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Summary 1 

Natural habitats are being rapidly lost due to human activities. It is therefore vital to understand 2 

how these activities influence biodiversity so that suitable guidelines can be established for 3 

conservation. This is particularly important in understudied, high biodiversity, areas such as the 4 

Angolan Escarpment. Here we examine which habitat characteristics drive bird diversity and 5 

endemic species presence at Kumbira Forest, a key site in the Central Escarpment Forest. Bird 6 

diversity was sampled by 10 min bird point counts, whereas habitat characteristics were measured 7 

by a combination of ground-based vegetation surveys and remotely sensed data modelling of 8 

Landsat images. GLM, multi-model inference and model averaging were used to determine the 9 

most important variables driving species richness and the presence of endemics. The remote 10 

sensing variables performed poorly in predicting presence of Red-crested Turaco and Gabela 11 

Bushshrike but they contributed significantly to explain species richness and Gabela Akalat 12 

presence, both of which were associated with greater canopy cover. Liana density and elevation 13 

were also important explanatory variables in certain cases. Conservation actions at Kumbira 14 

should focus on increasing canopy cover and maintaining forest integrity (as measured by liana 15 

density), as these actions are likely to have the most positive outcomes for the avifauna. 16 

 17 

Keywords: Angola; endemics; generalized linear model; Kumbira; model averaging 18 

 19 

Introduction 20 

Habitat loss due to human activities is the most important threat to biodiversity (Brooks et al., 21 

2002) and the main cause of population declines and species extinctions in birds (Stattersfield 22 

and Capper, 2000). This is especially significant in the tropics, where almost 70 percent of global 23 
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biodiversity is concentrated (Bradshaw et al., 2009) and human impacts are increasing at an 24 

accelerating pace (Cincotta et al., 2000). Despite primary forests being irreplaceable for 25 

maintaining tropical biodiversity (Gibson et al., 2011), modified landscapes such as secondary 26 

growth and agroforestry systems can also hold important biodiversity and connect core areas for 27 

conservation (Schulze et al., 2004, Gove et al., 2008, Cáceres et al., 2015). Therefore, to 28 

implement successful conservation strategies it is important to assess biodiversity in human-29 

modified landscapes (Chazdon et al., 2009, Gardner et al., 2009), and to identify the key factors 30 

influencing biodiversity in these landscapes. This is especially the case for extinction-prone 31 

species, such as those that are range-restricted or especially sensitive to human activities. 32 

 African biodiversity is globally important but extremely understudied (Norris et al., 2010, 33 

Gardner et al., 2010, Gibson et al., 2011). This is particularly true for Angola: while it is 34 

considered one of the most biodiverse countries of Africa due its location at the confluence of 35 

five different biomes, it is very poorly known as a result of almost 30 years of armed conflict 36 

(Huntley, 1974, USAID, 2008). The Escarpment Forest constitutes one of the most important 37 

areas for biodiversity in the country, although it could not be designated as a ‘biodiversity 38 

hotspot’ due to the lack of information available at the time of the ‘hotspot’ analyses (Myers et 39 

al., 2000). In the case of birds, arguably the best-studied taxonomic group in Angola, these 40 

forests are of key conservation importance. The Escarpment Forest is an important evolutionary 41 

hotspot (Hall, 1960) where most of the endemic bird species of Angola are found, and it is the 42 

most important habitat of the Western Angola Endemic Bird Area, the only centre of bird 43 

endemism in the country. Because no protected area is located within this habitat, it has been 44 

identified as a critical conservation priority for birds, not only for Angola (Dean, 2001, BirdLife 45 

International, 2015a) but for Africa as a whole (Collar and Stuart, 1988). 46 
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By the 1960s it was estimated that 95 percent of the original forests had been converted to 47 

shade-coffee plantations, which left the high canopy trees intact (Hawkins, 1993). During the 48 

civil war (1975-2002) these plantations were abandoned, allowing forest habitats to recover 49 

(Ryan et al., 2004, Sekercioglu and Riley, 2005). The end of the war led to the migration of 50 

human populations back to rural areas like the Central Escarpment Forest, and since then slash-51 

and-burn agriculture and logging have become major threats to these forests (Mills, 2010, 52 

Cáceres et al., 2015). It is therefore important to understand the impacts that these human 53 

activities are having on the forests, such as how they are affecting habitat characteristics, which 54 

in turn influence bird diversity and the distribution and abundance of threatened endemics.  55 

The main aim of this study was to understand the environmental drivers influencing bird 56 

diversity at Kumbira Forest, a key site for threatened endemic birds in Angola (Mills, 2010). 57 

Because conservation planning will be most effective if it is based on regional-scale species 58 

distribution models, we first assess if variables obtained through remote sensing techniques 59 

contribute to explain bird diversity in Kumbira. Then, we use locally collected ground variables 60 

obtained through vegetation surveys to model species richness and presence of endemic birds. 61 

Finally, we propose conservation guidelines based on the results.  62 

 63 

Methods 64 

Study Area 65 

Kumbira Forest is the most representative and important site for the conservation of threatened 66 

endemic birds of the Angolan Central Escarpment. It holds significant populations of four of the 67 

five threatened endemics of this region, namely of the Endangered Gabela Bushshrike Laniarius 68 

amboimensis, Gabela Akalat Sheppardia gabela and Pulitzer’s Longbill Macrosphenus pulitzeri, 69 
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and Near Threatened Monteiro’s Bushshrike Malaconous monteiri (Data Deficient at the time 70 

that field work was done). Gabela Akalat is the most range-restricted of the Angolan endemics 71 

with an estimated range of only c. 650 km
2
, although it can be locally common, as it is at 72 

Kumbira. Gabela Bushshrike has a wider distribution (c.1800 km
2
), occurring both further north 73 

and south (at Gungo) of Kumbira Forest, while Pulitzer Longbill and Monteiro Bushshrike have 74 

ranges of c. 3700 km
2
 and 8000 km

2
 respectively (Mills, 2010). Additionally, Kumbira is also 75 

home to the endemic, although more widespread (c. 190000 km
2
), Red-crested Turaco Tauraco 76 

erythrolophus (BirdLife International, 2015b). 77 

Kumbira Forest is located in the municipality of Conda, in the western Angolan province 78 

of Kwanza Sul (11.107°S, 14.336°E). The exact limits of Kumbira forest are difficult to define in 79 

the west, because the forest gradually merges with dense habitats associated with the escarpment. 80 

The eastern limit is nevertheless clearly delimited by the grasslands of the Njelo Mountain, 81 

which rises to 1,688 m and runs north-east/south-west. Here we define the southern limit of the 82 

forest as 11.230°S and the northern limit as Cassungo village (11.104°S 14.311°E) (Figure 1). 83 

This forest represents an area of approximately 10 000 ha. The terrain within this area varies 84 

from relatively flat in the valley bottoms, to the steep slopes of the Njelo Mountain, with 85 

altitudes varying from c. 680 to 1,160 m asl. 86 

 87 

Bird Data 88 

MSLM sampled bird communities by means of 10 min point counts (Bibby et al., 2000) from 13 89 

September 2010 to 2 October 2010, between sunrise (c. 0545h) and 1030h, except when weather 90 

was poor (rain or strong wind). All birds seen and heard within a 50 m radius of each sample 91 

point were recorded. Sample points were spaced at least>150 m apart of each other to avoid 92 

Figure 1 
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double-counting individuals. Furthermore, points were located along existing paths in order to 93 

sample as much of Kumbira Forest as possible in this three weeks expedition. Each 10 min point 94 

count was divided into two 5 min periods. In order to map the presence of the five key species, a 95 

pre-composed track consisting of 30 s snippets of the vocalisations of Monteiro’s Bushshrike, 96 

Red-crested Turaco, Gabela Bushshrike, Gabela Akalat and Pulitzer’s Longbill) was played 97 

between these two periods, to increase their detectability. Playback was done using an Ipod 98 

(Apple, Cupertino) and RadioShack Mini Amplifier speaker (RadioShack Corporation, Fort 99 

Worth), always at the same volume. Because playback violates the point count assumption that 100 

birds do not approach the observer, we only use playback data for the analysis of species 101 

presence. We also excluded all observations that could refer to birds that had already been 102 

registered. 103 

 104 

Environmental variables – ground variables recorded in situ 105 

Habitat characteristics were measured by AC in a circular sample plot of 10 m radius around 106 

each bird sample point. The variables measured were: (1) elevation (elev) by GPS; (2) canopy 107 

height (ch) as the maximum visible height of the canopy (Dallimer et al., 2009), using a Nikon 108 

550 Laser rangefinder (Nikon Corporation, Tokyo); (3) canopy cover (cc) with a convex 109 

spherical densiometer (Forestry Suppliers Inc., Jackson); (4) shrub cover (shrub) as the 110 

percentage of vegetation cover at the shrub level (0.15-1.5m) along a 10 m transect; and (5) liana 111 

density (ld) as the number of lianas along a 10 m transect. Canopy height and canopy cover were 112 

the average of four measurements taken at 5 m in each cardinal direction from the sample point,  113 

To estimate above-ground biomass (AGB) at each plot, we measured height and diameter 114 

at breast height (DBH) of all trees with a DBH > 10 cm.  Tree height was measured with a 115 
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clinometer and DBH with a measuring tape. AGB was calculated using a pantropical allometric 116 

equation (Chave et al., 2014) that relates AGB of a tree to DBH, total height and wood density. 117 

Since it was not possible to identify the species of trees to obtain specific wood densities, we 118 

applied a constant wood density of 0.59 g/cm3, the average reported for trees in Africa (Henry et 119 

al., 2010). Finally, biomass estimates were converted to carbon values using the fraction of 0.47 120 

MgC, as recommended for tropical and subtropical regions (Paustian et al., 2006), and 121 

standardized per area (MgC/ha). 122 

 123 

Environmental variables derived from remote sensing 124 

Spectral indices and forest cover (xfor) were calculated from Landsat 7 ETM+ satellite image 125 

(WRS-2 path 181 row 68) with low cloud cover (<10%) from 18 May 2010, obtained from the 126 

U.S. Geological Survey (USGS) and Earth Resources Observation & Science Center (EROS) via 127 

the EarthExplorer interface (http://earthexplorer.usgs.gov). It was radiometric normalized and 128 

atmospheric corrected using Modified Dark Object Subtraction (DOS), as proposed by Chavez 129 

(1996). The empty lines of the Landsat 7 scene produced by the scan failure were treated as “no 130 

data” and all sample points located in these gaps were excluded from analyses. 131 

The following spectral indices were calculated for a 50 m radius circular plot around each 132 

bird sample point: (1) Land Surface Water Index (LSWI), calculated as the normalized 133 

proportion between Near Infrared (NIR) and Short Wave Infrared (SWIR), represents the amount 134 

of moisture present in the leaves and soil (Xiao et al., 2002); (2) Blue-Red ratio Index (BR) that 135 

is the normalized difference between the Blue and Red bands and represents the shadow 136 

produced by the canopy; and (3) Enhanced Vegetation Index (EVI) that optimizes vegetation 137 

signal in regions with high biomass and reduces atmosphere influences (Huete et al., 2002). 138 
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A forest cover map was created using supervised classification with Maximum 139 

Likelihood Algorithm (MLA) (Jensen, 2005). The scene was classified in “Forest” and “Non-140 

Forest” with Regions of Interest chosen based on field knowledge of the study area. Accuracy of 141 

the forest class was assessed by comparing the resulting classification with Google Earth high 142 

resolution images. Based on this information we estimated the forest cover percent in a 50 m 143 

radius circular plot around each bird sample point. 144 

 145 

Data Analysis 146 

Generalized Linear Models (GLM) (Nelder and Wedderburn, 1972) were used to evaluate bird 147 

responses to environmental variables (Zuur et al., 2007) (Supplementary material, Table S1). 148 

Bird responses were represented by species richness and by the presence of endemic species that 149 

were recorded in over 20 percent of the point counts, namely Red-crested Turaco, Gabela Akalat 150 

and Gabela Bushshrike. All variables were standardized and collinearity was assessed by 151 

Spearman rank correlation coefficients, which does not assume linear relations between 152 

variables. Variables with coefficients of over 0.7 were removed from the analyses (Zuur et al., 153 

2009). The variables maintained in the analyses were chosen based on their biological 154 

importance and management relevance. We also assessed spatial autocorrelation using Pearson-155 

based Mantel tests (Legendre and Legendre, 1998) with 1000 permutations and mapping the 156 

residuals of the best ranking models (Baddeley et al., 2005, Kühn and Dormann, 2012). All these 157 

analyses were carried out for each of the response variables (species richness and the presence of 158 

endemics). 159 

To assess whether remote sensing variables (spectral indices and forest cover) provided 160 

additional information for modelling bird diversity in Kumbira, we modelled species richness 161 
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and the endemic species presence using a dataset with remote sensing and ground variables. 162 

Then, we identified the best models for each group of variables: (1) the “null model” (with no 163 

explanatory variables); (2) only ground (hereafter “Ground Models”); (3) only remote sensing 164 

(hereafter” RS Models”); and (4) ground and remote sensing (hereafter “Combined Models”).  165 

Only sample points that had both spectral indices and forest cover estimates were used in 166 

the analyses – those affected by Landsat 7 scan failure were excluded. Model performance was 167 

evaluated using Akaike´s Information Criterion with small sample size correction (AICc), 168 

Akaike weights (ω) and evidence ratio (Hurvich and Tsai, 1989, Anderson and Burnham, 2002, 169 

Burnham and Anderson, 2002, Burnham and Anderson, 2004). 170 

 To assess the environmental variables driving bird diversity at Kumbira Forest, GLMs 171 

were constructed with the larger dataset that included only the ground variables of all the sample 172 

points (N=201). An adjusted coefficient of determination was used (R
2
) to assess the predictive 173 

power of the models. Model averaging was performed to obtain coefficients estimates for all 174 

models with a AICc difference (ΔAICc) smaller than 10 (Burnham and Anderson, 2002, 175 

Burnham et al., 2011). Plotting of coefficients estimates and standard errors were used to identify 176 

key variables, and their relative variable importance (RVI) was also calculated. All analyses 177 

were performed using R 3.2.0 software (R Core Team, 2015) and the packages Vegan 2.0-9 178 

(Oksanen et al., 2012) and MuMIn 1.9.13 (Barton, 2013). 179 

 180 

Results 181 

A total of 201 bird point counts were performed and 100 bird species registered. The mean 182 

species richness per point count was 10.4 ± 3.4 species (mean ± standard deviation) with a range 183 

from one to 23 species. Red-crested Turaco was the most-registered endemic, recorded at 68 184 
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percent of the point counts (n=136), followed by Gabela Akalat (46%, n= 92) and Gabela 185 

Bushshrike (21%, n=42). Monteiro Bushshrike and Pulitzer Longbill were present only in 7 186 

percent (n=15) and 5 percent (n=11) of the point counts respectively. Vegetation characteristics 187 

were measured for all the sample points but spectral indices (LSWI, EVI and BR) and forest 188 

cover were only estimated for 132 out of 201 points due to the Landsat 7 scan failure (Figure 2). 189 

Canopy height was strongly correlated with canopy cover (cor=0.70, p-value < 0.001) 190 

and thus excluded from the analysis, as was blue-red ratio with forest cover (cor=0.73, p-value < 191 

0.001) (Supplementary material, Figure S1). Both canopy cover and forest cover were retained 192 

for analyses because of their importance for species richness and Gabela Akalat presence, and 193 

their relevance to forest management. 194 

 195 

Spatial autocorrelation 196 

Only the Mantel test for the presence of Red-crested Turaco showed a weak but significant 197 

degree of spatial correlation (r=0.04, P=0.032) while in the other response variables the test was 198 

not significant (species richness r = -0.05, P = 0.951; Gabela Akalat r = 0.007, P = 0.147; Gabela 199 

Bushshrike r = -0.02, P = 0.703) (Supplementary material, Table S2). However, the residual 200 

plots did not show any clear pattern of the models residuals (Supplementary material, Figure S2).  201 

 202 

Effects of remote sensing variables 203 

Only in the case of species richness, Combined Models greatly outperformed both RS Models 204 

and Ground Models, as shown by the high evidence ratios (29.2 and 118.4 respectively, Table 1). 205 

RS Models were good in predicting the presence of Gabela Akalat and performed even better 206 

Table 1 

Figure 2 
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when combined with ground variables. Nevertheless, RS Models performed poorly for the 207 

presence of Red-crested Turaco and Gabela Bushshrike, as they ranked below the null models.  208 

 209 

Role of habitat characteristics in determining bird diversity in Kumbira 210 

Canopy cover positively influenced species richness and the presence of Gabela Akalat, while 211 

liana density positively influenced species richness and Red-crested Turaco presence. Elevation 212 

had a negative influence in Gabela Bushshrike and a positive in Red-crested Turaco (Table2, 213 

Figure 3). Despite the influence of these variables on the models, they still presented high levels 214 

of unexplained variation as shown by the low values of their adjusted coefficients of 215 

determination (Supplementary material, Table S3 - Table S6). 216 

 217 

Discussion 218 

The use of remotely sensed data is becoming more widespread in conservation planning. Spectral 219 

indices and classification maps are often used to infer habitat suitability and examine 220 

environmental drivers of biodiversity (Huete et al., 2002, Pettorelli et al., 2005). However, we 221 

demonstrate here that the utility of this approach is rather limited and species specific for the 222 

Angolan Central Escarpment. For example, RS models performed very poorly in explaining the 223 

presence of Red-crested Turaco and Gabela Bushshrike, being even outperformed by null 224 

models. 225 

 The limited predictive performance of models based on Landsat imagery is not entirely 226 

surprising. While Landsat imagery can be used well over long temporal and large spatial scales 227 

(Kerr and Ostrovsky, 2003, Wang et al., 2010), it is less useful for biodiversity studies conducted 228 

at smaller scales and in more complex environments (Aplin, 2005, Nagendra and Rocchini, 229 

Table 2 

Figure 3 
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2008) – like the mosaic like and dynamic Kumbira Forest – where spectral indices not always 230 

directly relate to wildlife presence or abundance (Nagendra, 2001). Furthermore, the approach 231 

was also limited by the lack of adequate Landsat images due high cloud cover in the study area 232 

for most of the year.  233 

Remote sensing variables did provide a good approximation for some ground variables. 234 

For example, forest cover (remote sensing) was correlated with canopy cover (vegetation survey) 235 

(cor=0.6, p-value<0.001) and positively influenced bird species richness and Gabela Akalat 236 

presence. This is encouraging, as variables derived from remote sensing are easier, faster and 237 

cheaper to collect than most field-collected ground data, and they can be extrapolated across a 238 

larger area to assess the presence of key species. 239 

The poor performance of remote sensing variables for Red-crested Turaco and Gabela 240 

Bushshrike can be related with satellite imagery resolution and scale issues. Despite the 30 m 241 

resolution of Landsat imagery, the variables obtained from them do not seem to detect the 242 

characteristics affecting these birds. These species territories might include more of the mosaic-243 

like landscape of Kumbira, where small spatial changes might not to be detected by the Landsat 244 

images. 245 

Environmental variables collected in situ – elevation, canopy cover, shrub cover, liana 246 

density and carbon – seem to be good predictors of bird diversity in Kumbira but even the best 247 

models had high levels of unexplained variation and the variables presented a low explanatory 248 

power. This can be related with the lack of statistical power due to the low detectability of some 249 

endemics (present just in 20% of the sample points), or the failure of the vegetation surveys to 250 

record the habitat characteristics that are driving bird diversity. 251 
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Canopy cover was important for species richness and the presence of threatened 252 

endemics. Canopy cover is indirectly related to habitat disturbance and affect the presence of 253 

birds, especially forest specialists (Mammides et al., 2015). This can explain its influence in 254 

Gabela Bushshrike and especially Gabela Akalat. In other areas of Africa, the presence of 255 

threatened endemic forest birds is also related to canopy cover and structure (Dallimer and King, 256 

2007, Dallimer et al., 2012, de Lima et al., 2013, Mammides et al., 2015). Canopy cover was 257 

also highly correlated with canopy height, therefore the endemics might also be affected by 258 

canopy height and other aspects of mature forests including canopy structure and understorey 259 

humidity. 260 

Liana density was also an important variable. Lianas usually increase in gap areas or as 261 

part of the successional process of secondary growth (Schnitzer and Bongers, 2002). However, 262 

due to the history of human disturbance in Kumbira (transformation of natural forest to shade 263 

coffee plantation), it is possible that liana presence here is indicative of older and more natural 264 

forest – as lianas can only grow if there are trees in the first place – rather than areas frequently 265 

disturbed mainly by slash-and-burn agriculture. This is supported by the positive associations 266 

between liana density and canopy height (cor=0.37, p-value<0.001).t. 267 

 268 

Conservation Implications 269 

Our study provides some important insights into the conservation of one of Africa’s critical 270 

priority areas for bird conservation. Many of the results indicate that conservation efforts should 271 

focus on the maintenance of canopy cover by protecting the remaining forest. For example, 272 

canopy cover affects both overall species richness and the Gabela Akalat presence. The 273 

endangered Gabela Akalat is the key priority for conservation at Kumbira because is the most 274 



14 

 

range-restricted of the Angolan endemics with an estimated suitable range of only c. 650 km
2
 275 

(Mills, 2010). As a result, this species is particularly sensitive to forest loss and depends in the 276 

maintenance of canopy cover at Kumbira for its survival. 277 

Protecting high quality mature forest in the region is challenging as the extent and 278 

condition of forests are threatened by slash-and-burn agriculture and logging of high canopy 279 

trees for timber (Mills, 2010, Cáceres et al., 2015). Protected areas are widely used in 280 

conservation, but at present no area of the Angolan Central Escarpment Forest has formal 281 

protection status. A proposal for the establishment of a c. 50 km
2
 strict nature reserve was put 282 

forward in the past (Huntley and Matos, 1994) but has yet to be implemented. Alternative 283 

approaches to protected areas could involve local populations. These include increasing forest 284 

cover through reforestation initiatives, with native tree species. Such action has recently been 285 

initiated in Kumbira with the establishment of an experimental nursery as part of a project 286 

funded by the Conservation Leadership Programme. Wildlife friendly agriculture may also be 287 

beneficial (Gove et al., 2008, Buechley et al., 2015). In this context, we recommend prioritising 288 

research into the economic viability of recovering the abandoned shade coffee plantations and on 289 

the impacts such action could have on biodiversity, together with the evaluation of other more 290 

biodiversity-friendly agricultural practices. 291 

Any conservation actions require good baseline data on the occurrence of the most 292 

important species. For most species, our study demonstrates the importance of basing this on 293 

good quality data from ground surveys, complemented by remote sensing variables. However, it 294 

is encouraging that the presence of the most endangered species, the Gabela Akalat, can be 295 

predicted by remote sensing variables, as this provides hope that large-scale mapping can be 296 

used to identify priority areas. However, the models we present here had very low explanatory 297 
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power, indicating the role of unmeasured factors such as landscape context and resource 298 

availability. Some of these may be resolved by using newer and more refined remotely sensed 299 

measures, which would also provide a basis to examine other areas of the Angolan Central 300 

Escarpment Forest, such as the forest of Bango-Seles 25 km to the South. In addition, future 301 

research should aim at including other taxa such as plants, amphibians and insects that may be 302 

more sensitive to human disturbance and may not reflect the patterns of bird diversity (Kremen 303 

et al., 2008). This information is critically important to enable the effective conservation and 304 

sustainable planning that are required to protect the unique biological richness of this region. 305 
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TABLES 476 

Table 1. Best models generated for each group of variables (N null, G ground, RS remote sensing, and G+RS combined) for species 477 

richness and the presence of Red-crested Turaco, Gabela Akalat and Gabela Bushshrike. The rank of each model is included (from 478 

256 possible models), followed by the variables included in each model, the model log-likelihood (logLik), the number of parameters 479 

(K), the Akaike´s Information Criterion with small sample size correction (AICc), AIC differences (ΔAICc), Akaike weights (ω) and 480 

evidence ratio. The variables used were EVI – enhanced vegetation index, LSWI – land-surface water index, xfor – forest cover,  c – 481 

carbon, cc – canopy cover,  elev – elevation, ld – liana density and shrub – shrub cover. 482 

Response Variable 
Variable 
groups 

Model 
rank # 

Variables in model logLik K AICc ΔAICc ω 
Evidence 

ratio 

Species Richness G+RS 1 ld, xfor -174.53 3 357.38 0.00 0.1113  
 RS 56 xfor -178.97 2 364.13 6.75 0.0038 29.2 
 G 97 cc, ld -179.31 3 366.93 9.55 0.0009 118.4 
 N 246  -186.80 1 377.69 20.31 0.0000 25714.8 
          

Red-crested Turaco G 1 elev, ld -82.66 3 171.50 0.00 0.0319  
 G+RS 3 c, elev, ld, xfor -80.78 5 172.03 0.53 0.0245 1.3 
 N 26  -85.95 1 173.93 2.42 0.0095 3.4 
 RS 41 xfor -85.35 2 174.79 3.28 0.0062 5.2 
          

Gabela Akalat G+RS 1 c, EVI, xfor -84.15 4 176.61 0.00 0.0490  
 RS 3 xfor -86.71 2 177.51 0.90 0.0312 1.6 
 G 38 c, cc -87.14 3 180.46 3.85 0.0071 6.9 
 N 87  -89.97 1 181.98 5.37 0.0033 14.7 

          
Gabela Bushshrike G 1 elev, ld -65.88 3 137.95 0.00 0.0528  

 G+RS 2 elev, ld, xfor -64.97 4 138.25 0.30 0.0455 1.2 
 N 70  -70.75 1 143.52 5.57 0.0033 16.2 
 RS 111 xfor -70.42 2 144.93 6.98 0.0016 32.7 
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Table 2. Relative variable importance (RVI) and averaged coefficients estimates obtained from 

generalised linear models with ground variables (c – carbon, cc – canopy cover,  elev – 

elevation, ld – liana density, shrub – shrub cover) for species richness and the presence of Red-

crested Turaco, Gabela Akalat and Gabela Bushshrike. Only models with ΔAICc<10 were 

included in the analysis. The grey shading highlights variables with the highest relative 

importance values (>0.5) and the asterisks indicate significance levels for p-value (*)<0.05, 

(**)<0.01, and (***)<0.001. 

 
Species Richness  Red-crested Turaco  Gabela Akalat  Gabela Bushshrike 

RVI Coef.  RVI Coef.  RVI Coef.  RVI Coef. 

c 0.268 0.025  0.679 -0.298  0.349 -0.138  0.362 -0.1951 

cc 1.000 0.282***  0.307 0.110  0.798 0.338*  0.554 0.3127 

elev 0.299 0.044  0.992 -0.503**  0.388 0.159  0.729 0.3512* 

ld 0.992 0.223**  0.883 0.443*  0.267 -0.016  0.474 -0.276 

shrub 0.271 -0.029  0.268 -0.024  0.308 -0.098  0.334 -0.1591 

 

 

 

 


