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We derive the conditions whereby null rays ‘defocus’ within Infinite Derivative Gravity for per-
turbations around an (A)dS background, and show that it is therefore possible to avoid singularities
within this framework. This is in contrast to Einstein’s theory of General Relativity, where sin-
gularities are generated unless the Null Energy Condition is violated. We further extend this to
an (A)dS-Bianchi I background metric, and also give an example of a specific perturbation where
defocusing is possible given certain conditions.

INTRODUCTION

Einstein’s theory of General Relativity (GR) has had
many successes in the infrared regime (IR) [1], but it
breaks down in the ultraviolet (UV) regime due to its
admittance of black hole and cosmological singulari-
ties [2, 3].

Initial attempts to resolve these problems by intro-
ducing higher derivative terms into a gravitational ac-
tion, such as Stelle’s 4th derivative theory [4], faltered
due to the Ostrogradsky instability [5]. When interac-
tions take place in such a system, the vacuum decays
into both positive and negative states and is therefore
unstable [6–8]. However this instability is avoided for in-
finite derivative theories of gravity (IDG). The infinite
number of derivatives allows for the propagator to be
modified in such a way that neither unwanted additional
poles are introduced nor negative residues in the form of
ghosts. Infinite derivative actions, as seen in string the-
ory [9], were first applied to gravity [10] and investigated
around a Minkowski background [11] and later around
backgrounds of constant curvature, such as (Anti) de Sit-
ter space [12].

It is well known that GR contains a single (benign)
pole in the graviton propagator. To avoid introducing
any further poles we can demand that any infinite deriva-
tive function appearing in the denominator of the prop-
agator is the exponential of an entire function of the
d’Alembertian operator � = gµν∇µ∇ν , which by defi-
nition contains no zeroes [10–16]. IDG is modulated by
a mass scale M , which determines the length scales be-
low which the infinite derivative terms start to have an
effect.

It has been shown that the propagator for IDG is renor-
malisable for higher orders [17–21]. A non-singular solu-
tion was constructed at the linearised level for both a
static background [10, 11, 22–26] and a time-dependent
background [27–29] within IDG. The full equations of
motion for this theory were found in [30]. Bouncing
cosmological solutions [31], making use of the Ansatz
�R = c1R+ c2, were examined in [32–35].

Recent work has focused on finding the quadratic vari-
ation of the action [12, 36]; the Wald entropy [37]; the

boundary terms [38]; the Hamiltonian [39]; a black hole
solution [40]; radiation emission [41]; using IDG as an
EFT for M-theory [42]; the bending of light near the
Sun [43]; the diffusion equation [44]; black hole event
horizons [45] and the stability of the Schwarzschild solu-
tion [46]; IDG’s effects on inflation [32, 47] and in par-
ticular perturbations in the early universe using Cosmic
Microwave Background data [48–51]; while in the con-
text of loop quantum gravity, divergences [17, 52]; and
UV finiteness [53] were investigated.

In GR, singularities arise because it is not possible for
null rays to defocus without violating the Null Energy
Condition (NEC) [2]. Using the Raychaudhuri equa-
tion for null geodesic congruences [54–56], the defocusing
conditions for perturbations around a Minkowski back-
ground were found within an IDG framework [24, 57, 58],
while [59] focused on a bouncing Friedmann-Robertson-
Walker (FRW) model. It was shown that IDG allows for
the defocusing of null rays in that null rays can be made
past-complete.

It is this notion of geodesic completeness, or rather
geodesic incompleteness, which forms the definition of
a singularity for the current analysis. A photon travel-
ling along a geodesic which is past-incomplete will simply
cease to exist in a finite proper ‘time’ (affine parame-
ter), representative of serious weaknesses in the theory.
This is in accordance with Hawking and Ellis [2], see
also [54, 56] for discussions on the difficulties in defin-
ing singularities in GR. In this article, we will generalise
the results around flat space to an (Anti) de Sitter back-
ground, where all our results reduce to the Minkowski
values when we take the Hubble constant H → 0.

We further go on to generalise this to an (A)dS-Bianchi
I metric. This metric is not isotropic as the rate of ex-
pansion differs according to direction. Cosmological data
suggests that the universe is isotropic to a very high pre-
cision, but since the observable universe makes up only
a very small region of the universe as a whole, it is per-
missible that isotropy does not hold at larger scales [56].
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RAYCHAUDHURI EQUATION

The behaviour of null geodesic congruences can be un-
derstood using the Raychaudhuri equation, which is en-
tirely model-independent, being a purely geometric iden-
tity until it is married to a gravitational theory via the
Ricci tensor. We look at kµ, a four vector tangential to
the null geodesic congruence, where kµkµ = 0. We are
using a mostly positive metric signature (−,+,+,+) and
have defined the expansion parameter of the congruence
as θ ≡ ∇µkµ.

We can use the Raychaudhuri equation to find the con-
dition for a spacetime metric to be geodesically incom-
plete, in that geodesics will converge, or ‘focus’, to a point
in a finite “time” (affine parameter). Our aim here is to
analyse geodesics which avoid this convergence condition
by extending to past infinity, which is a minimal condi-
tion for a singularity-free manifold.

If we assume the congruence of null rays to be orthog-
onal to the hypersurface, the twist tensor ωµν ≡ ∇µkν −
∇νkν vanishes [55, 60]. Additionally, the square of the
shear tensor, defined via σµν ≡ ∇µkν + ∇νkµ − 1

2θpµν ,
where pµν is the 2-dimensional metric which satisfies
pµνk

µ = pµνk
ν = 0, is always positive on the right hand

side of the Raychaudhuri equation, we can turn the Ray-
chaudhuri equation into an inequality [56]

dθ

dλ
+

1

2
θ2 ≤ −Rµνkµkν , (1)

where λ is the affine parameter of each curve in the con-
gruence, and Rµν is the Ricci curvature tensor. In fact,
the shear tensor always vanishes in FRW-type models,
such as the (Anti) de Sitter universes and Minkowski
space, as well as for a generic FRW metric [61], though
not necessarily in anisotropic spacetimes such as the
Bianchi I models, discussed later.

Consider the inequality given by (1): If the right hand
side is negative, we cannot have a positive and increasing
expansion and therefore by the Penrose singularity theo-
rem [2], a singularity results, because a photon travelling
along a geodesic of this type will cease to exist in a fi-
nite “time” (strictly the affine parameter). Therefore the
condition for defocusing and thus avoiding a singularity
is

Rµνk
µkν < 0. (2)

For a more complete treatment of this condition, see [2,
3, 55, 60–63]. In GR, the Einstein equation implies that
the defocusing condition cannot be fulfilled as long as
the NEC holds. This is because the NEC Tµνk

µkν > 0,
where Tµν is the energy momentum tensor and µ, ν run
from 0 to 3, implies that Rµνk

µkν = κTµνk
µkν is always

positive.
It was shown in [57], using modified gravity in the form

of IDG that this fate can be avoided around Minkowski
backgrounds. In this paper we will aim to generalise that

result to (Anti) de Sitter backgrounds and a specified
Bianch I model.

LINEARISED FIELD EQUATIONS AROUND A
DE SITTER BACKGROUND

Conroy et al. [57] examined defocusing from perturba-
tions around a flat background for the action [11]

S =

∫
d4x
√
−g
(
M2
pR+ λRF (�)R

)
, (3)

where R is the Ricci scalar, MP is the Planck mass, λ is
a constant and F (�) =

∑∞
n=0 fn�

n/M2n is a function
of the d’Alembertian operator �, where {f0, f1, ...} are
the coefficients of the series. M is the mass scale of the
theory, which determines the length scales at which the
extra infinite derivative terms come into play.

Laboratory tests of the departure from the 1/r be-
haviour of the Newtonian potential show that as there
is no departure at 5 × 10−6m [64], which gives us the
constraint M ≥ 10−2eV [22] for the simplest version of
out theory. Analysis of the raw data from experiment
suggests that an oscillating function given by more com-
plicated versions of IDG fits the data better than the GR
prediction in the weak field regime [24, 65].

We begin with an (A)dS metric ḡµν , background Ricci
scalar R̄ and the background Ricci tensor R̄αβ = δαβ R̄/4.
We perturb around this background using gµν → ḡµν +
hµν , producing the linearised equations of motion

Tµν =
(
M2
p + 2R̄λf0

)(
rµν −

1

2
δµν r

)
−2λ (∇µ∂ν − δµν�)F (�)r + λ

R̄

2
δµνF (�)r. (4)

The Ricci tensor is perturbed as Rµν = R̄µν + rµν and the
Ricci scalar is perturbed asR = R̄+r where the linearised
Ricci tensor and Ricci scalar are [12, 58]

rµν =
1

2
(∇σ∇µhσν +∇ν∇σhσµ −∇ν∇µh−�hµν )− R̄

4
hµν ,

r = ∇µ∇νhµν −�h− R̄

4
h. (5)

We can write (4) in the neat form

M−2
P Tµν = arµν −

1

2
δµν c(�)r − 1

2
∇µ∂νf(�)r, (6)

similarly to the Minkowski case [57], but where we have
now defined

a = 1 + 2M−2
P R̄λf0,

c(�) = 1 + 2λM−2
P R̄f0 − 4λM−2

P

(
� +

R̄

3

)
F (�),

∇µ∂νf(�) = 4M−2
P λ

(
∇µ∂ν + δµν

R̄

12

)
F (�). (7)
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By taking the trace of the last line of (7), we can see that

�f(�) = a− c(�), (8)

as for the Minkowski case [57].
The defocusing condition rµν kµk

ν < 0 can be reached
using the same method as [57]: that is, we contract (6)
with the null tangent vectors kµk

ν where kµkµ = 0 and
therefore from (2), we obtain the requisite condition for
defocusing

rµν kµk
ν =

1

a

[
M−2
P Tµν kµk

ν +
1

2
kµk

ν∇µ∂νf(�)r

]
< 0. (9)

The NEC dictates that Tµνk
µkν > 0, while a must be

strictly positive to avoid the introduction of ghosts [12,
36] or negative entropy states [37, 58]. We may then
write the minimum defocusing condition

kµk
ν∇µ∂νf(�)r < 0. (10)

If we expand the covariant derivatives and note that if the
perturbed Ricci scalar r is dependent only on time, then
the d’Alembertian operator is given by � = −∂2

t −3H∂t,
so that the defocusing condition becomes1

�f(�)r(t) > −4H∂tf(�)r(t). (11)

We have thus shown that it is possible to achieve defo-
cusing around an (A)dS background. Therefore by using
the power of IDG we can avoid the Penrose singularity.

(A)DS-BIANCHI I METRIC

Next we investigate perturbations around a more gen-
eral background metric, where the scale factor is different
in each direction. By introducing anisotropy into the sys-
tem, we allow for a more general Bianchi I metric. This
has the line element

ds2 = −dt2 + e2Atdx2 + e2Btdy2 + e2Ctdz2, (12)

which we call an (A)dS-Bianchi I metric. Examples of
anisotropic universes are given in Fig. 1. As discussed
earlier, the observable universe appears to be highly
isotropic [56] but this may not be the case at larger
scales. A vacuum solution with a cosmological constant
is only possible when A = B = C, i.e. when there is no
anisotropy. In this paper, we assume that the positive
constants A,B and C are roughly of the same magni-
tude.

The metric (12) gives a constant background
Ricci tensor R̄µν and positive Ricci scalar R̄ =

1 It is straightforward to verify that this reduces to the condition
for perturbations around Minkowski [57], by taking the limit
H → 0. This is equivalent to the form found in [58].

FIG. 1. We plot the time evolution of three universes. The
first is isotropic; the second is anisotropic and expanding in
both the x and y directions; while the third is expanding in
the y direction but shrinking in the x direction.

2
(
A2 +B2 + C2 +AB +AC +BC

)
, where bars denote

background quantities. We perturb around the back-
ground metric, again according to gµν → ḡµν +hµν . The
equations of motion for this perturbation are

Tαβ =
(
M2
p + 2λf0R̄

)(
rαβ −

1

2
δαβ r

)
+ 2λS̄αβF (�)r

+
λ

2
δαβ R̄F (�)r − 2λ

(
∇α∇β − δαβ�

)
F (�)r. (13)

This is identical to the (A)dS field equations (4) with the
exception of the extra term S̄αβ which vanishes for (A)dS.
By redefining

c(�) = 1 + 2λM−2
P R̄f0 − 4λM−2

P

(
� +

R̄

12

)
F (�),

∇µ∂νf(�) = 4M−2
P λ

(
∇µ∂ν + δµν

R̄

12
− 1

4
R̄µν

)
F (�), (14)

(13) can be written in the neat form (6). However, to see
the effect of anisotropy more clearly, we continue in the
form (13). Contracting (13) with kβkα, where kαkα = 0,
produces the defocusing condition

kβkαr
α
β =

λ

M2
P + 2λf0R̄

(
kβkαT

α
β − 2λkβkαR̄

α
βF (�)r

+2λkβkα∇α∇βF (�)r

)
< 0, (15)

where Tαβ is the full stress energy tensor, which reduces
to the (A)dS condition when we take A = B = C = H,

and thus R̄αβkαk
β = R̄

4 δ
α
βkαk

β = 0. Using the NEC, the
minimum defocusing condition becomes

λ

M2
P + 2λf0R̄

(
kβkα∇α∇β − kαkβR̄αβ

)
F (�)r < 0. (16)

We can choose k0 = −e−At, kx = −1, ky = kz = 0,
which means that the rotation ωαβ ≡ ∇αkβ − ∇βkα is
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zero, which is required for (1) to be valid [66], and the
geodesic equations to be fulfilled. When we assume the
perturbation is t-dependent, we find the following defo-
cusing condition

λ

M2
P + 2λf0R̄

[
∂2
t −A∂t + (B2 + C2)

−A(B + C)

]
F (�)r(t) < 0, (17)

which reduces to the standard (A)dS case in Eq.(11) with
A = B = C = H, as expected. Compared to the (A)dS
case with H = A, the anisotropic (A)dS-Bianchi I metric
produces an extra term in the defocusing condition:

λ

M2
P + 2λf0R̄

F (�)r(t)
[
(B2 + C2)−A(B + C)

]
. (18)

In this example we have taken the spatial part of the
null ray to be in the x direction. In order to avoid sin-
gularities it is necessary to fulfil the defocusing condition
for all kµ.2 Looking first at the case where the prefac-
tor λ

M2
P +2λf0R̄

F (�)r(t) in (18) is positive (as is the case

around an (A)dS background, [37]), A > B,C implies
that (18) is negative and so the anisotropy makes defo-
cusing easier, because it allows null geodesic congruences
to more readily diverge. This means that the tangent
vector must be in the direction of fastest expansion for
anisotropy to aid defocusing. This situation is reversed
for a negative prefactor.

EXAMPLE OF A PERTURBATION

Finally we choose a specific perturbation to see
whether our defocusing conditions can be fulfilled. We
can choose hµν , where gµν → ḡµν+hµν , to be δxµδ

x
νPe

2Xt,
i.e. an exponential perturbation in the x-direction. Here
P and X are dimensionless constants. This gives the
perturbed Ricci scalar

r(t) = r0e
2(X−A)t, (19)

where r0 is the constant r0 = 2PX(2A+B+C + 2X)−
2AP (B + C). Therefore

�nr(t) = [2(A−X)(2X −A+B + C)]
n
r(t), (20)

and since e2(X−2A)t is strictly positive, the defocusing
condition (17) becomes[

4X2 − 10AX + 6A2 + (B2 + C2)−A(B + C)

]
r0

·λF ((A−X)(X +B + C))

M2
P + 2λf0R̄

< 0. (21)

2 If we were to replace kx with ky (or kz), we would obtain an
equation of the form (18) with A � B (or A � C).

Taking y � A, the term in the square brackets will
be positive unless A is significantly bigger than B and
C, which does not agree with current observations. If we
take the simplest choice of the propagator Γ which has
no ghosts 3 [33], Γ(�) = exp(−�/M2), and discard X2

terms, the condition becomes

P > 0, (22)

i.e. the perturbation must be positive. It is therefore
possible to fulfil the defocusing condition and avoid the
Penrose singularity which plagues the theory of General
Relativity.

CONCLUSION

In this short note, we have shown that it is possible for
null rays to defocus in an (Anti) de Sitter background,
using ghost-free Infinite Derivative Gravity. This allowed
us to avoid the Penrose singularity that naturally occurs
in General Relativity.

Furthermore, we extended the analysis to an
anisotropic and homogenous Bianchi I model resembling
an anisotropic “(Anti) de Sitter space”. Finally, we
looked at a particular perturbation within this model
and showed that defocusing was possible given certain
constraints on the parameters of the metric, the pertur-
bation and the form of F (�).
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