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Abstract. As nonfundamental vector moving averages do not

have causal VAR representations, standard structural VAR meth-

ods are deemed inappropriate for recovering the economic shocks

of general equilibrium models with nonfundamental reduced forms.

In previous literature it has been pointed out that, despite nonfun-

damentalness, structural VARs may still be good approximating

models. I characterize nonfundamentalness as bias depending on

the zeros of moving average �lters. However, measuring the non-

fundamental bias is not trivial because of the simultaneous occur-

rence of lag truncation bias. I propose a method to disentangle the

bias based on population spectral density and derive a measure for

the nonfundamental bias in population. In the application, I �nd

that the SVAR exercises of Sims (2012) are accurate because the

nonfundamental bias is mild.
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1. Introduction

Vector autoregressive (VAR) models are the dominant approach to

date for the empirical validation of dynamic stochastic general equi-

librium (DSGE) models. It is well known that when the structural

model is nonfundamental, estimated VARs do not recover the economic

shocks. Nonetheless, as shown by Sims (2012) and Beaudry et al. (2015)
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structural VAR (SVAR) methods may still perform well in some appli-

cations. In this paper, I show that this is the case when the VAR is

a�ected by a mild nonfundamental bias. I provide a population mea-

sure of nonfundamentalness by disentangling the nonfundamental bias

from the lag truncation bias.

Since their appearence, DSGE models have been extensively vali-

dated with SVAR methods. In the last decade of research, the econo-

metric challenges of this approach have received much attention (see

e.g. Giacomini, 2013). In this spirit, both the existence of an in�nite

order VAR representation - see Fernandez-Villaverde et al. (2007) and

Franchi and Paruolo (2014) - and its approximation with a �nite order

VAR - see Chari et al. (2008), Christiano et al. (2007), Erceg et al.

(2005) and Poskitt and Yao (2012) - have been addressed. Neverthe-

less, those have remained two separate literatures and to the best of

my knowledge, no study has ever measured the nonfundamentalness in

population.

However, given that the nonexistence of an in�nite order autoregres-

sive representation (nonfundamentalness) implies the nonexistence of

a �nite order approximation, nonfundamental models are generally af-

fected by truncation bias. Therefore, measuring nonfundamentalness

requires disentangling between nonfundamentalness and lag truncation

and it is misleading to evaluate the former without taking the latter

into account.

If the set of observables used to estimate a VAR encloses all the

relevant information necessary to retrieve the state of the economy,

then the fundamentalness is granted, and the econometrician employ-

ing structural VAR methods is capable to estimate accurate impulse

response functions to economic shocks. On the other hand, if the in-

formation available to the econometrician is insu�cient, responses are

contaminated by the error committed in the estimation of the state of

the economy. Forni and Gambetti (2014) test for su�cient information

in SVAR by comparing with a dynamic factor model whose estimated
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factors virtually include all information available acting as a proxy for

the state of the economy1.

Nonetheless, the information used to estimate a VAR, albeit inferior,

may be su�ciently close to that of the agents. Sims (2012), Beaudry

and Portier (2013) and Beaudry et al. (2015) show that there are ap-

plications in which invertibility failures are mild and VARs remain a

useful tool. Beaudry et al. (2015) derive a R2 diagnosis based on the

fact that under fundamentalness the innovations to the econometri-

cian information set do not correlate with the past of the factors (and

of the innovations to agents' information set). Yet neither does their

approach provide a measure of nonfundamentalness in population.

In order to address this problem, I build on the fact that nonfunda-

mentalness is a source of bias depending on the distance between the

nonfundamental representation of the data providing the structural

shocks and its unique fundamental representation. Population quan-

tities are derived from the time series properties of the observables.

Fernandez-Villaverde et al. (2007) provide a condition for nonfunda-

mentalness. I contribute to this literature with a measure of the non-

fundamental bias based on the frequency domain. Forni et al. (2016)

focus on single shocks rather than the nonfundamentalness of the whole

VAR system as I do in this paper.

I �rst show that the error is a combination of the nonfundamental

and lag truncation bias. The measure proposed here is then applied to

the news shock model of Sims (2012). I �nd that the econometrician

estimating the VAR of Sims (2012) is faced with little nonfundamental

bias. This explains why in this application SVAR methods are found

to perform well. I also �nd that when the DSGE is reduced to a real

business cycle (RBC) model with news shocks the lag truncation bias

is at least as large as the nonfundamental bias.

While avoiding stochastic singularity in the VAR representation of

a DSGE model makes impossible to increase information by adding

observables so mitigating nonfundamentalness, the lag truncation bias

1There is still an information loss due stationary transformations required for the
estimation of the factor model (see Barigozzi et al., 2013).
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may in principle be ameliorated by estimating high-order VARs2. I �nd

that this advice does not apply to the nonfundamental case.

The structure of the paper is as follows. Given a state-space rep-

resentation of the DSGE model, the literature reviewed in section 2

provides simple conditions in order to check for nonfundamentalness

and the existence of a �nite order VAR representation for the observ-

ables. In section 3, I illustrate the nonfundamental bias and discuss

how it relates to the truncation bias. Section 4 provides a measure

of nonfundamentalness obtained by decomposing the bias of estimated

VARs with a method based on the spectral density matrix of the data.

Section 5 is a brief discussion of the economics of anticipated shocks

and their link with nonfundamentalness in the general equilibrium lit-

erature. In section 6, I apply the method proposed here to measure

the nonfundamentalness in a news shocks model along the lines of Sims

(2012). Last section concludes with practical suggestions and discusses

future work.

2. Background: invertibility, nonfundamentalness and

lag truncation

Typically the approximation to the solution of a DSGE model is cast

into the state space form:

Xt = A (θ)Xt−1 +B (θ) εt (2.1)

Yt = C (θ)Xt−1 +D (θ) εt (2.2)

where θ is a vector of deep parameters, Yt is a ny×1 vector of observed

variables, Xt is a nx × 1 vector of endogenous and exogenous state

variables, and εt ∼ iidN (0,Σ) a vector of nε structural shocks, (2.2)

is the measurement equation and (2.1) the state equation.

DSGE models typically have unobserved latent states and the infor-

mation enclosed in Yt is limited because avoiding singularity requires

2On a fundamental model De Graeve and Westermark (2013) show that extending
the order of the estimated VAR above and beyond that suggested by information
criteria helps in reducing the truncation bias. Using nonparametric approaches
Christiano et al. (2007) and Mertens (2012) �nd mixed results.
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the square case - i.e. ny = nε. Assuming that D is nonsingular, from

equation (2.2) we get εt = D−1 (Yt − CXt−1). Plugging this expression

for the structural shocks into the state equation (2.1) and rearranging,

the mapping between the states and the observables is

(Inx − FL)Xt = BD−1Yt (2.3)

where F := A−BD−1C.

Proposition 1 (Fernandez-Villaverde et al. (2007) - Poor man's in-

vertibility condition). Yt admits a VAR (∞) representation if F is a

stable matrix - i.e. all its eigenvalues are less than one in absolute

value.

If the Poor Man's Invertibility condition (PMIC) holds true the linear

function (2.3) mapping states into observables is invertible and the

in�nite order VAR representation is

Yt = C
∞∑

j=1

F jBD−1Yt−j + ut (2.4)

where ut := Dεt.

De�nition 2 (Rozanov (1967) - Fundamentalness). In the moving

average Yt = G (L)ut the shock ut is Yt-fundamental if and only if the

Hilbert space spanned by (uj; j = 1, . . . , t) is the same as that spanned

by the present and past of the observables HY
t . Then detG (z) 6=

0, ∀ |z| < 1 and Yt = G (L)ut is the unique fundamental moving average

representation of Yt.

Fundamentalness3 and invertibility are closely related. In Section 4 I

prove the PMIC is a condition for fundamentalness. Whether a root of

a polynomial in the lag operator lays inside (nonfundamentalness) or

outside (fundamentalness) the unit disk, the inversion of the polyno-

mial is de�ned over respectively negative or positive powers of the lag

3Fundamentalness holds true on the unit disk (see Alessi et al., 2011). Conversely,
from an algebraic point of view, any polynomial is invertible unless it has a unit
root. Therefore, while invertibility is violated on the unit disk, fundamentalness
holds true in presence of a unit root.
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operator. Roots into the unit circle correspond to invertibility of the

shocks in the future of the observables. Of course, in applied research

it is required invertibility in the past of the observables and for this

reason nonfundamentalness is a problem.

Proposition 3 (Franchi and Vidotto (2013) - Existence of �nite order

VAR representation). A �nite order VAR representation exists if F is

nilpotent - i.e. all its eigenvalues are equal to zero. 4

Therefore lag truncation is a necessary condition for nonfundamen-

talness and measuring the latter requires disentangling from the for-

mer. Even if the econometrician knows the structural shocks, their

projection on the (�nite) past of the observables does not only mea-

sure nonfundamentalness but also lag truncation. This is the reason

why root �ipping is required to disentangle the two biases.

Under the assumption that the PMIC holds true, the VAR(∞) repre-

sentation (2.4) of the observables is easily obtained from the state-space

system. More generally, the VAR representation of Yt is:

Yt = C (I − FL)−1BD−1Yt−1 + ut (2.5)

Franchi and Paruolo (2014) point out that the conditions above are

su�cient but not necessary because of possible pole cancellations in

C (I − Fz)−1B due to irrelevant states in the ABCD system (2.1) -

(2.2). On the other hand, from the minimal5 ABCD system, whose

4Franchi and Vidotto (2013) prove that their condition is equivalent to that of
Ravenna (2007) requiring that

|I −Az| I + C adj (I −Az)BD−1z is unimodular

i.e. its determinant is a nonzero constant.
5An ABCD system is minimal if it is controllable and observable. Controllability
holds if

C =
[
B AB . . . Anx−1B

]

has full row rank, observability holds if

O =




C
CA
...

CAnx−1




has full column rank.
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state vector is of the smallest dimension possible for replicating the

dynamic properties of the original system, necessary and su�cient con-

ditions are derived. Letting the minimal system be

Xt = Am (θ)Xt−1 +Bm (θ) εt (2.6)

Yt = Cm (θ)Xt−1 +D (θ) εt (2.7)

where Am, Bm, Cm arise from the Kalman decomposition theorem6 (see

Antsaklis and Michel, 2007, Theorem 6.6), and de�ning Fm := Am −
BmD

−1Cm we have the following condition:

Proposition 4 (Franchi and Paruolo (2014) - Necessary and su�cient

conditions). Yt admits a VAR(∞) representation if and only if Fm is

a stable matrix. Moreover the VAR representation is of �nite order if

and only if Fm is nilpotent.

It is important to note that the similarity transformation required

for the reduction of the ABCD model to its minimal counterpart does

not a�ect the observables and their dynamics. Given that the impulse

response functions and the shocks are invariant to this transformation,

the economic interpretation is preserved in the minimal system (2.6) -

(2.7) (see Antsaklis and Michel, 2007, section 3.5.3). For this reason, in

the rest of the paper I refer to the minimal system and to the following

VAR representation

Yt = Cm (I − FmL)−1BmD
−1Yt−1 + ut (2.8)

which is also equivalent to the (2.5).

3. The nonfundamental bias

Nonfundamentalness is a source of bias and it should not come as

a surprise that it may be small. A nonfundamental moving average

(MA) whose roots in the unit circle are su�ciently close to the circle is

generally well approximated by its fundamental counterpart. Straight-

forwardly, the reciprocal of a root which is close to the circle will be

6The minimal system (2.6) - (2.7) can be computed with popular control system
packages (e.g. the function minreal in Matlab).
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itself pretty close to the circle. In the same way, a white noise process

corresponding to the residuals of a nonfundamental representation of

the data will be pretty close to the white noise arising from the fun-

damental representation of the data when the MA roots of the two

representations are su�ciently close to the unit disk.

Suppose that the econometrician wants to estimate the structural

MA

yt =

(
1− 1

a1
L

)(
1− 1

a2
L

)
. . .

(
1− 1

ap
L

)
ut = a (L)ut

in which for simplicity the roots a1, a2, . . . , ap are all real7. Assume

that the model is nonfundamental because ∃ j, 1 ≤ j ≤ p : |aj| < 1,

while |ak| > 1, k 6= j. The fundamental MA representation of yt is:

yt = a (L)
a−1j − L
aj − L︸ ︷︷ ︸
ã(L)

aj − L
a−1j − L

ut

︸ ︷︷ ︸
vt

= ã (L) vt

where ut and vt are both white noise (see Lippi and Reichlin, 1994) but

ut lies in the past, present and future of yt while vt lies in the past of

yt. Therefore:

|ut − vt| =

∣∣∣∣∣ut
(

1− aj − L
a−1j − L

)∣∣∣∣∣

=

∣∣∣∣∣ut
(
a−1j − aj
a−1j − L

)∣∣∣∣∣

which goes monotonically to zero as |aj| → 1.

I measure this distance as

d∞ =
E (ut − vt)2

Eu2t

(in Section 4 the measure is generalized to the multivariate case and

its asymptotic behaviour as a function of MA roots is described).

7This assumption is made for illustrative purpose and it is relaxed in the next
section.
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For example, consider the MA of order 1 yt = (1− θL)ut. Then

d∞ =
(θ−θ−1)

2

1−θ−2 . The top panel of Figure 1 shows that the measure d∞

increases in θ - the reciprocal of the MA root. The value of d∞ for

MA (1) processes is yet close to 100 percent error when θ = 1.387 and

is exactly 125 percent when θ = 1.5 so the root is closer to the center

of the unit disk.

Let v
(p)
t be the residuals in a VAR (p) representation of Yt.

Proposition 5. The distance between the reduced form residuals ut

and v
(p)
t is monotonically decreasing in p

Proof. in Appendix �

In a similar manner to (4.6) let us measure this distance as: d (p) =
E
(
ut−v(p)t

)
Eu2t

. The bottom plot of Figure 1 shows the path d (p) in the

MA (1) example. For a su�ciently high order p, the error d (p) asymp-

totically converges to its limiting value - i.e. the component of the

error d∞ due to the nonfundamentalness bias. The closer the root to

the unit circle, the slower the convergence to d∞.

4. The nonfundamental bias in population

In this section a method to decompose the bias in population is pro-

vided. To do so in subsection 4.1 three representations of the data are

employed - the structural, the fundamental and the truncated - and

their properties are summarised. If the structural model is nonfun-

damental, subsection 4.2 describes how to get the fundamental vector

moving average representation starting from the nonfundamental struc-

tural representation. Finally, in subsection 4.3, I propose a method to

calculate the bias decomposition in population. This last subsection

outlines the decomposition in the covariance matrix of VAR residuals

employed in any identi�cation scheme.

4.1. Alternative representations of the data. When the PMIC

is violated being some eigenvalues of Fm greater than one in absolute

value, the VAR (2.8) is noncausal because the term (I − Fmz)−1 also
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maps in negative powers of z and H (z) := Cm (I − Fmz)−1BmD
−1z

is two-sided. As Lanne and Saikkonen (2011, 2013) show, a noncausal

VAR can be estimated although, contrary to the common practice in

DSGE modeling, non-Gaussianity is required for its identi�cation.

The moving average representation8 associated with the non neces-

sarily causal VAR representation (2.8) is

Yt = G (L)ut (4.1)

where G (z) := (I −H (z))−1. When the PMIC is violated, the VMA

representation (4.1) is nonfundamental and inverts into a noncausal

VAR. The fundamental VMA representation of Yt

Yt = G̃ (L) vt (4.2)

8Considering that in minimal systems no cancellation takes place, yet at �rst sight
representation (4.1) reveals the link between Fm's eigenvalues and MA roots. Thus,
in this framework root-�ipping becomes easy (see Proposition 6).
There are several equivalent ways to write the MA representation. For example,
we may consider:

Yt = W (L) εt, W (z) := D + C (I −Az)
−1

Bz

Franchi and Paruolo (2014) show that, due to possible pole cancellations, the

roots of |I − Fz|, that is the poles of (I − Fz)
−1
, are not necesarily roots of

|C (I − Fz)B|. Cancelling poles are related to the eigenvalues of A - i.e. re-
ciprocal roots of I − Az - which are also eigenvalues of F . This property is
immediately evident writing the MA representation as Forni et al. (2016): Yt =

DB−1 (I − FL) (I −AL)
−1

Bεt.
The same argument applies to the zeros of W (z). In fact, the system matrix

P (z) =

(
I −Az B
−Cz D

)

has determinant

|P (z)| = |I −Az|
∣∣∣C (I −Az)

−1
Bz +D

∣∣∣
so that the zeros of W (z) are system zeros which are not zeros of |I −Az|. To see
this it is enough to write

P (z) =

(
I −Az 0
−Cz I

)(
I (I −Az)

−1
B

0 C (I −Az)
−1

Bz +D

)
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is found via multiplying and dividing by a matrix B (z) that �ips the

zeros into the unit circle of G (z)

Yt = G (L)B (z)︸ ︷︷ ︸
G̃(L)

B (z)−1 ut︸ ︷︷ ︸
vt

In practice, the above step for getting the fundamental VMA represen-

tation (4.2) is very easy because, according to the following Proposition,

it boils down to �ipping the appropriate roots of (I − Fmz).

Proposition 6. The fundamental MA representation of the data is

Yt = G̃ (L) vt with

G̃ (z) :=

(
Iny − Cm

(
Inm − F̃mz

)−1
BmD

−1z

)−1

where

(1) F̃m is such that det
(
I − F̃mz

)
= 0 ∀z = (z̃1, . . . , z̃nm) and

z̃i =




zi |zi| > 1

z−1i |zi| < 1

(2) the residuals vt of the fundamental MA representation are re-

lated to those of the nonfundamental MA representation ut ac-

cording to

vt =
nm∏

i=1

(L− zi)
(L− z̃i)

ut

Proof. in Appendix �

Finally, the in�nite order causal VAR representation of Yt is

Yt = H̃ (L)Yt−1 + vt (4.3)

where H̃ (z) = Cm

(
Inm − F̃mz

)−1
BmD

−1z and the white noise vt is

the Wold innovation for Yt. In the next subsection the root �ipping

procedure to �nd F̃m is outlined.

In the equation (4.6) the nonfundamental bias is evaluated as the

distance d∞ between the true (nonfundamental) residuals ut and the

fundamental residuals vt of the in�nite order VAR representation.



MEASURING NONFUNDAMENTALNESS FOR SVARS 12

Proposition 7. The distance between the reduced form residuals ut

and vt goes monotonically to zero as the eigenvalues of F less than 1

in absolute value approach the complex unit disk.

Proof. in Appendix �

Standard practice is to approximate the in�nite order VAR (4.3)

with an estimated �nite order VAR (p)

Yt = H̃(p) (L)Yt + v
(p)
t (4.4)

where: the coe�cients of H̃(p) (z) are found by projecting Yt on its

�rst p lags, and the residuals v
(p)
t di�er from the fundamental residuals

of the in�nite order VAR representation vt by a truncation bias term.

Disentangling the nonfundamental bias from the lag truncation bias

requires root �ipping otherwise H̃ (z) would be replaced by H̃(p) (z) and

vt by v
(p)
t . As found in the literature on lag truncation, this practice

might be somewhat inaccurate.

4.2. Root �ipping. This subsection describes the method employed

to �ip the roots in the unit disk of the nm × nm polynomial F (z) :=

I−Fm z obtaining a new polynomial F̃ (z) := I−F̃m z which shares the
roots of F (z) out of the unit circle and �ips the roots of F (z) laying

inside the unit circle.

Let nNF be the number of roots z1, . . . , znNF in the unit disk of F (z)

with nNF ≤ nm. Then |zk| < 1, k = 1, . . . , nNF and |F (zk)| = 0. The

following steps are needed to �ip the roots in the disk of F (z).

(1) As I am formally �ipping the roots of the equation (2.3) I �rst

need to orthonormalize the right-hand side of

BmD
−1Yt = (I − FmL) (I − AmL)−1Bmεt

using the variance of Xt. Start with k = 1.

(2) The spectral decomposition F (zk) = UkVkU
−1
k where Uk =

[Uk,1, Uk,2, . . . , Uk,nm ] collects the eigenvectors Uk,i (i = 1, . . . , nm)

of F (zk) and Vk is a block-diagonal matrix whose Jordan blocks
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have the corresponding eigenvalues on the diagonal. The de-

composition is such that at least one element in the diagonal of

Vk is equal to zero.

(3) Let j ∈ [1, nm] be an integer such that the j-th diagonal element

Vk,jj = 0. The number of such zero valued elements along the

diagonal of Vk is equal to the multiplicity of zk.

(4) De�ne a matrixMk =
[
Uk,j ker

(
U ′k,j
) ]

. By constructionMk

is an orthogonal matrix.

(5) Compute F (k) (z) = F (z)Mk. Notice that its (1, 1) element

f
(k)
11 (z) is equal to zero.

(6) Compute

F̃ (k) (z) =




Bk (z) f
(k)
11 (z) f

(k)
12 (z) . . . f

(k)
1nm (z)

Bk (z) f
(k)
21 (z) f

(k)
22 (z) . . . f

(k)
2nm (z)

...
...

...

Bk (z) f
(k)
nm1 (z) f

(k)
nm2 (z) . . . f

(k)
nmnm (z)




where

Bk (z) =
1− z z̄k
z − zk

is a factor replacing the nonfundamental root zk with its recip-

rocal9.

(7) Repeat steps 2-5 for the multiplicity of zk.

(8) By repeating steps 1-6 for k = 2, . . . , nNF I get F † (z) :=

F̃ (1,...,nNF ) (z).

(9) Finally, note that F † (z) = F †0 + F †1 z. Straightforwardly, the

unique polynomial I am searching for is

F̃ (z) = I − F̃m z

9Note that Bk (z) is not a Blaschke factor because it has a pole into the unit circle.
As in Lippi and Reichlin (1994), a Blaschke matrix �ips roots into the unit circle
thanks to a Blaschke factor

z − zk
1− zkz

The root �ipping problem in this section is carried out the other way around. For
a given nonfundamental representation of the data in terms of structural shocks,
Bk (z) is meant to �ip roots from inside to outside the circle. Therefore Bk (z) is
the reciprocal of a Blaschke factor with a pole in zk.
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where F̃m = −F †1F
†−1

0 .

4.3. Computing the measure for SVARs. Let

Σy (ω) =
1

2π
G
(
e−iω

)
ΣuG

(
eiω
)′

be the spectral density matrix of the data at frequency ω, with Σu =

DΣD′. It is well known that Σy (ω) is unique, therefore it can be

calculated starting from any moving average representation of Yt. So

it must be that Σy (ω) = 1
2π
G̃ (e−iω) ΣvG̃ (eiω)

′
, where Σv = Evtv

′
t.

Exploiting the uniqueness property of the spectral density matrix,

the above formula can be inverted to calculate the covariance matrix

of any vector of residuals that can be expressed as a moving average of

Yt. Hence, from ut − vt =
(
H̃ (L)−H (L)

)
Yt, the covariance matrix

Σu−v = E (ut − vt) (ut − vt)′ is obtained as

Σu−v =

ˆ π

−π

(
H̃
(
e−iω

)
−H

(
e−iω

))
Σy (ω)

(
H̃
(
eiω
)
−H

(
eiω
))′

dω

(4.5)

The measure10 is:

d∞ =
‖Σu−v‖
‖Σu‖

(4.6)

5. DSGE, anticipated shocks and nonfundamentalness

Yet Lippi and Reichlin (1993) argue that economic models can lead

to nonfundamental representations of the data. As surveyed in Alessi

et al. (2011) and Lütkepohl (2012), nonfundamentalness is basically of

two kinds: one which is peculiar to the story-telling of the DSGE and

the other which arises as an omitted variable problem. In the former

case, nonfundamentalness is model-based and the economic shocks may

well be nonfundamental with respect to any set of observables (models

with imperfect information where the agents are faced with a �ltering

problem to infer the structural shocks). In the latter (full information),

the nonfundamentalness depends on the information available to the

econometrician while the agents observe the shocks. For this reason

10‖ · ‖ stands for the Euclidean norm of a square matrix and is equal to its largest
singular value. Of course, other matrix norms are equally suitable.
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this kind of nonfundamentalness is referred to as omitted variables

nonfundamentalness.

Model-based nonfundamentalness is essentially an identi�cation is-

sue which is not fatal for structural VARs. More generally, when this

kind of nonfundamentalness is present, the vector autoregressive mov-

ing average (VARMA) representation of the DSGE model has one or

more roots into the unit disk which are known. For example, in mod-

els of imperfect information it is known the link between the shocks

agents observe and the economic shocks. There will be a fundamental

VARMA representation - with no roots in the unit disk - in terms of

innovations to agents information set and a nonfundamental VARMA

representation - with some roots in the unit disk - in terms of struc-

tural shocks. The way imperfect information is modeled does generally

reveal the mapping between the structural shocks and the innovations

to agents information set and, therefore, the roots in the unit disk of

the structural nonfundamental VARMA.

In last decade a branch of empirical macroeconomic research has fo-

cused on the (Pigouvian) idea that expectational swings could generate

business cycles. In this spirit, standard models have been augmented

with anticipated shocks like technology news shocks or �scal foresight.

Even models with anticipated shocks produce model-based nonfunda-

mentalness if information �ows are properly modelled. So the econome-

trician that knows the structural model also knows how to map Wold

residuals to structural shocks (see Forni et al., 2013a,b; Mertens and

Ravn, 2010; Leeper et al., 2013).

On the other hand, the omitted variable nonfundamentalness studied

here is a potentially harmful estimation issue. In this case, the agents

anticipate future shocks and the econometrician is challenged by the

di�cult task to infer a source of randomness which is not mapped into

the few observables she is endowed with in the usual way. Observing

more variables would be a panacea enabling her to match the informa-

tion of the agents but the VAR representation of the DSGE model does

not allow her to observe more than nε variables. In this framework, if
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the econometrician cannot count on su�ciently forward looking vari-

ables needed to make up for the information the agents anticipate, then

her analysis based on an inferior information set will be biased.

Early VAR evidence on models with technology news shocks, as that

of Beaudry and Portier (2006), has depicted positive comovements be-

tween macroeconomic aggregates in response to news shocks. Forni

et al. (2014) with a structural factor model obtain very di�erent �nd-

ings supporting wealth e�ects and implied negative comovements, as

predicted by the standard neoclassical growth model. Barsky and Sims

(2011) prove that, once the information enclosed in the analysis is care-

fully selected, the problem can be solved even in a VAR framework.

Exploiting the information of a very forward looking set of observables

they show that, at least on a qualitative level, VAR impulse response

functions are in the same ballpark of those of Forni et al. (2014).

Are violations of PMIC condition as stated in Proposition 1 implying

that impulse responses estimated with structural VAR are inaccurate?

Sims (2012) analyses a news shock model in which they are not. In the

next section I �nd that his result is due to small nonfundamental bias.

6. Application: Sims (2012)

I study a simple generalization of the news shock DSGE model of

Sims (2012) in which the technology is

ln at = ga + ln at−1 + ξt + ηt−q (6.1)

The news shock ηt ∼ iid (0, ση) is observed by the agents q periods

before it a�ects at. The econometrician observing only at will have to

wait q periods for that information, that's why ηt is mapped into the

future of at. Nonetheless, as the model features two shocks, the SVAR

econometrician can overcome this problem by observing one additional

variable. If such variable is su�ciently forward looking then she will

be able to retrieve ηt as it will map into the present of the observables.

In this sense, the anticipation may drive a wedge between agents and

econometrician information sets.



MEASURING NONFUNDAMENTALNESS FOR SVARS 17

ξt ∼ iid (0, σξ) is the traditional unanticipated technology shock and

ga is the growth rate of the TFP. The rest of the model is a standard

medium scale DSGE with nominal and real frictions (see Appendix B).

I analyze two nested speci�cations: a frictionless RBC model and a full

model with Calvo price stickiness, habit formation in consumption and

investment adjustment costs.

Table 1 reports the moduli of the eigenvalues of Fm in the full model

and RBC model respectively. When the agents learn the news with at

least two period of anticipation all the models turn nonfundamental.

Kurmann and Otrok (2011) �nd that the same result holds for the

reduced form of the DSGE model of Smets and Wouters (2007). Table

2 tells us how large is the nonfundamental bias in the two models for

q = 1, . . . , 8. Although the full model has a larger nonfundamental

bias for any q ≥ 2, those numbers are relatively small. The maximum

value for the nonfundamental bias is around 27 percent and requires

8 periods of anticipation which with quarterly data means news that

a�ect technology with a two-year delay.

Like Sims (2012) the responses to a technology shock and the news

shock of the two observed variables - technology at and output yt -

are identi�ed according with a short run scheme through Choleski or-

thogonalization11 with technology ordered �rst (the news shock has no

contemporaneous e�ect on the technology) and a VAR (p) is estimated.

Mean absolute percentage errors

MAPE(m)(ÎRF
i,j,m

) = h−1
h∑

t=1

∣∣∣IRF i,j,m
t − ÎRF

i,j,m

t

∣∣∣
∣∣IRF i,j,m

t

∣∣

are computed for variables i = {Yt, at} and shocks j = {ξt, ηt} over
a horizon of h = 40 periods, where IRF i,j,m are the true response

of variable i to the shock j in the model m and ÎRF
i.j,m

are VAR

estimates. ÎRF 's are averaged across 500 samples in the small sample

exercise and 5 samples in the large sample exercise. The performance

11As pointed out by Christiano et al. (2007), a short run identi�cation scheme is
less a�ected by lag truncation than a long run scheme involving the estimate of the
sum of VAR coe�cients.
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of each model is further summarized by averaging the four responses

estimated, so a single mean absolute percentage error MAPE(m) is

obtained for every speci�cation m = 1, . . . , nS of the exogenous news

process.

In Tables 3 and 4 the MAPE in impulse response functions estimated

with VAR of increasing orders for the full and RBC models in �nite

and large samples are reported. The �rst results standing out is that,

as d∞ also the MAPE increases with q.

The distance d∞ between the true residuals ut and the fundamental

residuals vt implied by the in�nite order VAR representation (4.3) is

much larger in the full model as compared with the RBC model. Nev-

ertheless, the MAPE in the two models is somewhat close suggesting

that in the RBC case there is relatively much more truncation and, at

least in this DSGE model, the truncation bias is empirically as relevant

as the nonfundamental bias. Consider for example the replication of

Sims (2012) - i.e. q = 3. In Figure 2 we have that the eigenvalues of

Fm are much closer to those of F̃m in the RBC case and d∞ = 0.048

while it is equal to 0.212 in the full model. Then the most accurate

VAR is much more parsimonious in the full model (both in small and

large samples) and at least in small samples the full model MAPE is

even smaller than that of the RBC model.

In large samples when the data generating process is fundamental -

i.e. form Table 1 when q = 1 in any model - the error goes to zero.

This is in line with the results of De Graeve and Westermark (2013)

who show that, in the fundamental case, high-order VAR allows to

recover the economic shocks. As the anticipation is increased more

parsimonious VAR perform better.

Probably due to more truncation bias, in the RBC case the most

accurate VARs are higher in order than in the full model which prefers

parsimonious VARs. This is specially true in small samples where the

most accurate VAR is always the most parsimonious while in large

samples such result is achieved for q > 4. This does not mean that

the untruncating strategy advocated by De Graeve and Westermark

(2013) of estimating very long VAR also works in the nonfundamental
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case. Neither in large samples the longest VAR is the most accurate

in recovering the impulse responses of the RBC model whose bias is

mainly due to truncation.

The reason behind this result is that mitigating the truncation bias

does only require a good approximation of the coe�cients of H (L) in

the positive powers of the lag operator rather than the whole �lter.

So, while according to the Proposition 5 a good approximation of the

residuals ut requires a long VAR, in practice increasing the order of

a one-sided �lter does not help in approximating the coe�cients of a

two-sided �lter triggering an identi�cation bias (see Ravenna, 2007)

when impulse responses to economic shocks are being estimated.

As di�erent amounts of lag truncation bias a�ect the two models,

the Monte Carlo experiment is repeated in small samples using the

BIC information criterion for q = 3. In Figure 3 the estimated IRFs

from such VARs represented with dashed and dotted lines are compared

with those in dashed lines estimated by Sims (2012) with a VAR (8).

In the full model the truncation bias is very small so the choice of the

lag order does not seem to a�ect the shape of the responses. Dashed

and dashed and dotted lines are in fact very similar in the full model.

In the RBC case the truncation plays a more important role and

the conclusions are di�erent. The econometrician employing the BIC

criterion would estimate more precisely the responses to the traditional

unanticipated technology shock, but she would also get a much worse

estimation of the responses to the news shock. The interpretation of

these results is straightforward. Being the introduction of news shock

in the DSGE the cause of the nonfundamentalness, the BIC criterion

seems to do well what it is known for. That is to choose an optimal lag

length for retrieving (linear combination of) shocks which are mapped

in the present and past of the observables like the unanticipated tech-

nology shock.

The observation of Figure 3 also reveals that the surprise technology

shock is less accuratelly estimated than the news shock. While the de-

gree of nonfundamentalnes, as measured by d∞, summarizes the overall

accuracy of SVAR models, that is a �global� measure, how single shocks
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are a�ected by the nonfundamentalness bias requires further analysis.

For this purpose, Forni et al. (2016) develop a �partial� measure of

nonfundamentalness.

7. Conclusions and practical suggestions

An extensive literature has studied the accuracy of SVAR techniques

in recovering the impulse response functions to the structural shocks of

DSGE models. Addressing nonfundamentalness gained attention with

the recent interest in news shocks and �scal foresight. Previous liter-

ature noticed that nonfundamentalness is not an either/or proposition

but no approach has been developed to determine how severe the prob-

lem is in a given application. Being nonfundamentalness su�cient for

the nonexistence of a �nite order VAR representation, I provide a fre-

quency domain method to measure the bias due to nonfundamentalness

disentangling from that due to lag truncation.

Starting from a state-space representation of the DSGE model this

measure is very easy to compute, so the suggestion here comes at no

additional cost with respect to the advice of Fernandez-Villaverde et al.

(2007) and provides the advantage of o�ering a measure of the nonfun-

damental bias rather than a condition for its existence. As it employs

reduced form quantities it does not depend on identi�cation assump-

tions. In fact, under nonfundamentalness even SVAR exercises with

a correct identi�cation scheme are invalid because no rotation of the

Wold innovations can retrieve the economic shocks.

Inference on the measure proposed here can be performed considering

the parametric uncertainty in the state-space representation. For exam-

ple, rather than testing for nonfundamentalness as Forni and Gambetti

(2014), the econometrician might �nd more interesting building a con-

�dence interval for the size of the nonfundamental bias in population.

I leave this for future research.

In the application, I �nd little nonfundamentalness in the model of

Sims (2012) which explains his �nding that SVAR methods perform

well. Similar results are found by Beaudry et al. (2015). This conclu-

sion is not general as models with more sophisticate dynamics might
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generate larger bias for SVAR analysis. The measure proposed in this

paper is a guide for the econometrician addressing this issue.
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Figure 1. d∞ and d (p) - MA(1): yt = (1− θL)ut
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Table 1. Poor man's invertibility condition eigenvalues

q=1 q=2 q=3 q=4 q=5 q=6 q=7 q=8

full
0.9411 1.249 1.319 1.415 1.569 1.984 1.98 1.427
0.8043 0.9437 1.319 1.415 1.569 1.984 1.751 1.427
0.7305 0.8049 0.9471 1.375 1.476 1.719 1.678 1.398
0.5391 0.7278 0.8057 0.9515 1.476 1.719 1.678 1.398

0 0.5624 0.7248 0.8065 0.9575 1.666 1.538 1.341
0 0 0.5792 0.7219 0.8074 0.9656 1.538 1.341
0 0 0 0.5911 0.7191 0.8082 0.9773 1.332

0 0 0 0.5993 0.7167 0.809 0.9965
0 0 0 0.6047 0.7147 0.8096

0 0 0 0.608 0.7133
0 0 0 0.6101

0 0 0
0 0

0

RBC
0.8886 1.063 1.063 1.063 1.063 1.063 1.063 1.063

0 0.8886 1.063 1.063 1.063 1.063 1.063 1.063
0 0.8886 1.063 1.063 1.063 1.063 1.063

0 0.8886 1.063 1.063 1.063 1.063
0 0.8886 1.063 1.063 1.063

0 0.8886 1.063 1.063
0 0.8886 1.063

0 0.8886
0

Note: moduli of the eigenvalues of Fm
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Table 2. Measure of nonfundamentalness: d∞

q=1 q=2 q=3 q=4 q=5 q=6 q=7 q=8

d∞
full 0 0.1356 0.2123 0.2477 0.2593 0.2620 0.2664 0.2693

RBC 0 0.0266 0.0480 0.0665 0.0827 0.0970 0.1097 0.1208
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Table 3. Small sample MAPE

p q=1 q=2 q=3 q=4 q=5 q=6 q=7 q=8

full
5 0.15543 0.15359 0.18315 0.23313 0.29916 0.36340 0.43924 0.54438
6 0.16221 0.15494 0.18385 0.23417 0.30003 0.37100 0.44767 0.55122
7 0.16635 0.1576 0.18404 0.23745 0.30567 0.37504 0.45505 0.55727
8 0.16925 0.15735 0.18615 0.24052 0.30988 0.38153 0.46037 0.56406
9 0.17179 0.15949 0.18811 0.24167 0.31423 0.38507 0.46335 0.56831
10 0.17610 0.16283 0.18900 0.24587 0.31806 0.38818 0.46650 0.56937
11 0.17804 0.16329 0.19081 0.24694 0.31973 0.39013 0.46745 0.57012
12 0.18028 0.16399 0.19097 0.24944 0.32434 0.39461 0.47086 0.57246
13 0.18537 0.16595 0.19231 0.25060 0.32717 0.39796 0.47351 0.57424
14 0.18701 0.16763 0.19327 0.25295 0.33116 0.40196 0.47487 0.57546
15 0.19167 0.17229 0.19521 0.25668 0.33471 0.40412 0.47926 0.57713
16 0.19740 0.17719 0.19849 0.26013 0.33525 0.40781 0.48137 0.57858
17 0.20016 0.17712 0.20069 0.26300 0.34281 0.41334 0.48410 0.57845
18 0.20226 0.18209 0.20312 0.26531 0.34684 0.41558 0.48437 0.57987
19 0.20857 0.18780 0.20426 0.26661 0.34447 0.41319 0.48377 0.58009
20 0.21404 0.19205 0.20707 0.26722 0.34441 0.41195 0.48355 0.58176

RBC
5 0.22236 0.23813 0.25959 0.26810 0.34155 0.38822 0.48410 0.62537
6 0.21431 0.23455 0.25343 0.26447 0.28496 0.36122 0.45494 0.59985
7 0.21087 0.22454 0.23922 0.26128 0.28696 0.32115 0.44579 0.59101
8 0.20884 0.22279 0.23675 0.26082 0.28594 0.32391 0.39349 0.58583
9 0.21078 0.21901 0.23790 0.25054 0.28585 0.32465 0.39650 0.50689
10 0.20857 0.22001 0.23220 0.25127 0.28507 0.32508 0.39962 0.51567
11 0.21185 0.21929 0.23587 0.25085 0.27596 0.32569 0.40222 0.51839
12 0.21254 0.22082 0.23512 0.25156 0.27670 0.32468 0.39948 0.52040
13 0.2157 0.22073 0.23315 0.24843 0.27803 0.31578 0.39901 0.51907
14 0.21747 0.22332 0.23623 0.24902 0.27656 0.31641 0.39847 0.51832
15 0.22137 0.22540 0.23798 0.25249 0.27980 0.31914 0.38687 0.52022
16 0.22386 0.22861 0.23782 0.25531 0.27802 0.32113 0.38984 0.51914
17 0.22766 0.23075 0.24093 0.25406 0.28087 0.32207 0.39300 0.49716
18 0.23048 0.23335 0.24485 0.25890 0.28342 0.32477 0.39530 0.49995
19 0.23276 0.23701 0.24671 0.26001 0.28507 0.32198 0.39735 0.50081
20 0.23757 0.24174 0.24922 0.26311 0.29035 0.32732 0.40082 0.50280

Note: q is the periods of anticipation, p is the order of the estimated VAR
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Table 4. Large sample MAPE

p q=1 q=2 q=3 q=4 q=5 q=6 q=7 q=8

full
5 0.06466 0.06624 0.09350 0.14895 0.21473 0.27426 0.34868 0.45740
6 0.05709 0.05743 0.08828 0.14464 0.21649 0.28271 0.35520 0.46101
7 0.05083 0.05071 0.08369 0.15320 0.22672 0.29638 0.36492 0.46643
8 0.04643 0.04347 0.08390 0.16362 0.24184 0.31257 0.37781 0.47317
9 0.04017 0.03883 0.08946 0.17396 0.25784 0.32869 0.39289 0.48146
10 0.03804 0.03610 0.09587 0.18472 0.26924 0.34119 0.40441 0.48668
11 0.03459 0.03434 0.10453 0.19486 0.28016 0.35400 0.41718 0.49212
12 0.03086 0.03415 0.11227 0.20405 0.29154 0.36646 0.42892 0.49786
13 0.02792 0.03549 0.11810 0.21241 0.30159 0.37740 0.43861 0.50135
14 0.02488 0.03786 0.12514 0.22149 0.31212 0.38764 0.44754 0.50624
15 0.02322 0.04149 0.13142 0.22907 0.32043 0.39571 0.45467 0.51073
16 0.02135 0.04551 0.13707 0.23590 0.32733 0.40343 0.46218 0.51246
17 0.01820 0.05079 0.14336 0.24230 0.33522 0.41229 0.46880 0.51732
18 0.01565 0.05438 0.14765 0.24816 0.34213 0.41795 0.47512 0.51845
19 0.01336 0.05751 0.15235 0.25488 0.34786 0.42467 0.47983 0.52021
20 0.01326 0.05907 0.15608 0.25794 0.35309 0.42918 0.48315 0.52076

RBC
5 0.09916 0.14309 0.19533 0.21502 0.33661 0.38923 0.50078 0.65778
6 0.07837 0.12417 0.16888 0.19173 0.22021 0.35002 0.46421 0.62441
7 0.06347 0.09113 0.12194 0.16666 0.20054 0.24756 0.42666 0.59123
8 0.05132 0.07976 0.10396 0.14686 0.18227 0.23339 0.32734 0.57000
9 0.04466 0.06019 0.09028 0.11766 0.16452 0.21838 0.31674 0.45575
10 0.03594 0.05272 0.07420 0.10363 0.14877 0.21003 0.31341 0.45933
11 0.03119 0.04302 0.06305 0.09197 0.13582 0.21082 0.31676 0.46411
12 0.02728 0.03488 0.05385 0.08713 0.13461 0.21283 0.31937 0.46880
13 0.02244 0.02995 0.05079 0.08468 0.13762 0.20094 0.32493 0.47798
14 0.01900 0.02573 0.04691 0.08799 0.14187 0.20504 0.33431 0.48872
15 0.01706 0.02378 0.04953 0.09246 0.14851 0.21319 0.31524 0.50013
16 0.01497 0.02021 0.05254 0.09836 0.14660 0.22189 0.32684 0.50988
17 0.01235 0.02037 0.05665 0.09932 0.15255 0.23042 0.33754 0.48061
18 0.01058 0.02205 0.05997 0.10262 0.15963 0.23752 0.34233 0.48987
19 0.00876 0.02393 0.06118 0.10869 0.16613 0.23011 0.35001 0.49636
20 0.00747 0.02522 0.06482 0.11389 0.16932 0.23646 0.35477 0.50141

Note: q is the periods of anticipation, p is the order of the estimated VAR
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Figure 2. Eigenvalues of Fm and F̃m in the complex
unit disk (q = 3)
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Figure 3. Impulse response functions (q = 3): VAR(8)
and BIC lag length

full

10 20 30 40
0

0.005

0.01

0.015
tech. to surprise

10 20 30 40
0

0.005

0.01

0.015
output to surprise

10 20 30 40
−5

0

5

10
x 10−3 tech. to news

10 20 30 40
0

0.002

0.004

0.006

0.008

0.01
output to news

RBC

10 20 30 40
0

0.005

0.01

0.015
tech. to surprise

10 20 30 40
0

0.005

0.01

0.015

0.02
output to surprise

10 20 30 40
−5

0

5

10
x 10−3 tech. to news

10 20 30 40
−5

0

5

10
x 10−3 output to news

Note: dashed VAR (8) as in Sims (2012), dashed and dotted BIC lag order,
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Appendix A: Proofs

Proposition 5.

Proof. Let xt be an n-dimensional stationary vector. Consider the pro-

jection

xt = A
(p)
1 xt−1 + · · ·+ A(p)

p xt−p + v
(p)
t

and

xt = A
(p+1)
1 xt−1 + · · ·+ A(p+1)

p xt−p + A
(p+1)
p+1 xt−p−1 + v

(p+1)
t . (A1)

Let ξt be the residual of the projection of xt−p−1 on xt−1, · · · , xt−p.
Then (A1) can be rewritten as

xt = proj(xt|xt−1, . . . , xt−p−1) + v
(p+1)
t

= proj(xt|xt−1, . . . , xt−p, ξt) + v
(p+1)
t

= proj(xt|xt−1, . . . , xt−p) + proj(xt|ξt) + v
(p+1)
t

= A
(p)
1 xt−1 + . . .+ A(p)

p xt−p + proj(xt|ξt) + v
(p+1)
t

Therefore

v
(p)
t = proj(xt|ξt) + v

(p+1)
t . (A2)

Because v
(p+1)
t ⊥ ξt,

cov(v
(p)
t ) = cov(v

(p+1)
t ) + S, (A3)

where S is non-negative de�nite. From (A2) and (A3)

cov(v
(p)
t − v

(p+1)
t ) = cov(v

(p)
t )− cov(v

(p+1)
t ) = S.

In this sense, v
(p)
t decreases with p. Now suppose that

xt = ut +B1ut−1 + · · · = B(L)ut

not necessarily fundamental. Consider

v
(p)
t − ut = [I − A(p)

1 L− . . .− A(p)
p Lp]B(L)ut − ut

= [ut + C1ut−1 + . . .]− ut
= C(L)ut − ut
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We have cov(C(L)ut, ut) = cov(ut). Therefore

cov(v
(p)
t − ut) = cov(v

(p)
t )− cov(ut)

so that cov(v
(p)
t − ut) decreases as well. �

Proposition 6.

Proof. We have that γ (z, z) := (z − z1) (z − z2) . . . (z − znm) = det (I − Fmz)

By multiplying and dividing G (z) by det (I − Fmz):

G (z) = γ (z, z)
(
Inyγ (z, z)− Cmadj (Inm − Fmz)BmD

−1z
)−1

whose zeros are exactly those of γ (z, z) because there is no �nite z such

that Inyγ (z, z)−Cmadj (Inm − Fmz)BmD
−1z is equal to in�nity. This,

together with the results on minimal systems in Franchi and Paruolo

(2014), implies that the roots z1, z2, . . . , znm of the VMA representation

(4.1) are the reciprocals of the eigenvalues of Fm. Therefore, the matrix

required to �ip the roots in the unit disk of G (z) reduces to a product

of scalar polynomials �ipping the roots in the unit disk of γ (z, z):

G (L)ut = γ (L, z)
(
Iγ (L, z)− Cmadj

(
I − F̃mL

)
BmD

−1z
)−1 γ (L, z̃)

γ (L, z)

γ (L, z)

γ (L, z̃)
ut

where:

γ (z, z̃) = (z − z̃1) (z − z̃1) . . . (z − z̃nm)

replaces the roots zi with the roots z̃i. By construction,
(
I − F̃mz

)

with roots z̃i and determinant det
(
I − F̃mz

)
=
∏nm

i=1 (z − z̃i) is the

solution of this root �ipping problem:

G (L)ut = G̃ (L)
γ (L, z)

γ (L, z̃)
ut

= G̃ (L) vt

with the last representation being fundamental as all the roots z̃1, z̃1, . . . , z̃nm
lay outside the unit disk.

�
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Proposition 7.

Proof. From Proposition 6:

vt =
γ (L, z)

γ (L, z̃)
ut

=
nm∏

i=1

L− zi
L− z̃i

ut

=
nm∏

i=1

1 (|zi| < 1)
(L− zi)(
L− z̄−1i

)ut

which goes to ut as the roots in the disk go to 1 because

z̄−1k =
zk

|zk|2
→ zk

as |zk| → 1 for all |zk| < 1. �
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Appendix B: Sims (2012) - DSGE Equilibrium conditions

kt+1=

(
1− τ

2

(
It
It−1

)2)
Tt + (1− δ) kt (B1)

λt=
1

ct−γct−1
− βγEt 1

ct+1−γct (B2)

θnξt = λtwt (B3)

λt = βEtλt+1 (1 + it)
pt
pt+1

(B4)

µt = βEt (λt+1Rt+1 + (1− δ)µt+1) (B5)

χ
(
Mt+1

pt

)−ν
=
(

it
1+it

)
λt (B6)

λt = µt

(
1− τ

2

(
It
It−1
−∆I

)2
− τ

(
It
It−1

))
+βτEtµt+1

(
It+1

It
−∆I

)(
It+1

It

)2
(B7)

wt = mct (1− α) at

(
kt
nt

)α
(B8)

Rt = mct α at

(
kt
nt

)α−1
(B9)

p#t = ε
ε−1

∑∞
s=0(ϕβ)

s(mct+spεt+syt+s)∑∞
s=0(ϕβ)

s(pε−1
t+syt+s)

(B10)

it = ρit−1 + (1− ρ)ψπ (πt − π∗) + (1− ρ)ψy

(
yt
yt−1
−∆y

)
(B11)

1+πt =

(
(1− ϕ)

(
1 + π#

t

)1−ε
+ ϕ

) 1
1−ε

(B12)

vt = (1− ϕ)
(

1+π#
t

1+πt

)−ε
+ ϕ (1 + πt)

ε vt−1 (B13)

yt = ct + It (B14)
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Equations (B1) to (B7) solve the agent problem, (B8) to (B10) arise

from the production sector, (B11) is the Taylor rule, (B12) and (B13)

are market clearing conditions and (B14) is the resource constraint.

The only exogenous process is equation (6.1) for technology.

The RBC model is obtained by setting τ = γ = φ = 0 and ε = ∞.

Remaining parameters are set as (Sims, 2012, Table 1).


