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Abstract

A numerical model, using the discrete element method, has been developed to quantify specific

parameters that are pertinent to the packing behaviour of relatively large, spherical NaCl beads and

mixtures of beads of different sizes. These parameters have been compared with porosity and

connectivity measurements made on porous aluminium castings made by molten metal infiltration into

packed beds of such beads, after removal of the NaCl by dissolution.

DEM has been found to accurately predict the packing fraction for salt beads with both

monosized and binary size distributions and from this the pore fractions in castings made by

infiltration into packed beds of beads could be predicted. Through simple development of the

condition for contacting of neighbouring beads, the number of windows linking neighbouring

pores, and their size, could also be predicted across a wide range of small bead additions. The

model also enables an insight into the mixing quality and changes in connectivity introduced

through the addition of small beads. This work presents significant progress towards the delivery of a
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simulation-based approach to designing preform architectures in order to tailor the resulting porous

structures to best suit specific applications.
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1.0 Introduction

Porous metals exhibit important characteristics which enable them to perform well in heat transfer

applications. The high thermal conductivity of solid ligaments, the large surface area to volume ratios

and their tortuous flow paths, which generate turbulence and high level- mixing in the cooling fluid, offer

the potential for devices made from porous metals (for example high power electronic devices [1,2], heat

shields, regenerators for thermal engines and thermal energy storage devices incorporating phase

change materials [3]) to be compact, efficient and light weight.

Experimental measurement and modelling [4-7] have shown that the thermal characteristics of porous

metals are a complex interplay between porosity fraction, pore size, surface area and ligament

thickness, as this influences both the thermal properties of the porous metal and its permeability with

respect to the fluid flowing through it. Whilst some observations appear to be conflicting, there is

general agreement that porous metals with higher relative density and small pore sizes have higher

thermal conductivities, while foams which are more “open” are likely to perform better in convective

heat transfer due to enhanced thermal dispersion or mixing associated with their higher permeability.

The infiltration of liquid metal into a bed of sacrificial particles (often termed porogens or space fillers)

offers a convenient and reproducible method for the manufacture of porous metals [8-11]. Using this

method a “preform” is made from the porogen either from loose or tapped beads, or using subsequent
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compaction and/or sintering steps. For commercial production, loose packing of the porogen is often

sufficient to achieve the target densities and has the advantage that it increases production rates and

reduces cost. Infiltration with a molten metal (the process usually pairs metals with space holders that

have a higher melting point, for example aluminium and NaCl) is affected by either applying a positive

pressure to the metal or a vacuum to the porogen bed. The pore structure in the porous metal is thus a

negative of the morphology and spatial arrangement of the porogen, with the potential to differ slightly

depending upon the extent of infiltration into the spaces between the beads, which is a function of the

infiltration pressure difference used. Important structural features include the size of the pores

(dictated by the size of the porogen) the fraction of pores (dictated by their packing behaviour)

and the number and size of the windows connecting the pores (dictated by the coordination

number for the beads). The benefit of this process is that it has the potential to vary the porosity,

ligament thickness and pore size independently.

An ability to model the packing behaviour of porogens will aid in the design of appropriate porous

structures to balance the requirements of heat transport characteristics against the pressure drop across

the porous structure. Beyond the consideration of simple monosized particle systems, the introduction of

different sizes or shapes of beads has the potential to enhance the packing behaviour and to produce novel

structures with multi-modal pore sizes and gradient pore structures. Robust modelling is integral to

structural optimisation from the wide possibilities of structures that could be produced.

The discrete element method (DEM) is well established as an accurate tool, in a wide range of

engineering disciplines, for modelling of packing and flow in granular materials [12-13]. Whilst

DEM has been used to model the packing of monosized particle and binary mixtures and compare the

predictions with experimental measurements [14-17] and has been applied to the packing of monosized

NaCl particles that formed the basis for a preform to make porous Al [18], previous studies have not

combined these elements and applied them to full-scale modelling of porogen packing and then compared



4

the modelling predictions to structural parameters measured from porous metals made by infiltration of

these packed structures.

2.0 Materials and methods: Preparation of porous samples

In order to vary the density and interconnectivity of porous structures, two different spherical salt

bead (porogen) sizes were used, achieved by sieving:

 the larger (L) with a size range between 2.0 and 2.5 mm and

 the smaller (S) between 0.5 and 1.0 mm.

In both cases the beads have a density, measured by mercury intrusion porosimetry, between 1.65

and 1.68 g/cc. Details of the materials and methods used to make the beads are given in

[10,11,19]. Castings were made by pouring salt beads (with different volumetric fractions of large

and small beads, mixed using a turbula mixer) into a 35mm diameter flanged stainless steel mould

with a porous base. The flanged mould was pre-heated to 600°C and part-inserted into a vacuum

chamber and when molten 99.5% Al (at 800°C) was poured onto the top of the bed of beads, a 0.9

bar pressure differential was applied to drive infiltration of the molten metal therein. Cast samples

were machined into 33 mm diameter cylinders, 40 mm long, whereafter the salt beads were removed

by dissolution in warm water. Images of the 2.-2.5mm spherical beads and the vacuum infiltration

vessel containing the mould are presented in Fig 1.

3. 0 Simulation procedure: Packing modelling using DEM and experimental verification

The packing behaviour was simulated using DEM. The DEM technique applied here uses an

explicit time stepping approach to numerically integrate the motion of each particle from the

resulting forces acting on them at each timestep. The model follows a fairly standard DEM
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approach for spheres. The inter-particle and particle wall contacts are modelled using the spring–

dashpot–slider analogy. Contact forces are modelled in the normal and tangential directions with

respect to the line connecting the particles centres. Particle cohesion and interstitial fluid effects

can also be modelled but were not considered in this study owing to the large particle sizes. Inter-

particle and particle-wall friction were considered and the friction coefficients were estimated

from the critical angle for the onset of sliding of a “raft” of salt beads down the requisite surfaces

(including a surface made from another “raft” of salt beads). Rolling friction is modelled as an

angular torque arising from the elastic hysteresis loss or viscous dissipation [20]. The

translational and rotational motion of each particle is modelled using a half step leap-frog Verlet

numerical integration scheme to update particle positions and velocities. A zoning method and

near-neighbour lists are used to increase the computational efficiency of determining particle

contacts [21]. A number of techniques can be used to extend the model to include non-spherical

particles eg [22] but spherical particles are quite adequate for this case and easier to model.

Fig 2 shows an example of near-mono-sized particles filling a cylindrical vessel (the “mould”)

under gravity and settling as modelled here. Particles are added gradually in layers. Each particle

is given a random initial velocity within a narrow range, similarly the particle size is randomised

within a specified range (using a normal distribution). Although the “monosized” system does not

comprise of particles with a single diameter, it is subsequently named so to avoid confusion with

binary systems. Binary systems were also simulated with random seeding of particle types

(differing in size and volume fraction). Table 1 shows the principal data used in the simulations;

where the number, size and density match the experiments closely, typical damping properties are

also used.

At the end of the simulation, when the particles have settled (essentially the simulation is run until

the max particle velocity is very small), the DEM model outputs the type, x, y, z coordinates and

radius for every particle. The fill height (and hence the global packing fraction) is determined
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from the average z position for particles in the top layer of the vessel. Additionally, the packing

fraction within a smaller “sensor” region can be measured to eliminate the effects of poor packing

at the walls. The results are analysed in a simple program to produce graphical representations of

the packing behaviour (eg Fig 2) and the coordination number can be calculated by computing the

distance between each particle and its neighbours.

In order to consider whether particles would become connected pores in the porous metal, the

extent of metal infiltration was also considered. This was necessary as two particles in very close

proximity, but not actually touching, may end up becoming connected pores if the gap separating

them cannot be filled with the infiltrating liquid. The minimum gap that can be filled with the

infiltrating liquid was determined from the Laplace equation (shown in equation 1) which relates

the applied pressure, P, to the capillary radius, rc, using established wetting data for the Al-NaCl

system [10,11] to determine the liquid surface tension, LV and the contact angle, . A typical

capillary radius for this system and process is of the order of 15 m and hence particle separations

below 30 m were deemed to be “contacting”. The coordination number was calculated for every

particle within a smaller “sensor” volume to eliminate “missing” neighbours for particles

contacting the walls of the vessel.

Equation 1

The packing simulation was compared with experimental filling of graduated cylinders of

different diameters with salt beads. A funnel was used in order to ensure a repeatable filling

action. In order to minimise cohesive effects, the salt particles were thoroughly dried before use.

The number of particles used in the simulation was varied in order to keep the fill heights the
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same for both the modelled and experimental cases (so in all cases a full scale version of the

experiment was modelled) and so that the fill height was larger than the vessel diameter.

The density of porous metal structures was simply measured from the volume and mass. Pore and

window structures were investigated using optical and scanning electron microscopy (SEM)

combined with image analysis. Micro-computed X-ray tomography (micro CT) on a GE

Nanotom system (at a voxel size of 10 m) was used to examine and quantify the structures of the

porous metals. The coordination number for cast porous metal structures was determined from

CT images and image analysis using Aviso Fire software. Since the pores in the casting are

connected, they were first thresholded and then separated using a watershed algorithm similar to

those used in [17,18]. From this, the volume of the object was determined, along with the x, y, z

co-ordinates for the centroid and the radius of a sphere with equivalent volume. As the beads

were close to spherical in shape and do not undergo distortion during filling and infiltration, it

was deemed that this approach should yield acceptable errors. The 3D objects were then sorted,

where appropriate, into large and small particles, yielding the same format of analysis input data

as for the simulations. Data were processed in the same way as described for the simulation data,

with the exception that the separation condition also included the thickness of the sphere that was

eroded in order to affect separation. Fig 3 shows snapshots from the Aviso software showing the

output after separation. The number of large particles sampled was at least 1000 and exceeded

that used in a similar study where the sample size was deemed to be sufficient for reliable

statistics [18].

4.0 Results and discussion

4.1 Overview of cast porous metal structures
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Fig 4 shows the typical characteristics of porous metals made by replication of packed beds of

spherical NaCl beads. The pores clearly retain the size and shape of the original NaCl spheres

and approximately circular windows link adjacent pores, the number of which is dictated by the

coordination number.

4.2 Comparison of experiment and packing model

The experimental and modelled “global” packing fractions for monosized beads packed into

measuring vessels of different sizes are shown in Fig 5. The agreement between the two is good,

the modelled values generally falling within the scatter of the experimental values (whilst the

repeatability in the results is good, the experimental scatter is fairly high given the imprecision of

reading the vertical scale for a non-flat surface of the bed of beads. The sensitivity to the

coefficient of friction was tested in the range of 0.2 to 0.4 and was found to affect the packing

fraction by less than 0.5% (this compares with a typical scatter in experimental data of 3%).

An effect of vessel size is observed, with an increase in packing fraction from 0.56 to nearly 0.59

as the vessel to bead size ratio increases from 8 (for 18 mm) to nearly 18 (for 40 mm). Poorer

packing is expected in narrower vessels due to the increasing contribution of “wall” effects for

these relatively “small” systems [23]. The packing fraction is approximately constant for a vessel

/ bead size ratio greater than 12, a similar effect to that reported in [23-25]. Although not

presented, the effect of bed height on the packing fraction was also determined. When the height

was again greater than roughly 10 times the bead diameter, there was little effect of further

increases in bed height, agreeing well with experimental measurements in [25]. Although not

crucial, since the full system is modelled, the mould diameter and fill height used in experiments

and modelling for the castings were above the observed limits.
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The packing fractions observed and modelled are consistent with previous studies which report

the “loose” packing fraction for monosized spheres to be between 0.55 and 0.58, depending upon

the friction conditions and the limit of random dense packing for monosized spheres, under

frictionless conditions, which is 0.64 [14,16,17,26,27]. The effect of a distribution in particle size

(in this case a standard deviation of roughly 10%) for the “monosized” case is unlikely to enhance

the packing behaviour, with benefits only thought to be likely for deviations greater than 30%

[18,27].

The effect of additions of smaller particles was investigated for the full-sized representation of 35

mm diameter casting moulds. Fig 6 shows the experimental and modelled global packing fraction

as a function of small bead solid volume percent, along with a representative vertical section

through the modelled packed structure for a 12.5vol.% small particle addition (Note vol.% here

implies solid volume %.). The model and the experiments are in good agreement with both cases

showing that the addition of small beads increases the packing fraction from roughly 0.58 to a

maximum of 0.65 at an addition level close to 25vol.%, decreasing slightly thereafter with

increasing additions. Data are near identical when a smaller “sensor” region was used to mimic

the exact size of the machined casting (33 mm) as only one large particle diameter is removed

from the overall cross section. The packing behaviour is in broad agreement with observations

from other researchers [15,23,28] who, for a particle size ratios between 2 and 3, found maximum

packing fractions were achieved with between 25 and 30vol.% additions of small particles.

Figure 7 shows horizontal sections at the mid-plane for the modelled particle distributions (for

35mm vessels) and for CT images from corresponding samples (33 mm in diameter after the

surface is machined) and the simulation can be seen to replicate, quite accurately, the typical

features for the packing of these beads (for example regions with locally high packing and others

with voids).
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Table 2 shows the relationship between the relative density (or metal fraction) for at least 4 cast samples

for each porous metal type (after removal of the salt beads), the porosity calculated from packing

experiments and the global porosity predicted by the model. In all cases the metal fractions in the cast

parts are in good agreement, but consistently slightly lower than those for the fraction of void

space determined from the experimental measurements of the packing fraction of the beads and

from the model. This discrepancy is most likely to be due to incomplete filling of all the void

space in the porous preform under the relatively modest infiltration pressure.

Fig 8 shows the variation in packing fraction as a function of fractional height from the base of the

sample for both the monosized beads and with 25vol.% addition of small particles and compares it with

2D area fraction data from CT measurements. The modelled profile is more undulating (with a smaller

period). The mean values are 0.58 and 0.65 for both the modelled and experimental data, with lower

standard deviations for the monosized bead structures (1.6 and 2.8% of the mean for modelled and

experimental data respectively) compared with 1.8 and 3.6% for structures with 25vol.% of small bead

additions. This reflects what is observed, that in reality, packing and mixing of the large and small beads

is less homogeneous than is predicted by the model. Modelling and experimental data (summarised in

Table 3) indicate that the standard deviation in the packing fraction decreases with increasing additions of

small particles showing, as was apparent from the images in Fig 7 that more homogenous structures are

produced with higher proportion of small particles.

Fig 9 shows SEM images and 2D sections from 3D CT reconstructions for the monosized sample and for

a bimodal structure with 25vol.% addition of small particles. It is clear that the number of windows

joining the pores (dictated by the coordination number) increases significantly when small particles are

introduced into the system. When inspecting the internal surface of the large pores it is not obvious

which windows are those linking to small or other large pores.

The coordination number for the modelled samples is compared with the coordination number

determined from image analysis of the cast samples. As the segmentation and separation process
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was thought to be more likely to create errors in the centroid positions and radii for the small

beads, the coordination for large particles (L-L and L-S) were determined and it was assumed that

if this could be predicted correctly then the model would be a sufficiently accurate representation

of the entire structure and the other contacts (S-S and S-L) would be predicted with the same

precision. Fig 10 presents an overview for the L-L and L-S co-ordination numbers for both the

model and the experimental data. There is once more, good agreement, with the experimental data

and the error bars (±1 standard deviation) lie within the mean value for the model and bands

(dashed lines) ±1 standard deviation above and below the mean.

Table 4 presents the mean and standard deviations for the model and those measured

experimentally. Modelling and experimentation both indicate packed structures with an average

coordination number between 6.3 and 6.5. These values are slightly above those measured and

simulated for monosized samples exhibiting loose or dense random packing, between 5 and 6

[14,26]. This difference is attributed to the effect of increasing the “connectivity” via the

necessary condition that liquid must infiltrate between separated particles and is not unlike

experimental methods to measure connectivity using a liquid bridging technique, which yields

higher coordination numbers for monosized particles (6.2, [23]) when compared with other

measurement methods or simulations. It is worth noting that if the condition of exactly contacting

spheres is used, i.e. rc = 0, the “true” coordination number for monosized spheres is 5.6 ±1.45

which is in good agreement with that expected for loose packing [14,16,23,26,28].

The sensitivity of the coordination number to the capillary radius may be questioned. Although

the capillary radius is based on experimental data, there is some uncertainty in these

measurements. A radius of 15 m was used and it is expected that the variation, based on

possible variations in pressure and wetting data could be ± 3 m, resulting in a change in the

mean co-ordination number (for monosized spheres) of only ± 0.1. For comparison, the

coordination number predicted by DEM has a scatter of ± 1.4. Other possible errors include the
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friction coefficient in the model, although it was found that variation in the range of 0.2 to 0.4

altered the coordination number by only 0.2, and the image digitisation and watershed processes

are likely to introduce some errors into the experimental measurement of coordination number.

The decrease in N L-L with increasing additions of small particles shows that the small particles,

despite their 1:3 size ratio, do not sit in the interstices in the packed structure, even at low

additions, where they would do little to disturb the co-ordination of the large particles. Instead,

they cause increased disruption of the network of L-L contacts such that for 50vol.% additions the

model predicts an average L-L coordination number of 2.1 (±1.12), indicating that a significant

number of large particles will have only one large particle as a neighbour, preventing the

formation of a completely connected network of large particles. This is a useful insight as such

an effect on the connectivity could have a significant influence on the transport properties within

the porous structure.

Fig 11 scrutinises the contacts in the binary samples in more detail, distinguishing between each

different contact type and calculating the overall coordination number, which of course reflects

that there are very many more small beads than large, even at the lower addition levels. As shown

previously, N L-L decreases and N L-S increases significantly with small particle additions. The model

also predicts that N S-S increases and N S-L decreases with increasing small particle additions (in both

cases to a lesser degree than for the large particles given that the capacity for high values of N for small

particles is, of course, limited by their size). Despite the very high coordination number for the large

particles, their low number fraction means that the average coordination number increases very little with

increasing additions (from 6.3 to 7.0 over the full range of addition). This observation is similar to that

observed in [23,28]. It is also reported that the maximum number of small particles that might be

randomly placed on a large sphere (the so-called parking number [28,29]) can be determined for a

particular particle size ratio, for this system it is 35. For 50vol.% additions the L-S coordination number

is 26±4.5, below this upper limit.
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Fig 12 shows the large increase in the number of windows connecting pores in cast porous metals made

with 25vol.% addition of small beads. At these higher magnifications it is apparent that 3-4 pores are

visible in a half section of a pore for monosized beads, increasing to more than 10 windows with

25vol.% addition of small particles. For the large particles, the model predicts that for 25vol.% addition

of small beads, only 21% (roughly one in 5) of the windows will be connecting to another large particle.

The standard deviation in N L-S can be used as an indication of the quality of mixing. For both the

modelled and experimental data, the standard deviation (as a percentage of the mean N L-S coordination

number) decreases with increasing addition of small particles and is in agreement with the findings for

the effect on the standard deviation in the packing fraction. Both measures, therefore, indicate improved

homogeneity of mixing with increasing additions of small particles. As before, the model predicts more

homogeneous mixing than is observed in reality, a factor related to the randomised seeding of small

particles which will produce a more uniform dispersion than can be achieved through mixing. Although

the indications are good, further modelling would be required to establish its efficacy as a tool to predict

mixing quality in multi-modal particle systems.

4.3 Window size model

Further simple analysis can be used to predict the size of the windows joining the pores that are a result

of contacts between L-L, L-S or S-S beads. Fig 13 presents 2D CT images of porous cast structures

(containing 25vol.% particle additions) that have been processed using an edge-finding function to

highlight the periphery of the pores. These images clearly show the connections or “windows” between

L-L, L-S and S-S contacts. Measurement of the size of these connections from such images is difficult

and SEM measurement was preferred, but nevertheless difficult given the non-planar surface and the

difficulty distinguishing between the different connection types. For this reason only a small fraction of

the windows were measured, restricted to those that were suitably oriented to the viewing angle. L-L

connections were simple to measure from samples with no small particle additions and S-S data were
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compared with those from a sample made from 100% small beads prepared as part of another study by

these authors. Measurements of L-S connections were made by selective choice of what appeared to be

representative windows in large pores in samples with high additions of small particles. Whilst for

samples with 37.5% additions of small beads, 88% of the connections are L-S, it is possible that the

values for the L-S measurements (which are, of course the same as S-L) may be skewed to higher values

given the possibility of including some L-L connections in the measurements. Table 4 presents the

measured values for the window sizes, showing quite large standard deviations, most likely due to the

measurement method, but also reflecting the range in bead sizes. It is apparent that although, as

expected, the window between small beads is smaller, the ratio of window to pore size for the small

beads (0.28) is much higher than that for the large beads (0.17).

A simple geometric model is presented which is based on the contacting of spheres and the bridging of

this connection by a liquid front of a given radius, again defined by the capillarity, as is the condition for

assessment of contacting particles in the DEM model. A schematic of this arrangement is shown in Fig

14. Table 5 compares the measured and modelled values for the window sizes. The scatter in the model

is due to calculation of the maximum and minimum hole sizes that could occur from contacts between

the largest and smallest particles in the size range. Despite the difficulties in accurate measurement, and

the less good agreement for the L-S contacts, the measured window sizes are broadly consistent with the

model.

5.0 Conclusions

A DEM model has been developed to quantify specific parameters that are pertinent to the packing

behaviour of relatively large, near spherical NaCl beads including mixtures of beads of different sizes.
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DEM has been found to accurately predict the packing fraction for salt beads with both

monosized and binary size distributions and from this the pore fractions in castings made by

infiltration into packed beds of beads.

Through simple development of the condition for contacting of neighbouring beads, the number

of windows linking neighbouring pores, and their size, could also be predicted for a wide range of

small bead additions, enabling insight into the connectivity of the structure.

This work presents significant progress towards the delivery of a simulation-based approach to designing

preform architectures in order to tailor the resulting porous structures to best suit specific applications.

The DEM model could be developed further to model non-spherical particles, mould tapping or

vibration, particle cohesion and interstitial fluid effects which may be more significant for smaller

particles.

References

1. K. Boosma, D Poulikakos, F Zwick, Mechanics of Materials 35 (2003) 1161-1176.

2. T.J. Lu, A. G. Evans, J. W Hutchinson, Trans ASME Journal of Electronic Packaging 12

(1998) 120-130.

3. T. J Lu, H. A Stone, M. F Ashby, Acta Metall 46 (1998) 3619-3635.

4. A.Bhattacharya, V. V. Calmidi, R. N. Mahajan,, International J. Heat Mass Trans, 2002, 45,

1017- 1031.

5. C, Y. Zhao, T. J. Lu, H. P. Hutson, J. D. Jackson, Mater Sci and Eng 367 (2004) 123-131.

6. A. Bhattachyra, R. N. Mahayan, Journal of Electronic Packaging 126 (2006) 259-266.

7. D. Angirasa, J of Heat Trans 124 (2002) 739-745.



16

8. R. Goodall, J.F. Despois, A. Marmottant, L. Salvo, A. Mortensen, Scripta Mater. 54 (2006) 2069-

2073.

9. R. Goodall, A. Marmottant, L. Salvo, A. Mortensen, Mat Sci Eng: A465 (2007) 124-135.

10. A. Jinnapat, A.R. Kennedy, Metals, 1 (2011) 49-64.

11. A. Jinnapat, A.R. Kennedy, Metals, 2 (2012) 122-135.

12. P. A. Cundall, O. D. L. Strack, Géotechnique 29 (1979) 47-65.

13. F. Y. Fraige, P. A. Langston, A. J. Matchett, J. Dodds, Particuology, 6 (2008) 455-466.

14. W. van Antwerpen, C.G. du Toit, P.G. Rousseau, Nuclear Engineering and Design, 240 (2010)

1803–1818.

15. Y. Gan, M. Kamlah, J. Reimann, Fusion Engineering and Design 85 (2010) 1782–1787.

16. J-F. Jerier, V. Richefeu, D. Imbault, F-V. Donzé, Computer Methods in Applied Mechanics and

Engineering 199 (2010) 1668–1676.

17. X. Fu, M. A. Dutt, C. Bentham, B. C. Hancock, R. E. Cameron, J. A. Elliott, Powder Technology

167 (2006) 134–140.

18. A. Marmottant, L. Salvo, C.L. Martin, A. Mortensen, Journal of the European Ceramic

Society, 28 (2008) 2441-2449.

19. A Jinnapat, A.R. Kennedy, J. Alloys and Compounds, 499 (2010) 43-47.

20. Y. C.Zhou, B. H. Xu, A. B.Yu , P. Zulli, Powder Technology 125 (2002) 45-54.

21. B. N.Asmar, P. A., Langston, A. J. Matchett, J. K. Walters, Computers and Chemical

Engineering 26 (2002) 785-802.

22. S.Mack, P. A. Langston, C.Webb, T. York, Powder Technology 214 (2011) 431-442.



17

23. D. Pinson, R.P Zou, A.B. Yu, P Zulli, M.J. McCarthy, , J Phys D, Appl. Phys. 31 (1998) 457-

462.

24. G. E. Mueller, Powder Technology 92 (1997) 179-183.

25. R.P Zou, A.B. Yu, Chemical Engineering Science, 50 (1995) 1504–1507.

26. L. E. Silbert, Soft Matter, 6 (2010) 2918-2924.

27. N. D. Aparicio, A.C.F. Cocks, Acta Metall, 43 (1995) 3873-3884.

28. K. de Lange Kristiansen, A. Wouterse, A. Philipse, Physica A: Statistical Mechanics and its

Applications, 358 (2005) 249–262.

29. M.L. Mansfield, L. Rakesh, D.A. Tomalia, J. Chem. Phys., 105 (1996) 3245.



18

Fig 1. Left, 2.0-2.5 mm salt beads, right, vacuum casting chamber containing the mould

Vacuum chamber

Mould
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a) b) c)

Fig 2 DEM simulation of the filling of a 35mm diameter vessel with monosized beads (time a)
0.1, b) 0.3 and c) 0.5 s)
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Fig 3 Thresholded and separated pores for bimodal particle distributions containing 25vol.% of
small particles
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Fig 4 Optical micrographs, left of a porous sample made by vacuum casting using monosized
NaCl beads and right, showing the spherical pore structures and windows between pores



22

Fig 5 Modelled and experimental packing behaviour for monosized (2.0-2.5 mm) beads in vessels of
different diameters
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Fig 6 Left, experimental and modelled packing fraction as a function of the volume percentage of
small beads and right, a vertical section through the modelled packed structure for a 12.5vol.%

small particle addition
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a)

b)

c)
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d)

Fig 7 Horizontal sections at the mid-plane for, left, experimental samples (CT images from 33 mm
diameter samples after the surface is machined) and right, modelled packed structures (for 35mm

vessels) for different additions of small particles, a) 0, b) 12.5, C) 25 and d) 37.5vol.%.
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Fig 8 Experimental and modelled profiles for packing as a function of height through the sample for
monosized and bimodal mixtures containing 25vol.% small particles
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Fig 9 SEM and CT images of cast porous metals for top, monosized beads and bottom, for 25vol.%
addition of small beads
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Fig 10 Plots of modelled (solid lines) and experimental (symbols) L-L and L-S co-ordination
numbers. Dashed lines and error bars indicate 1 standard deviation in the modelled and

experimental data respectively.
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Fig 11 Breakdown of individual (modelled) contact types and total for 25vol.% addition of small
particles
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Fig 12 SEM images of pore windows in castings made from, left, monosized beads and right, with
25vol.% additions of small beads
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Fig 13 2D CT images of porous metal castings containing 25% of small particles, highlighting

the connections and windows between pores
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Fig 14 Simple geometric model to calculate the window radius, rw , based on the bead radius and

the capillary radius, rc
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