Synthesizing Samples for Zero-shot Learning

LJCAI Anonymous Submission 2625

Abstract

Zero-shot learning (ZSL) is to construct recogni-
tion models for unseen target classes that have no
labeled samples for training. It utilizes the class
attributes or semantic vectors as side information
and transfers supervision information from related
source classes with abundant labeled samples. Ex-
isting ZSL approaches adopt an intermediary em-
bedding space to measure the similarity between a
sample and the attributes of a target class to perfor-
m zero-shot classification. However, this way may
suffer from the information loss caused by the em-
bedding process and the similarity measure cannot
fully make use of the data distribution. In this pa-
per, we propose a novel approach which turns the
ZSL problem into a conventional supervised learn-
ing problem by synthesizing samples for the unseen
classes. Firstly, the probability distribution of an
unseen class is estimated by using the knowledge
from seen classes and the class attributes. Sec-
ondly, the samples are synthesized based on the
distribution for the unseen class. Finally, we can
train any supervised classifiers based on the syn-
thesized samples. Extensive experiments on bench-
marks demonstrate the superiority of the proposed
approach to the state-of-the-art ZSL approaches.

1 Introduction

Recent years have witnessed the tremendous progress of sev-
eral machine learning and computer vision tasks, such as ob-
jectrecognition, scene understanding, and fine-grained classi-
fication, together with the development of deep learning tech-
niques [Krizhevsky er al., 2012; He e al., 2016]. Tt should
be noticed that the learning scheme of them requires suffi-
cient labeled samples for model training, like ImageNet [Rus-
sakovsky er al., 2015]. This is affordable when dealing with
common objects. However, the objects “in the wild” follow a
long-tailed distribution such that the uncommon ones do not
occur frequently enough, and the new concepts emerge ev-
eryday especially in the Web, which makes it difficult and ex-
pensive to collect and label a sufficiently large training set for
model learning [Changpinyo et al., 2016]. How to train effec-
tive classification models for the uncommon classes without
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Figure 1: Framework of embedding based ZSL approaches.

using the labeled samples becomes an important and practi-
cal problem and has gathered considerable research interests
from the machine learning and computer vision communities.
It is estimated that humans can recognize approximate
30,000 basic object categories and many more subordi-
nate ones and they are able to identify new classes given
an attribute description [Lampert et al., 2014]. Based on
this observation, many zero-shot learning (ZSL) approach-
es have been proposed [Akata et al., 2015; Al-Halah et al.,
2016; Romera-Paredes and Torr, 2015; Zhang and Saligrama,
2016al. The goal of ZSL is to build classifiers for target un-
seen classes given no labeled samples, with class attributes
as side information and fully labeled source seen classes as
knowledge source. Different from many supervised learn-
ing approaches which treat each class independently, ZSL
associates classes with an intermediary attribute or seman-
tic space and then transfers knowledge from the source seen
classes to the target unseen classes based on the associa-
tion. In this way, only the attribute vector of a target (un-
seen) class is required and the classification model can be
built even without any labeled samples for this class. In
particular, an embedding function is learned using the la-
beled samples of source seen classes that maps the images
and classes into a common embedding space where the dis-
tance or similarity between them can be measured. Because
the attributes are shared by both source and target class-
es, the embedding function learned by source classes can
be directly applied to target classes [Farhadi er al., 2009;
Socher et al., 2013]. Finally, given a test image, we map it
into the embedding space and measure its distance to each
target class and return the class with the minimal distance.
An illustration of this ZSL framework is shown in Figure 1.
In reality, given the description of a new unseen object,
humans can always imagine and picture some exemplar im-
ages of the target object with the help of the knowledge in-
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Figure 2: The proposed data synthesizing based ZSL.

duced from the other seen objects, and then utilize them as
supervision to guide the future classification [Miller et al.,
2000]. Inspired by this observation, we propose a novel ZS-
L framework based on data synthesis, as shown in Figure 2,
which is totally different from existing embedding based ap-
proaches. Intuitively, the embedding based ZSL can be re-
garded as learning how to recognize the characteristics of an
image and match them to a class. On the contrary, our frame-
work can be described as learning what a class visually looks
like. In particular, the proposed framework has two explic-
it advantages over the embedding based framework. First-
ly, the embedding based framework has to map the test im-
age into an embedding space. It should be noticed that the
embedding step may bring in information loss such that the
overall performance of the system degrades [Fu et al., 2014;
Zhang and Saligrama, 2016b; Lazaridou et al., 2015]. The
proposed framework classifies a test image in the original
space, which can avoid this problem. Secondly, the super-
vised learning techniques has been developed rapidly in re-
cent decades but it is not clear how to combine the embedding
based framework with most of them. In the proposed frame-
work, labeled samples for the target classes are synthesized.
In this way, we turn the ZSL problem into a conventional su-
pervised learning problem such that we can take advantage of
the power of supervised learning techniques in the ZSL task.
In particular, we synthesize samples for each target class by
probability sampling. Given the labeled samples from source
classes, the conditional probability p(x|c) for each source
class c is computed. Then by using the association between
the source classes’ attributes and target classes’ attributes, we
estimate the conditional probability for each target class by
a linear reconstruction method. Next, based on the distribu-
tion, some samples are synthesized. At last, any classification
model can be learned in a conventional supervised way with
the synthesized samples. The contributions of this paper are:
1. We propose a novel ZSL framework based on data syn-
thesis. By synthesizing samples for each target class, we can
turn the ZSL problem into a conventional supervised learning
problem such that we can make use of many powerful tools
and avoid the information loss from the embedding process.
2. Based on the structure of class attributes and image fea-
tures, we adopt a simple linear reconstruction method to es-
timate the conditional probability for each target class and
then the samples are synthesized based on the distribution.
We empirically demonstrate that the synthesized samples can
well approximate the true characteristics of the target classes.
To our best knowledge, this is the first work to estimate the
conditional probability in the image feature space for ZSL.
3. Comprehensive experimental evidence on four bench-
mark datasets demonstrates that the proposed approach can
consistently outperform the state-of-the-art ZSL approaches.

2 Preliminaries and Related Works

2.1 Problem Definition and Notations

The definition of zero-shot learning is as follows. We are giv-
en a set of source classes C* = {cf,...,c}_} and n labeled
source samples D* = {(x},y7), ..., (X}, ,y;,.)} for training,

where x; € R? is the feature vector and y§ € {0,1}*
is the corresponding label vector which has y;; = 1 if the
sample ¢ belongs to class ¢; or 0 otherwise. We are given
some target samples D' = {x{, ..., x!, } from k; target class-
esCt = {cf, ..., ¢}, } satisfying C*NC* = (). The goal of ZSL
is to build classification models which can predict the label
c(xt) given x! with no labeled training data for target class-
es available. To associate source classes and target classes to
facilitate knowledge transfer, for each class ¢; € C* UCt, we
assign a class attribute representation a; € R? to it which can
be constructed from manual definition or the word2vec tool.

2.2 Related Works

As introduced before, most of the existing ZSL approaches
follow the embedding based framework illustrated in Figure
1. Formally, based on the problem definition and notations
above, the classification methods of the previous approaches
can be summarized into the general function as follows:

c(x) = argmaxcectsim(d)(xt), Y(ae)) 1)

where ¢ is the embedding function for images, v is the em-
bedding function for classes, and sim(-,-) is a similarity or
distance measure function between the embedded images and
classes. Existing ZSL approaches differ from each other due
to different choices of these functions. For example, Lampert
et al. [2014] adopted linear classifiers, identity function, and
Euclidean distance respectively. Romera-Paredes and Tor-
r [2015] used linear projection, identity function and inner
product similarity. Fu er al. [2015] propose to use a deep
model DeViSE [Frome e al., 2013] for image projection and
measure the similarity using the semantic manifold distance
obtained from absorbing Markov chain process. Zhang and
Saligrama [2016a] utilized the unit-ball constrained projec-
tion, simplex constrained projection, and aligned inner prod-
uct similarity. Some approaches have more complicated for-
mulation. But we can also simplify them into the general
function. For example, the formulation of Changpinyo et
al. [2016] can be simplified as the combination of the linear
projection by virtual classifiers, exponential transformation,
and inner product similarity. Recently many ZSL approach-
es have been proposed [Akata et al., 2015; Xian et al., 2016;
Bucher et al., 2016; Fu and Sigal, 2016]. Because of space
limit, we cannot review all of them in detail. But they mostly
follow the general function above. To learn these functions,
the labeled source samples are used to maximize the function:

(¢,9) = argmaxy ) > sim($(x)), ¥(ann) (@)

Moreover, because the embedding process may lead to crit-
ical problems and the distributions of target classes are not
effectively described, such as the domain shift problem [Fu
et al., 2014] and hubness problem [Lazaridou er al., 2015],
many transductive ZSL approaches are proposed which make
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Figure 3: t-SNE visualization of samples from AwA and aPY
datasets. Points with the same color belong to the same class.

use of the unlabeled target samples to better capture the tar-
get class structure [Kodirov et al., 2015; Guo et al., 2016;
Zhang and Saligrama, 2016b]. However, we need to empha-
size here that our work focuses on the inductive ZSL setting
where no samples in target classes are available at all.

Data synthesis is an effective method to deal with the lack
of training data, such as in the learning from imbalanced data
problem [He and Garcia, 2009] and few-shot learning prob-
lem [Miller et al., 2000; Kwitt et al., 2016]. However, how
to apply it to the zero-shot scenario is still a problem. Yu
and Aloimonos [2010] made attempt to synthesize data for
ZSL using the Author-Topic model [Rosen-Zvi et al., 2010].
However, it should be noticed that their approach can only
deal with discrete attributes and discrete visual features like
bag-of-visual-word feature. In most of the recent ZSL set-
tings, which are more practical in real world, the attributes
and the visual features usually have continuous values, like
the word2vec based attributes and the deep learning based
visual features. Obviously, it is unclear and difficult, if not
impossible, to apply their approach to these settings, while
our approach is capable of handling these practical scenarios.

3 The Propose Approach

3.1 Distribution Estimation by Reconstruction

Because of the lack of labeled samples, it is challenging to
train classifiers for target classes in a conventional supervised
way. To address this problem, we propose to synthesize some
samples for each target class. In particular, for each target
class, we wish to estimate its conditional probability p(x|c)
and then it is easy to synthesize samples from it by simple
probability sampling. However, if we have no prior about the
data distribution, the estimation will be somehow difficult.
Therefore, we first briefly investigate the distribution of data.

It is demonstrated that the pre-trained convolutional neu-
ral network is a very powerful image feature extractor [Don-
ahue et al., 2014]. Therefore, we choose the VGG-19 net-
work [Simonyan and Zisserman, 2014] and use the fc7 layer
outputs as the image feature, which is a 4,096-dimensional
vector. We use the t-SNE [Van der Maaten and Hinton, 2008]
to visualize the features of some classes from Animal with
Attributes (AwA) [Lampert et al., 2014] and aPascal-aYahoo
(aPY) [Farhadi et al., 2009], as shown in Figure 3. Here, it
can be observed that the samples from the same class rough-
ly form a cluster. Based on the observation, it is reasonable
to assume a Gaussian distribution for each target class, i.e.,
p(x|e) ~ N (u., X.). For source classes, the mean vector u..
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Figure 4: The numbers next to lines are the similarity between
classes. The numbers in the brackets are the weights to esti-
mate the parameters. In the left subfigure, only the similarity
is considered such that two different target classes may have
the same estimated distribution. In the right subfigure, the
problem is solved since the structure of classes is considered.

and the covariance matrix 3. can be easily obtained from its
labeled samples. However, for a target class, we have no more
than the attribute vector a’, and thus it is not that straightfor-
ward to estimate the parameters like the source classes.
There is a saying, “one takes the behavior of one’s compa-
ny.” In fact, this idea has been widely accepted by machine
learning and computer vision communities. In the image clas-
sification task, it is always believed that similar images (short
distance between their features) are more likely to belong to
the same class, which is the underlying assumption of kNN
classifier [Altman, 1992]. Analogously, in the class level,
this idea seems reasonable too, indicating that similar classes
should have similar properties, like the probability distribu-
tion. Fortunately, the similarity between classes can be mea-
sured by their attributes. One simple way to measure the sim-

ilarity between a target class ¢! and any source class i is:

llat — a3

—2) 3)

where € is the mean value of the distances between attribute
vectors of any two source classes. With the similarity, it is
straightforward to estimate the distribution parameters for c':

1 ks 1 ks
Ut = ; Z Sjucjff, Z}Cn = ; Zj:1 szc-;f (4)

j=1

s; = exp( -

where z = ) ; §; is a normalization parameter. In this way,
the distribution parameters for a target class can approximate-
ly estimated from the information of the source classes’.
However, only considering the similarity seems too sim-
ple to well capture the properties of classes. As illustrated
in Figure 4(a), because two target classes ¢} and ¢} have the
same distance to source classes c¢] and c3, they obtain the
same parameters by Eq. (4) even if they are different. In fact,
the relative structure of the classes should be also taken into
account. To address this issue, we propose a reconstruction
method to estimate the parameters. In particular, suppose the
parameters are estimated with w; as the the weights as below:

1 ks 1 ks
Ut = — E Wiles, Ect = — E
z =1 - z ]

J= J=

L Wides ()

To preserve the structure, we hope the weights are constructed
such that a.¢ ~ % Zj wjaj. To find the optimal weights, it is



reasonable to minimize the following reconstruction error:
min |lag — Aw|2 + R(w,), s.t. w; =1 6
w; || ct Hz"’ ( J)v Zj J (6)

where A = [af,...,a] ] and R is a regularization term. Ob-
viously, without proper regularization, solving the problem
may assign large weights to dissimilar classes. As discussed
above, we hope the similar classes have more impact on the
target class. Therefore, following the locality constrained re-
construction [Wang et al., 2010], we further incorporate the
similarity s; as a regularization to the weights as follows:

min [|a. — Aw||2 + X w;/8;, S.t. w; =1 (7
nin | 134D wifsis st 30 wi=1 (D

Where A is a trade-off parameter. Obviously, for dissimilar
class with small s;, minimizing the function will assign small
weight w;. The solution to the above problem is given by:

w = ((A—1al.)(A—1al.) +diag(s1, ..., 5x.)) "' /2 (8)

where z = ) ;j w; is the normalization factor. Moreover,
we can take one step further to remove the influence of dis-
similar source classes on the target class. In particular, we
do not need to use all source classes for reconstruction. In-
stead, we only need the k-nearest neighbors (k < k) of ¢!
in C*, denoted as N. In this way, the matrix A is reduced to
Ann = [aj]jen;, and we now just solve the subproblem to
obtain weights w; (j € N}) and simply set w; = 0(j ¢ N).
Then with the reconstruction based weights, the probability
distribution parameters of ¢! can be constructed by Eq. (5).
There is one issue worth discussing about. The covari-
ance matrix contains a large number of parameters. For ex-
ample, when using the 4, 096-dimensional deep feature, the
matrix has about 16 million elements. Therefore, the esti-
mation of it will be complicated and very imprecise if we
use the whole matrix without any constraint. Here we con-
sider two convenient simplifications. The first is to assume
3. = oI which is the simplest approximation. In fact,
Socher et al. [2013] also assumed the isotropic Gaussian to
prevent overfitting the target class. In this way, we only need
to estimate the parameter o for each class. The second is to
assume X, = diag(oc1, ..., 0cq) Where we only consider the
diagonal elements and the other elements are assumed to be
0. This is more complicated than the isotropic variance such
that it can better fit the data, but much simpler than the whole
variance with orders of magnitudes and thus it is more pre-
cise and less likely to overfit. In the experiment section, we
consistently use the second simplification for the matrix 3.

3.2 Classifier Training

For each target class ¢! € C?, we obtain the estimated condi-
tional probability distribution p(x|c’) ~ A (u.,X.). Then
we can perform random sampling with the distribution to syn-
thesize S samples for each target class, which leads to a la-
beled training set with k; x S synthesized samples for learn-
ing classifiers for target classes. In this way, we turn the ZSL
problem into a conventional supervised learning problem. In-
tuitively, any supervised classifiers can be used based on the
synthesized training set, such as kNN classifier, SVM, and L-
ogistic Regression. Moreover, some other techniques such as

boosting methods like AdaBoost and metric learning methods
can be also utilized. Compared to existing embedding based
ZSL approaches, it is more straightforward to combine our
approach with the supervised learning techniques such that
our approach can better take advantage of the power of them.

Here we can notice that our approach falls into the em-
bedding based framework in an extreme case. In particular,
if only one sample for each target class is synthesized and
we require it to be u.¢ and we use the 1NN classifier, it be-
comes a standard embedding and similarity measure proce-
dure, which is equivalent to the embedding based framework
if we regard the original image feature space as the embed-
ding space. However, in this way, the variance information is
not considered. In addition, because only one sample is syn-
thesized, it fails to provide sufficient variability, which is a
critical problem for the recognition task [Kwitt er al., 2016].

3.3 Discussion

Now we analyze the error bound of our approach. Denote
D®Y™ as the synthesized labeled samples for target classes,
and D! as the true samples of target classes. The true labeling
function is i (x) and the learned prediction function is f(x).
The distribution of D*¥™ is P,,,, and of Dt is P,. We define
the prediction error of f in D$Y™ and D? respectively as:

esyn(f) = Ex~p,,, [[R(x) = F(x)]] ©)
€t(f) = Ex~p,[In(x) = f(X)]] (10)

We can consider it as a domain adaptation problem [Ben-
David et al., 2006]. Following the Theorem 1 in [Ben-David
et al., 20061, suppose the hypothesis space 7{ containing f is
of VC-dimension d, then with probability at least 1 — 4, for
every f € H, the expected error €;(f) is bounded as follows:

2en

4 - 4
e(f) <€syn(f) + \/ﬁ (dlogT + logg) (11

+dH(DSyn,Dt) +p

where €, (f) is the empirical error of f in D", p =
infreylesyn(f) + €(f)], du(D5¥™, D) is the distribution
distance between D3Y™ and D¢, e is the base of natural loga-
rithm, and n = k;S is the number of synthesized samples.
Our goal is to minimize ¢;(f). In fact, training classifier
with D¥" is to minimize €, (f). For the second term, we
can notice that the embedding based case, as discussed above,
has n = k; x 1, while our approach has n = kS(S > 1)
indicating that our approach can generalize better, which is
consistent with the observation by Kwitt er al. [2016]. The
third term is very important. In fact, the distribution of D%Y"
is estimated by the structure of the class attributes. Therefore,
if we have high quality attributes that are capable of perfect-
ly preserving the structure of visual similarity among classes,
i.e., the attributes and the distribution parameters can be re-
constructed by the same weights, the distance between the
estimated distribution and the true distribution will be very
small, leading to small test error on true samples using the
synthesized samples trained classifier. Interestingly, this dis-
tance seems to be a good measure of attribute quality. In fact,



Table 1: The statistics of datasets.

| AWA | aPY | SUN | CUB

#source class 40 20 707 150
#source sample | 24,295 | 14,140 | 12,695 —
#target class 10 12 10 50
##target sample | 6,180 2,644 200 -
Fattributes 85 64 102 312

previous works have paid little attention to evaluate the qual-
ity of the attributes in a principled way. The only metric con-
sidered before is the test performance. However, since the la-
bels for test samples are not available, this is not feasible for
real-world applications. But with this term, we can use the
estimated and true distributions of source classes to compute
the distance to the measure the quality of attributes, which
can further guild the design and choice of the attributes.

4 Experiment

4.1 Datasets and Settings

In this paper, we adopt four benchmark datasets for ZSL. The
first is Animal with Attributes (AwA) [Lampert et al., 2014]
using a standard source-target split with 40 source classes
and 10 target classes. The second is aPascal-aYahoo [Farhadi
et al., 2009]. The aPascal subset has 20 objects from VOC
challenge and the aYahoo subset has related 12 objects col-
lected from Yahoo image search engine. Following the s-
tandard setting, the aPascal provides the source classes and
the aYahoo provides the target classes. The third is SUN
scene recognition dataset [Patterson and Hays, 2012] which
has 717 scenes like “airport” and “palace”. Following the s-
tandard setting [Jayaraman and Grauman, 2014], 707 scenes
are source classes and 10 scenes are target classes. The fourth
is Caltech-UCSD-Birds-200-2011 (CUB) [Wah et al., 2011]
which has 200 bird species. We follow the suggested split
by Akata er al. [2015] which uses 150 species as source
classes and 50 species as target classes. For each image,
we use the VGG-19 network pre-trained on ImageNet [Si-
monyan and Zisserman, 2014] as feature extractor follow-
ing Zhang and Saligrama [2016a]. Specifically, we use the
4, 096-dimensional output of the top fully-connected layer of
the network as the feature vector. For all datasets, we utilize
the attributes provided by the original datasets. The detailed
statistics of these four datasets are summarized in TABLE 1.
To determine the model parameters, we employ the class-
wise cross-validation method [Zhang and Saligrama, 2016a;
Guo er al., 2016]. In particular, we use the labeled source
classes to simulate the zero-shot setting by splitting them by
class into a training set and a validation set. We use 4-fold CV
in this paper. After obtaining the optimal parameters, we use
the whole training set to train the final model for evaluation.

4.2 Analysis

The quality of distribution estimation. We first investigate
one key issue of our approach. Specifically, we use the re-
lationship among class attributes to estimate the conditional
distribution of each target class. So, it is very important that
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Figure 5: Investigation on the quality of the synthesized sam-
ples. Truel and true2 denote the true samples from two tar-
get classes. Synl and syn2 stand for the synthesized samples
from the estimated distributions of the corresponding classes.
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Figure 6: Investigation on the influence of different classifiers
(SVM, LR, 1NN), different distribution estimation methods
(reconstruction using Eq. (5), simimlarity using Eq. (4)),
and the number of synthesized samples for each target class.

the estimated distribution can approximate the true distribu-
tion, or otherwise the classifiers trained with the synthesized
samples perform poorly for true samples. In Figure 5, we
use t-SNE to visualize the true samples from two target class-
es (denoted as truel and true2) and the synthesized samples
for these two classes respectively sampled from the estimated
distributions (denoted as synl and syn2) for AwA and aPY
datasets. It can be observed that the estimated distributions
can well approximate the true distributions, which demon-
strates that it is challenging but feasible to use class attributes
to estimate the data distribution for target classes and the pro-
posed reconstruction method can yield high quality estima-
tion results. The other datasets and classes also have similar
results, which builds a solid foundation for our approach.
The effect of estimation method. As discussed before,
one important step is to use similar source classes to estimate
the distribution of target classes. In Eq. (4), we directly adopt
the similarity as the estimation weight. In Figure 4 we illus-
trate that the similarity based method cannot well preserve the
structure of classes. To address this issue we propose to take
one more step and employ the reconstruction method based
on the similarity to learn the weights in Eq. (7). In Figure
6 we empirically evaluate the influence of these two estima-
tion methods, denoted briefly as “rec” for reconstruction and
“sim” for similarity. Obviously, we can notice that the recon-
struction based methods achieves higher accuracy than the
similarity based methods in almost all circumstance, which
demonstrates the superiority and rationality of the reconstruc-
tion based method and validates that the reconstruction based
method can better estimate the distribution of target classes.



Table 2: Zero-shot classification accuracy on four benchmark datasets.

Approach | Animal with Attributes | aPascal-aYahoo | SUN | Caltech-UCSD-Birds
Akata et al. 2015 55.7 50.1
Al-Halah er al. 2016 67.5 37.0
Bucher et al. 2016 77.32£1.03 53.15 £ 0.88 84.41+0.71 43.29 £ 0.38
Changpinyo et al. 2016 72.9 54.5
Fu et al. 2015 66.0
Guo et al. 2017 79.07 £ 0.58 43.59 £+ 0.42 83.04 £0.19
Kodirov et al. 2015 75.6 26.5 40.6
Lampert et al. 2014 57.23 38.16 72.00
Qiao et al. 2016 66.7 50.1
Romera-Paredes and Torr 2015 75.32 £2.28 24.22 +2.89 82.10 £ 0.32
Wang et al. 2016 82.43 46.24
Xian et al. 2016 76.1 47.4
Zhang and Saligrama 2015 76.72 4+ 0.83 42.90 £0.73 79.50 4+ 1.22 30.41+0.20
Zhang and Saligrama 2016a 79.12 +£0.53 50.35 £ 2.97 83.83 £0.29 41.78 £0.52
Ours | 84.67 +0.43 | 55.04+£0.81 | 85.00+0.50 | 56.75 + 0.29

The effect of classifiers. As an important property, our
approach turns the ZSL problem into the conventional super-
vised learning problem such that we can utilize any powerful
supervised tools. In this paper, we simply adopt three kinds
of classifiers, SVM, Logistic Regression (LR) and INN. We
evaluate their performance on AwA and aPY and the results
are shown in Figure 6. Typically, SVM performs better than
LR and 1NN especially when sufficient samples are synthe-
sized. In fact, there is still difference between the estimated
distribution and true distribution although the former can well
approximate the latter as shown in Figure 5. Fortunately, the
max-margin property of SVM seems to be to somehow robust
to the distribution gap. In the future, we plan to incorporate
some domain adaptation techniques [Pan and Yang, 2010] in
the transductive setting to further improve the performance.

The effect of the number of synthesized samples. We
further investigate the impact of the number of synthesized
samples for each target class, i.e., S, on the performance, as
shown in Figure 6. Generally, the performance gets better
with more synthesized samples at first since more information
and variability about the target classes are given [Kwitt et al.,
2016]. When sufficient samples are synthesized (S > 500),
the accuracy stops increasing given more samples finally.

4.3 Benchmark Comparison

Now we compare the proposed approach to the state-of-the-
art ZSL approaches on four benchmark datasets. Based on
the above analysis, we employ SVM as the classifier. For
each target class, 500 samples are synthesized using the re-
construction based distribution. The results are summarized
in Table 2. From the results, we can clearly observe the con-
sistently improvements upon the state-of-the-arts given by the
proposed approach, which demonstrates the effectiveness of
the sample synthesis idea for ZSL. In fact, our framework is
based on data synthesis and turns the ZSL problem into a con-
ventional supervised learning setting, which is totally differ-
ent from the embedding based framework adopted by most
ZSL approaches. The results validate the superiority of the
proposed framework to the embedding based framework.

Among all baselines, Zhang and Saligrama [2016a] adopts
the most joint embedding function, which achieves one of the
best results on AwA, aPY, and SUN. The approach of Chang-
pinyo et al. [2016] constructs the synthesized classifiers in
the image feature space, which is equivalent to using image
feature space as the embedding space, achieving best result in
baselines on CUB. However, it can be observed that they still
perform worse than our approach, which is another important
evidence for the superiority of the proposed approach.

Moreover, we observe that the proposed approach is even
better than some transductive approaches, like Kodirov et al.
[2015]. In the transductive setting, the unlabeled target sam-
ples are given such that it is easier to capture the properties
of target classes compared to the inductive setting where only
the attributes of the target classes are available. However, be-
cause an embedding is employed, the structure of data is not
well preserved. It demonstrates that the embedding step may
cause information loss such that the overall performance of
the system degrades. Without the embedding, our approach
directly synthesizes samples in the original feature space, pre-
venting it from this problem, and leading to better results.

5 Conclusion

In this paper, we propose a novel approach for ZSL. Dif-
ferent from previous embedding based framework, we pro-
pose to directly synthesize labeled samples for each target
class in the original image space, which turns the ZSL prob-
lem into a conventional ZSL problem. Specifically, the con-
ditional probability distribution for each target class is esti-
mated by linear reconstruction based on the structure of the
class attributes. Then the samples are synthesized by ran-
dom sampling with the distribution for each target class. Any
classifiers can be trained then with the synthesized samples,
making the proposed approach flexible for different situation-
s. We conduct comprehensive empirical analysis on several
benchmark datasets. The experimental results demonstrate
the superiority of the proposed approach to the state-of-the-
art ZSL approaches, which validates its effectiveness for ZSL.
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