, DENFIS and SAFIS are implemented for the purpose of
comparison. The width of the sliding window for SWLSLR
algorithm is set to 200. The NDEI and the number of rules
are taken into account to evaluate the performance. Table VI
shows the prediction results for 8 and 24 steps ahead. It is
clear from the table that the EFS considered in this paper
exhibits better prediction performance than other algorithms
in both cases. Supplementary Fig. 3(a) and Fig. 3(b) show
the reference and prediction outputs for the EFS based on
data clouds. One can see from the two figures that the
considered HFT problem here contains abnormal data samples
and random fluctuations in the data stream. Large fluctuations
and abnormal data frequently appear in the beginning and the
end of data streams. As observed in the two figures, the EFS
that we consider is capable to successfully follow the non-
stationary data pattern and exhibits accurate prediction for both
8 and 24 step prediction cases with the error converging to a
small value.

VI. CONCLUSIONS

In this paper, we provide systematical stability proof for
a class of EFSs based on data clouds. The identified data
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TABLE VI
RESULT COMPARISON BETWEEN DIFFERENT ALGORITHMS FOR HFT

PROBLEM.

Algorithms yk+8 yk+24

Testing No. of Testing No. of
NDEI Rules NDEI Rules

AnYa (eClustering) [26] 0.164 3 0.231 3
DENFIS [7] 1.598 12 1.582 12
eTS [9] 0.183 6 0.271 7
OLSLR [39] 0.169 / 0.242 /
SAFIS [13] 0.554 20 0.779 14
SWLSLR [40] 0.157 / 0.222 /
this paper 0.152 20 0.188 26

clouds as described in section III-A can objectively represent
the local modes of the data distribution and are used as
the antecedent (IF) parts of fuzzy rules. Instead of using
eClustering, the method of forming data clouds described
in section III-A is grounded at the empirical data analytics
technique and empirical fuzzy sets, which significantly reduces
the involvements of human experts and, at the same time,
largely enhances the objectiveness of the fuzzy system.

The main contribution of this paper, the stability proof for
the EFSs is of great importance in real applications. Nearly
all the existing EFSs lack a throughout stability analysis
and the very few considered the stability of the EFSs with
specific types of membership functions and parameter update
technique. Different from the existing works, the stability of
the type of EFSs considered is proven through the Lyapunov
theory and also the stability proof can be applicable to more
general EFSs which satisfy Eq.(8) and are comprised of the
structure learning and the fuzzily weighted recursive least
square parameter update method, such as eTS [9], Simpl eTS
[10], ESAFIS [14], AnYa using eClustering [26] and so on.
The simulation results from the Box-Jenkins furnace problem,
one system identification problem, Mackey-Glass time series
prediction, 8 real-world benchmark regression problems and
one high frequency trading prediction problem show that the
considered EFS is not only with a theoretically guaranteed
stability, but also obtains better learning accuracy. The simu-
lation results also verify that the average error is bounded and
converges to a small neighborhood of zero.
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