
How Do So�ware Developers Identify Design Problems?
A �alitative Analysis

Leonardo Sousa1, Roberto Oliveira1, Alessandro Garcia1, Jaejoon Lee3,
Tayana Conte2, Willian Oizumi1, Rafael de Mello1, Adriana Lopes2,

Natasha Valentim2, Edson Oliveira2, Carlos Lucena1
1PUC-Rio, Rio de Janeiro, Brazil, 2UFAM, Manaus, Brazil, 3Lancaster University, Lancaster, UK

{lsousa, rfelicio, afgarcia, woizumi, rmaiani, lucena}@inf.puc-rio.br, {tayana, adriana, natashavalentim,
edson.cesar}@icomp.ufam.edu.br, j.lee3@lancaster.ac.uk

ABSTRACT
When a software design decision has a negative impact on one
or more quality attributes, we call it a design problem. For exam-
ple, the Fat Interface problem indicates that an interface exposes
non-cohesive services. Thus, clients and implementations of this
interface may have to handle with services that they are not inter-
ested. A design problem such as this hampers the extensibility and
maintainability of a software system. As illustrated by the exam-
ple, a single design problem often a�ects several elements in the
program. Despite its harmfulness, it is di�cult to identify a design
problem in a system. It is even more challenging to identify design
problems when the source code is the only available artifact. In
particular, no study has observed what strategy(ies) developers use
in practice to identify design problems when the design documen-
tation is unavailable. In order to address this gap, we conducted a
qualitative analysis on how developers identify design problems in
two di�erent scenarios: when they are either familiar (Scenario 1)
or unfamiliar (Scenario 2) with the analyzed systems. Developers
familiar with the systems applied a diverse set of strategies during
the identi�cation of each design problem. Some strategies were
frequently used to locate code elements for analysis, and other
strategies were frequently used to con�rm design problems in these
elements. Developers unfamiliar with the systems relied only on
the use of code smells along the task. Despite some di�erences
among the subjects from both scenarios, we noticed that develop-
ers often search for multiple indicators during the identi�cation of
each design problem.

CCS CONCEPTS
•Software and its engineering →Software design engineer-
ing;

KEYWORDS
design problem, software design, strategy, symptoms
ACM Reference format:
Leonardo Sousa1, Roberto Oliveira1, Alessandro Garcia1, Jaejoon Lee3,
Tayana Conte2, Willian Oizumi1, Rafael de Mello1, Adriana Lopes2,
Natasha Valentim2, Edson Oliveira2, Carlos Lucena1
. 2017. How Do Software Developers Identify Design Problems?. In Proceed-
ings of 31st Brazilian Symposium on Software Engineering, Fortaleza, Ceará,
Brazil, September 2017 (XXXI SBES), 10 pages.

XXXI SBES, Fortaleza, Ceará, Brazil
2017. 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Software design is a fundamental concern during the software
development process [7, 12]. Indeed, 25% of discussions in commits,
issues and pull requests are about design [2]. Such concern is
explained by the fact that design decisions made by developers
have an in�uence on many properties of the software systems, such
as maintainability, robustness, comprehensibility, performance, and
the like. When a software design decision has a negative impact on
quality attributes, we call it a design problem [1, 5, 30]. An example
of design problem is the Fat Interface [17]. This problem occurs
when an interface o�ers a general entry point for several non-
cohesive services, complicating the logic of its clients. In addition
to a�ecting the system extensibility, a design problem such as
this hampers software comprehensibility since developers have to
understand several services rather than one [17].

Design problems might be so harmful that software systems
have been discontinued or reengineered due to their prevalence
[10, 13, 24, 32]. In fact, a recent study [25] showed that the design
is one of the most common categories of technical debt that leads
to the rejection of pull requests. Given the harmfulness of design
problems, developers should remove them from software systems
as early as possible [9, 24, 36]. However, their identi�cation is
not a trivial task [5, 29]. One of the reasons is that developers
often have to identify design problems in the source code since
design documentation is almost always nonexistent, informal or
not up-to-date [11, 30].

As developers often have to use the source code to identify design
problems, they need to locate a structure (e.g. a set of classes or
methods) in which symptoms of the design problem can be observed.
A symptom is a partial sign or indication of the presence of a design
problem. In the Fat Interface example, the interface, its clients and
their implementing classes represent the structures a�ected by the
design problem. In this example, symptoms include the number of
services exposed by the interface as wells as their lack of cohesion.

Such code structures and symptoms are not always straightfor-
ward to locate in the program, especially when developers have
limited or no familiarity with the source code. Thus, developers
need to use a strategy to identify design problems in the imple-
mentation. In our context, an identi�cation strategy refers to an
action that the developer does and that contributes to identify a
design problem. For instance, a strategy can consist of the analysis

XXXI SBES, September 2017, Fortaleza, Ceará, Brazil L. Sousa et al.

of services exposed by the interface in order to reveal one of the
symptoms of a Fat Interface.

Unfortunately, we know little about how developers actually
identify design problems in the source code. To the best of our
knowledge, we did not �nd any other study that investigated how
developers identify design problems. In general, the existing studies
[5, 14–16, 20, 21, 29, 33, 34] propose solutions that will help develop-
ers to identify design problems. We highlight that before proposing
solutions that will help developers to identify design problems, �rst,
we need to understand how they conduct the identi�cation task
in practice. By understanding this task, researchers will be able
to build mechanisms that are most suitable in helping developers
during the identi�cation of design problems.

As no study has observed how developers identify design prob-
lems in practice, we conducted a study to observe what strategy(ies)
developers use to identify design problems as well as how and when
they use these strategies. In particular, we also investigated whether
the developers’ familiarity with the target systems in�uences on
the use of these strategies. For this purpose, we observed how
developers identify design problems in two scenarios. In the �rst
one, developers are familiar with the systems, and in the second
one, they are unfamiliar with the systems. Our analysis resulted in
some �ndings:

• In general, developers used multiple strategies to identify
design problems. In this study, they used six preeminent
strategies. These strategies are described in Section 4.1.

• Some strategies were most frequently used to locate ele-
ments that may contain a design problem. Other strategies
were most frequently used to con�rm whether the frag-
ment contains or not a design problem.

• Developers familiar with the target systems applied and
combined the strategies, in which each strategy was likely
to provide one or more symptoms for a design problem.
Thus, they tend to search for multiple symptoms before
con�rming the occurrence of a design problem.

• Developers unfamiliar with the systems relied only on one
type of strategy, but still they managed to use the strategy
to reveal multiple symptoms for each design problem.

• Indeed, we noticed that developers search for multiple
symptoms that can indicate a design problem. This be-
havior happened regardless the familiarity with the target
systems.

The remainder of this paper is organized as follow. Section 2
presents the background. Section 3 describes the settings of our
study. Section 4 summarizes the main results. Sections 5 and Section
6 present related work and threats to validity, respectively. Finally,
Section 7 concludes the paper.

2 BACKGROUND
Software design is the result of a series of decisions made during the
software development [28]. It is expected that these decisions con-
tribute to creating software systems that are maintainable, robust,
secure, and the like. However, along the way, design problems can
be injected into software systems. A design problem occurs when
a design fragment negatively impacts software quality attributes.
Design fragment is a part of the software design that represents

either a design decision or a relevant concept for the system design.
As design problems have negative consequences, they are often
targets of signi�cant maintenance e�ort [9, 24, 36].

In general, design problems a�ect interfaces, components, hierar-
chies or even other abstractions that are relevant to the design. An
example of design problem is the Cyclic Dependency [22]. This de-
sign problem happens when two or more elements depend on each
other directly or indirectly. When there are long dependency cycles
among the elements, the system might end up at a stage where
these cycle dependencies compromise the understandability, testa-
bility, reusability and maintainability of the software systems [22].
Also, Cyclic Dependency can cause deadlock [4], which negatively
a�ect the system performance and availability. Other examples of
design problems include Scattered Concern [9], Ambiguous Interface
[9] and Fat Interface [17].

We call problem identi�cation the task of �nding a design
fragment that contains a design problem. In the implementation,
the structure of a design fragment comprises the code elements that
form the fragment. In the identi�cation task, developers identify
design problems in the counterpart structure realizing the relevant
design fragment in the program. Although little is known about
how developers identify design problems, this task requires at least
two basic steps, named location and con�rmation. Location com-
prises the process of �nding a structure in the implementation that
may embody a design problem. In the con�rmation step, develop-
ers con�rm or refute the existence of a design problem in those
rei�cations of design fragments in the implementation.

Some characteristics of the problem identi�cation make the task
challenging. To start, systems tend to be large in size and complex-
ity, increasing the search space for design problems. Second, each
design problem usually pervades the implementation of several ele-
ments [9, 20]. Thus, developers need to analyze several elements to
identify a single design problem [29]. Third, design documentation
is often nonexistent, informal or not up-to-date. Thus, the source
code is the only artifact available for the developers identify design
problems in most cases.

To perform each one of the identi�cation steps, developers can
apply di�erent strategies. In our context, an identi�cation strategy
refers to an action that an developer does, and it contributes to
identifying a design problem. For instance, a strategy can be the
prioritization of a speci�c type of element that could be most likely
to have a design problem. Another strategy can be the presence
of code smells to con�rm a design problem. These strategies can
be used to reveal symptoms of design problems. Symptom is a
sign that a fragment may contain a design problem. In the case
of the presence of code smells, for example, a smell itself can be a
symptom of a design problem [6].

3 STUDY PLANNING
This section presents the study design reported in this paper.

3.1 Research Questions
In order to understand how developers identify design problems,
we conducted a series of experiments. In these experiments, we
observed the actions that developers perform to �nding a design
fragment that contains a design problem. Before analyzing the

How Do So�ware Developers Identify Design Problems? XXXI SBES, September 2017, Fortaleza, Ceará, Brazil

actions performed by developers, we �rst need to identify what
are these actions. In other words, we need to identify what are the
strategies that developers use to identify design problems. RQ1
addresses this matter:

RQ1. What are the strategies that developers use to identify
design problems?

After revealing the strategies, we need to verify how developers
applied these strategies. Thus, we investigated how developers
use the strategies to identify design problems in two scenarios:
when developers are either familiar (Scenario 1) or unfamiliar
(Scenario 2) with the analyzed systems. The following RQs address
this investigation:

RQ2. How do developers identify design problems in familiar
systems?

RQ3. How do developers identify design problems in unfa-
miliar systems?

Both scenarios were used to answer RQ1, while each scenarios
was used to answer RQ2 and RQ3, respectively. In order to support
the answering for these RQs, we applied a qualitative analysis using
some Ground Theory (GT) procedures [27] (Section 3.4). Upon this
qualitative analysis, we can understand how developers identify
design problems, for instance, we can �nd out the strategies that
developers use (RQ1) and how they apply these strategies to identify
design problems (RQ2 and RQ3).

3.2 Studied Scenarios and Subjects
In the following, we explain in detail the two scenarios (Scenario 1
and Scenario 2) as well as the procedure to recruit subjects for the
study.

1) Developers familiar with the system
In the Scenario 1, we searched for software companies that could

provide developers to our study. We de�ned the following criteria
to select the companies: experience of their developers, size in
terms of number of developers in a project, application domain of
their projects, and development process. We de�ned these criteria
in order to promote some variation while selecting companies from
our industrial collaboration network, thereby balancing contextual
diversity with convenience [23]. Based on these criteria, we chose
two Brazilian software companies.

After selecting the companies, we asked the companies’ man-
agers, some of them were software designers, to suggest speci�c
systems that met the following characteristics. Firstly, systems
in di�erent stages of design degradation. Secondly, systems from
di�erent domains and with di�erent sizes with respect to amount
of modules and developers. Thirdly, projects that are not in their
initial versions. Lastly, systems developed in Java. As each selected
company has to provide software systems, we selected Java projects
given the popularity of the Jjava programming language [3, 26].
Thus, it would be easier to keep the consistency among the provided
systems: all of them implemented in the same program language.
The selected programs are described as follows.

• Company 1: Program 1 (P1) supports the management of
registry o�ces for audit and control from the Justice Court
of Brazil. Program 2 (P2) is a computational solution for
maintaining information on the patients’ health status, and

their medical records. Program 3 (P3) is a system developed
to trace products from a production line.

• Company 2: Program 4 (P4) is a legacy system to process
tax and to control the entrance of products from the state of
Amazonas. Program 5 (P5) was developed for standardizing
budget in the same state.

Full details about the companies and the programs are available
in our online material [18]. After providing us with the programs,
we asked the companies’ managers to indicate developers that were
familiar with each program and could act as subjects of the study.

2) Developers unfamiliar with the system

In the Scenario 2, we selected two programs that represent com-
ponents of the Apache OODT project. Then, we recruited develop-
ers, who were unfamiliar with OODT, to identify design problems
in those programs. We selected Apache OODT programs because
they have a well-de�ned set of design problems previously identi-
�ed by OODT developers who actually implemented the systems.
The programs are:

• Push Pull (P6): it is the OODT component responsible
for downloading remote content (pull) or accepting the
delivery of remote content (push) to a local staging area.

• Work�ow Manager (P7): it is a component that is part
of the OODT client-server system. It is responsible for
describing, executing, and monitoring work�ows.

After selecting the programs, we had to select developers to
participate as subjects in the study. We could have used the �ve
subjects from the �rst scenario. However, they already have to
identify design problems in the system that they are familiar (Sce-
nario 1). Thus, we have to selected other subjects to comprise the
Scenario 2. Then, we sent a questionnaire to several developers
from our network in order to select developers who could be el-
igible for the study. We selected subjects who had at least four
years of experience with software development and maintenance.
We have chosen four years because this is the average time that
companies like Yahoo [35] and Twitter [31] consider to developers
as experienced, and four years was the least experience time of one
of the subjects in the �rst scenario. Also, we selected subjects who
were unfamiliar with the OODT project. Further details about the
recruitment process are available on our online material [18].

Table 1 presents the characterization of all our subjects. First
column indicates the identi�cation number of the subject, second
column has the experience on software development in years, third
column has education level and fourth column indicates the system
that the subject had to identify design problems. The �rst �ve
subjects in the Table 1 were assigned to identify design problems in
their own systems, while the other subjects had to identify design
problems in the system with which they were no familiar.

3.3 Study Activities
The study was composed by three activities: Training, Problem
identi�cation and Follow-up questionnaire.

Activity 1: Training. In this activity, we conducted a training
for all the subjects regarding software design and design problems.
We also presented some examples of design problems pertaining
to di�erent categories (Section 2). The following design problems

XXXI SBES, September 2017, Fortaleza, Ceará, Brazil L. Sousa et al.

Table 1: Characterization of the subjects

ID Experience(years) Education System Scenario
S1 13 Graduate P1

1
S2 4 Graduate P2
S3 10 Master P3
S4 9 Graduate P4
S5 12 Graduate P5
S6 5 PhD P6

2

S7 6 Graduate P7
S8 8 Master P7
S9 4 Graduate P7
S10 5 Master P6
S11 5 Graduate P6
S12 12 Graduate P7
S13 5 Graduate P6
S14 10 Graduate P7
S15 4 PhD P7
S16 5 PhD P6

were included in the training session: Ambiguous Interface, Un-
wanted Dependency, Component Overload, Cyclic Dependency, Scat-
tered Concern, Fat Interface, and Unused Abstraction. We selected
these design problems together with the project managers, who
suspected that these represented common cases of design problems
in their projects. However, we let clear to the subjects that they
were allowed to identify other types of design problems. In fact,
they identi�ed a wide range of other design problems that were
relevant to their projects (Section 4.1). The training was organized
in two parts: the �rst one (approx. 25 minutes long) was used for a
Powerpoint-based presentation; the second one (approx. 15 minutes
long) was devoted to discussion and questions, if necessary.

After the training, subjects received some artifacts that could
be used during the experiment. They received a list with a brief
description of the types of design problems presented in the train-
ing session. They also received a list with the description of basic
principles of object-oriented programming and design. Subjects
unfamiliar with the systems received a document containing: (i)
a brief description of P6 and P7 systems, and (ii) a very high level
description of their design blueprint. We gave these documents
because when they have to maintain unfamiliar systems, they need
to have some minimal information about the systems to be main-
tained. We used the same document provided in the OODT project.
The design blueprint represented the high-level design in the view
of the project managers, but it was not detailed enough to support
the identi�cation of design problems.

Subjects had access to mechanism to reveal a wide range of
symptoms. For instance, they received a list of code smells a�ecting
the systems. We provided the list of code smells because previous
studies suggest that code smells can be used as indicators of design
problems [14–16, 21]. We used well-known metrics-based strategies
to identify 15 types of code smells from Fowler’s Catalog [6]. We
highlight that subjects were free to use or not these code smells. In
the same way, they were free to use information from other artifacts
too. The provided artifacts are available in our online material [18].

Activity 2: Problem identi�cation. In this task, we asked
subjects to identify design problems, and to report their �ndings
in an online form [18]. They had 45 minutes to perform this task.
At the beginning of this activity, we asked them to explain aloud
what they were doing while we video recorded the task. In this
way, we could combine the form answers with the video recording
to complement the qualitative analysis. Camtasia1 tool was used to
record audio and screenshots of each computer used by the subjects.
A video camera was installed in the room to also record them.

Activity 3: Follow-up questionnaire. Developers were asked
to answer a questionnaire about their general perception on the
identi�cation of design problems. The questionnaire used in the
activity is available in our online material [18]. The answers were
also used to complement the qualitative analysis.

3.4 Data Analysis and Oracle Creation
Data Analysis. The qualitative data analysis was based on the pro-
cedures of Grounded Theory (GT) suggested by Strauss and Corbin
[27]. The procedures comprise three phases: open coding (1st phase),
axial coding (2nd phase) and selective coding (3rd phase). Open
coding involves the breakdown, analysis, comparison, conceptual-
ization, and the categorization of the data. Axial coding examines
the relations between the identi�ed categories. Finally, selective
coding performs all the process re�nements by identifying the core
category to which all others are related. When analyzing the data,
we created codes for the developers’ speeches (1st phase). After,
these codes were related to each other through axial coding (2nd
phase). We did not apply the selective coding since we were not
aiming to reach a theoretical saturation, as expected in GT method
[27]. Therefore, we decided to postpone the selective coding phase.
For this reason, we do not claim that we applied the GT method,
only some speci�c procedures.

We did the open coding to associate codes with quotations of
transcripts, and we did the axial coding, at which the codes were
merged and grouped into more abstract categories. For each tran-
script, the codes and identi�ed networks (memos showing the rela-
tionships in the categories) were reviewed, analyzed and changed
upon agreement with the others researchers.

Oracle Creation. For each one of the analyzed systems, we
had to validate the identi�ed design problems as true positives or
false positive. However, we could not argue that a design problem
was correct or not since we were not involved with the design of
each system. Thus, we relied on the knowledge of the systems’
original designers and developers to help us in validating the design
problems. We certi�ed they were the people who had the deepest
knowledge of the design of the investigated projects. We highlight
that designers and developers used to validate the oracle list were
not subjects of the experiment.

For the systems used in the �rst scenario (P1 to P5), we analyzed
each subject’s answer, and we asked developers and designers (not
the same developers that participated in the experiment) to vali-
date the answers. If developers or designers have agreed with the
subject’s answer we marked the identi�ed problem as true positive,
then we added the design problem to the oracle. Otherwise, we put
the design problem to re-validation. In the re-validation process,

1Camtasia is available at www.techsmith.com/camtasia.html

How Do So�ware Developers Identify Design Problems? XXXI SBES, September 2017, Fortaleza, Ceará, Brazil

we invited the subjects to discuss each design problem in the re-
validation in order to establish the �nal list of true positives and
false positives. The validation process was conducted by both the
�rst and second authors to avoid bias in the validation.

For the systems used in the second scenario (P6 and P7), we asked
original designers and developers of these systems to provide us a
list of design problems a�ecting the systems. Then, we identi�ed
some design problems using a suite of design recovery tools [8].
We asked developers of the systems to validate and combine our
additional design problems with their list. The procedure for the
additional identi�cation was the following: (i) an initial list of
design problems was identi�ed using detection strategies presented
in [14], (ii) the developers had to con�rm, refute or expand the list,
(iii) the developers provided a brief explanation of the relevance of
each design problem, and (iv) when we suspected there was still
inaccuracies in the list of design problems, we discussed with them.
In the end, we had the oracle of design problems validated by the
original designers and developers.

4 RESULTS AND ANALYSIS
The subjects familiar with the systems (Scenario 1) identi�ed 39
design problems, in which 31 were validated as true positives ac-
cording to the oracle (Section 3.4). The subjects unfamiliar with the
systems (Scenario 2) identi�ed 31 design problems, in which 17 was
validated as true positives. In the total, the subjects identi�ed 70
instances of design problems. This section discusses these results.

4.1 Strategies to Identify Design Problems
In this subsection, we address the RQ1: What are the strategies
that developers use to identify design problems? After the qualita-
tive analysis (Section 3.4), we noticed that the subjects used six
preeminent strategies: smell-based, problem-based, principle-
based element-based, quality attribute-based, and pattern-
based. They are described as follow. Due to the con�dentiality
with the companies, we changed each name of code elements to a
letter.

Smell-based strategy is the strategy in which the subjects use
the code smells to identify design problem. As mentioned by other
studies [14–16], developers can use smells as an symptom of design
problems. However, it was interesting to observe that this strategy
was used di�erently in each scenario. Its degree of success on
identifying design problems also varied (Section 4.2).

The subjects familiar with the systems mainly used the smell-
based strategy to con�rm the existence of a design problem. They
marked a candidate fragment as having a design problem whenever
they were analyzing a candidate fragment, and they noticed that
the fragment had a code smell. We also observed that developers
familiar with the systems explored some types of code smells that
were not in the provided initial list. For example, they explored
the number of switch statements in methods (Switch Statements
smell) when they were analyzing certain classes. Similarly, they
mentioned that some classes have similar code snippets (Duplicate
Code smell). As an example, S4 subject identi�ed a God Class smell
even though the instance of the smell was not in the provided list.
After �nding the smell, the S4 subject con�rmed the occurrence of
a design problem in the class:

“It is not its responsibility to print on screen (...) It accesses the database, and
it shows (the data) on the screen (...) This class deviates from its function
that turns the class in a God Class”

In addition to using code smells to con�rm the existence of design
problems, the subjects unfamiliar with systems also used the smell-
based strategy to search for candidate fragments. As they were
unfamiliar with analyzed systems, they used the presence of code
smells to guide them towards a candidate fragment. After �nding
a fragment, they used other code smells a�ecting the fragment to
con�rm the design problem.

Principle-based strategy is the strategy that the subjects used
design principles [17] (e.g. open-closed principle and information
hiding) to identify design problems. This strategy was only used by
the subjects of the Scenario 1, and it was mainly used to con�rm if
an fragment under analysis has a design problem. In this case, they
marked a candidate fragment as having a design problem when they
noticed that a class under analysis was violating a design principle.
This case happened with S5 subject:
“The a�ected element is the A class, this class has a problem because it
accesses the database and attributes of other class directly (...) besides, this
class violates the interface segregation principle”

Problem-based strategy is the strategy in which the subjects
searched for occurrences of a speci�c type of design problem they
already had in their mind in the source code. We classify that a sub-
ject used the problem-based strategy when he explicitly mentions
he is looking for a speci�c type of design problem across the system.
Only the subjects of Scenario 1 used this strategy. We observed
that they tended to focus on searching for design problems related
to interfaces and components (realized as packages in the source
code). For instance, Fat Interface [17] and Component Overload [21]
were problems that developers identi�ed with high frequency. On
the other hand, we did not observe developers looking for problems
related to abstract concepts, such as Delegating Abstraction [21] and
Unused Abstraction [21]. The following example illustrates the case
that the S2 subject sought for Cyclic Dependency design problem:
“Well, I am now thinking about a particular candidate of cyclic dependency...
I suspect this is located in this package”

Element-based strategy is the strategy in which the subjects
selected speci�c code elements to investigate if it is a�ected by
a design problem. They do not necessarily reason about speci�c
types of design problems, but they look for any sort of indication
(e.g. frequent modi�cations) in those elements that may signal the
manifestation of a design problem. In this strategy, the subjects
focused their reasoning on code elements – such as core classes,
interfaces, and hierarchies – that represent key design abstractions
in the program. Given the relevance of such elements to the system,
developers knew these elements could form structures realizing a
design problem in the implementation. Thus, they directly started
inspecting these code elements and reasoning about symptoms in
those elements. Only the subjects of Scenario 1 used this strategy,
as it probably requires familiarity with the system design.

Developers often knew already which code elements they should
analyze �rst. Interestingly, most of these cases were classes: we
expected developers would also analyze often interfaces and pack-
ages given their relative importance to the design. However, such

XXXI SBES, September 2017, Fortaleza, Ceará, Brazil L. Sousa et al.

elements were rarely analyzed. Moreover, there were a few cases
in which they had to determine a criterion to choose such elements
explicitly. For example, one of the subjects chose a class based on
the number and nature of variables and methods located in the class.
Another subject decided to limit the search to classes within speci�c
subsystems. He picked a subsystem that was visibly large regarding
the number of classes. The same subject also suggested restricting
the search to a generic subsystem. All class that did not belong
to any other speci�c subsystem were created in or moved to this
subsystem. In the following quotation, we illustrate an example of
how the element-based strategy was used by subjects of Scenario 1.
At the beginning of the task, the S1 subject was trying to determine
which elements he should analyze, and then he decided to prioritize
the analysis of classes in large subsystems. After that, he browsed
a few classes until selecting one:
“Let’s open the source code. We should start analyzing big subsystems... I
know which one, let’s start by the X subsystem. We already �xed a design
problem in X subsystem, but it still might have more problems (...) I suspect
this class contributes to a design problem”

Quality attribute-based strategy is the strategy where the
subjects reasoned about quality attributes that are negatively af-
fected by certain design fragments. They reasoned how a program
structure, which realizes a design fragment, explicitly hinders one
or more quality attributes. Again, they did not necessarily reason
about speci�c types of code smells or design problems. The subjects
used this strategy when they were analyzing a candidate design
fragment, and they noticed that the counterpart implementation of
the fragment impacted one or more quality attributes. Thus, the
subjects reasoned about quality attributes as consequences of a de-
sign problem a�ecting a fragment. The most cited quality attribute
was maintainability. However, subjects also mentioned �exibility,
readability, adaptability, performance, security, and robustness.

Only the subjects of Scenario 1 used this strategy. We present
below an example of a subject (S1) who reasoned about the com-
plexity and reusability of a structure to con�rm the occurrence
of a design problem. In this case, he was investigating the use of
Adapters in the system, but without con�rming if the class has a
design problem or not. Then he used the quality attribute-based
strategy to reveal additional symptoms related to a possible design
problem. Thus, he used the consequence that the design problem
causes on the reusability to con�rm the design problem. We present
part of the quotation as follows.
“It (the implementation structure) increases the complexity and reduces the
reuse (...) It has not been reused at all, and that is the problem. Look at the
number of adapters that are associated with this class as compared to the
number of adapters in the other parts of the system”

Pattern-based strategy is the strategy that subjects searched
for instances of a design or architectural pattern in the source code
and verify if their implementation violates the pattern rules. This
strategy was frequently used both to locate candidate design frag-
ments and to con�rm the existence of design problems. In this
strategy, developers analyzed code structures potentially violating
a pattern rule. Whenever developers could con�rm the violation,
they marked the fragment as having a design problem. Subjects dis-
cussed a wide range of patterns, including Adapter, Builder, Facade,
SOA and MVC.

Even though only the subjects of Scenario 1 used the pattern-
based strategy, it was the most successful one (Section 4.2). Maybe
the reason of using this strategy has to do with their familiarity
with the systems. Even though the aforementioned patterns are
well known and used across di�erent system domains, developers
had to know how these patterns were particularly instantiated in
di�erent contexts of their systems. As an example, in the previous
quotation, the S1 subject was investigating classes realizing the
Adapter pattern. Before con�rming the design problem, he used
�rst the pattern-based strategy to identify classes that could be
violating the Adapter pattern. Another example happened with S5
subject. He was analyzing a group of classes when he noticed that
a class in the MVC pattern was illegally accessing the database:

“Class A is the a�ected structure. This class is problematic because it accesses
the database directly. In other words, it has a design problem because it is
not following the MVC pattern”

As aforementioned, we did not know which strategies developers
use to identify design problems. The observation and characteri-
zation of all the six frequently used strategies enable us to answer
RQ1. This answer leads us to our �rst �nding:

Finding 1. Developers often use multiple strategies to identify
design problems

4.2 Problem Identi�cation in Familiar Systems
In this subsection, we address RQ2: How do developers identify
design problems in familiar systems?

Di�erent strategies for each identi�cation step. As men-
tioned in Section 2, the identi�cation of design problems can be
composed by two steps at least. Figure 1 shows each step and the
strategies most frequently used in the step. The location step is rep-
resented by a blue square, the con�rmation step is represented by a
red square, and the strategies are represented by green squares (the
dotted arrows are explained latter). We noticed that in most cases,
the subjects of Scenario 1 used element-based and problem-based
strategies to locate candidate fragments for further analysis. On
the other hand, smell-based, principle-based and quality attribute-
based strategies were used to con�rm if the candidate fragments
were indeed a�ected by design problems. Finally, the pattern-based
strategy was used both to locate candidate fragments and to con�rm
design problems.

We also noticed that the subjects tended to combine the strategies.
For instance, whenever the subjects were looking for violations
of a design or architectural pattern (pattern-based strategy) to de-
tect candidate fragments, they did not only rely on the violation
itself to support the con�rmation of a design problem. They often
con�rmed the existence of a design problem when they noticed
other symptoms, e.g., the structure of the candidate fragment was
either explicitly a�ecting a quality attribute (quality attribute-based
strategy) or hosting one or more code smells (smell-based strategy).
These combinations happened because a fragment may contain
several symptoms that indicate design problems. For instance, if
a fragment violates a pattern, it is likely that the fragment also
contains smells and violations of design principles. Consequently,
these symptoms may in�uence the quality attributes negatively.

How Do So�ware Developers Identify Design Problems? XXXI SBES, September 2017, Fortaleza, Ceará, Brazil

Figure 1: Strategies frequently used in each identi�cation
step

Figure 1 shows how the symptoms, revealed by each strategy, re-
late to other symptoms. The dotted arrows indicate the type of
in�uence among the strategies.

Single vs. combined strategies. We noticed that developers
combined these strategies to �nd complementary symptoms of a
design problem in the candidate fragment. The symptoms can be
complementary in the sense that each symptom adds a piece of
information that will help subjects to decide if there is a design
problem in the fragment. For example, in the quotation that il-
lustrated the quality attribute-based strategy (Section 4.1), the S1
subject combined the pattern-based and quality attribute-based
strategies. First, he used the pattern-based strategy to identify
classes that could be violating the Adapter pattern. After that, he
used the quality attribute-based strategy to reason through the
consequences that the design problem caused on reusability. In this
case, the both symptoms (overuse of Adapters and the negative ef-
fect on reusability) complemented each other to indicate the design
problem.

The subjects also combined more than two strategies to identify
a single design problem. Table 2 provides an overview on the use
of the strategies to identify design problems. The �rst column
indicates the strategy or combination of strategies that the subjects
used to identify design problems. The second column indicates
how many times the strategy or combinations of strategies led
to a design problem. We used the oracle (Section 3.4) to validate
the design problems as true positives (inside of the parentheses
in the second column). The third column indicates the design
problems found when the subject used the strategies. We obtained
the values of the second column after applying some GT procedures
(Section 3.4). During the data analysis, we count each strategy
that the subjects used and led to the identi�ed design problem.
For instance, whenever a subject identi�ed a design problem, we
analyzed all the actions that he did since the �rst time that he
mentions a symptom (associated with a particular strategy) until
the moment he con�rms the design problem. If one of these actions
consisted of a strategy usage (e.g., the subjects reasoned about a
design pattern), then we counted that the strategy contributed to
identifying a design problem.

We can see in Table 2 that the subjects using only one strategy
identi�ed 12 design problems (9 true positives). However, when

Table 2: Design problems identi�ed by the strategies

Strategies Instances Design Problems Subjects

Element 6 (4) STC, UWD, CPO,
CCO, ICA

S1, S2,
S5

Pattern 2 (2) UWD, DLA S1, S5
Problem 4 (3) AMI, FTI, CCD S2
Element, Pattern 6 (5) UWD, CPO S1, S5
Element, Principle 3 (1) UWD, AMI, CPO S4, S5
Element, Problem 1 (1) FTI S2
Element, Quality attribute 1 (1) ICA S1
Problem, Quality attribute 3 (3) FTI, CCO S3
Problem, Smell 1 (1) FTI S2
Element, Problem, Smell 1 (1) FTI S2
Element, Pattern, Smell 2 (2) UWD S5
Element, Quality attribute,
Pattern 2 (2) UWD, CCO S1, S3

Element, Quality attribute,
Smell 1 (1) CCO S4

Element, Principle, Pattern,
Smell 2 (2) UWD, MPC S1, S5

Element, Principle, Quality
attributes, Pattern 1 (1) CCO S5

Element, Problem,
Quality attribute, Pattern 1 (0) UWD S3

Principle, Quality attribute,
Pattern, Smell 2 (1) UWD, CCO S4

AMI = Ambiguous Interface, CCD = Cyclic Dependency, CCO = Concern
Overload, CCP = Component Overload, DLA = Delegating Abstraction,
FTI = Fat Interface, ICA = Incomplete Abstraction, MPC = Misplaced
Concern, UWD = Unwanted Dependency, STC = Scattered Concern

they combined multiple strategies, they identi�ed 27 design prob-
lems (21 true positives). Some of the design problems were not
presented in the training session (Section 3.3), but developers were
able to identify them. The description of each one of the identi�ed
design problems is available in our online material [18]. This result
demonstrates that subjects, who are familiar with the systems, can
identify more design problems when they combine multiple strate-
gies than when they use only one strategy. The prevailing behavior
of combining di�erent strategies in Scenario 1 also suggests that
the identi�cation of design problems might be more complex than
one can expect. In fact, the subjects often need to rely on various
strategies to locate (and con�rm) a single fragment that contains a
design problem. This behavior leads us to the second �nding:

Finding 2. Developers familiar with the systems often combine
strategies to identify a single design problem

Most Successful Strategy. We noticed that sometimes the sub-
jects used a strategy which did not lead to any design problem.
For instance, the S4 subject used the problem-based strategy to
locate a candidate fragment to analyze; however, he realized that
the fragment did not have a design problem. Then, he decided to
analyze a speci�c interface by following the element-based strategy.
During the analysis, he found instances of the smell Long Parame-
ter List in the interface methods (smell-based strategy). Thus, he
con�rmed a design problem in the interface. In this example, the
problem-based strategy did not lead to the design problem because
the problem was in a di�erent element. Based on this situation, we

XXXI SBES, September 2017, Fortaleza, Ceará, Brazil L. Sousa et al.

Table 3: Percentage of success of each strategy

Strategy No. of times
applied

No. of
contributions

Percentage
of success

Pattern-based 23 19 82.61%
Quality attribute-based 19 15 78.95%
Element-based 40 31 77.50%
Smell-based 11 6 54.55%
Problem-based 22 8 36.36%
Principle-based 14 4 28.57%

counted how many times a strategy was applied, and how many
times the strategy leaded to a design problem. We used these values
to compute the percentage of success of each strategy.

Table 3 presents the percentage of success of each strategy. The
�rst column indicates the name of the strategy, while the second
column the number of times that the strategy was applied. The
third column shows the number of occasions that a strategy led
to the problem identi�cation. Finally, the last column indicates
the percentage of success. We calculated this value dividing the
third column by the second column. Even though the element-
based strategy was the most frequently used (40 times), the pattern-
based strategy was the most successful. However, element-based
and quality attribute-based strategies were quite close in terms
of success. Surprisingly, the smell-based strategy was the less
frequently used (11 times), and amongst the ones that was less
successful in Scenario 1.

4.3 Problem Identi�cation in Unfamiliar
Systems

In this subsection, we answer the RQ3: How do developers identify
design problems in unfamiliar systems?

Smells as predominant strategy. Di�erent from the subjects
of Scenario 1, the subjects of Scenario 2 did not use all the six
strategies. Actually, it was quite the opposite. They only explicitly
used the smell-based strategy. We observed that the subjects of
Scenario 2 had strictly to rely only on code smells given their lack
of familiarity with the systems. There were some design problems,
such as Cyclic Dependency and Fat Interface [17], that we thought
the subjects did not have to be familiar with the systems to identify
them. For theses design problems, they could have applied the
problem-based strategy or element-based strategy for their identi�-
cation. They could have used other strategies in conjunction with
the smell-based strategy. However, we did not �nd any tangible
evidence that the subjects used another strategy. Their lack of deep
knowledge about the criticality of the code elements was mentioned
as the reason for not using other strategies.

Same strategy for each identi�cation step. We noticed that
the subjects of Scenario 2 used code smells to locate candidate
fragments and also to con�rm a design problem. After using the
smells to guide them towards a candidate fragment, they used the
presence of code smells to con�rm the design problem. We also
noticed that the subjects of Scenario 2 had to reason about more
than one code smell to con�rm a design problem. The subjects of
Scenario 1 usually con�rmed a design problem after �nding a single
code smell. On the other hand, the subjects of Scenario 2 tended to
follow on searching for other smells in the same fragment. If they

found a code smell in the source code, they searched for more code
smells instead of con�rming a design problem in the fragment as
the subjects of Scenario 1 did. In fact, most the subjects of Scenario
2 analyzed almost all the code smells within a fragment.

Smell groups as complementary symptoms of a design
problem. We observed that the subjects had to compensate the
inability of using other strategies by exploring, even more, the code
smells. For instance, some subjects of the Scenario 2 used the num-
ber of code smells in fragments to prioritize possible candidates.
Thus, instead of using a problem-based or element-based strategy
to locate a candidate fragment, they chose to inspect elements that
contained several code smells. That was the approach followed
by the S14 subject. When we asked him why he used the number
of code smells to prioritize the analysis, he gave us the following
answer:
“In my opinion, the main challenge to identify design problems was to
�lter out what fragments are most important to analyze. There is a lot of
information to consider, thereby inducing you to identify design problems
wrongly. I considered useful to analyze the (design) problems that seemed
to me graver or more important. I considered as being grave those design
fragments that concentrated more code smells.”

The S14 subject was not the only one that considered multiple
code smells a�ecting the same fragment. As previously mentioned,
some subjects reasoned about more than one code smell to identify
a design problem. We noticed that some subjects analyzed code
smells as a group instead of a unit. For instance, the S12 subject
reasoned about the concomitant occurrence of God Classes and
Shotgun Surgery to locate and con�rm instances of Scattered Concern
design problem. Figure 2 divides the subjects unfamiliar with the
systems in two categories: subjects who grouped the code smells
and subjects who did not group. In addition, it presents the results
of precision, and in parentheses the number of design problems
correctly identi�ed by each subject. We noticed that the subjects
who grouped code smells had a better result than the subjects who
considered the code smells as units. As we can see in Figure 2, the
subjects who grouped code smells identi�ed more code smells than
the subjects that did not group the code smells.

The subjects of the Scenario 1 used multiple strategies to get
di�erent symptoms of a single design problem. We noticed that
developers of Scenario 2, especially those who grouped the smells,
followed a similar behavior. However, instead of using multiple
strategies, they used multiple code smells. In the case of subjects
who grouped the smells, they used each instance of the code smell
as a symptom of a single design problem. Thus, if an element had
several code smells, they assumed that each smell was a symptom
of a design problem. This result leads us to the third �nding:

Finding 3. Developers unfamiliar with the systems use multi-
ple code smells as symptoms of a single design problem

4.4 Identifying Complementary Symptoms
If developers cannot �nd enough symptoms that indicate a design
problem, they might not be able to identify the problem. That was
one of the reasons why the subjects of Scenario 1 fell short when
they tried to use the smell-based strategy in the same way that
subjects of Scenario 2 used it. In other words, they were unable to
use the code smells to both locate candidate fragments and con�rm

How Do So�ware Developers Identify Design Problems? XXXI SBES, September 2017, Fortaleza, Ceará, Brazil

Figure 2: Precision of the subjects from the Scenario 1

the design problem. We noticed that after �nding a candidate
fragment using the smell-based strategy, the subjects of Scenario
1 dropped the analysis instead of further reasoning about other
smells in the same fragment. Whenever this behavior happened,
they did not succeed to use code smells to identify design problems
in the target fragments.

When the subjects of Scenario 2 did not �nd enough symptoms,
they also could not identify design problems. That was one of the
reasons why some subjects in Figure 2 did not identify any design
problem. They could not identify design problems because a code
smell often represented only a partial hint of the design problem.
These subjects were not able to use the code smells to both locate
candidate fragments and con�rm the problem.

These cases show that developers usually need to �nd multiple
symptoms in the source code in order to identify a design problem.
Indeed, we noticed that they often search for multiple symptoms
in the source code, and such behavior is regardless their familiarity
with the systems. For example, when the subjects used multiple
strategies in Scenario 1, they are considering multiple symptoms
that indicate a design problem. Also, when they combined the
strategies, they had multiple indicators that the design fragment
contained a design problem. Similarly, when the subjects of Sce-
nario 2 analyzed multiple code smells, they were searching for
multiple symptoms, in which each smell is a symptom to indicate a
design problem. This result leads us to our last �nding, which is a
generalization of �ndings 2 and 3:

Finding 4. Developers search complementary symptoms in
the source code that indicate a single design problem

5 RELATEDWORK
To the best of our knowledge, we did not �nd any other investiga-
tion on how developers identify design. In general, studies assess if
some technique or tool can indicate a design problem. For instance,
Mo et al. [19] proposed the detection of recurring design problems
by the combination of structural, history and design information.
Xiao et al. [34] introduced a solution – based on a history coupling
probability matrix - to identify and quantify design problems. The
proposed solution uses 4 patterns of design �aws that show the

correlation between design problems and reduced software qual-
ity. The aforementioned techniques depend on design information,
which may not exist for many software systems.

Vidal et al. [33] presented and evaluated criteria for prioritizing
groups of code smells that are likely to indicate design problems
in evolving systems. In the context of their work, they focused
on architectural design problems. [33] and our �ndings indicate
the importance of investigating the concomitant use of multiple
instances of code smells as stronger indicators of design problems.
However, as already mentioned, we go beyond by presenting other
strategies not based in code smells to identify design problems.

Oizumi et al. [21] investigated to what extent code smells could
“�ock together” to realize a design problem. These code smells
that �ock together and are related to each other composed what
they authors called agglomeration. After analyzing more than
2200 agglomerations of code smells from seven software systems
with di�erent sizes and from di�erent domains, the researchers
concluded that certain forms of agglomerations are consistent in-
dicators of design problems. Although we also have investigated
multiple instances of code smells as indicators of design problems,
our �ndings are more grounded on the in-depth observation of
the developers’ behavior than in quantitative results of retrospec-
tive studies. Moreover, similar results found on both studies helps
to strength evidence that developers often reason about multiple
symptoms to identify design problems in the implementation.

6 THREATS TO VALIDITY
Construct validity. We highlight the provided artifacts as threat
to construct validity. For instance, the list of code smells may
have in�uence subjects unfamiliar with systems to rely only on the
smells. However, they were free to use or not each one the artifacts.
We provide these artifacts because when they have to maintain
systems, they need to have some minimal support to conduct the
task. Even being a threat, the artifacts were useful to identify
other characteristics that would not be noticed if these artifacts
have not been provided. For instance, we notice that subjects of
Scenario 2 grouped code smells to have a stronger indicator of
design problems. Moreover, they combined the instances of code
smells with the similar goal that subjects of Scenario 1 did when
they combined the strategies. The goal was to identifying more
symptoms. Another threat regarding this matter was the provided
smells came from Fowler’s catalog. Those are smells related to
maintainability. However, this threat did not have much e�ect on
the results since some subjects identi�ed design problems related
to other quality attributes as performance and robustness. In fact,
the subjects even used a strategy that is based on quality attributes.

Internal Validity. We considered as threats to the internal
validity: (i) di�erent knowledge levels of subjects, and (ii) total time
used for the experiment. To mitigate the �rst threat, all subjects
underwent the training sessions. This procedure aimed to resolve
any gaps in knowledge or con�icts about main concepts used in
the study. Regarding the second threat, we conducted a pilot phase
to adjust the time required to perform the identi�cation tasks.

External Validity. The number of companies and developers
represent threats to external validity. In order to mitigate this
threat, we selected systems from di�erent domains, di�erent stage

XXXI SBES, September 2017, Fortaleza, Ceará, Brazil L. Sousa et al.

of degradation, and subjects that met a set of requirements. A
second threat is related to the �rst author to introduce bias during
the data analysis. First author’s beliefs may cause some distortions
when he interpreted the data. Data analysis was performed along
with the other paper’s authors to mitigate this threat. The other
authors reviewed and analyzed all the intermediate results.

Conclusion Validity. This threat concerns the relation be-
tween treatment and outcome. We tried to mitigate it by combining
data from di�erent resources: quantitative and qualitative data ob-
tained with videos, and questionnaires. We believe data collection
and analysis were properly built to answer our questions

7 CONCLUDING REMARKS
We investigated how developers identify design problems, and we
noticed six preeminent strategies that they used. The subjects of
Scenario 1 combined multiple strategies to have di�erent symptoms
of design problems. Although the subjects of Scenario 2 had used
only one strategy, they managed to use it in a similar way to those
subjects who were familiar with the analyzed systems. That is,
instead of using multiple strategies, the subjects of Scenario 2 used
multiple code smells, in which each smell was likely to be a relevant
symptom towards the identi�cation of a design problem.

Our results indicate that developers search for several symp-
toms (e.g., several smells) to identify design problems regardless
their familiarity with the systems. This �nding may suggest that
researchers should investigate how to o�er �exible mechanisms
for developers who wish to combine multiple strategies for iden-
tifying a design problem. For instance, a developer could select
a subset of strategies, and the underlying mechanisms could: (i)
automatically apply these multiple strategies, and (ii) rank the code
elements that most likely to contain design problems. The ranking
algorithm could be based on the number of symptoms detected
with the selected strategies. Thus, as future work, we intend to
investigate how to automate the combination of the six strategies.
A summary of symptoms detected by the hybrid strategies could be
presented to developers. Then, we can evaluate if developers can
indeed identify design problems based on the symptoms’ summary.

REFERENCES
[1] Holger Bär and Oliver Ciupke. 1998. Exploiting Design Heuristics for Automatic

Problem Detection. In Workshop Ion on Object-Oriented Technology (ECOOP ’98).
Springer-Verlag, London, UK, UK, 73–74.

[2] João Brunet, Gail C. Murphy, Ricardo Terra, Jorge Figueiredo, and Dalton Serey.
2014. Do Developers Discuss Design?. In Proceedings of the 11th Working Confer-
ence on Mining Software Repositories (MSR 2014). New York, NY, USA, 340–343.

[3] Stephen Cass. 2016. The 2016 Top Programming Language. (July 2016). http://
spectrum.ieee.org/computing/software/the-2016-top-programming-languages

[4] Xi Chen, Abhijit Davare, Harry Hsieh, Alberto Sangiovanni-Vincentelli, and
Yosinori Watanabe. 2005. Simulation Based Deadlock Analysis for System Level
Designs. In Proceedings of the 42Nd Annual Design Automation Conference (DAC
’05). ACM, New York, NY, USA, 260–265. https://doi.org/10.1145/1065579.1065647

[5] O. Ciupke. 1999. Automatic detection of design problems in object-oriented
reengineering. In Proceedings of Technology of Object-Oriented Languages and
Systems - TOOLS 30 (Cat. No.PR00278). 18–32.

[6] M Fowler. 1999. Refactoring: Improving the Design of Existing Code. Addison-
Wesley Professional, Boston.

[7] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design
Patterns: Elements of Reusable Object-oriented Software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

[8] J Garcia, I Ivkovic, and N Medvidovic. 2013. A Comparative Analysis of Soft-
ware Architecture Recovery Techniques. In Proceedings of the 28th IEEE/ACM
International Conference on Automated Software Engineering; Palo Alto, USA.

[9] J Garcia, D Popescu, G Edwards, and N Medvidovic. 2009. Identifying Architec-
tural Bad Smells. In CSMR09; Kaiserslautern, Germany. IEEE.

[10] M Godfrey and E Lee. 2000. Secrets from the Monster: Extracting Mozilla’s
Software Architecture. In CoSET-00; Limerick, Ireland. 15–23.

[11] P. Kaminski. 2007. Reforming Software Design Documentation. In 14th Working
Conference on Reverse Engineering (WCRE 2007). 277–280.

[12] Craig Larman. 2004. Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and Iterative Development (3rd Edition). Prentice
Hall PTR, Upper Saddle River, NJ, USA.

[13] A MacCormack, J Rusnak, and C Baldwin. 2006. Exploring the Structure of
Complex Software Designs: An Empirical Study of Open Source and Proprietary
Code. Manage. Sci. 52, 7 (2006), 1015–1030.

[14] I. Macia, R. Arcoverde, E. Cirilo, A. Garcia, and A. von Staa. 2012. Supporting the
identi�cation of architecturally-relevant code anomalies. In ICSM12. 662–665.

[15] I. Macia, R. Arcoverde, A. Garcia, C. Chavez, and A. von Staa. 2012. On the Rele-
vance of Code Anomalies for Identifying Architecture Degradation Symptoms.
In CSMR12. 277–286.

[16] Isela Macia, Joshua Garcia, Daniel Popescu, Alessandro Garcia, Nenad Medvi-
dovic, and Arndt von Staa. 2012. Are Automatically-detected Code Anomalies
Relevant to Architectural Modularity?: An Exploratory Analysis of Evolving
Systems. In AOSD ’12. ACM, New York, NY, USA, 167–178.

[17] Robert C. Martin and Micah Martin. 2006. Agile Principles, Patterns, and Practices
in C# (Robert C. Martin). Prentice Hall PTR, Upper Saddle River, NJ, USA.

[18] Complementar Material. 2017. https://ssousaleo.github.io/SBES2017/. (2017).
[19] Ran Mo, Yuanfang Cai, R. Kazman, and Lu Xiao. 2015. Hotspot Patterns: The

Formal De�nition and Automatic Detection of Architecture Smells. In Software
Architecture (WICSA), 2015 12th Working IEEE/IFIP Conference on. 51–60.

[20] N Moha, Y Gueheneuc, L Duchien, and A Le Meur. 2010. DECOR: A Method for
the Speci�cation and Detection of Code and Design Smells. IEEE Transaction on
Software Engineering 36 (2010), 20–36.

[21] W Oizumi, A Garcia, L Sousa, B Cafeo, and Y Zhao. 2016. Code Anomalies
Flock Together: Exploring Code Anomaly Agglomerations for Locating Design
Problems. In The 38th International Conference on Software Engineering; USA.

[22] David L. Parnas. 1978. Designing Software for Ease of Extension and Contraction.
In Proceedings of the 3rd International Conference on Software Engineering (ICSE
’78). IEEE Press, Piscataway, NJ, USA, 264–277.

[23] Per Runeson, Martin Host, Austen Rainer, and Bjorn Regnell. 2012. Case Study
Research in Software Engineering: Guidelines and Examples. Wiley Publishing.

[24] S Schach, B Jin, D Wright, G Heller, and A O�utt. 2002. Maintainability of the
Linux kernel. Software, IEE Proceedings - 149, 1 (2002), 18–23.

[25] Marcelino Campos Oliveira Silva, Marco Tulio Valente, and Ricardo Terra. 2016.
Does Technical Debt Lead to the Rejection of Pull Requests?. In Proceedings of
the 12th Brazilian Symposium on Information Systems (SBSI ’16). 248–254.

[26] TIOBE software. 2017. The Java Programming Language. (April 2017). https:
//www.tiobe.com/tiobe-index/java/

[27] A. Strauss and J.M. Corbin. 1998. Basics of Qualitative Research: Techniques and
Procedures for Developing Grounded Theory. SAGE Publications.

[28] Antony Tang, Aldeida Aleti, Janet Burge, and Hans van Vliet. 2010. What makes
software design e�ective? Design Studies 31, 6 (2010), 614 – 640. Special Issue
Studying Professional Software Design.

[29] A. Trifu and R. Marinescu. 2005. Diagnosing design problems in object oriented
systems. In WCRE’05. 10 pp.

[30] Adrian Trifu and Urs Reupke. 2007. Towards Automated Restructuring of Object
Oriented Systems. In CSMR ’07. IEEE, Washington, DC, USA, 39–48.

[31] Twitter. 2017. Working at Twitter. (April 2017). Available at https://about.twitter.
com/careers.

[32] J van Gurp and J Bosch. 2002. Design erosion: problems and causes. Journal of
Systems and Software 61, 2 (2002), 105 – 119.

[33] S. Vidal, E. Guimaraes, W. Oizumi, A. Garcia, A. D. Pace, and C. Marcos. 2016.
Identifying Architectural Problems through Prioritization of Code Smells. In
SBCARS16. 41–50.

[34] Lu Xiao, Yuanfang Cai, Rick Kazman, Ran Mo, and Qiong Feng. 2016. Identifying
and Quantifying Architectural Debt. In Proceedings of the 38th International
Conference on Software Engineering (ICSE ’16). ACM, New York, NY, USA, 488–
498. https://doi.org/10.1145/2884781.2884822

[35] Yahoo! 2017. Explore Career Opportunities. (April 2017). Available at https:
//careers.yahoo.com/us/buildyourcareer.

[36] A Yamashita and L Moonen. 2012. Do code smells re�ect important maintain-
ability aspects?. In ICSM12. 306–315.

http://spectrum.ieee.org/computing/software/the-2016-top-programming-languages
http://spectrum.ieee.org/computing/software/the-2016-top-programming-languages
https://doi.org/10.1145/1065579.1065647
https://ssousaleo.github.io/SBES2017/
https://www.tiobe.com/tiobe-index/java/
https://www.tiobe.com/tiobe-index/java/
https://about.twitter.com/careers
https://about.twitter.com/careers
https://doi.org/10.1145/2884781.2884822
https://careers.yahoo.com/us/buildyourcareer
https://careers.yahoo.com/us/buildyourcareer

	Abstract
	1 Introduction
	2 Background
	3 Study Planning
	3.1 Research Questions
	3.2 Studied Scenarios and Subjects
	3.3 Study Activities
	3.4 Data Analysis and Oracle Creation

	4 Results and Analysis
	4.1 Strategies to Identify Design Problems
	4.2 Problem Identification in Familiar Systems
	4.3 Problem Identification in Unfamiliar Systems
	4.4 Identifying Complementary Symptoms

	5 Related Work
	6 Threats to Validity
	7 Concluding Remarks
	References

