
DexPro: A Bytecode Level Code Protection System
for Android Applications

Beibei Zhao†, Zhanyong Tang†∗, Zhen Li†, Lina Song†, Xiaoqing Gong†,Dingyi Fang†, Fangyuan Liu†, Zheng Wang‡
†School of Information Science and Technology, Northwest University, P.R. China.
‡Metalab, School of Computing and Communications, Lancaster University, UK.

Abstract—Unauthorized code modification through reverse en-
gineering is a major concern for Android application developers.
Code reverse engineering is often used by adversaries to remove
the copyright protection or advertisements from the app, or
to inject malicious code into the program. By making the
program difficult to analyze, code obfuscation is a potential
solution to the problem. However, there is currently little work
on applying code obfuscation to compiled Android bytecode. This
paper presents DEXPRO, a novel bytecode level code obfuscation
system for Android applications. Unlike prior approaches, our
method performs on the Android Dex bytecode and does not
require access to high-level program source or modification of the
compiler or the VM. Our approach leverages the fact all except
floating operands in Dex are stored in a 32-bit register to pack two
32-bit operands into a 64-bit operand. In this way, any attempt
to decompile the bytecode will result in incorrect information.
Meanwhile, our approach obfuscates the program control flow
by inserting opaque predicates before the return instruction of
a function call, which makes it harder for the attacker to trace
calls to protected functions. Experimental results show that our
approach can deter sophisticate reverse engineering and code
analysis tools, and the overhead of runtime and memory footprint
is comparable to existing code obfuscation methods.

Index Terms—Code obfuscation, Reverse engineering, Decom-
pile, Opaque predicates

I. INTRODUCTION

Unauthorized code reverse engineering is a major concern
for Android application developers. This technique is widely
used by adversaries to perform various attacks, including
removing copyright protection to obtain an illegal copy of the
software, taking out advertisement from the app, or injecting
malicious code into the program. By making the program
harder to be traced and analyzed, code obfuscation is a
viable means to protect applications from unauthorized code
modification.

A number of code obfuscation approaches have been pro-
posed to protect applications against reverse engineering [1],
[2], [3], [4]. Most of the prior work perform code obfusca-
tion on high-level programming languages such as Java and
require access to the program source code. However, this
requirement has two major drawbacks: (1) source code level
code obfuscation provides limited protection as the obfuscated
code can removed or optimized out by the compiler; (2)
many developers are not willing to disclose their source
code. As such, a code protection technique performing on

*Corresponding author. Email address: zytang@nwu.edu.cn

the compiled bytecodes or binary with stronger protection is
highly attractive.

The first effort in this direction is SMOG [5] that performs
code obfuscation by permuting the instruction opcodes from
the compiled Dex bytecode1. The permutated opcodes are
then interpreted at runtime through a modified VM interpreter.
While promising, there is a significant shortcoming of this ap-
proach. Programs protected by SMOG must run in a dedicated
VM other than the native Android runtime environment, which
limits the application of SMOG at larger scale.

In this paper, we present DEXPRO, a novel bytecode level
code obfuscation system for Android applications. Unlike
prior approaches, our method performs on the Android Dex
bytecode and does not require access to high-level program
source or modification of the compiler or VM. DEXPRO
advances prior work in the following ways. Firstly, DEXPRO
performs code obfuscation on the bytecode level, so it does
not require accessing to the source code and as a result the
obfuscated code will not be optimized out by the compiler.
Secondly, it requires no modification to the compiler and
runtime environment. Hence the obfuscated code can run on
any environment that supports the standard Android bytecode
format. DEXPRO exploit two key structures of the Android
Dex bytecode definition to protect the program against dy-
namic and static code analysis, which is explained in Section
6.2: (1) all except for floating operands are based on a 32-
bit register and (2) the instruction follows a function call is
always used to retrieve the return value of the function. Our
approach utilizes the register structure of Dex to pack two 32-
bit operands into a single 64-bit data item, so that any attempt
in decoding the protected operands will receive incorrect
information. We leverage the calling conversion of Dex, to
insert opaque predicates[6], [7], [8] (i.e. code with complex
logic but does not get executed) between instructions of the
function call and return value retrieval. Doing so not only
makes it harder for the attacker to obtain the return value, but
also obfuscates the dynamic program behavior. By combining
these two techniques, DEXPRO provides stronger protection
when compared to existing code obfuscation techniques that

1The Dalvik executable format (Dex) is the executable binary format for
Android applications. It was originally designed for the Dalvik VM. It remains
to be used as a standard bytecode format for Android applications after the
Dalvik VM is replaced by the Android runtime (ART).

target at the source code or bytecode level, with little extra
overhead.

The core concept of DEXPRO is obfuscating the access pro-
cedure of variables in the registers. But the verifier component
of Android runtime system(CodeVerify.app; DexVerify.cpp)[9],
[10] is referred to as VFY by Dalvik VM, which verifies the
type of registers when loading the class. So our obfuscated
application is not normally running. It is the challenge in this
paper. In order to solve the problem, we use the Dex dynamic
loading technology and Dalvik runtime tampering technology,
which is explained in Section 4.3.

We have evaluated our approach by using DEXPRO to pro-
tect a number of representative Android application operations.
Experimental results show that our approach can protect soft-
ware against sophisticated reverse engineering tools, including
Jeb[11], dexdump[12], IDA pro[13] and Dex2jar[14] with less
than 5% increment in code size and runtime overhead. This
paper makes two specific contributions:
• It is the first work to exploit the register structure and

calling convention of Android Dex for code protection;
• It is the first byte-code level code obfuscation scheme

that protects software against static and dynamic code
analysis.

• The obfuscation method is evaluated from potency, re-
silience, availability and cost.

Structure of the paper: We provide background in Section
2. Section 3 presents the overview of our system and Section
4 introduce the process of system implementation in detail. In
Section 5, we discuss the potency, resilience and cost of the
obfuscation method, and in Section 6 we deliberate evaluation
of code obfuscation against current popular reverse tools and
the overhead. Most relevant work in Android code obfuscation
is discussed in Section7. Finally, the concluding remarks are
given in Section 8.

II. BACKGROUND AND ATTACK SCENARIO

In this section we give some detailed background informa-
tion and then describe the process of decompiled.

A. Dalvik Virtual Machine

Dalvik virtual machine is one of the core parts of the
Android mobile device platform. Android applications are
written mostly in Java, but run in the DVM.The DVM run-time
environment is introduced as follows.

Application Structure. Android applications are shipped as
a single Zip archive named with the .apk extension by con-
vention. The following mainly contents can be found within
common APKs:1)The classes.dex file holds all Dalvik exe-
cutable bytecode. 2)The AndroidManifest.xml file requested
permissions and the application components. Java applications
are composed of one or more .class files, one file per file. Then
the Dalvik dx compiler consumes the .class files, recompiles
them to Dalvik bytecode, and writes the resulting application
into a single .dex file. A.dex file contains multiple Class Defi-
nitions each containing one or more Method definition each of
those being linked to Dalvik bytecode instructions present int

Java
Source Code

(.java files)

Class1.class

Data

Constant Pool

Class Info

ClassN.class

Data

Constant Pool

Class Info

…
…

… Smali Code

(.smali files)

.dex file

Data

Header

Constant Pool

Class1
definition

ClassN
definition

…
…
…

Java
Compiler

dx

Figure 1: Compilation process for DVM applications.

the Data secion. Figure 1 provides a conceptual view of the
compilation process for DVM application, meanwhile, each
class within the .dex file corresponds to a smali file.

Register architecture. The DVM is register-based, whereas
existing JVMs are stack-based. Dalvik bytecode assigns local
variables to any of the 2 16 avalible register. The Dalvik
opcodes directly manipulate registers, rather than accessing
elements on a program stack.

Instruction set. The Dalvik bytecode instruction set is sub-
stantially different than that of Java. There are 237 opcodes
present in the Dalvik opcode constant list[15]. The set of
instructions can be divided between instructions which provide
the type of the registers they manipulate.

Constant pool structure. A.dex file contains four homoge-
neous constants pools: for Strings,Class,Fields and Methods.It
is shared by all the class and has been modified to only use
32-bit index in order to simplify the interpreter.

The process of the DVM execution. When an app installed,
every installed application gets its own unique user ID by
default. This means that every application will be executed
as a separate system user. When an Android application is
executed by the DVM, the process[3] is interpreted as follows.
In detail, the specific process is as follows:
• Load a class. when the DVM loads a class by the function

loadClassFromDex(), the class will have a ClassObject type
of data structure in the runtime environment. DVM stores
all loaded classes by using gDvm.loadedClassed global hash
table;

• Verify Bytecode. Bytecode verifier verifies the loaded class
by using function dvmVerifyCodeFlow();

• Find the main class. The DVM searches the main class
in gDvm.loadedClassed global hash table by using function
FindClass(). If it can’t find the needed class, it will go back
to load the class;

• Execute bytecode flow. Interpreter is initialized by invoking
function dvmInterpret() and then the Dalvik bytecode flow
will be executed.

B. Reverse tools

Reverse engineering is a complex and lengthy task. Use
the right tools for the job and cut down on expensive man-

hours. In the following, we present a selection of tools that
can be used to disassemble Dalvik bytecode. Futhermore, meta
information, e.g. method identifier and string constants, about
the program structure can be gathered, which helps to identify
interesting parts of an application.

At present, There are many reverse tools including dexdump,
IDA pro, Dex2jar, Jeb, and AndroidKiller e.g. The first three
are only static analysis tools. Obviously IDA PRO can also
make experiment about dynamic analysis, but for the native
local mainly. The last can statically and dynamically analyze
Android applications, goodware or badware, small or large.
They will be discussed: dexdump is a tool that is directly
included with Android SDK. It is a basic dex file dissector and
can also disassemble Dalvik bytecode, which is stored in the
dex file. dexdump uses a trivial and straight forward approach
in order to disassemble a dex file. It uses linear sweep to
find instructions, this means that dexdump expects a new
valid instruction behind the last byte of the currently analyzed
instructions. IDA pro is well known as a powerful tool for
reverse engineering. It also supports many architectures as
well as Dalvik bytecode. A very helpful feature of IDA pro
is presentation of the Dalvik code as a graph. This makes it
much easier for an analyst to follow the control flow within a
program. Dex2jar will turn .dex file into .class files. It makes
analysis clearer and celerity. Jeb for Android, its extensible
nature allows reverse engineers to perform disassembly, de-
compilation, debugging, and analysis of code and document
files, manually or as part of an analysis pipeline. AndroidKiller
is an integrated tool for decompiling and dex2jar and phone
signatures re-packaging, which is very convenient for reverse
analysts.

C. Attack scenario

There are a lot of dex opcodes within a Android application
and they are very difficult to understand. So attacker required
access to source code rather than operate on the Dex opcodes
to identify key-positives resulting from automated code anal-
ysis, e.g., perform manual confirmation.

The initial stage of decompilation retargets the application
.dex file to Java classes[16]. Figure 2 shows this process. The
first and most important step is recovering typing information.
However, the Dalvik bytecode has two generalized cases where
variable types are ambiguous:1)constant and variable declara-
tion only specifies the variable width(e.g., 32 or 64 bits), but
not whether it is a float, integer; and 2)comparison operators do
not distinguish between integer and object reference compari-
son. Reverse tools determine unknown types by observing how
variables are used in operations with known type operands.
they also infer register types by observing how they are used
in subsequent operations with known type operands. Dalvik
registers loosely correspond to Java variables. because Dalvik
bytecode reuses registers whose variables are no longer in
scope, we must evaluate the register type within its context of
the method control flow, i.e., inference must be path-sensitive.

Dex parsing

CFG
Construction

Type Inference
ProcessingType Inference

Method Code
Retargeting Bytecode

Reorganization

Instruction Set
Translation

Figure 2: Dalvik bytecode retargeting.

III. OVERVIEW OF OUR APPROACH

There are two Android virtual machine and the DM was
replaced by the Android runtime(ART)[17]. The difference
between them is that ART virtual machine will translate the
dex bytecode into native machine code when loading the
class, so both virtual machines execute the same unmodified
Dalvik bytecode file structure, instruction formats(smali), and
constrains. Hence, our proposed obfuscation applies to apps
run by both DVM and ART. But The difference between them
is that the ART is not dex bytecode after loading the apps, and
we can’t bypass the verifier through backfilling the obfuscated
bytecode after it. We should think of an approach to prevent
the verifier and decrease the performance overhead as well.

As depicted in Figure 3, the system is proposed as a
software protection system within which an obfuscation engine
and solving the conflict problem. It mainly obtain three part.

At the first part, we are mainly introduce to how to obfuscate
the smali code. The basic idea is confusing the data-flow for
the access procedure of register data, and combining opaque
predicates technology to confuse the control-flow.

The next step, because our obfuscation method would cause
problems of the register-type conflict, we should make the
executable .dex file normally execute by the Dalvik VM. So
we need to modify the .dex file ,which is explained in Section
4.3.

Lastly, we will utilize the dex dynamic loading technology
to load the above .dex file, but some bytecode is nop after the
class being loaded, so Dalvik runtime tampering technology
is used to solve the problem. Meanwhile, To illustrate this,
we firstly analyzed the exact nature of the problem, and
then describe the details process that is to implement normal
running.

IV. IMPLEMENTATION DETAILS

Our proposed schemes obfuscate Android apps at Dalvik
bytecode level to achieve an expressive control-flow and data-
flow obfuscation.Within this paper, our approach combines
obfuscation techniques against static and dynamic reverse
engineering, which is discussed next.

Dynamically
loading

Obfuscated.apk

Obfuscating
bytecode

Replacing
instructions

Obfuscated
bytecode

Smali Code

(.smali files)

Classes.dex

Manifest.xml

Resource file

Original.apk

Memory

ClassNObject

Class1Object

Figure 3: Workflow of the DEXPRO system. we can see three part, obfuscate
the smali code ,nop bytecode within the .dex file, and dynamic load and
runtime tamper, which is the background of the light-green.

A. The process of obfuscation

Dalvik VM’s instructions based on the architecture of reg-
ister and the constant pool is modified to use the index of 32
bits, which can simplify the interpreter. Therefore the constants
within smali code are stored in the 32-bit registers. As shown
in the Figure 2, Analyzing CFG and register type inference
processing is very important to retarget the application .dex
file to Java classes. According to this characteristic we can
confuse the type of registers and control flow, they are data
flow obfuscation and control flow obfuscation.

Dalvik VM gets the operand from the corresponding register
directly based on the type of operation code when performing
bytecode flow, regardless of what the type of register is, so we
can obfuscate it from two aspects. On the one hand, because
the constants of the long and double in smali code are 64-bit,
they are stored in the two adjacent 32-bit registers, so we can
use a long constant instead of the two constants respectively
stored in two 32-bit registers . On the other hand, we will
confuse a instruction of capturing the return value of an object
reference for a instruction of capturing the return value. The
two methods on the above are to confuse on the data access,
so that they can make the compiler tools puzzled.

Confusing the control flow is an effective way. The principle
is to use various technical means to hide or modify the real
control process of a program, to prevent the attacker from
analyzing the control flow[18]. Inserting opaque predicates is
one of the effective obfuscation.

In this paper, we propose a obfuscation method by inserting
reinforced opaque predicates[2]. The first step is to judge the
position where to insert, which was conducted on the basis
of process analysis. Invoking the key function(self-define)
is very important modules of program, so we can insert
reinforced opaque predicates into the place where is between
the instruction of invoking the key function and the accessing
returned value, and the process is shown in Figure 4. For
example, function of purchasing equipment function is very
critical in the game and its returned value is usually analyzed

. method p u b i l c t e s t ()
.
invoke−v i r t u a l {p0 , v0 , v1} ,
Lcom / example / t e s t / Marke tLogic ;
−>p a y C a l l b a c k (I I) I

i n j e c t opaque p r e d i c a t e s

move−r e s u l t v4
.

. end method

Figure 4: Control obfuscation. In order to obfuscate the control-flow, we will
inject the opaque predicates between two instructions that are invoking and
capturing the return value.

by the attacker. If the developer takes such protection method,
the attackers will not get the return value. This way increase
the complexity of control flow and data flow.

B. Register type-conflict problem

This section elaborates an important problem caused by
the Android runtime system, which we encountered while
implementing the described obfuscation techniques. It also
explains how we modified target apps prior to apply the
obfuscation techniques so as to prevent the problem and satisfy
the Android runtime system.

Because the Verifier module[10], [9] seems to perform a
register liveness analysis in each method prior to running it,
and ensure that there is no type conflict among live registers
at an program point.

Firstly, at each program point, it keeps track of live registers
together with the data type they hold. Should it find a register
with two different types at the same program point, it will
report the register-type conflict problem as shown follows and
the running app will crash.

VFY: r e g i s t e r 1 v0 t y p e 19 , wanted 17
VFY: r e g i s t e r 1 v1 t y p e 20 , wanted 17
VFY: r e j e c t i n g opcode 0x90 a t 0 x0008
VFY: r e j e c t e d Lcom / example / . . . / . . . ;

. add () I

V e r i f i e r r e j e c t e d c l a s s Lcom / example /
. . . / . . . ;

C l a s s i n i t f a i l e d i n n e w I n s t a n c e c a l l
(Lcom / example / . . . / . . . ;)

S h u t t i n g down VM

Secondly, In order to exactly get the return value of the
child function which is called, the instruction used to retrieve
the return value of the function does not follow a function call.
Our approach insert the reinforced opaque predicates into the
two instructions. So it will report the conflict information as
follows.

VFY: copyRes1 v3<−v7 c a t =1 t y p e =0
VEY: r e j e c t i n g opcode 0 x0a a t 0 x0008
VEY: r e j e c t e d Lcom / example / . . . / . . . ; . T e s t ()V
VEY: V e r i f i e r r e j e c t e d c l a s s Lcom / example /

. . . / . . . ;
V e r i f i e r r e j e c t e d c l a s s Lcom / example /
C l a s s i n i t f a i l e d i n n e w I n s t a n c e c a l l (Lcom
/ example / . . . / . . . ;)

S h u t t i n g down VM

From the error information, we can come to the conclusion
that the validation fails is reported during the static initializa-
tion of the class. It is a new solution that Obfuscated Dalvik
bytecode are backfilled in the memory after initializations.
However, we now know that when Dalvik VM performs the
bytecode flow with in the dex file, it gets out the operand from
the corresponding register in terms of the opcode, regardless
of what the type of register is. Given this issue, we thus need
to find a solution that will bypass the verifier of the evaluated
Android runtime systems from deducing any false type conflict
in otherwise correctly obfuscated apps.

C. App execution

As described in Section2.1, Dalvik VM verifies the validity
of instructions when loading the class, for example, verifying
the type of the registers. so executing an obfuscated app must
bypass the process of the verifier.To address the problem, we
can do the following three things.

Firstly, we will recompile the obfuscated smali into a .dex
file. Then we will apply for a memory space to store the
obfuscated bytecode, which is in the .dex file can be stored in
the ObjMethod structure of showing in Figure 5. At last, we
will fill the junk bytecode in the obfuscated method and get a
new.dex file. When attackers statically analysis it, they will get
many junk code, so this way resist static analysis successfully.

Secondly, in order to load the executable file new.dex utiliz-
ing the technology of loading dex dynamically, we develop our
own customized Classloader function to load all the classes in
this dex file, before which the default Classloader in the API
layer should be replaced to ensure the normal execution of the
real dex file.

There exists a system component called Application[14] in
Android frame. it will initialize several global variables when
establishing Application(i.e. before launching app), and all
the Activity within the same app can access the value of
these variables. Usually, system will develop an Application
automatically and we don’t need to develop it specifically,
so through designing customized class ProxyApplication that
extends Application, the default Classloader in the system
will be replaced by the customized MyDexclassloder when
initiating ProxyApplication. Moreover, we should configure
ProxyApplication in the ApplicationManifest.xml file as foll-
lows:

<a p p l i c a t i o n
Android : name=” P r o x y A p p l i c a t i o n ”

</ a p p l i c a t i o n

Lastly, in order to bypass verification of Dalvik VM for
instructions(i.e. register types), we utilize the technology of
dynamically loading. As bytecode in the obfuscated methods

t y p e d e f s t r u c t {

S t r i n g ClassName ;

S t r i n g MethodNmae ;

Char * newCode ;

}ObjMethod ;

Figure 5: The structure of ObjMethod. It is used to store the bytecode of the
obfuscated method within the .dex file. The bytecode backfill the memory
after the class loaded.

in new.dex is a zero sequence after loading new.dex, we need
to fill the obfuscated bytecode in the corresponding location
in the memory before execution.

When running an Android application, it will load dex file
and parse the dalvik bytecode that is executed by Dalvik VM.
We reads or writs the byte flow when running the app with the
aid of the JNI component[19], as there isn’t a direct method to
achieve this compared to X86 and ARM frame due to limited
instruction sets of DVM. Native library and Dalvik VM owe
the same priority as they are in the same process, so we can
utilize JNI to call methods in native library to achieve the
modification for Dalvik bytecode.

The address of dex in the memory after loading can be
acquired through DexFile class in Android system. According
to the address, we can acquire the memory address of the
obfuscated methods via parsing the dex structure, then fill
in the corresponding memory address with the corresponding
bytecode stored in the ObjMethod structure to ensure correct
system execution.

V. OBFUSCATION EVALUATIONS

A. Evaluations criteria

Collberg[20] gives an accurate definition on code obfusca-
tion: The i is one of all possible inputting set I which is in
the program P. If and only if it is ∀ i:T(P)(i)=P(i), we can
just think that the transition of the confusion was correct. The
obfuscation method is evaluated from potency, resilience and
cost by Collberg at al.

Let T be a behavior-conserving transformation, such that P
T−→ P’ transforms a source program P into a target program
P’.

Tpot(P), the potency of T with respect to a program P, is a
measure of the extent to which T changes the complexity of
P. Let E(P) be the complexity of P. It is defined as

Tpot(P)=E(P’)/E(P)-1 (1)

T is a potent obfuscating transformation if Tpot(P)¿0.
Tres(P) is the resilience of T with respect to a program P.

Tres(P)=one-way if information is removed from P such that
P cannot be reconstructed from P’. Otherwise,

Tres(P), Resilience(TDeobfuscaoreffort,TProgrammereffort)
(2)

App
Number of instructions Number of instructions

before obfuscation after obfuscation
ele me online ordering 24 12

fileexplorer Mi file manager 72 36
photup photo album 30 15

v2ex-daily exchange community 16 8
zhihupaper zhihu daily 16 8

Table I: Count the number of instructions of meting obfuscation criteria.

Tcost(P) is the extra execution time/space of P’ compared
to P. that is to say

Tcost(P)=Cost(Ctime , Csize) (3)

B. Evaluations obfuscation method

Abouting code obfuscation techniques, Collberg put forward
three evaluation indexes: the potency, resilience and cost, We
will Make qualitative evaluation for the confusion in this
article according to the evaluation index.

Potency. The proposed code confusion method includes both
control obfuscation and data obfuscation. In data obfuscation,
we can obfuscate the instructions of accessing the values from
the registers and calling method that its returned value is
object type. The experimental result as shown in Figure 6,first,
we confuse two 32-bit constant definition instructions into a
64-bit constant definition instruction, when the attackers are
using reverse tools to reverse,such as dexdump Dex2jar Jeb,the
getting result is wrong.In control obfuscation, in order to resist
attacker to access the returned values which is after calling the
key function, we will insert the opaque predicate between two
instructions that are calling and accessing returned value. The
above two kinds of method can both resist the attacker to
acquire correct program code and increase the complexity of
the control flow. Thus, the proposed method has good strength.

Resilience. The obfuscated program has been analyzed in
terms of reverse analysis. For example, the attacker can’t
access correct instructions and analyzing logical construction
of program. As shown in Figure 7, decompilation process is
failure and control flow becomes very complicated, so the
proposed method has strong slastic.

Cost. The function’s time complexity is O(1) after being
obfuscated. Firstly, inserting opaque predicate and modifying
the instruction format does not change polynomial of the
complexity. Secondly, dex dynamic loading and backfilling the
bytecode both increase little time, as shown in Figure 10. In
space consumed, we will only insert opaque predicate into
invoking the key function and obfuscated instructions is short.
Thus this method has little effect on the time and consumed
space.

VI. EXPERIMENTS AND ANALYSIS

A. Experimental Setup

Hardware: Our approach is evaluated using a Xiaomi 4
phone, which runs the Android 4.4.4 operating system. The

const/4 v0, 0x2

const/4 v1, 0x3

const-wide v0,

0x000000020000003L

Obfuscate

Dex2jar

Jeb

long

v0=12884901890L

throw new RuntimeException(Generated

by Dex2jar,and some Exception Caught)

Const-wide v0,

#double 0.000000

dexdump

Figure 6: Two 32-bit constant definition instruction confusion into a 64 - bit
constant defined instruction,get the wrong results from reverse tool dexdump,
Dex2jar, Jeb

int sum=add(a,b);

int s=i+sum;

invoke-virtual ……->add(II)I

move-result v4

decompile obfuscate

Dex2jarJeb

Inject opaque

predicates in

the middle

int sum=add(a,b); complex

Figure 7: The case of reversing engineering. When we inject the opaque
predicates after invoking the add() method, the attacker can’t capture the
return-value sum.

device has a processor: a four-core processor at 2.5 GHz. The
device has 2 GB of RAM and 16 GB of internal storage.

Benchmarks: Based on the deep research inDEXPRO,
as shown in Fig.2, this paper designed and implemented a
prototype system. It can resist the static analysis and dynamic
analysis of the process of the reverse engineering. Our ap-
proach is evaluated by using the developed tool to protect a set
of representative operations of typical Android applications.

In order to prove the practicability of our protection method,
we selected five popular apps downloaded from Android Open
Source Project,switch can represent different types in the
application market, Choosing different function applications
can show the feature that exist instructions of defining 32-bit
variables preferably in the application market, so it is different

Test case The characteristics of the instruction
Data.apk Defining two 32-bit variables

BubbleSor.apk Returned value of the reference type
Hanio.apk key function(self-defined)

Contact.apk All the above

Table II: A list of apps we selected to test. Column 2 represent the type of
instructions of four typical Android apps.

with the next experiment cases. then count the instructions of
meting obfuscation criteria that is two adjacent instructions of
defining 32-bit variables. So the number of the instruction of
this type would decrease 50 percent. It is listed in Table I.
We found that, in all tested apps,there are many instructions
meting the conditions of obfuscating some application.

Performance overhead is also very important about code
obfuscation and our protection method applied user-definable
key functions. So measure the performance overhead and
effectiveness of DEXPRO, We have implemented these opera-
tions in four applications (listed Table II). We chose these APP
for the following reasons: Data.apk is a constant definition;
BubbleSor.apk is a bubble sorting algorithm; Hanoi.apk is a
typical representation of the Hanoi algorithm; Contact.apk has
all of the above instruction features, Each representing a differ-
ent character,switch can show effectiveness and performance
overhead betterly. So these test cases can completely represent
our obfuscation engineering and be tested to evaluate from the
effectiveness and performance overhead.

B. Effectiveness

The main purpose of this paper is to protect the executable
code of the application, and make it not be easy analyzed by
attacker. The below from two aspects of resisting static and
dynamic analysis analyze the effectiveness of the protection
method based on confusion of smali code.

The some bytecode within executable file is a junk code
sequence before executed bytecode flow by DVM. So when
attackers want to statically analyze the logical structure of the
program, they can’t acquire correct bytecode. Before the app
running the attackers dump the bytecode through dynamically
analyzing, this way is the same with resisting static analysis. If
running, they will dump the obfuscated bytecode, which isn’t
correctly decompiled, as shown in Figure 4.

In order to the effectiveness of the obfuscated method, we
will also utilize reversing tools to reverse executable code of
the application. The experiment results is shown in Table III.

C. Performance overhead

We measured the performance overhead of DEXPRO by
comparing the .dex file size, memory use and launch time
of applications before and after obfuscated by DEXPRO. We
measured the launch time by capturing the timestamps of
logs output by Android Logcat. The size of memory use was
measured by using the command procrank, which can get
the memory usage of the current system process and read

Test case Jeb Dex2Jar dexdump IDA pro

Data.apk × × ∗ ∗

BubbleSor.apk × × ∗ ∗

Hanio.apk × ∗ × ∗

Contact.apk × × × ∗

Table III: The results of analysis by reversing tools. × represent that the code
after reversing is wrong. ∗ represent that it becomes very complicated

200

0

400

600

 800

1000

1200

1400

1600

1800

T
h

e
si

z
e
 o

f
d

ex
（

K
B
）

Before

After

Data.apk BubbleSor.apk Hanio.apk Contact.apk

Figure 8: Describe the changes of the .dex file size. Compare to the D-value
of the .dex file size before and after obfuscated.

information from the /proc/pid/maps to count them, including
PSS, USS, VSS, RSS.

We can see from Figure 8 that the dex file size increases
more than 13KB. This increase in file size is mainly due to
the packer dex file that is used to load really dex file and
inserting the opaque predicates. The results are not obvious,
because the application size we selected is relatively small and
little difference.

Figure 9 illustrates memory use changes of applications
before and after obfuscated. The memory usage increases by
an average of 1.95M. We will describe that memory costs are
mainly caused by the re-packaging dex file, storing obfuscated
bytecode, and native library. But current mobile devices tend
to provide more RAM, for example, Huawei Nexus has two
processors: a four-core ARM Cortex-A57 processor at 1.95
GHz and a four-core ARM Cortex-A53 processor at 1.55 GHz.
The device has 3 GB of RAM and 64 GB of internal storage.
So you can ignore the costs.

To measure the app response delay after being protected
by DEXPRO, we compared the app launch time for the first,
second, third, and fourth run before and after obfuscated. To
make it more precisely, we did each experiment 20 times and
used the average value as a final reference. The launch time
of four test case is listed in Table IV.

Figure 10 shows the app launch time changers at each time.
We can see that the time increase at the first launch, which
is mainly caused by: 1) running the obfuscated application
needs to replace Classloader; 2) Before running we must find

Test case Data.apk BubbleSor.apk Hanio.apk Contact.apk

First(s)
Before 2.175 2.249 2.124 2.912
After 4.027 4.612 4.677 5.412

Second(s)
Before 0.939 0.923 0.844 0.911
After 1.027 0.942 0.892 1.017

Third(s)
Before 0.845 0.882 0.797 0.891
After 1.171 0.959 1.024 1.238

Fourth(s)
Before 0.823 0.862 0.781 0.887
After 0.994 0.928 0.934 1.099

Table IV: Launch time(in seconds) of four apps for the four times launch before and after obfuscated.

M
e
m

o
ry

 c
o
n
su

m
p
ti

n
（

M
） Before

After

Data.apk BubbleSor.apk Hanio.apk Contact.apk

0

20

40

60

80

100

Figure 9: Describe the changes of memory use. Compare to D-value of
memory use before and after obfuscated.

0

T
h

e
d

if
fe

re
n
ce

 o
f

ti
m

e(
s)

First

Data.apk BubbleSor.apk Hanio.apk Contact.apk

0.5

1

1.5

2

2.5

3

Second
Thired
Fourth

Figure 10: Describe the changes of launch time D-value. Compare to the first
,second, third ,and fourth launch time D-value before and after obfuscated.
we can see only that the time significantly increase at the first launch

the obfuscated method in the corresponding memory address
through parsing the structure of the dex file and then fill the
bytecode that is stored in ObjMethod in the address. These
classes and libraries will be loaded at the application’s first
execution and will be kept in the memory so long as the system
resources are sufficient. Thus, they do not need to be loaded
again in the app’s latter launch, which is the reason why they
all show a similar launch time as the unprotected apps at the
latter launch.

VII. RELATED WORK

Obfuscation is a useful and cost effective technique and it
does not require any special execution environment. Moreover
it is believed to be more effective on Android system[21], [22].
Patrick Schulz in his work code Protection in Android[23]
discusses some possible code obfuscation methods on the
Android platform using identifier mangling, string obfuscation,
dead code insertion, and self modifying code. Ghosh et al.[24]
have discussed a code obfuscation technique on the Android
platform that aims at increasing the complexity of the control
flow of the application so that it becomes tough for a reverse
engineer to get the business logic performed by an Android
application. Kundu has also worked on some obfuscation
techniques like clone methods, reordering expressions and
loops, changing the arrays and loop transformations[25].

There are various Android obfuscation tools available in
the market, such as Proguad[4]. But the current Android
obfuscation tools seem to still lack the combination of complex
control-flow and data-flow obfuscation techniques. In [1],
[2], [3] authors presents confusion scheme and algorithm
of Android oriented software Java code, combined with the
algorithm and improved insertion branch path and flattening
the excess flow of control of these two kinds of control flow
obfuscation method.

Junliang Shu et al. proposed SMOG[5], a comprehensive ex-
ecutable code obfuscation system to protect Android app. The
obfuscation engine is at software vendor’s side to conduct the
obfuscation on the app’s executable code, and then release the
obfuscated app to the end-user along with an execution token.
SMOG will also modify the code of DVM interpreter. Noor et
al.[26] present a protection scheme based on obfuscation, code
modification and cryptographic protection that can effectively
counter reverse engineering.

Vivek Bala et al.[27] analyzed the need for potent control-
flow based obfuscation so as to help protect Android apps.
they also have described the design and implementation of
three control-flow obfuscations for Android apps at the Dalvik
bytecode level, which go beyond simp control-flow transfor-
mations used by exiting Android obfuscators. The register-
reuse conflict problem raised by the Android runtime system
has also been addressed by means of our type separation
technique.

VIII. CONCLUSION AND FUTURE WORK

To deal with the problems that Android application is
easily to be tempered and repacked, this paper proposes a
protection method based on obfuscating smali code. We have
analyzed the related work about protecting the code of Android
apps in recent year. We also have described the design and
implementation of confusing the data flow for the access
procedure of register data, and combining opaque predicates
technology to confuse the control flow. This method can resist
decompiling. Meanwhile, we evaluate the potency, resilience
and cost of the code obfuscation method. Experimental result
demonstrates excellent performance of the effectiveness and
low cost.

The protection method presented in this paper has some
limitations as well. It can only be used on some specific
instructions formant and not be used at large scale. Our
proposed method does not protect the resources and native
library .so of an Android app and only protects the dex file.

In the future work, we will utilize the technology of control-
flow platting to confuse the control-flow of apps and protect
native library .so to strengthen the protection and increase diffi-
culty in reverse engineering. More importantly, the obfuscated
method is extended to the ART VM.

ACKNOWLEDGMENT

This work was partially supported by the National Nat-
ural Science Foundation of China under grant agreements
No. 61672427 and No. 61572402; the International Coop-
eration Foundation of Shaanxi Province, China under grant
agreements No.2015KW-003 and No.2017KW-008; the Re-
search Project of Shaanxi Province Department of Education
under grant agreement No.15JK1734; the Service Special
Foundation of Shaanxi Province Department of Education
under grant agreement No.16JF028; the Research Project of
NWU, China under grant agreement No.14NW28; the UK
Engineering and Physical Sciences Research Council under
grants EP/M01567X/1 (SANDeRs) and EP/M015793/1 (DIV-
IDEND); and the Royal Society International Collaboration
Grant (IE161012).

REFERENCES

[1] X. A. Zheng Qi, “The control flow of confusion for android mobile
application,” 2014.

[2] L. Jinliang, “Research and realization on android software protec-
tion technology,” Ph.D. dissertation, Beijing University of Posts and
Telecommunications, 2015.

[3] Z. Qi, “Research and implementation of code obfuscation algorithms
for applications of and smartphone terminal,” Master’s thesis, Beijing
University of Posts and Telecommunications, 2015.

[4] “Proguard,,” http://proguard.sourceforge.net/.
[5] J. Shu, J. Li, Y. Zhang, and D. Gu, “Android app protection via interpre-

tation obfuscation,” in Dependable, Autonomic and Secure Computing
(DASC), 2014 IEEE 12th International Conference on. IEEE, 2014,
pp. 63–68.

[6] Y. Yang, W. Fan, W. Huang, G. Xu, and Y. Yang, “The research of multi-
point function opaque predicates obfuscation algorithm,” Appl. Math,
vol. 8, no. 6, pp. 3063–3070, 2014.

[7] Z. Yuan, Q. Wen, and M. Mao, “Constructing opaque predicates for
java programs,” in 2006 International Conference on Computational
Intelligence and Security, 2006.

[8] Y. Yang, W. Fan, W. Huang, G. Xu, and Y. Yang, “The research of multi-
point function opaque predicates obfuscation algorithm,” Appl. Math,
vol. 8, no. 6, pp. 3063–3070, 2014.

[9] “Codeverify.cpp,,” http://androidxref.com/4.2.2 r1/xref/dalvik/vm/
analysis/CodeVerify.cpp.

[10] “Dexverify.cpp,,” http://androidxref.com/4.2.2 r1/xref/dalvik/vm/
analysis/DexVerify.cpp.

[11] “Jeb.” http://securitymusings.com/article/4003/
android-security-and-the-tools-i-use-jeb.

[12] “dexdump.” https://play.google.com/store/apps/details?id=com.redlee90.
dexdump.

[13] “Idapro,,” https://www.hex-rays.com/products/ida.
[14] “Dex2jar.” https://sourceforge.net/p/dex2jar/wiki/UserGuide/.
[15] A. Bartel, J. Klein, Y. L. Traon, and M. Monperrus, “Dexpler: converting

android dalvik bytecode to jimple for static analysis with soot,” in ACM
Sigplan International Workshop on State of the Art in Java Program
Analysis, 2012, pp. 27–38.

[16] W. Enck, D. Octeau, P. Mcdaniel, and S. Chaudhuri, “A study of android
application security,” British Medical Journal, vol. 2, no. 3859, pp.
1175–1175, 2011.

[17] “Android runtime,” https://en.wikipedia.org/wiki/Android Runtime.
[18] M. Dalla Preda and R. Giacobazzi, “Semantic-based code obfuscation

by abstract interpretation,” in International Colloquium on Automata,
Languages, and Programming. Springer, 2005, pp. 1325–1336.

[19] “Java native interface-jni,,” http://developer.android.com/intl/zh-cn/
training/articles/perf-jni.html.

[20] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating
transformations,” Department of Computer Science, The University of
Auckland, New Zealand, Tech. Rep., 1997.

[21] A. Venkatesan, “Code obfuscation and virus detection,” Ph.D. disserta-
tion, San Jose State University, 2008.

[22] S. Schrittwieser and S. Katzenbeisser, “Code obfuscation against static
and dynamic reverse engineering,” in International Workshop on Infor-
mation Hiding. Springer, 2011, pp. 270–284.

[23] P. Schulz, “Code protection in android,” Insititute of Computer Science,
Rheinische Friedrich-Wilhelms-Universitgt Bonn, Germany, vol. 110,
2012.

[24] S. Ghosh, S. Tandan, and K. Lahre, “Shielding android application
against reverse engineering,” in International Journal of Engineering
Research and Technology, vol. 2, no. 6 (June-2013). ESRSA Publica-
tions, 2013.

[25] D. Kundu, “Jshield: A java anti-reversing tool,” Ph.D. dissertation, San
José State University, 2011.

[26] M. Shoaib, N. Yasin, and A. G. Abbassi, “Smart card based protection
for dalvik bytecode–dynamically loadable component of an android
apk,” International Journal of Computer Theory and Engineering, vol. 8,
no. 2, p. 156, 2016.

[27] V. Balachandran, Sufatrio, D. J. J. Tan, and V. L. L. Thing, “Control flow
obfuscation for android applications,” Computers & Security, vol. 61, pp.
72–93, 2016.

http://proguard.sourceforge.net/
http://androidxref.com/4.2.2_r1/xref/dalvik/vm/analysis/CodeVerify.cpp
http://androidxref.com/4.2.2_r1/xref/dalvik/vm/analysis/CodeVerify.cpp
http://androidxref.com/4.2.2_r1/xref/dalvik/vm/analysis/DexVerify.cpp
http://androidxref.com/4.2.2_r1/xref/dalvik/vm/analysis/DexVerify.cpp
http://securitymusings.com/article/4003/android-security-and-the-tools-i-use-jeb
http://securitymusings.com/article/4003/android-security-and-the-tools-i-use-jeb
https://play.google.com/store/apps/details?id=com.redlee90.dexdump
https://play.google.com/store/apps/details?id=com.redlee90.dexdump
https://www.hex-rays.com/products/ida
https://sourceforge.net/p/dex2jar/wiki/UserGuide/
https://en.wikipedia.org/wiki/Android_Runtime
http://developer.android.com/intl/ zh-cn/training/ articles/perf-jni.html
http://developer.android.com/intl/ zh-cn/training/ articles/perf-jni.html

	Introduction
	Background and attack scenario
	Dalvik Virtual Machine
	Reverse tools
	Attack scenario

	Overview of Our Approach
	Implementation details
	The process of obfuscation
	Register type-conflict problem
	App execution

	Obfuscation evaluations
	Evaluations criteria
	Evaluations obfuscation method

	Experiments and analysis
	Experimental Setup
	Effectiveness
	Performance overhead

	Related work
	Conclusion and future work
	References

