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Abstract

A multitude of evidence has accumulated in support of the existence of

dark matter in our Universe. There are already plenty of dark matter

candidates. However, we do not know yet whether any of these can-

didates constitutes the whole or a part of the dark matter population

despite the tremendous experimental efforts. In this thesis, we study

several possible dark matter production mechanisms and the corre-

sponding observational and theoretical constraints in the context of

inflationary cosmology. Adopting a model-independent approach, we

explore the parameter space for dark matter with a mass of order MeV

and above showing that only small regions of the parameter space for

the popular freeze-out mechanism are still viable. Nevertheless, the

regions of the parameter space corresponding to the freeze-in and non-

thermal dark matter scenarios are mostly unexplored. We, therefore,

zoom into these regions and show that a connection to the inflationary

observables can be established, which can help constrain these scenar-

ios. We then consider the parameter space of a sub-eV dark matter

candidate, the axion. We show that using the Cosmic Microwave

Background radiation constraint on the effective number of relativis-

tic species, an interesting constraint can be placed. This bound arises

from the fact that the field whose angular excitations are the axions

can be displaced from its minimum during inflation and later decays

dominantly into ultra-relativistic, axions which contribute to the ef-

fective number of relativistic species. We finally consider the possible

production of axion-like particle via non-perturbative effects due to

their coupling to inflatons or moduli. We show that this mechanism

is efficient only if the amplitude of inflaton/moduli oscillations is ini-

tially much larger than the mass scale associated with the axion-like



particles. In this case, bounds can be placed on the corresponding

parameter spaces.
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Chapter 1

Introduction

The field of cosmology has come a long way since Albert Einstein formulated

his theory of General Relativity (GR) [1] due to the rapid development of obser-

vational techniques. We now have a simple model, the Standard Cosmological

Model (SCM or ΛCDM), which successfully describes most of the evolutionary

history of our Universe. According to the SCM, the observable Universe started

with a Big Bang roughly fourteen billion years ago 1 and since then, it has been ex-

panding. It is assumed (and has also been verified by observations [2, 3, 4, 5, 6, 7])

that our Universe is homogeneous and isotropic on large scales. In the SCM frame-

work, the dynamics of the Universe is driven by gravity described by GR which

relates the geometry of the space to its energy content [8, 9, 10, 11, 12]. The latter

includes the ordinary (baryonic) matter (and energy) 2 and non-luminous (dark)

matter. It also contains dark energy which effectively acts as a cosmological

constant.

It is astonishing that ordinary matter (and energy) constitutes only a small

fraction of the total energy budget of the Universe today (4.9% [13]), and that

1More precisely, the Big Bang took place around 13.807±0.026 (at 68% CL) billion years ago
according to the recent measurement of the Cosmic Microwave Background radiation (CMB)
by the Planck satellite [2].

2Radiation (i.e. relativistic species including photons) does not contribute significantly to
the total energy budget of the Universe today as it dilutes with expansion faster than the other
components. Also, the leptonic contribution to the total energy density is much smaller than
that of baryons.
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the rather unfamiliar forms of matter and energy, dark matter (26.6% [13]) and

dark energy (68.5% [13]), dominate the energy density of the Universe. Dark

energy (DE), the less understood of the two, was only discovered recently [14, 15]

whereas hints for the existence of dark matter (DM) started showing up much

earlier [16, 17, 18, 19, 20, 21, 22, 23, 24].

Nevertheless, the nature and origin of both DM and DE remain among the

fundamental mysteries in physics. Furthermore, many other puzzles lack satis-

factory explanations within the SCM framework, such as the observed large-scale

homogeneity, isotropy and spatial flatness of the Universe. The latter issues

can be explained by an early epoch of accelerated expansion, dubbed “infla-

tion” [25, 26, 27]. Inflation also provides a simple mechanism for the production

of primordial perturbations which, in the presence of DM, have grown into the

observed structure (for a review see e.g. [28, 29, 30]). However, inflation dilutes

all the possibly pre-existing relics, and hence to match observations the Stan-

dard Model (SM) degrees of freedom (d.o.f.) have to be excited after the end

of inflation. Similarly, DM has to be produced directly and/or indirectly after

inflation.

This thesis is dedicated to the study of DM. In particular, we investigate some

of the DM production mechanisms and the corresponding theoretical and obser-

vational constraints on DM in the context of inflationary cosmology. We begin

in this chapter by briefly reviewing the elements of the SCM, some of its short-

comings, and how they can be solved by an epoch of inflation. We also discuss

the observational evidence for DM, its known properties, and some of the famous

DM candidates and alternatives. In Chapter 2, we present a model-independent

scan of the parameter space for DM production after inflation and identify the re-

gions of the parameter space corresponding to thermal and non-thermal DM. For

the thermal case (both freeze-out and freeze-in scenarios), we show the current

observational and theoretical bounds and highlight the allowed regions of the pa-

rameter space in both scenarios. For the non-thermal case, we identify the regions

of the parameter space corresponding to cold, warm and hot DM. In Chapter 3,

we focus on the freeze-in and non-thermal DM scenarios whose parameter space

is mostly unexplored territory. We show that for the case of DM interactions

with the SM particles being mediated by a heavy particle, which naturally leads

3



1.1 Standard Cosmological Model (SCM)

to a freeze-in scenario, the DM abundance can be connected to the inflationary

observables. We show that this is also the case for the non-thermal DM scenario.

The established connection between the inflationary observables and DM abun-

dance for the non-thermal and frozen-in (via heavy mediator) DM could provide

a useful way to constrain the corresponding DM parameter spaces. We also scan

the parameter space for the DM production via this ultra-violet freeze-in mecha-

nism and show that the observed DM abundance can be fulfilled in a wide range

of the frozen-in DM masses. In Chapter 4, we turn our attention to a famous

DM candidate, the axion, which belongs to the low mass spectrum. We show

that large amounts of ultra-relativistic axions can be non-thermally produced,

increasing the effective number of the relativistic d.o.f. in our Universe which is

constrained by various astrophysical observations. This, in turn, places an inter-

esting constraint on the axion parameter space and the reheating temperature.

Further for completeness, we briefly review the other observational constraints.

In Chapter 5, we consider the non-perturbative production of axion-like particles

(ALPs) via their non-renormalisable derivative coupling to a scalar condensate

of inflatons or moduli. We first ignore the effect of the cosmic expansion and

show that the excitation of ALPs with a very wide range of masses can take place

via tachyonic and parametric instabilities that happen for two short periods of

time during each oscillation of the condensate. We repeat the calculation includ-

ing the effect expansion and show that the non-perturbative excitation of ALPs

is rendered completely inefficient unless the initial amplitude of oscillations is

much larger than the associated mass scale. In this case, the energy of the scalar

condensate can be drained as excitations of the axion-like field within a few os-

cillations. This analysis can be used to constrain the parameter space of many

ALP DM candidates. We present our conclusions in Chapter 6.

1.1 Standard Cosmological Model (SCM)

According to the SCM, our Universe is homogeneous and isotropic on large scales.

Such a Universe can be described by the Friedmann-Lemâıtre-Robertson-Walker

(FLRW) metric [9, 10, 11, 12], which in spherical-polar coordinates (r, θ, φ) takes

4



1.1 Standard Cosmological Model (SCM)

the form
ds2 = dt2 − a(t)2

[
dr2

1− κr2
+ r2

(
dθ2 + sin2 θdφ2

)]
, (1.1)

where a(t) denotes the time-dependent scale factor which parameterises the size

of the Universe and κ parameterises its spatial curvature. κ has the units of

length−2; with a proper re-scaling of the coordinates, κ can be made dimension-

less with κ = 0 corresponding to a flat Universe (Euclidean spatial geometry),

and κ = +1,−1 corresponding to a closed (3-sphere) and open (3-hyperboloid)

Universe, respectively. Using the Einstein field equations and the FLRW metric,

Eq. (1.1), one obtains the Friedmann equations describing the time evolution of

our homogeneous and isotropic Universe 1:

H2 =
ȧ2

a2
=

ρ

3M2
P

− κ

a2
, (1.2)

Ḣ +H2 =
ä

a
= − 1

6M2
P

(ρ+ 3P) , (1.3)

where

H ≡ ȧ

a
=

d ln a

dt
, (1.4)

is the Hubble expansion parameter, ‘dot’ denotes derivative with respect to

(w.r.t.) physical time t and MP ≡ [8πGN]−1/2 ' 2.43×1018 GeV is the reduced

Planck mass with GN being the Newton’s gravitational constant. Here ρ=
∑

iρi

and P=
∑

iPi are respectively the total energy and pressure of the cosmic fluid,

where the sum runs over all the components of the fluid. Further, using Eqs. (1.2)

and (1.3), energy conservation can be expressed by the following continuity equa-

tion:

ρ̇+ 3H(ρ+ P) = 0 . (1.5)

Note that the continuity equation holds for each component of the fluid separately

if there is no energy transfer between the different components. For a perfect fluid,

1In this thesis, we mostly use natural units, i.e. we set the speed of light, the reduced
Planck constant and the Boltzmann constant to one, c=~=kB =1, respectively.
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1.1 Standard Cosmological Model (SCM)

the pressure is related to the energy density via the equation of state

Pi = ωiρi , (1.6)

where the dimensionless parameter, ωi, is constant in time. The equation of state

parameter ωi=0, 1/3 and −1 for matter, radiation and dark energy, respectively.

Substituting for P into Eq. (1.5), one obtains

ρi = ρi,0

(a0

a

)3(1+ωi)

, (1.7)

where ‘0’ refers to the today’s values. Thus, as the Universe expands, the different

energy components dilute with different rates leading to three epochs of a single

energy component domination, starting with a radiation [ρrad∝ a(t)−4] domina-

tion (RD) epoch followed by a matter [ρm ∝ a(t)−3] domination (MD) epoch,

where the observed structures started to grow linearly, and finally an epoch of

accelerated expansion dominated by DE [ρ
Λ

=constant].

It is convenient to define the critical density ρc ≡ 3H2M2
P corresponding to

a spatially-flat Universe and the density parameter Ωi ≡ ρi/ρc. One can then

re-write Eq. (1.2) as

H2 = H2
0

[
Ωm,0

(a0

a

)3
+ Ωrad,0

(a0

a

)4
+ Ωκ,0

(a0

a

)2
+ ΩΛ,0

]
, (1.8)

where the curvature term Ωκ,0≡−κ/(a0H0)2, and Ωm,0 contains the contributions

of both dark and ordinary matter. According to the recent measurement of CMB

by the Planck mission H0 = 67.27 ± 1.32 km Mpc−1 s−1, Ωm,0 = 0.3156 ± 0.0182,

Ωrad,0 = 9.17+0.37
−0.35 × 10−5 (assuming three relativistic species of neutrino), ΩΛ,0 =

0.6879±0.0174 and |Ωκ,0|<0.005 (at 95% CL) [13]. Given the current abundance

of the different energy components, one can see easily from Eq. (1.8) that the

curvature contribution to the total energy density has always been sub-dominant,

and hence it can be safely ignored while discussing the history of the Universe.

Integrating Eq. (1.8) for each energy component separately while ignoring the

6



1.1 Standard Cosmological Model (SCM)

curvature term, one obtains

a(t) ∝

{
t2/[3(1+ωi)] (MD&RD) ⇒ H ' 2

3(1+ωi) t

eHt (DE domination) ⇒ H ' constant .
(1.9)

With the help of Eqs. (1.2) and (1.7) while setting κ= 0, the comoving Hubble

radius (aH)−1, which is the maximum comoving distance that can be travelled

by a particle during one expansion (Hubble) time H−1, can be expressed as

(aH)−1 ∝ a
1
2

(1+3ω). (1.10)

It is clear from Eq. (1.10) that the comoving Hubble sphere always expands unless

the Universe is dominated by a fluid with ω<−1/3. For a Universe dominated

with a fluid with ω>−1/3, the comoving particle horizon, which is the maximum

comoving distance from which light could have travelled to the observer,

dhor(t)

a(t)
=

∫ t

0

dt̃

a(t̃)
=

3(1 + ω)

C1(1 + 3ω)
t

1+3ω
3(1+ω) , (1.11)

roughly coincides with the comoving Hubble radius (aH)−1 = 3(1+ω)
2C

t
1+3ω

3(1+ω) , where

C is a constant. In such a Universe, regions separated by comoving distances

much larger than (aH)−1 were never in causal contact.

Another important concept in cosmology is redshift z, which is often used

as a proxy of time inferred from the measurement of the spectra of different

astronomical and cosmological light sources,

z =
λ0 − λ
λ

=
a(t0)

a(t)
− 1 , (1.12)

where λ denotes the wavelength of a spectral line characterising the source as

measured in laboratories (i.e that of the photon at the time of emission from

the source) and λ0 is the wavelength of the redshifted photon as measured from

Earth. For close objects, z 'H0d with d being the distance to the object. For

later convenience, let us define the conformal time τ , which is related to the

7



1.2 Shortcomings of the SCM

cosmic (physical) time, t, via the relation

dτ≡ dt

a(t)
=

da

a2H
. (1.13)

1.2 Shortcomings of the SCM

Let us briefly review some of the most widely-discussed puzzles of the SCM in

relation to the initial condition of the Universe.

1.2.1 Flatness problem

The recent measurement of the CMB has indicated that our Universe is spatially

flat to a very good accuracy, i.e. the energy density of the Universe today is very

close to the critical density (Ω0 =ρ0/ρc is very close to unity) [13]. By re-writing

Eq. (1.2) in the form

Ω− 1 = κ (aH)−2 , (1.14)

one can see that in our Universe, which has been dominated by radiation [H2∝
ρrad∝ a−4⇒ (Ω − 1)∝ a2] or matter [H2∝ ρm ∝ a−3⇒ (Ω − 1)∝ a] for most of

its history, Ω should have been extremely close to unity at early times. Put in

other words, a tiny deviation from the critical density at early times could have

caused the Universe to collapse very soon after the Big Bang or expand too fast

such that no structure could form. This is a serious fine tuning problem.

1.2.2 Horizon problem

According to the SCM, the CMB sky we observe today was initiated around

380,000 years after the Big Bang when photons decoupled from electrons and

baryons. Amazingly, the CMB is very isotropic with an almost perfect black

body spectrum [31] at temperature T0 = 2.7255 ± 0.01 K [32]. The temperature

anisotropies in the CMB are smaller than 10−4 [33]. This indicates that the CMB

photons we detect today must have been in causal contact. On the other hand, in

the SCM, regions separated by distances larger than the particle horizon, dhor,dec,

8



1.2 Shortcomings of the SCM

were not in causal contact with each other at the era of decoupling tdec, and hence

there is no reason for such regions to share the same temperature. Assuming for

the sake of estimation that the Universe has always been dominated by non-

relativistic matter, the horizon size at photon decoupling is [see Eq. (1.11)]

dhor,dec ∼ 3 tdec ∼ 0.3 Mpc , (1.15)

whereas the present horizon size redshifted back to the era of decoupling is given

by

dhor,0(tdec)∼dhor,0(1 + zdec)
−1 ∼ 10 Mpc . (1.16)

Thus, there were about [dhor,0(tdec)/dhor]
3 ∼ 104 disconnected patches of space

within the volume that corresponds to our present horizon. So, how is it that

these causally-disconnected regions of space have the same properties? This is

known as the horizon problem which has no solution within the SCM framework.

1.2.3 The origin of large-scale structure

The CMB sky we observe today indicates that at early times the Universe was re-

markably homogeneous and isotropic with tiny density perturbations (at the level

10−5) whose power spectrum is nearly scale-invariant on large scales [13]. These

small fluctuations have grown under the influence of gravity into the structure we

observe today, such as galaxies and galactic clusters. So from where have these

perturbations arisen? The SCM does not explain the origin of these primordial

perturbations, which were outside the Hubble sphere (super-Hubble) in the early

universe. Within the SCM framework, these initial perturbations have to be put

in by hand. This is known as the primordial perturbations problem.

1.2.4 Unwanted relics

According to the SCM, the Universe started up with a very high temperature. As

the temperature decreased due to expansion, several phase transitions may have

taken place giving rise to topological defects and exotic particles (see [34] for a

review). For instance, many grand unified theories (GUT) predict the existence
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1.3 Cosmic inflation

of magnetic monopoles which are stable, very massive (m∼ TGUT ∼ 1015 GeV),

point-like, topological defects. Other topological defects such as cosmic strings

and domain walls can be produced, for example in a GUT or Peccei-Quinn phase

transition. Furthermore, heavy exotic particles such as gravitinos (the supersym-

metric partner of the graviton), Kaluza-Klein particles and weakly-coupled mod-

uli fields predicted by theories of extra-dimensions 1, can be abundantly produced

at high temperatures. These exotic relics if stable (or sufficiently long-lived) can

come to dominate the energy density of the Universe because they dilute slower

than radiation does as the Universe expands. Obviously, such relics are ruled out

by observations.

1.3 Cosmic inflation

The initial condition problems of the SCM discussed in the previous section can

be elegantly solved by an early epoch of accelerated expansion (inflation). In this

section, we briefly discuss the basic idea of inflation and how it solves the initial

condition puzzles of the SCM.

1.3.1 The basic idea

In the SCM framework, the comoving Hubble radius, (aH)−1, is a monotonically

increasing function of time [see Eq. (1.10)]. Going back in time, fewer and fewer

regions of space were in causal contact, which contradicts many cosmological

observations [4, 5, 6, 13]. Hence, an early epoch with a shrinking Hubble sphere

is needed to bring more regions of space into causal contact at early times. This

is exactly the idea of inflation (for a review see e.g. [34, 40, 41]). To see whether

1The moduli fields are natural consequence of any low energy string theory, which appear
in four dimensions with almost flat potential [35]. Typically, the moduli could be made heavy
by stringy non-perturbative effects [36], but still there could be one light moduli with a mass
around the scale of low supersymmetry (SUSY) breaking. If the low scale SUSY breaking is
at O(TeV), then the moduli would typically take a mass of that order. Light moduli could
be displaced during inflation by virtue of quantum fluctuations of order the Hubble expansion
rate during inflation (see [34, 37, 38, 39]). In which case, the moduli lighter than the Hubble
expansion rate during inflation could be settled with a large VEV, i.e. O(MP).
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1.3 Cosmic inflation

this is possible, let us consider the time evolution of the comoving Hubble radius,

− d

dt
(aH)−1 =

1

a
(1− ε) = − d

dt
(ȧ)−1 =

ä

ȧ2
> 0 . (1.17)

It is clear from Eq. (1.17) that a shrinking Hubble sphere corresponds to accel-

erated expansion of the Universe and can be achieved if

ε ≡ − Ḣ

H2
= −d lnH

d ln a
= −d lnH

dN
= 1− (ä/a)

H2
=

3

2
(1 + ω) < 1 , (1.18)

where we have used Eqs. (1.2) and (1.3), and defined dN≡d ln a=Hdt with N be-

ing the number of e-folds of cosmic expansion [alternatively a(N)=a(Ni) exp(N−
Ni)]. Eq. (1.18) is satisfied if ω=P/ρ<−1/3, i.e. (ρ + 3P)<0. For a perfect de

Sitter Universe, H ∝ ρ1/2 = constant (ω=−1) which implies that ε= 0, in which

case inflation would last for ever. However, in our Universe inflation has to end

which requires ε to increase with time. Nevertheless, for inflation to solve the

horizon problem it has to last for sufficiently long time (i.e. for a large number

of Hubble expansion times) which requires ε to be a slowly-varying function of

time, i.e.

η ≡ ε̇

Hε
=

d ln ε

dN
, |η| < 1 . (1.19)

Thus, inflation takes place if ε, |η|�1 and ends when ε reaches unity.

1.3.2 Inflation and the SCM problems

Let us see how an early epoch of inflation can solve the initial condition problems

of the SCM. During inflation the Hubble parameter, H∝ρ1/2, is roughly constant;

as a result, the Universe expands quasi-exponentially,

a(t) ' a(tI) e
∫ t
tI
Hdt̃ ∼ a(tI) e

H(t−tI) . (1.20)

Thus, if inflation lasts long enough, any unwanted relic can be inflated away.

Requiring that the decay of the field(s) driving inflation do not reheat the Universe

to a very high temperature, one can make sure that these unwanted relics do not
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1.3 Cosmic inflation

get produced after inflation. The SM d.o.f. needed for the success of Big Bang

Nucleosynthesis (BBN) can then be excited after inflation.

Moreover during inflation, the comoving Hubble volume decreases monotoni-

cally [see Eq. (1.17)] allowing more regions of the Universe to be in causal contact

at early times. In other words, a given physical scale λ=a(t)λ̃ grows much faster

than the Hubble radius does, H−1' constant, which means that physical scales

that are outside the Hubble volume (super-Hubble) at a given time were inside the

Hubble volume (sub-Hubble) at earlier times (during inflation). Consequently,

the horizon problem is solved provided that inflation lasts long enough. This also

solves the primordial perturbations problem as the perturbations responsible for

the observed structures, which were super-Hubble before the BBN era, are expo-

nentially reduced in size going back in time. Therefore, these perturbations can

be made sub-Hubble during inflation where micro-physics can act. We show in

Section 1.4.1.1 below that these perturbations were actually quantum fluctuations

that have been stretched to cosmological scales during inflation.

The shrinking comoving Hubble volume during inflation also solves the flatness

problem, which can easily be seen from Eq. (1.14). During inflation the density

parameter, Ω=ρ/ρc, is driven toward unity. Hence, Ω can be made very close to

unity as required by observations provided that inflation lasts for a long enough

time.

Let us estimate how much inflation is needed in order to solve the SCM initial

condition issues. Focusing on the horizon problem, it is clear that the resolution

of the horizon problem at the very minimum requires that the largest observable

scale must fit in the comoving Hubble volume at the beginning of inflation, i.e.

(aIHI)
−1

(a0H0)−1
=

(aIHI)
−1

(aendHend)−1

(aendHend)−1

(a0H0)−1
& 1 ⇒ aend

aI

&
a0

aend

∼ Tend

T0

, (1.21)

where the indices ‘I’ and ‘end’ refer to values at the beginning and end of infla-

tion, respectively. Here for simplicity, we assumed that the Universe has been

dominated by radiation since the end of inflation till today (H∝ t−1∝T 2∝a−2).

From Eq. (1.21), one can easily see that the amount of expansion during inflation

should be at least equal to that after inflation in order for the horizon prob-
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1.3 Cosmic inflation

lem to be solved. Plugging in the current temperature T0 ' 2.37×10−4 eV and

substituting Tend ∼ 1015 GeV (for high scale inflation models ρ1/4 ∼ 1016 GeV),

one sees that the Hubble volume has to shrink roughly by a factor & 1027 [or

N = ln(aend/aI)& 63] during inflation in order to solve the horizon problem. A

more accurate estimation of the number of e-folds during inflation for high scale

inflation models holds N=50–60 depending on the details of the reheating period

after inflation 1. One can also show that a similar amount of inflation solves the

flatness problem and the other initial condition problems of the SCM.

1.3.3 Single-field slow-roll inflation

The earliest successful and perhaps the simplest implementation of the above

idea is realised via what is known as “single-field slow-roll inflation” in which the

accelerated expansion of the Universe is driven by the potential energy of a slowly

rolling scalar field (see e.g. [42]). To see this, let us consider the following generic

action of a scalar field, φ, dubbed as “inflaton”, with a canonical kinetic term:

Sφ =

∫√
−g d4xLφ =

∫√
−g d4x

[
1

2
gµν∂µφ∂νφ− V (φ)

]
, (1.22)

where g ≡ det(gµν)
2. The stress-energy tensor for the inflaton field can be ex-

pressed as

Tµν = ∂µφ∂νφ− gµν
[

1

2
gαβ∂αφ∂βφ− V (φ)

]
. (1.23)

In general, both the inflaton field and the metric are functions of space and time.

For sufficiently homogeneous initial condition, both the inflaton field and the

metric can be expanded as

φ(xα) = φ̄(t) + δφ(xα) , (1.24)

gµν(x
α) = ḡµν(t) + δgµν(x

α) , (1.25)

1For many other models of inflation such as low scale models, the amount of required
(observable) inflation can be significantly smaller.

2Here and throughout this thesis, the Greek indices denote the four-vector components and
take on values 0, 1, 2, 3.
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1.3 Cosmic inflation

where the bars on top indicate the homogeneous background part and the δ’s

in front indicate the perturbations in the corresponding quantities 1. Here, the

background FLRW metric is given by Eq. (1.1). The dynamics of the homoge-

neous part of the inflaton field is governed by the following equation of motion

(EOM) which can be easily obtained by varying the inflaton action, Eq. (1.22),

w.r.t. φ keeping only the zeroth order terms:

φ̈+ 3Hφ̇+ ∂φV = 0 . (1.26)

Moreover, the 00 component of the stress-energy tensor, Eq. (1.23), gives the

energy density of the inflaton field, while the spatial components give its pressure.

These can respectively be expressed as

ρφ '
1

2
φ̇2 + V , (1.27)

Pφ '
1

2
φ̇2 − V . (1.28)

With the help of (1.2), (1.3), (1.26), (1.27) and (1.28) while ignoring the curvature

term (i.e. setting κ=0) one can show that the conditions for inflation, Eqs. (1.18)

and (1.19), now read

ε = − Ḣ

H2
' 3

2

φ̇2

ρφ
' M2

P

2

(
∂φV

V

)2
≡ εφ < 1 , (1.29)

and

η ' −2
Ḣ

H2
+2

φ̈

φ̇H
=2ε− 2ζ , |ηφ|≡|ε+ ζ| 'M2

P

∣∣∣∣∂2
φV

V

∣∣∣∣< 1 . (1.30)

The above conditions, which are usually called the “slow-roll” conditions, ensure

that the inflaton is a slowly rolling field. The first slow-roll parameter, εφ, mea-

sures the slope of the potential. Having εφ�1 initially ensures that the potential

energy is slowly varying and is dominant over the kinetic energy (φ̇2� V ). As

a result, the energy of the inflaton (or equivalently the Hubble parameter) is

1In what follows, we will usually drop the over bar when it does not cause confusion.
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1.4 Initial perturbations and the evolution of structure

roughly constant which is required in order for the Universe to expand quasi-

exponentially [see Eq. (1.9)] 1. Since εφ�1 increases with time [see Eq. (1.30)],

the first slow-roll condition will eventually break down, i.e. εφ reaches unity, and

inflation will come to an end. Therefore, for inflation to last long enough such

that it solves the initial condition issues of the SCM, the change in the slope of

the potential (or equivalently εφ) has to be sufficiently small which requires that

the second slow-roll parameter, ηφ, to be �1 initially. The second slow-roll con-

dition ensures that initially |φ̈|� 3H|φ̇| ' |∂φV |. Therefore, when the slow-roll

approximation holds, Eqs. (1.2) and (1.26) can be respectively re-written as 2

H2 ' V

3M2
P

, (1.31)

and

3Hφ̇ ' −∂φV. (1.32)

The number of the cosmic e-folds during inflation is then given by

N = ln

[
a(tend)

a(tI)

]
=

∫ tend

tI

Hdt ' − 1

M2
P

∫ φend

φI

V

∂φV
dφ = − 1

MP

∫ φend

φI

dφ√
2εφ

. (1.33)

1.4 Initial perturbations and the evolution of

structure

We now turn our attention to the subject of cosmological inhomogeneities, their

origin and their evolution into the observed structure (for a detailed discussion see

e.g. [28, 29, 30, 43, 44]). Since the measurement of the CMB indicates that these

perturbations were very tiny in the early Universe (see e.g. [3]), it is sufficient

to consider only first order in the perturbed quantities for a great part of the

history of the Universe. Further, since the background is invariant under spatial

1This also leads to a negative equation of state [see Eqs. (1.6), (1.27) and (1.28)] which is
a condition for inflation [see Eq. (1.18)].

2Here, we ignore the curvature contribution to energy density, which actually could be
large initially due to a stage of decelerated expansion prior to inflation. However, once inflation
begins, the curvature contribution rapidly dilutes away and can be safely ignored.

15
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rotations [i.e. under SO(3)], the linear perturbations of the metric, δgµν , can be

classified according to the way they transform under spatial rotation into scalar,

vector and tensor modes. Among these only the scalar and tensor perturbation

exhibit non-decaying solutions whereas the vector perturbations redshift away

quickly with the expansion of the Universe and hence can be ignored. At linear

order, different perturbation modes are decoupled from each other and evolve

independently.

Clearly, apart from tensor modes, which are automatically gauge invariant, the

perturbation modes are not uniquely defined 1. This issue can be circumvented

by either fixing the gauge (in which case the gauge invariance can be restored

at the end of the calculation by combining the gauge dependent quantities) or

using the transformation properties of the metric fluctuations to construct gauge

invariant combinations and limit the calculation to those quantities.

1.4.1 Origin of the cosmic fluctuations

As mentioned earlier the SCM lacks a natural mechanism for the production

of primordial cosmic fluctuations which are responsible for the structure in the

Universe. We show below how these density perturbations arise as quantum fluc-

tuations on microscopic scales which get stretched by inflation into cosmological

scales. These scalar perturbations leave their imprints on the CMB sky in the

form of temperature fluctuations, which agree quite well with the observations.

We also show how tensor fluctuations originate during inflation, which might be

detected in the near future as polarisation fluctuations in the CMB sky.

1To see this, consider for example the perturbation in the energy density ρ(xα). Obviously,
ρ(xα) is a physical quantity and does not change if one changes the coordinates (changes the
gauge); instead, it gets re-mapped to the new coordinates. This is not the case, however, for
the density perturbation, δρ(xα)=ρ(xα)−ρ(t) where ρ(t) denotes the spatial average of ρ(xα)
at time t, since a specific choice of time slicing was made [i.e.,the average of ρ(xα) is performed
along the constant-time hypersurface]. Any change of coordinates, xα → x̃α, which affects
the constant-time hypersurfaces will also change the density perturbation [δρ(x̃α) in the new
coordinates] as δρ(x̃α) will be computed by comparing the local value of ρ(x̃α) with different
physical points on a different constant-time hypersurface.
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1.4.1.1 Scalar perturbations

Let us first consider the scalar perturbations which can be easily studied in the

spatially-flat gauge. In this gauge, the spatial part of the metric contains only

tensor modes; this allows the spatial perturbations of the inflaton field, δφ, to

decouple from the metric perturbations at leading order. Expanding the inflaton

action, Eq. (1.22), to second order (as the first order vanished by its equation of

motion at background level), one obtains

δSφ =
1

2

∫
a3(t)d4x

[
∂µδφ∂µδφ− ∂2

φV |φ̄δφ2
]

=
1

2

∫
dτd3x

[
ψ′2 − 2Hψ′ψ − (∇ψ)2 + (H2 − a2∂2

φV |φ̄)ψ2
]

=
1

2

∫
dτd3x

[
ψ′2 − (∇ψ)2 + H2

(
1 +

H′

H2
−
a2∂2

φV |φ̄
H2

)
ψ2

]
, (1.34)

where ‘prime’ denotes derivative w.r.t. conformal time [as defined by Eq. (1.13)]

and H≡ a′/a= aH. Here, we defined ψ≡ a δφ and integrated the 2Hψ′ψ term

in the second line by parts. Using Eqs. (1.2), (1.29) and (1.30), one can re-write

Eq. (1.34) as

δSφ =
1

2

∫
dτd3x

[
ψ′2 − (∇ψ)2 + H2 (2− εφ − 3ηφ)ψ2

]
, (1.35)

where we substituted H2 =(aH)2'V 2/(3M2
P) which holds true during inflation.

Upon the variation of the action, Eq. (1.35), w.r.t. ψ one obtains the equation of

motion for ψ,

ψ′′ −∇2ψ −H2 (2− εφ − 3ηφ)ψ = 0 . (1.36)

The slow-roll parameters, εφ and ηφ, are negligibly small during inflation and can

be ignored. Now expanding ψ in momentum space,

ψ(τ,x) =

∫
d3k

(2π)3
eik·xψk(τ) , (1.37)
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we obtain the equation of motion for each momentum mode

ψ′′k + [k2 − 2H2]ψk ' 0 , (1.38)

where k≡|k| is the comoving momentum which remains constant with expansion,

while the term 2H2 = 2(aH)2 ' 2/τ 2 (with τ being fixed to zero at the end

of inflation) increases exponentially during inflation. As a consequence, each

perturbation mode with momentum k may go through two regimes. At the early

stages of inflation the comoving wavelength, λ̃= 2π/k, of a certain mode can be

sub-Hubble (i.e. λ̃�H−1 = (aH)−1 or equivalently k�H) in which case the

equation of motion for that mode, Eq. (1.38), reduces to that of a simple quantum

harmonic oscillator,

ψ′′k + k2ψk ' 0 , (1.39)

with frequency ωk = k. As the Universe inflates, the comoving Hubble volume

shrinks and hence perturbation modes which are initially inside the comoving

Hubble volume becomes super-Hubble, i.e. k � H = aH [see Eq. (1.38)]. In

this regime, the perturbation mode, ψk, acquires a tachyonic mass and ceases

being quantum. Instead, its subsequent evolution becomes classical with initial

conditions set by the preceding quantum sub-Hubble phase. The zero-point fluc-

tuations of these quantum oscillators in the sub-Hubble regime provide the origin

for the structure in the Universe. To quantise these oscillators (for more details,

see e.g. [45]), we expand ψk in terms of the creation and annihilation operators

ak and a†k:

ψk(τ) = vk(τ)ak + v∗−k(τ)a†−k , (1.40)

where âk and â†k′ satisfy the commutation relation,

[ak, â
†
k′ ] = (2π)3δ3(k− k′) . (1.41)

Substituting Eq. (1.40) into Eq. (1.38) and noticing that H=−τ−1, we obtain

v′′k(τ) +

(
k2 − 2

τ 2

)
vk(τ) = 0 . (1.42)
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1.4 Initial perturbations and the evolution of structure

Eq. (1.42) has the exact solution (see e.g. [40, 41, 44, 46])

vk(τ) = C
(1)
k

e−ikτ√
2k

(
1− i

kτ

)
+ C

(2)
k

eikτ√
2k

(
1 +

i

kτ

)
. (1.43)

At early time t→ 0 (or equivalently τ→−∞), all the cosmologically interesting

modes were deep inside the Hubble patch with equations of motion of a simple

harmonic oscillator [see Eq. (1.39)] which exhibits two independent solutions, vk∝

e±ikτ . We define the vacuum such that it corresponds to the minimal excitation

state (i.e. 〈0|H|0〉 is minimised, where H is the Hamiltonian of the oscillator)

which picks the positive frequency mode, e−ikτ . This is known as the “Bunch-

Davies vacuum” [47] and is satisfied if C
(1)
k =1 and C

(2)
k =0 in Eq. (1.43). In the

limit t→0 (τ→−∞), it reduces to the following Minkowski vacuum:

lim
τ→−∞

vk =
e−ikτ√

2k
. (1.44)

The zero-point fluctuations are usually quantified by the power spectrum, P,

defined as follows 1:

〈0|ψkψ
†
k′ |0〉 = (2π)3δ3(k− k′)Pψ(k) . (1.45)

For later convenience, let us re-define the power spectrum as 2 .

∆2
ψ(k) ≡ k3

2π2
Pψ(k) . (1.46)

1The fluctuations produced during single-field inflation are expected to be Gaussian due
to the fact that deep inside the Hubble patch the action of ψ, Eq. (1.35), is quadratic and
consequently the odd order correlation functions vanish whereas the even order correlation
functions can be expressed in terms of two-point ones via Wick’s theorem (see e.g. [45, 48]).
This has been verified by the measurement of CMB which places strong constraints on the
non-Gaussianity of primordial density perturbations [49]. Thus, the power spectrum defined
above is sufficient to characterise the inflationary perturbations.

2In what follows, we will use ∆2
i (k) as the power spectrum.
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1.4 Initial perturbations and the evolution of structure

Now using Eqs. (1.40), (1.41) and (1.43), it is easy to show that

∆2
ψ(k) =

k3

2π2
|vk|2 =

k2

4π2

(
1 +

1

k2τ 2

)
. (1.47)

In terms of δφ=ψ/a, the power spectrum of scalar perturbations can be written

as

∆2
δφ(k) =

H2

4π2

[(
k

aH

)2
+ 1

]
, (1.48)

where we substituted τ =−H−1 =−(aH)−1. It is clear from Eq. (1.48) that on

super-Hubble scales (k�H=aH), i.e. several e-folds after the perturbations of

cosmological interest leaves the Hubble patch, the power spectrum of the inflaton

perturbations,

∆2
δφ(k) ' H2

4π2
, (1.49)

is constant provided that H is time-independent. The power spectrum of scalar

perturbation is usually expressed in terms of the gauge-invariant “curvature per-

turbation” (R) which in the spatially-flat gauge is related to inflaton perturbation

through the relation,

R ≡ −H

φ̄′
δφ = −H

˙̄φ
δφ = − δφ√

2εφMP

= − δφ

M2
P

∣∣∣∣ V∂φV
∣∣∣∣
φ̄

, (1.50)

where we used Eqs. (1.2) and (1.29). Now using Eqs. (1.49) and (1.50), the power

spectrum of curvature perturbations on super-Hubble scales can be expressed as

∆2
R(k) ≡ k3

2π2
P

R
(k) ' 1

8π2εφ

H2

M2
P

' 1

12π2

V 3

M6
P(∂φV )2

∣∣∣∣
φ̄

. (1.51)

For exact de Sitter Universe, the power spectrum of curvature perturbations, ∆2
R ,

is scale-invariant. This is not actually the case; ∆2
R exhibits a slight k-dependence

due the slow time variation of both H and εφ while different momentum modes

successively exit the Hubble patch. This scale-dependence is usually parame-

terised as (see e.g. [50])
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1.4 Initial perturbations and the evolution of structure

∆2
R(k) = As

(
k

k?

)ns−1+ 1
2

dns
d ln k

ln( kk?)+higher orders

, (1.52)

where k? ≡ 0.05 Mpc−1 is the reference scale chosen by the Planck collabora-

tion [13]. At this pivot scale, the amplitude of scalar perturbations is measured

to be As ≡ ∆2
R(k?) = (2.142±0.049)×10−9 at 68% CL [13]. In Eq. (1.52), the

parameter ns, known as the “spectral index of scalar perturbations”, is mea-

sured to be ns = 0.9667 ± 0.0040 at 68% CL and the factor dns
d ln k

in Eq. (1.52)

denotes the “running of the spectral index” 1. The running of the spectral index

and the higher order terms in the exponent of Eq. (1.52) are compatible with

zero ( dns
d ln k
|k? =−0.0065 ± 0.0076 at 68% CL) [13]. The spectral index of scalar

perturbations can be expressed in terms of the slow-roll parameters as follows:

ns − 1 ' d ln ∆2
R

d ln k
=

d ln ∆2
R

dN

dN

d ln k
'
[
2

d lnH

dN
− d ln εφ

dN

][
d(N + lnH)

dN

]−1

' −6εφ + 2ηφ , (1.53)

where we have used Eqs. (1.2),(1.29) and (1.30), and evaluated the expression at

Hubble exit (k=aH).

1.4.1.2 Tensor perturbations

Let us now consider the tensor perturbations. Unlike the primordial scalar per-

turbations responsible for the CMB fluctuations and the observed large scale

structure, tensor perturbations do not play a role in the formation of structure.

Nevertheless if present, they can cause polarisation fluctuations in the CMB sky.

Expanding the Einstein-Hilbert (gravity) action to second order (the first non-

trivial order), one obtains [28, 29, 30, 43, 44, 53]

δSEH =
M2

P

8

∫
dτd3x a2

[
(Ê ′ij)

2 − (∇Êij)2
]
, (1.54)

1If ns were equal to one, we would have had a scale-invariant spectrum which is also known
as “Harrison-Zel’dovich spectrum” [51, 52]. Instead, observation indicates a red-tilted spectrum
(ns<1) [13].
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1.4 Initial perturbations and the evolution of structure

where Êij is a symmetric, transverse, traceless tensor which has only two d.o.f. 1.

Êij is usually decomposed as Êij = εle
(l)
ij (l = +,×) where e

(+)
ij = 1√

2
(e

(1)
i e

(1)
j −

e
(2)
i e

(2)
j ) and e

(×)
ij = 1√

2
(e

(1)
i e

(2)
j + e

(2)
i e

(1)
j ) with e(1) and e(2) being two orthonormal

vectors lying in the plane perpendicular to the direction of propagation. Further,

it is convenient to define ψl ≡ aMPεl/2 (l = +,×). Hence Eq. (1.54) can be

re-written as

δSEH =
1

2

∫
dτ d3x

∑
l=+,×

[
(ψ′l)

2 − (∇ψ̂l)2 + H2

(
1 +

H′

H2

)
ψ2
l

]
=

1

2

∫
dτ d3x

∑
l=+,×

[
(ψ′l)

2 − (∇ψ̂l)2 + H2(1− εφ)ψ2
l

]
, (1.55)

where we used Eq. (1.29). This is the same action as that for the scalar per-

turbations, Eq. (1.35), except that tensor perturbations have two polarisation

modes. From Eq. (1.49), one can then write down the power spectrum for tensor

perturbations on super-Hubble scales

∆2
t (k) = 2×∆2

ε(k) ' 2×
(

2

MP

)2
× H2

(2π)2
=

2

π2

H2

M2
P

. (1.56)

Similar to the case of scalar perturbations, the power spectrum of tensor pertur-

bations exhibits a slight scale-dependence due to the slow variation of H in time

during inflation. This k-dependence of the power spectrum of tensor perturba-

tions can be parameterised in a similar fashion to the scalar perturbations case,

∆2
t (k) = At

(
k

k?

)nt+ 1
2

dnt
d ln k

ln( kk?)+higher orders

, (1.57)

where At ≡ ∆2
t (k?), nt denotes the spectral index of tensor perturbations and

dnt
d ln k

is the running of the spectral index (nt= 0 corresponds to a scale-invariant

spectrum). For slow-roll inflation, it is easy to show that nt'−2εφ.

It is clear from Eq. (1.56) that the power spectrum of the tensor perturbations

is directly connected to the energy scale of inflation, H2 ∝ ρ. Therefore, the

measurement of the amplitude of tensor perturbations would fix the scale of

inflation (i.e. how early in the history of the cosmos inflation occurred) [54].

1Êij is the (transverse traceless) tensorial part of the metric fluctuations.
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1.4 Initial perturbations and the evolution of structure

The amplitude of scalar perturbations is usually normalised to that of scalar

perturbations,

r ≡ ∆2
t

∆2
R

∣∣∣∣
k=k?

=
At
As

, (1.58)

where r is know as the “tensor-to-scalar ratio”. For slow-roll inflation r' 16εφ

[see Eqs. (1.51) and (1.56)]. The non-observation of tensor modes in the CMB sky

places an upper bound on the tensor-to-scalar ratio, r0.05< 0.07 at 95% CL [55]

which constrains the energy scale of (slow-roll) inflation (e.g. [54, 56]),

ρ1/4' 7.4× 10−3
( r

0.07

)1/4
MP . 1.8× 1016 GeV ,

H' 3.1× 10−5
( r

0.07

)1/2
MP . 7.6× 1013 GeV . (1.59)

1.4.2 Growth of density perturbations

The scalar perturbations produced during inflation are pushed outside the Hubble

patch due to the quasi-exponential expansion. After inflation, the comoving

Hubble patch starts to expand and consequently the perturbations modes which

are frozen on super-Hubble scales successively re-enter the Hubble patch. Once

a perturbation mode is inside the comoving Hubble patch, it starts evolving.

Let us now consider the evolution of the perturbation modes governed by the

Einstein field equations which relate the scalar metric perturbations to density

and pressure fluctuations in the cosmic fluid. This is most conveniently done in

the conformal Newtonian gauge. In this gauge, there are only two scalar modes (Φ

and Ψ) which are actually equal in the absence of anisotropic stresses (perfect fluid

approximation) 1. On sub-Hubble scales, Φ acts as a Newtonian potential. For

the purpose of analytical estimation, a single component domination is assumed 2.

1This is true provided that Φ and Ψ are Gaussian, random fields which is actually the case
according to the measurement of CMB [49]. Note that, some components of the cosmic fluid
such as neutrinos which decouple from the plasma when the temperature drops to a few MeV,
do not behave as ideal fluids and can give rise to small anisotropic stresses. However, this effect
becomes negligible once matter comes to dominate the Universe. We do not discuss this issue
here.

2For detailed discussion see e.g. [28, 29, 30, 43, 44]. Here we just quote the relevant results.
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1.4 Initial perturbations and the evolution of structure

The cosmic fluid is made of multiple components such as non-relativistic mat-

ter dominated by DM and plasma which consists of photons, baryons and lep-

tons 1. On super-Hubble scales, the scalar perturbations are constant and related

to the gauge-invariant curvature perturbations through the relation:

Φk ' −
3 + 3ω

5 + 3ω
Rk , (1.60)

which provides the initial condition for the subsequent sub-Hubble evolution.

Here, the curvature perturbation, Rk, is given by Eq. (1.50). The density per-

turbation of the dominant fluid component is

δk ≡
δρk
ρ̄

= −2

3

k2

H2
Φk − 2Φk −

2

H
Φ′k , (1.61)

where δ ≡ δρ/ρ̄ denotes the density contrast. On super-Hubble scales (k�H),

δk ' −2Φk ' constant. For modes that re-enter the Hubble patch during RD,

Φk'−2
3
Rk on super-Hubble scales, whereas deep inside the Hubble patch

Φk(τ) = 6Rk

[
(kτ) cos(kτ/

√
3)−

√
3 sin(kτ/

√
3)

(kτ)3

]
, (1.62)

i.e. the gravitational potential exhibits an oscillatory behaviour with a decaying

amplitude and a well-defined phase. Using Eq. (1.61), one then obtains the sub-

Hubble radiation density contrast

δrad,k(τ) ' 6 Φ
(i)
k cos(kτ/

√
3) ' −4 Rk cos(kτ/

√
3) . (1.63)

Clearly, the radiation density fluctuations do not grow during RD; instead, they

oscillate around δrad,k=0 with a constant amplitude (acoustic oscillations). They

continue to oscillate even after matter comes to dominate the energy density of

the Universe, albeit with a shifted equilibrium point δrad,k'−4ΦDM,k because of

the potential due to the fluctuation in DM (and baryons) density. The acoustic

1Baryons, leptons and photons remain coupled until the temperature drops to roughly 1 eV.
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1.4 Initial perturbations and the evolution of structure

oscillations in the radiation density show up in the CMB temperature angular

power spectrum as peaks and troughs.

On the other hand, the perturbations in the sub-dominant DM fluid, which

are constant on super-Hubble scales, δDM,k = Rk
1, start growing once they re-

enter the Hubble patch. DM density perturbation modes that re-enter the Hubble

patch during RD grow only logarithmically till the end of RD,

δDM,k(τ) ' −9 Φ
(i)
k

[
ln(kτ/

√
3) + γE −

1

2

]
' 6Rk

[
ln(kτ/

√
3) + γE −

1

2

]
, (1.64)

where γE = 0.577 is the Euler constant. This is due to the fact that during RD

the gravitational potential is mostly dominated by the rapidly-decaying density

fluctuation in the relativistic fluid [see Eq. (1.62)] 2. However, as it is clear

from Eq. (1.64), besides their logarithmic growth during RD, the DM density

perturbations are enhanced by a significant numerical factor over the initial value,

δ
(i)
DM,k =Rk.

Let us now consider the evolution of DM perturbation during MD. On super-

Hubble scales (k�H), δDM,k'−2Φ
(i)
k ' 6

5
Rk' constant [see Eq. (1.60)]. It can

be shown that the Newtonian potential, Φk, is also constant on sub-Hubble scales

(see e.g. [29, 30]). Thus, using Eq. (1.61), the DM density contrast on sub-Hubble

scales (k�H) is given by

δDM,k(τ) ' −2

3

k2

H2
Φ

(i)
k ' −

2

3
Φ

(i)
k

a(τ)

a(τ×)
' −2

5
Rk

a(τ)

a(τ×)
=

1

3
δ

(i)
DM,k

a(τ)

a(τ×)
, (1.65)

where we substituted k = H× with the subscript ‘×’ referring to the second

Hubble crossing (i.e. the time at which a particular perturbation mode re-enters

the Hubble sphere), and H = H×[a(τ×)/a(τ)]1/2 during MD. Further, for DM

density perturbation modes that re-enter the Hubble patch during RD, these

keep growing during MD but now linearly instead of logarithmically as they do

during RD,

1Here, we assume adiabatic initial condition δ
(i)
DM,k= 3

4δ
(i)
rad,k, see Section 1.4.3 below.

2The gravitational potential also receives a contribution from the perturbations in the DM
fluid ΦDM,k =−(a/k)2(ρ̄DM/2M

2
P) δDM which is small compared to Eq. (1.62) deep inside RD

as ρ̄DM is relatively small.
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δDM,k(τ) ' −27

2

a(τ)

a(τeq)
Φ

(i)
k ln(0.15kτeq) ' 9 Rk

a(τ)

a(τeq)
ln(0.15kτeq) . (1.66)

It is worth noting here that baryons, which are already non-relativistic during

MD, contribute to both the total energy density and matter perturbations which

gives rise to a contribution to the DM density perturbations growth equations,

albeit relatively small (see e.g. [30]). Let us further consider the evolution of

matter deep inside the era of DE domination in which case a∝|τ |−1, i.e. H= |τ |−1.

Assuming that DE is constant in space and time, δρ
Λ

=δP
Λ

=0,

Φk ∝

{
τ ∝ a−1

τ 3 ∝ a−3 ,
(1.67)

and since δρ
Λ

=0, i.e. δρ=δρm, the matter density contrast is given by

δm ' −
2M2

P

ρ̄m

k2

a2
Φ ∝

{
a3 k2

a2a
−1 = constant

a3 k2

a2a
−3 ∝ a−2 ,

(1.68)

i.e. the density fluctuations stop growing once the Universe starts expanding

quasi-exponentially. However, in reality the present DE domination in the Uni-

verse is not sufficient to cause it to expand quasi-exponentially. Instead the scale

factor still increases with a power law. Thus, DM density perturbation modes

that re-enter the Hubble patch today can still grow.

To sum up this section, all perturbations modes are constant on super-Hubble

scales and start evolving once they re-enter the Hubble patch. The radiation den-

sity perturbations oscillate with a decaying amplitude whereas the perturbations

in DM density grow logarithmically in the scale factor during RD and linearly

during MD. Note that baryons, which are already non-relativistic when the per-

turbation modes of cosmological interest re-enter the Hubble patch, are coupled

to photons through Compton scattering and hence their perturbations do not

grow until they decouple from photons, which occurs at redshift zdec'1190 [13].

By that time, δDM� δb, where δb denotes the baryons’ density contrast. As a

result, baryons fall into the DM potential wells.

Many of the matter perturbation modes have already become non-linear a
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1.4 Initial perturbations and the evolution of structure

long time ago and have grown into the structure we observe today. However,

matter perturbations with longer wavelengths which re-enter the Hubble patch

during MD (or shortly before radiation-matter equality) are still in the linear

regime. Therefore, the Universe on these scales and larger (& 100 Mpc) is still

mostly homogeneous. In other words, there are no gravitationally bound systems

with masses &1016M�, where M�'1.988×1033 g is the solar mass (see e.g. [30]).

Matter perturbations with shorter wavelengths grow according to Eq. (1.66),

which upon using Eq. (1.12) can be re-written as

δDM,k(z) ' 9 Rk
1+zeq

1+z
ln (0.15kτeq) . (1.69)

Using the measured values provided by the Planck collaboration: ∆2
R' 2×10−9

and zeq ' 3393 [13], one can see that for δDM,k to become & O(1), ln(0.15kτeq)

has to be & 1 which implies that modes with k/a(t0)& (10 Mpc)−1 have already

become non-linear. This corresponds to length scales . 30 Mpc and masses .

1015M�. Of particular interest is the formation of galaxies, mass∼(1011–1012)M�,

which starts at z∼4 (see e.g. [30]). Figure 1.1 shows a sketch of the time evolution

of density perturbations of the different components of the cosmic fluid that re-

enter the Hubble patch during RD along with the Newtonian potential.

1.4.3 Adiabatic vs isocurvature initial conditions

As shown in Section 1.4.2, there are fluctuations in the different components of the

cosmic fluid such as that in radiation (photons and baryons) and DM. In principle

the initial values for these perturbations can be either independent or correlated.

The latter case is referred to as “adiabatic” initial conditions. Heuristically in

the conformal Newtonian gauge, the adiabatic mode can be viewed as a time

shift, i.e. the local perturbations in the quantities characterising the state of the

cosmic fluid at a spacetime point, (τ,x), are the same as in the unperturbed

Universe at some slightly different time τ + δτ(x) where δτ(x) is common for all

the constituents of the cosmic fluid,
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1.4 Initial perturbations and the evolution of structure

Figure 1.1: A sketch of the time evolution of the density perturbations of different
components of the cosmic fluid, δDM, δb and δγ , and the gravitational potential,
Φ, in the linear regime; adapted from reference [57]. Here, t× denotes the time at
which a perturbation mode re-enters the Hubble patch, teq is the time of radiation-
matter equality, trec is the time at which recombination takes place, and tΛ is the
time at which DE comes to dominate the energy density of the Universe.

δρi(τ,x) ≡ ρ̄i(τ + δτ(x))− ρ̄i(τ) = ρ̄′iδτ(x) , (1.70)

δPi(τ,x) ≡ P̄i(τ + δτ(x))− P̄i(τ) = P̄′iδτ(x) . (1.71)

Making use of the continuity equation [Eq. (1.5)], Eq. (1.6), and Eq. (1.70), one

can write
δi

1 + ωi
=

δj
1 + ωj

, (1.72)

for all species i and j. Thus, for adiabatic initial conditions δDM = 3
4
δrad. Further,

since the density contrast of different components of the cosmic fluid are of compa-

rable size, the total density perturbation of the fluid, δρ= ρ̄ δtot =
∑

i δρi=
∑

i ρ̄iδi,

is dominated by the component that dominates its energy density. It is timely to

note that single field inflation models predict completely adiabatic initial pertur-

bations.

The adiabaticity of the Universe can get violated if the equation of state of the

cosmic fluid is not just a function of density but also entropy, in which case there

would be perturbations between the different components of the cosmic fluid.

Such perturbations are referred to as “isocurvature perturbations”. Together

with the adiabatic perturbation, they form a complete orthogonal basis for general
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density perturbations. Using Eq. (1.72), the isocurvature perturbations can be

defined as

δSij ≡
δi

1 + ωi
− δj

1 + ωj
. (1.73)

Isocurvature perturbations can be generated if there is more than one degree

of freedom present during inflation such as the case of multiple fields driving

inflation or the case where a light DM (e.g. axion) field is present during inflation.

However, the measurement of CMB restricts the non-adiabatic perturbations – if

they exist – to a few percent [13].

1.4.4 Free-streaming effect

As mentioned earlier, the density perturbations, in particular that in DM, which

are responsible for the structure in our Universe were pushed out of the Hubble

patch during inflation and re-entered the Hubble patch during RD. In the SCM,

DM particles are assumed to have negligible velocities (cold DM) and hence can-

not stream out from the over-dense regions to the underdense regions of sub-

Hubble DM density perturbations in a Hubble time. Thus, matter perturbations

on all cosmological scales can grow once they are within the Hubble patch. How-

ever, if the DM particles have non-negligible velocities, they can stream from the

over-dense regions to the under-dense regions, washing out all perturbations in

the DM fluid within their reach in a Hubble time. This is known as the “free-

streaming effect” and the distance that DM particles can travel in a Hubble time

is roughly the “free-streaming length”.

In particular hot DM, which remains relativistic till the era of radiation-matter

equality, washes out all DM perturbations that re-enter the Hubble patch before

equality and even many of those that re-enter the Hubble patch after equality.

Thus, the abundance of hot DM species is severely constrained, otherwise, density

fluctuations of galaxy size and larger would have been erased, in which case super-

clusters would form first and later galaxies via the fragmentation of superclusters;

however, this scenario does not lead to the observed Universe (see e.g. [46, 56]).

An interesting class of DM, known as “warm DM”, is characterised by a non-

negligible particle velocity during MD. These DM particles were relativistic deep
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inside RD and hence suppress the amplitude of all DM perturbations that re-

enter while the DM particles are still relativistic, δDM∝ (kτ)−1 1. However, the

warm DM particles become non-relativistic much before radiation-matter equality

(roughly at the time perturbations of galaxy size re-enter the Hubble patch which

takes place at T ∼1 keV). Nevertheless, they can still affect the evolution of DM

density perturbations during MD. In particular, all DM perturbations within the

reach of DM particles in a Hubble time get suppressed, which is usually quantified

via the free-streaming length, λfs(t)=a(t)λ̃fs=2πa(t)/kfs where

kfs '
(
ρ̄

DM
a2

2M2
P

)〈
1

u2

〉1/2

=

√
3

2
aH

〈
1

u2

〉1/2

(1.74)

with u being the velocity of particles. In other words, perturbations whose current

size is � λfs(t0) = (1+z(t))λfs(t) are suppressed by the free-streaming of warm

DM particles.

1.5 Dark matter

The idea of DM existence in the form of obscure celestial objects goes well back

in history (for a historical review see e.g. [58]). Nevertheless, the observational

hints for the presence of such non-luminous matter started showing up only about

eighty years ago. By now there is a wide variety of evidence supporting the

existence of DM on all cosmological scales. However, its nature remains unknown.

In this section, we briefly review the observational indications for the existence

of DM, discuss its known properties, and survey some of the famous candidates

with emphasis on the particle DM candidates. Further, we briefly review some

of the DM search techniques.

1More explicitly, the amplitude of perturbation modes with kτnr ln(τeq/τ×) � 1 (where
τnr denotes the conformal time at which DM particles start becoming non-relativistic) which
re-enter the Hubble patch before equality gets suppressed.
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1.5 Dark matter

1.5.1 The evidence for dark matter

So far DM has demonstrated its presence only via gravitational interactions with

its surroundings. A wide variety of evidence of this kind has been accumulated.

In this section, let us review some of these gravitational clues.

1.5.1.1 Galactic rotation curves and dynamics of clusters

Perhaps the first observational hint, which later became the first widely-accepted

evidence for the existence of large amounts of DM, was the discrepancy between

the measured rotational velocities of the stars of disk galaxies (or hydrogen and

helium rich clouds of gas surrounding hot stars as a proxy measurement of the

motion of the stars themselves) and the corresponding theoretical prediction [16,

17, 59, 60] 1. The observed flat rotation curves of spiral galaxies (see Figure 1.2)

suggests the existence of large amounts of non-luminous (dark) matter (see e.g.[21,

22, 23, 61]).

From Newtonian dynamics, one would expect that the rotational velocities

of stars beyond the galactic disk of a galaxy (which contains most of the lumi-

nous matter of the galaxy in the form of gas and stars) will fall as v(r)∝ r−1/2.

However, the observed approximately-flat galactic rotation curves, as can be seen

from Figure 1.2, require that beyond the central bulge and up to a certain extent

the total mass within radius r, M(r) =
∫

d3rρ(r), increases roughly as r. This

indicates the existence of additional, non-luminous matter. Numerical simula-

tions show that DM is isotropically distributed in galaxies in the form of halos

that extend much beyond the visible galactic disks and that the DM distribution

exhibits a universal form (see e.g. [62, 63, 64]) which can be modelled for ex-

ample by the Navarro-Frenk-White (NFW) [65], the Einasto [66] or the Burkert

profiles [67].

Other hints for the presence of non-luminous matter on larger scales also exist.

For instance, a study of the Coma Cluster showed that the dynamical mass of the

cluster, obtained by measuring the velocity dispersion of roughly 1000 nebulae

1This discrepancy was first observed in the 1920s. However, besides the existence of DM
other explanations such as the absorption of light by dust and other matter within galaxies were
also invoked [17, 59]. It was not until the 1970s when the galactic rotation curves were measured
to large radial extents that the DM explanation became widely accepted [21, 22, 23, 61].
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Figure 1.2: Rotation curves of a set of spiral galaxies; taken from reference [68].

in the cluster and then applying the virial theorem to obtain the total mass of

the cluster, is much larger than the one obtained using the standard mass-to-

light ratio for nebulae. This discrepancy indicated the existence of a significant

amount of non-luminous matter in the cluster [18, 19] 1.

1.5.1.2 Gravitational lensing

Another piece of evidence for the existence of large amounts of DM comes from

gravitational lensing analyses [70, 71, 72, 73, 74]. According to GR the presence

of matter (or energy) in a region of space curves its geometry resulting in a

deflection of the light beams propagating through or close to that region. As a

result, the images of distant galaxies get distorted if their light goes through or

passes by a foreground dense matter field 2. From the distortions pattern, one

can deduce the density of matter along the line of sight. The observation of many

lensing clusters such as Abell 370, Bergmann, Petrosian, and Lynds show that

the masses of these clusters, calculated based on their lensing effect, are much

larger than the ones deduced from their luminosities, indicating the existence of

large amounts of DM in these clusters (see [75] and references therein).

1Dwarf spheroidal galaxies also exhibit relatively large velocity dispersions suggesting the
existence of large amounts of DM. In some of these galaxies the ratio of the dynamical to
luminous mass is an order of magnitude higher than that for spiral galaxies [69].

2The distorted galaxies’ images usually appear as arclets or partial Einstein rings.
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Figure 1.3: The Bullet Cluster: the bluish haze shows the DM inferred from the
lensing map [76] whereas the reddish haze shows the gas cloud containing most of
the baryons in the Bullet cluster inferred from the X-ray observations [77]. Taken
from reference [78].

The same technique can be used to reconstruct the mass distribution within

the foreground object. A significant example of the application of the gravita-

tional lensing technique to deduce the mass distribution is the Bullet cluster,

which is, in fact, the merger of two clusters [77], see Figure 1.3 1. The X-ray

data of the merger shows that the gaseous halos, containing most of the baryonic

matter in the Bullet cluster (shown in Figure 1.3 by the reddish haze), are lagging

behind [77] whereas the less interactive mass, which is mostly in DM (shown in

Figure 1.3 by the bluish haze), lies well ahead of the baryonic gas clouds dragging

along most of the galaxies as revealed by the lensing data [76, 80]. The galaxies

within the two clusters, being almost point-like objects on galaxy cluster scales,

go through almost unaffected. Other galaxy cluster mergers such as the MACS

J0025.4-1222 cluster [81] and the Cl0024+17 cluster [82] have been observed.

The gravitational lensing data show that the (dark) matter distribution in the

MACS J0025.4-1222 cluster is remarkably similar to that of the Bullet cluster [83]

whereas in the Cl0024+17 cluster the DM is concentrated in the centre of the

cluster and in a ring around the centre [84]. Again both clusters seem to be

dominated by DM.

1The Bullet cluster is the result of a sub-cluster, referred to as the “bullet”, colliding with
the larger cluster 1E 0657-56 [77, 79].
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1.5.1.3 Cosmic Microwave Background radiation

Yet more evidence for DM comes from the measurement of the CMB [13]. The

observed tiny fluctuations in the CMB temperature, δT/T '10−4–10−5 [33], which

correspond to density fluctuations of the same order of magnitude, indicates the

existence of large amounts of DM. Since baryons are coupled to the photon bath

roughly till redshift zdec'1090 [13] and the matter fluctuations grow as δρm/ρ̄m∝
a during MD [see Eq. (1.65)], i.e. |δρb/ρ̄b|0∼ [a(t0)/a(tdec)]×10−4∼ zdec×10−4∼
10−1, the observed structure would have not been formed if bayrons were the

only form of matter in the Universe [85, 86]. This is because the photon pressure

prevents the growth of the density fluctuations of baryons till they decouple from

each other. Thus, another form of cold (or at most warm) matter that decouples

from the thermal bath much before radiation-matter equality (i.e. a form of

matter that is weakly coupled to the cosmic plasma) is needed such that the initial

density fluctuations have enough time to evolve non-linearly into the observed

structure.

Fitting the CMB angular power spectrum (see Figure 1.4) with the best cur-

rently available cosmological model, the SCM, indicates that matter constitutes

roughly 30% of the total energy budget in the Universe (Ωm,0 = 0.3156±0.0182)

of which roughly 83% is DM (ΩDM,0'0.2608+0.0131
−0.0125 which corresponds to average

DM density ρ
DM,0
' 1.264 keV/cm3 ' 2.254×10−30 g/cm3) [13] 1. Moreover, the

evolved matter power spectrum has been obtained by mapping around one mil-

lion galaxies in the sky (see the Sloan Digital Sky Survey (SDSS) [5, 6]) yielding a

very similar result for the DM abundance in the Universe (see e.g. [88, 89, 90]) 2.

Furthermore, N-body simulations of the large scale structure in the Universe have

shown the need for DM to reproduce the observed structure (see e.g. [62, 63, 64]).

1The overall height of the peaks in the CMB power spectrum is sensitive to DM abundance
whereas the relative height of the odd and even peaks determines the abundance of baryons,
see Figure 1.4.

2Besides the study of the CMB and large scale structure, other measurements such as that of
the abundance of light chemical elements synthesized in BBN [91, 92, 93, 94, 95] and absorption
lines of the light of distant Quasars [96] show that the abundance of baryons constitutes less
than 5% of the total energy content of the Universe.
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Figure 1.4: Sensitivity of the CMB angular power spectrum to (a) the abundance
of baryons (b) the abundance of matter (in particular DM) where Ωtot is fixed to
unity. Adapted from reference [87]. Here the horizontal axis shows the different
multipole moments (which correspond to different angular scales), whereas the
vertical axis shows the power per each multipole.

1.5.2 Dark matter properties

Here, we briefly review the properties of DM which have been deduced from a

wide variety of observations.

We begin with the abundance of DM which (assuming ΛCDM) is known to

a high precision from the measurement of the CMB: ΩDMh
2 = 0.1198±0.0030 at

95% CL, where h= 0.6726±0.0098 denotes the reduced Hubble parameter [13].

However, we know very little about the DM mass; the allowed masses for the

dominant DM species roughly range from 10−22 eV to several orders of magnitude

of the mass of the sun. The lower limit is for bosonic DM 1 and arises from the

requirement that the average de Broglie wavelengths of DM particles has to be

less than the typical size of Milky Way satellites (few kpcs) [100, 101, 102]. Such

light DM species are known as “Fuzzy DM” [100]. On the other hand, the upper

bound arises from the possibility that DM is made of Primordial Black Holes

(PBHs) [103] which can be several orders of magnitude as massive as the sun (see

Section 1.5.4.1 below).

1If DM is of fermionic nature instead, its mass is constrained to be . 70 eV from the
observation of the absorption lines in the spectra of distant quasars due to the Lyman-α
clouds [97, 98, 99].
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Moreover, from the observation of large scale structures such as galaxies and

galaxy clusters, we know that DM must either be stable or has a mean lifetime

larger than the age of the Universe, which rules out all the unstable particles

except those with extremely long lifetimes. These observations also tell us that

DM has attractive gravitational interactions. Apart from possible hints for self-

interaction from the observation of the Abell 3827 cluster (see e.g. [104, 105]) and

numerical simulations [106, 107, 108], we have no evidence that DM has any other

interactions besides gravity. For instance assuming that DM has a particle na-

ture, the DM-photon elastic scattering cross-section is constrained by CMB and

N-body simulations to be . 10−34(m
DM
/GeV)cm2 [109, 110]. Further, the cur-

rent upper bound on the DM self-interaction obtained by analysing many cluster

mergers is σ/m
DM
.1cm2 g−1∼2× 10−24 cm2 GeV−1 [80, 111, 112], which is much

weaker than the bound suggested by N-body simulations. In particular, DM with

a short-range self-interaction cross-section close to the observational upper bound,

known as “self-interacting DM” (SIDM) can solve the discrepancies observed in

simulations with cold DM such as the very dense galactic cores [113], excessive

number of satellite galaxies for the Milky Way [114] and the large amount of sub-

structure [115, 116] (see e.g [106]). DM has not been observed to interact with

any other particle species.

Further, the DM particles are believed to be neutral; however, it could have

a small electric charge (“Milli-charged DM” [117]), albeit severely constrained

QDM . 10−14 |e| (m
DM
/GeV) where e is the electronic charge [118, 119, 120, 121].

The DM particles may also have a small electric or magnetic dipole moment [122,

123, 124, 125], a quadrupole or anapole moment [122, 126].

Furthermore, from the analysis of the CMB power spectrum, we know that

the dominant component of the DM has to be cold (non-relativistic) or at most

warm [62, 85, 86, 127], otherwise our Universe would have been vastly different

(see Section 1.4.4). The warm DM scenario is similar to the cold DM case in the

way the structures form; in both cases, the smaller structures form first. However,

in the warm DM scenario, the DM particles can initially stream reducing the

amount of substructure and dwarf galaxies, and also solving the dense galactic

cores problem [128, 129, 130, 131, 132].
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In addition, the majority of DM has to be nearly dissipationless, so the DM

particles do not lose much energy which would lead to them forming disks on

the galactic scale (as baryons do) instead of extended halos as expected. In fact,

a slightly dissipative dark sector (which also incorporates self-interactions) can

solve the problems observed in cold DM simulations [133, 134, 135, 136]. Further,

DM with a small dissipative fraction (5-10%) works quite as well as dissipationless

DM; however, in this case “dark disks” can form [137, 138] 1.

1.5.3 Dark matter alternative: modified gravity

Since all the pieces of evidence in support of DM are of a gravitational nature,

many authors have considered modifying gravity to account for the observed grav-

itational discrepancies on cosmological scales. The most famous example is the

“Modified Newtonian Dynamics” (MOND) model which was first introduced to

explain the non-Keplerian behaviour of the galactic rotation curves without re-

sorting to DM [140, 141, 142]. According to MOND, the gravitational force acting

on an object of mass m behaves non-linearly for very small values of acceleration,

F =ma ζ(a) where ζ(a�a0) = 1 and ζ(a�a0) =a/a0 with a0'1.2×10−8cm s−2

which is known as the acceleration constant [141]. For an object of mass m ro-

tating under the influence of a central gravitational force, F = GNmM(r)/r2 2

where M(r) is the total mass enclosed by the orbit of the object in which case

a= v2/r=GNM(r)/r2 for a� a0 (i.e for small r, r� r0 = [GNM(r)/a0]1/2) and

a= [GNM(r)a0]1/2/r for a � a0 (i.e. for large r, r� r0). Hence, the rotational

velocity is v=[GNM(r)/r]1/2 for r�r0 and v=[GNM(r)a0]1/4 for r�r0.

Clearly, for r� r0, the rotational velocity of the object is constant if M is

constant which is the case for stars rotating beyond the galactic disk of a galaxy.

This is how MOND explains the flat galactic rotation curves [140, 141]. Indeed,

this simple phenomenological modification to Newtonian dynamics presents a

good fit for the flat rotation curves and dynamics of hundreds of high surface

brightness galaxies and surprisingly also for many low surface brightness galaxies

1Some dark disks can also arise in simulations of galaxy formation if baryons are in-
cluded [139]; however, in the case of partially dissipative DM, dark galactic disks should be
a general feature.

2For simplicity, a circular orbit is assumed.
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(see e.g. [143, 144, 145, 146, 147]). Moreover, MOND explains the empirical Tully-

Fisher relationship [148], which relates the intrinsic luminosities (or masses) of

spiral galaxies to their rotational velocities (see e.g. [144]) 1. The MOND idea

was successfully implemented in a general relativistic theory known as “TeVeS”

which stands for “Tensor-Vector-Scalar gravity” [151]. There are several similar

proposals such as Moffat’s modified gravity [152] (see [153] for a review).

Despite the success of MOND on the scale of galaxies, it does not apply to

motions of clusters [154] without resorting to some sort of DM such as massive

active neutrinos with mass ∼ 2 eV [155, 156], a sterile neutrino species with an

even larger mass ∼11 eV (and abundance Ωνs =0.218) [157] or cold baryonic DM

in the form of dense gas clouds [158]. Moreover, recent numerical simulations

have shown that MOND in addition to sterile neutrinos does not reproduce the

observed cluster mass function [159, 160]. Further, MOND fails at explaining the

merger events such as the Bullet Cluster [73] unless some form of DM such as ac-

tive neutrinos with mass ∼2 eV [161] or a sterile neutrino species [162] is included.

Further, MOND or its relativistic variants such as TeVeS cannot match the CMB

angular power spectrum (in particular peaks beyond the second one [163]) even

with the inclusion of a significant abundance of massive neutrinos [163] or sterile

neutrinos [164]. Furthermore, laboratory experiments show that Newton’s sec-

ond law holds for accelerations as small as 5 × 10−13 cm s−2 which is way below

the MOND acceleration constant a0 [165, 166, 167]. All these issues render the

MOND idea an unappealing alternative to DM.

There are other relativistic modified gravity alternatives to DM such as Mannh-

eim’s conformal gravity [168], the “mimetic DM” model [169, 170, 171] and the

infrared limit of Hořava-Lifshitz gravity [172], in which gravity mimics the effect

of cold DM. However, these models are much less studied compared to MOND.

Moreover, many of these models contain extra d.o.f. which secretly act as DM

(see e.g. [173]). Recently, a new DM alternative based on the idea of emergent

gravity [174] was put forward [175]. However, it has been criticised for the lack

of rigor [176]. Furthermore, comparisons of the predictions of emergent gravity

against observational data has already shown inconsistencies [177, 178].

1MOND also explains the baryonic Tully-Fisher relationship [149, 150].

38



1.5 Dark matter

1.5.4 Dark matter candidates

There are plenty of (composite) baryonic candidates. Each of these candidates

– if it constitutes a significant part of the observed DM abundance – has to be

a relic produced during the uncertain pre-BBN era. However, to most of the

scientific community DM is assumed to be of particle nature and requires physics

beyond the SM. In this section, we review some of the famous DM candidates

and scenarios.

1.5.4.1 MACHOs

The most economical assumption is that the observed gravitational effects in

galaxies and galaxy clusters are actually due to astrophysical objects whose emis-

sion is below the detection threshold (Massive Astrophysical Compact Halo Ob-

jects or “MACHOs” as coined by Griest [179]) 1. There are many such candidates

such as neutron stars, brown dwarfs and black holes. However, the analysis of

the microlensing 2 data of millions of stars suggested that MACHOs can only

account for a very small percentage of the missing mass in our galaxy [195, 196,

197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207].

Moreover, the measurement of CMB [88, 89, 90] and the study of the synthesis

of the abundance of light chemical elements during BBN [91, 92, 93, 95, 208] in-

cluding the abundance of deuterium [209, 210, 211, 212] besides several other

observations such as the detection of absorption lines of the light of distant

Quasars [96] and the opacity of the Lyman-α cloud [213] sets an upper bound of

roughly 5% on the total abundance of baryons of the total energy budget in the

1There are other less popular baryonic alternatives to DM such as neutral hydrogen and
molecular clouds [180, 181, 182, 183]. However, such possibilities are ruled out by the bound
on the total abundance of baryons in the Universe (see e.g. [88, 95]). Furthermore, there
are several composite DM candidates within the SM of particle physics (see e.g. [184, 185,
186, 187, 188]) There are also several similar composite DM candidates in many beyond SM
proposals (see e.g. [189]). These candidates are generically called “Macro DM”, and they are
subject to several constraints (see e.g. [190, 191, 192]). Nevertheless, macro DM is still a viable
candidate. However, it could be hard to produce enough of them to account for the observed
DM abundance [193].

2Microlensing is a gravitational lensing effect in which the brightness of a distant object
temporary get amplified due to the interference of a nearby object if an object in the Milky
Way halo such as a MACHO passes near the line of sight to the distant object [194].
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Universe (less than 20% of the matter density); see also [214]. This rules out the

possibility that MACHOs make up a significant fraction of DM.

However, a particular MACHO candidate, black holes, can avoid the CMB

and BBN bounds if they were produced before BBN. Such black holes are known

as primordial black holes (PBHs) [103, 215]. They can form via a variety of

mechanisms during or after inflation (see e.g. [216, 217, 218, 219, 220, 221, 222]).

Nevertheless, many observations and theoretical studies show that PBHs with

monochromatic mass function – if they at all exist – can only account for a small

fraction of the non-luminous matter (see e.g. [223, 224] and references therein).

Figure 1.5 shows some of the current bounds on monochromatic mass PBHs.

However, these constraints (see Figure 1.5) as such may not apply to PBHs with

Figure 1.5: Observational bounds on PBHs with monochromatic mass function,
adapted from reference [223]. The shaded regions are ruled out by various astro-
physical and cosmological observations.

extended mass function [224, 225, 226]. Indeed, PBHs with extended mass func-
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tion, which for instance can form due to the collapse of large density perturbations

during inflation (see e.g. [227, 228]), might constitute the entirety of DM while

being consistent with the current bounds [224]. Recently, some effort towards the

mapping of the above bounds to the case of PBHs with extended mass function

has been made [224, 225]. For the mass range (1–103)M�, which encompasses

the LIGO 1 sensitivity window [229], it was shown that a typical log-normal mass

distribution, which accurately reproduces the mass spectrum of PBHs forming

during inflation, is actually excluded [225].

1.5.4.2 Particle dark matter candidates

Given the amazing success of particle physics in describing the early Universe

and the capability of particle candidates to make the right DM abundance, there

is reasonable motivation to make the assumption that DM is of a particle nature.

Within the SM the only possible particles that might meet the DM candidacy

criteria are neutrinos because they are weakly coupled to all the other SM parti-

cles. Further, they decouple from the plasma with a thermal distribution much

before radiation-matter equality [at temperature ∼ O(MeV)]. However, given

the current bounds on the masses of neutrinos (mν < 2.05 eV at 95% CL from

laboratory experiment [230] and
∑
mν < 0.12 eV at 95% CL from cosmological

measurement [231]), it is clear that the SM neutrinos cannot make the observed

DM abundance [Ων,0h
2 '

∑
mν/(93 eV) . 0.066 and Ων,0h

2 . 0.0013, respec-

tively] [46, 56]. Furthermore, the SM neutrinos are very light, and therefore

they are relativistic throughout the RD era which renders them a hot DM can-

didate. As a result, the SM neutrinos cannot be the dominant DM species (see

Section 1.4.4). Therefore, to accommodate DM within the framework of particle

physics, an extension of the SM is needed. It is sensible that such an extension

also addresses other problems in particle physics which lack explanations within

the SM framework. In this section, we review some of the popular DM candidates.

Weakly Interacting Massive Particles (WIMPs): WIMP is a category of

non-baryonic particle DM species with masses ranging from O(GeV) to O(TeV)

1LIGO stands for Laser Interferometer Gravitational-wave Observatory.

41



1.5 Dark matter

and interaction strength with the SM particles of order of the weak interac-

tions [232]. As a result, a particle species of this kind – if it exists – was in

thermal (both kinetic and chemical) equilibrium with the SM particles (which

constitute a thermal bath) in the early Universe and decoupled from the cosmic

bath when its interaction rate with the thermal bath became smaller than the

expansion rate (freeze-out), see Section 2.2.

WIMPs are compelling for several reasons. First, WIMPs can naturally satisfy

the observed DM abundance for a wide range of masses almost independent of the

mass [ΩDM,0h
2∼xF (10−28cm2 s−1/〈σv〉) where 〈σv〉 is the thermal average of the

total interaction cross-section multiplied by the relative velocity of the colliding

particles, see Eq. (2.19)]. Second, particles with this characteristics exist in many

theories aiming to address the “hierarchy problem” (i.e. why the electro-weak

(EW) scale is much smaller than the Planck scale) and in which new physics

is expected at the TeV scale such as the “Lightest Supersymmetric Particle”

(LSP) in the “Minimal Supersymmetric Standard Model” (MSSM) (for a review

see e.g. [233]) and the “Lightest Kaluza-Klein particle” in the “Universal Extra

Dimensions” models (see e.g. [234]). Third, WIMPs freeze-out at relatively low

temperature, T ∼ m
DM
/20 (see e.g. [235, 236]), and hence avoid the uncertain

ultraviolet regime. Finally, from the detection point of view, WIMPs are within

the reach of the current or near future experimental techniques (see e.g. [237,

238]).

Nevertheless, WIMP DM (or the freeze-out DM scenario in general) is already

subjected to a plethora of theoretical and experimental constraints, the latter of

which are becoming more stringent with time. Thus, one would expect that

WIMPs will get either discovered or ruled out in the next few years 1.

Weakly Interacting Slim Particles (WISPs): This is a category of DM can-

didates with sub-eV masses which are weakly coupled to the SM particles; for a

review see e.g. [240, 241]. Perhaps the most famous example of such light DM par-

ticles is the axion, which is a pseudo-Goldstone boson [242] arising in a solution to

1We note however that the reach of DD experiments could be ultimately limited by what
is known as the “neutrino floor” which is caused by the scattering of neutrinos from the Sun
or the cosmic-ray collisions in the Earth’s atmosphere off the detectors’ nuclei [239]. This is in
general not the case for the ID experiments.
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the strong CP 1 problem [the fact that quantum chromodynamics (QCD) is appar-

ently CP invariant] known as the Peccei-Quinn (PQ) mechanism in which a new

U(1) symmetry with a colour anomaly 2 is added to the SM [243, 244, 245, 246],

see also Section 4.1. Laboratory experiments and astrophysical observations con-

strain the axion mass to be O(µeV) or smaller [247, 248, 249].

Cold axionic DM is produced via what is known as the misalignment mecha-

nism [250]. The main idea behind the misalignment mechanism is that the axion

field does not have a potential before the QCD phase transition (i.e. the axion

is massless above the QCD scale) and hence it takes on random values (between

0 and 2πv
PQ
/NDW where v

PQ
is the scale of PQ symmetry breaking and NDW is

the number of domain walls, see Section 4.2) once the PQ symmetry gets broken.

The axion field can get homogenised in our Hubble patch if the PQ symmetry

breaking occurs before or during the early stages of inflation. In both cases the

root-mean-square (rms) value of the axion field can be O(v
PQ
/NDW). Around

the QCD scale, axions acquire a potential (and consequently a mass) due to the

QCD instantons [251, 252]. Consequently, the axion field starts oscillating once

the Hubble parameter becomes of order of the axion mass. These oscillations

effectively behave as cold DM. For a recent review see e.g. [253, 254].

Besides axions, many Axion-Like Particles (ALPs) emerge naturally in many

beyond SM physics, such as familons [255] and Majorons [256, 257] which respec-

tively arise in the spontaneous breaking of the global family and lepton number

symmetries (for a review see e.g. [241] and references therein). ALPs also arise

naturally in string theory, for instance from the compactification of extra dimen-

sions (for a review see [241, 258]). We note here that ALPs can have masses much

larger than eV.

Feebly Interacting Massive Particles (FIMPs): FIMP is used to denote a

category of massive DM species [their masses are O(GeV) and heavier] that were

never in thermal equilibrium with the cosmic bath [259, 260]. Their coupling to

the cosmic bath particles is very weak, although, it is sufficient to populate enough

1Here CP stands for charge conjugation and parity transformations.
2In quantum physics, an anomaly refers to an apparent symmetry of the classical theory

which is absent at the quantum level.
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DM. This mechanism of DM production was dubbed “freeze-in” [259]. Unlike the

freeze-out mechanism, in the freeze-in scenario the final DM abundance is directly

proportional to the interaction rate, ΩDM,0h
2∝〈σv〉 (see Section 2.3). FIMPs are

usually non-relativistic (cold); however, warm DM can also be produced via the

freeze-in mechanism [261]. There are many FIMP candidates such as moduli or

modulino in weak-scale supersymmetry [259], axino (the supersymmetric part-

ner of the axion) [262, 263] and gravitino (the supersymmetric partner of the

graviton) [264, 265].

Sterile neutrinos: The SM (active) neutrinos were observed to oscillate (change

flavour) [266, 267] which suggests that they have non-zero mass (at least two of

the three active species have masses). Theoretically, the SM neutrinos can be

given masses by extending the SM to include right-handed neutrinos (for a re-

view see [268] and references therein). The right-handed neutrinos interact with

the SM particles only via mixing with active neutrinos which themselves interact

with the SM particles through EW interactions. As a result, the right-handed

neutrinos are said to be “sterile”. Moreover, sterile neutrinos are massive, and

the lightest species is stable. Therefore, the lightest sterile neutrino can make

a perfect DM candidate. In fact, keV-scale sterile neutrinos can have the right

DM abundance [269] and further they can be warm [270, 271] which is desirable

from the point of view of structure formation in our Universe as discussed in

Section 1.5.2. Nevertheless, keV-sterile neutrinos are subjected to a plethora of

theoretical and experimental constraints (see e.g. [272] and references therein).

1.5.5 Dark matter searches

In this section, we briefly review some of the DM searching techniques, in partic-

ular, experiments looking for WIMP-like and WISPy DM.

1.5.5.1 Heavy (WIMPy-like) dark matter

Direct detection: Since the Milky Way galaxy (like other spiral galaxies) con-

tains a substantial amount of DM (see Section 1.5.1) in the form of a halo (as
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suggested by DM simulations), there is a good chance that DM particles could be

detected on Earth. With this in mind, Direct Detection (DD) experiments were

built to detect the scattering of galactic DM particles off atomic nuclei (DM-SM

scattering) 1. WIMP-like DM-nucleus scattering results in the recoil of the nu-

cleus with energies typically in the keV range. Clearly, the probability of the DM

scattering off the target nuclei increases as the volume of the target increases. It

also depends on the local DM density. There are already many DD experiments

looking for DM such as CoGeNT [276], DAMA/LIBRA [277], CRESST-II [278],

Xenon100 [279], LUX [280], CDMSlite [281] and PandaX-II [282]. See [283, 284]

for a detailed review of the direct DM detection experiments.

So far DM has not been observed at DD experiments, and hence the ex-

pected sensitivity of the DD experiments are translated into upper bounds on

the DM-nucleon interaction strength. Nevertheless, some of these experiments,

CoGeNT [285, 286], DAMA/LIBRA [287, 288], CRESST (first phase run) [289]

and CDMS [290, 291], claimed to have observed DM signals. However, these

measurements are not consistent with each other. Furthermore, the regions of

the parameter space favoured by these experiments are in tension with other ex-

periments (they lie in the exclusion regions of other experiments); see Figure 1.6.

Indirect detection: Besides the DD experiments, DM particles may also be

indirectly observed by searching for their decay or annihilation products. DM

Indirect Detection (ID) experiments are designed to detect the fluxes of SM par-

ticles such as charged particles, photons (x-ray and gamma-ray) and neutrinos

produced in DM decay or annihilation processes (for a review of indirect DM

searches see e.g. [292, 293, 294]). Clearly, such signals will depend on the DM

density in the region being observed. Thus, regions with large DM density such

as the galactic centre, galactic halo and dwarf spheroidal galaxies are the best

targets for observation. However, the analysis of the collected data is subjected

to many uncertainties due to astrophysical backgrounds, especially if the DM

decay or annihilation products are charged particles as they can be deflected

1This idea was first proposed in [273, 274, 275].
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1.5 Dark matter

Figure 1.6: Direct detection bounds on DM-nucleon spin-independent cross-
section (left panel) and spin-dependent cross-section (right panel), adapted from
reference [32]. The shaded regions show the claimed DM signals by DAMA/LIBRA,
CDMS-Si and CoGeNT collaborations. However, these regions of the parameter
space are already ruled out by other experiments such as the LUX and XENON
facilities.

by magnetic fields making it hard to identify the region where a possible signal

originates.

There are many experimental facilities searching for indirect DM signal such as

the Alpha Magnetic Spectrometer experiment (AMS-02) [295], Fermi Large Area

Telescope (Fermi-LAT) [296], (IceCube) Southpole neutrino observatory [297],

the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics

(PAMELA) [298] and the High Energy Stereoscopic System (HESS) [299]. Sev-

eral of these groups have claimed to observe an excess over the expected back-

ground [300, 301, 302, 303, 304, 305, 306, 307, 308] 1. However, these observations

do not constitute conclusive evidence for the existence of DM as they are consis-

tent with astrophysical sources [312, 313, 314, 315, 316, 317, 318, 319, 320, 321,

1In particular, two groups have announced the observation of a signal of an x-ray line with
energy around 3.5 keV which becomes stronger towards the centre of the galaxy [309, 310].
However, an independent analysis has shown no significant evidence for such an excess over the
expected background [311].
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322, 323, 324] and/or inconsistent with other observations [325, 326, 327, 328,

329, 330, 331, 332, 333]. The lack of a significant signal from the regions where

DM is expected to be dominant can be translated into upper bounds on the DM

decay or annihilation rates. In Section 2.5.5 we list the most stringent limits on

the DM annihilation cross-section.

Production at colliders: If DM particles couple to the SM particles, they can

be produced at particle colliders [such as the Large Hadron Collider (LHC) at

CERN [334] and the proposed future International Linear Collider (ILC) [335]]

provided that the colliding SM particles are energetic enough (for a recent review

see [336]). Due to their very weak coupling to the SM particles, DM particles

will not produce a detectable signal in colliders. However, their presence can be

deduced from the consideration of momentum conservation. If produced at collid-

ers, DM particles would result in an excess in the number of events with missing

transverse momentum (energy). So far no signal for DM has been observed in col-

lider experiments, which is translated into upper bounds on the DM interaction

strength with the SM particles. The current bound on DM-SM spin-independent

interaction strength from colliders is much weaker than those inferred from the

DD experiments for DM mass & O(GeV). Nevertheless, for lower DM masses,

the colliders’ bounds are more stringent than the DD ones (see e.g. [283]). More-

over, the colliders’ bounds on DM-SM spin-dependent interactions can be more

stringent that the DM DD bounds (see e.g. [337]); see Figure 1.7.

The search for DM at colliders is complementary to the DD and ID DM

searches in the sense that the existence of DM has to be confirmed by all these

search techniques. Further, the DM search at colliders is more sensitive to the

details of the DM-SM interactions and does not suffer from the astrophysical un-

certainties that affect the DD and ID experiments. However, collider experiments

have nothing to say about the mean lifetime of DM particles as the time needed

for a DM particle to transverse the detector of a collider is much smaller than

the DM mean lifetime. Thus, the existence of particle DM has to be established

first by the DD and/or ID experiments.
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Figure 1.7: ATLAS (at LHC) bounds on DM-nucleon spin-indpendent (left panel)
and spin-dependent (right panel) cross-sections assuming vector and axial vector
mediator (the solid black curves), respectively (taken from reference [338]). How-
ever, these bounds are strongly model-dependent.

1.5.5.2 Axions and axion-like dark matter

Axions can be searched for using their coupling to photons [339, 340, 341],

Lχγγ =
1

4
gχγγ χF

µνF̃µν =−gχγγχE ·B , (1.75)

which is generic in axion models. Here χ denotes the axion field and gχγγ =

α
EM
/(2πFχ) [E/N − 1.92(4)] with α

EM
being the fine structure constant, Fχ ≡

v
PQ
/NDW is the axion decay constant and E/N is the ratio of the electromagnetic

to colour anomaly [342]. The mass of axions is related to the axion decay constant,

mχ = 5.70µeV(1012 GeV/Fχ) (see e.g. [343]). As shown by Eq. (1.75), in the

presence of a (strong and static) magnetic field axions/ALPs can convert into

photons and vice versa. Using this concept, axions can be directly produced

and/or detected. Similarly, many ALPs (in particular stringy axions) couple to

photons via operators of the form of Eq. (1.75) (see e.g. [258]), and hence can

be searched for the same way as axion. However in the case of ALPs, unlike the

QCD axion, their masses are not related to their decay constants.
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Galactic axions: If axions/ALPs constitute the entirety or part of DM, they

should be present in our galaxy. Axion haloscopes such as Axion Dark Matter Ex-

periment (ADMX) [344] are designed to detect galactic halo axions/ALPs passing

through Earth via their possible conversion into photons in a cavity placed in a

magnetic field. The possible conversion of axions/ALPs into photons is maxi-

mal if the axion/ALPs mass matches the resonant frequency of the cavity. By

adjusting the cavity resonant frequency, haloscopes can perform a scan for ax-

ions/ALPs in a range of masses. It has been noted that the possible presence of

the oscillating axion/ALPs background can induce a detectable oscillating elec-

tric dipole moment [345]. A new axions/ALPs detection experiment based on

this concept: the Cosmic Axion Spin Precession Experiment (CASPEr) [346])

was recently proposed.

Solar axion experiments: Axions/ALPs can get produced at the core of the

Sun via their coupling to photons. Being very light and very weakly-coupled,

axions/ALPs can escape the Sun. Such axions/ALPs can be detected on Earth

via their possible conversion into photons in a magnetic field. There are several

helioscopes designed for this purpose such as the CERN Axion Solar Telescope

(CAST) [347] and the proposed International Axion Observatory (IAXO) [348].

In these experiments, the magnetic field region is filled with a gas, which has the

effect of giving mass to photons. The conversion of axions/ALPs into photons is

maximum when the mass of axions/ALPs matches the effective photon mass in

the gas. By adjusting the gas pressure, the effective mass of the photon in the

gas gets modified allowing helioscopes to search for axions/ALPs in a range of

masses.

Laser-induced Axions: A class of axion (or ALPs) detection experiments

such as the Optical Search for QED Vacuum Birefringence, Axions and Pho-

ton Regeneration (OSQAR) [349] and Any Light Particle Search (ALPS) [350]

use what is known as a “light shining through a wall” (LSW) technique. In these

experiments, a laser beam traversing a magnetic field is pointed toward an ab-

sorber which does not allow the passage of any photons. Some photons of the

laser beam may get converted into axions/ALPs in the presence of the magnetic
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field. The produced axions/ALPs then get converted back to photons in a sec-

ond magnetic field. Some other LSW experiments employ microwave resonators

instead of lasers such as the CERN Resonant WISP Search (CROWS) [351] 1.

There are other laboratory-based direct and indirect axion/ALP searches (see

e.g. [355, 356]). So far axions (and ALPs) have not been detected, which places

bounds on the axions/ALPs coupling to photons, see Figure 1.8. Indirect searches

for axions/ALPs can also be conducted by studying the possible effects of the

axions’/ALPs’ coupling to the SM particles on the evolution of stars. The lack

of any detectable effect due to the possible presence of axions/ALPs inside stars

places stringent constraints on axions’/ALPs’ coupling to photons, electrons and

nucleons. We summarise the most stringent bounds in Section 4.5.

1We note here that the axion/ALPs experiments mentioned above are also sensitive to
another well-motivated DM candidate, the hidden (dark) photon which can convert into the
SM photon and vice versa through kinetic mixing (see e.g. [352, 353] and references therein).
There are already facilities dedicated to the search for dark photons such as the CAvity Search
for Coupling of A Dark sEctor (CASCADE) [354].

50



1.5 Dark matter

Figure 1.8: A representative sample of the current bounds on the axion and ALPs
parameter space from experimental searches. The yellow band corresponds to the
QCD axions. Taken from reference [32].
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Chapter 2

Thermal and non-thermal

production of dark matter

In this chapter, we aim to identify the gross features of the DM parameter space

in a simple model-independent setup given the fact that the Universe could have

been dominated by the energy density stored in a scalar condensate of infla-

ton/moduli field whose decay excites the SM d.o.f. and probably DM particles 1.

For the sake of simplicity, we assume that the decay of the scalar condensate is

an instantaneous perturbative process 2. We further assume that the SM d.o.f.

produced in the decay of the scalar condensate quickly achieve full thermal equi-

librium establishing a thermal bath with a well-defined temperature. With these

1During inflation, there could be many fields dynamically present [35, 357, 358] – some
of which (those with masses well below the Hubble scale during inflation) may obtain
quantum-induced vacuum fluctuations to be displaced at very large vacuum expectation val-
ues, O(MP) [34, 37, 38] – commonly known as moduli. They typically couple very weakly via
Planck-suppressed interactions. The moduli field behaves like a condensate [359], and begins
its coherent oscillations when the Hubble expansion rate of the Universe drops to the mass of
the moduli.

2In principle, the decay of the scalar condensate need not be perturbative nor instantaneous.
For large enough inflaton/moduli coupling to the SM or DM fields, the decay process would
be non-perturbative [360, 361]. However in this case, the inflaton/moduli condensate does not
decay completely. One would still require the inflaton/moduli to decay perturbatively in order
to fully drain the energy of the scalar condensate. We note here that in the particular case
of the axion inflation model, most of the energy in the scalar condensate (of axions) can be
transferred to a gauge field which couples to the condensate [362].
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assumptions, we proceed to identify the regions of the parameter space corre-

sponding to thermal (freeze-out and freeze-in) and non-thermal DM scenarios.

We also show the different theoretical and observational bounds. Furthermore,

for the non-thermal DM case, we identify the parameter regions corresponding

to cold, warm and hot DM.

This chapter is organized as follows: in Section 2.1, we briefly review the

evolution of DM as governed by the Boltzmann equation. We discuss the pro-

duction of DM due to the decay of the inflaton/moduli condensate: thermal

production (both freeze-out in Section 2.2 and freeze-in scenarios in Section 2.3),

and non-thermal production in Section 2.4. In Section 2.5, we discuss various

observational and theoretical constraints on DM. In Section 2.6, we present our

numerical results for both thermal and non-thermal scenarios. Our conclusions

are given in Section 2.7.

2.1 Evolution of dark matter: a brief review

The time evolution of the average DM (χ) number density, nχ, and the depar-

ture from its thermal equilibrium value, nχ,eq, can be obtained by solving the

Boltzmann equation [see Eq. (A.12)],

ṅχ + 3Hnχ = a−3 d

dt
(a3nχ) = 〈σv〉(n2

χ,eq − n2
χ) , (2.1)

with 〈σv〉 being the thermally-averaged total (unpolarised) annihilation cross-

section (σ) summed over all possible scattering processes multiplied by the Møller

velocity (see Appendix A). The 3Hnχ term in Eq. (2.1) accounts for the dilution

of number density due to the expansion of the Universe, and the first (second)

term on the right-hand side of Eq. (2.1) accounts for the increase (decrease)

in the number density due to production from (annihilation into) the thermal

bath particles. With the assumption of instantaneous inflaton/moduli decay at

t= Γ−1
φ , where Γφ denotes the total decay rate of the inflaton/moduli field, the

non-thermal contribution to the DM number density acts as an initial value which
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is given by 1

n(i)
χ ' Bχnφ(Γ−1

φ ) ' Bχ
π2gρ
30

T 4
rh

mφ

, (2.2)

where nφ'ρφ/mφ is the inflaton/moduli number density with mφ being its mass

and ρφ its energy density, and Bχ≡n Γ(φ→nχ)/Γφ denotes the branching ratio of

inflaton/moduli decay to DM with n being the number of DM particles produced

in each φ decay 2. Here we made the assumption of instantaneous thermalisation

of the φ decay products other than χ upon their excitation at t=Γ−1
φ establishing

a thermal bath with a well-defined temperature, i.e. ρφ|t'Γ−1
φ
'ρrad(Trh) with Trh

being the reheating temperature. The energy density of radiation at the time of

reheating is given by

ρrad(Trh) ' π2

30
gρT

4
rh , (2.3)

where

gρ ≡
∑

i=bosons

gi

(
Ti
T

)4
+

7

8

∑
i=fermions

gi

(
Ti
T

)4
(2.4)

is the effective number of relativistic d.o.f. associated with the radiation energy

density with T being the temperature of the thermal bath and Ti is that of the

species i whose number of internal d.o.f. is gi (see e.g. [56]). Using Eq. (1.2), the

Hubble expansion rate during RD is then given by

H(T ) =
ρ

1/2
rad√
3MP

=

(
π2gρ
90

)1/2
T 2

MP

. (2.5)

Further, the average equilibrium number density of χ particles is given by

nχ,eq = gχ

∫
d3pχ
(2π)3

{
exp

[(√
|pχ|2 +m2

χ − µχ
)
/T
]
∓ 1
}−1

, (2.6)

1In a more general setup, we should have a term of the form n Γ(φ→ nχ)nφ on the right
hand side of Eq. (2.1). However, since we assume instantaneous decay of φ at t = Γ−1

φ , this
contribution can be absorbed into the initial condition for nχ.

2Since we are interested in model-independent constraints on the DM parameter space, we
keep our discussion general in terms of the branching ratio, without specifying its exact formula
in terms of the DM-inflaton/moduli coupling, their masses, and the n-body decay kinematics
(for n ≥ 2, depending on the specific DM candidates). Hence, we absorb n in the definition of
the branching fraction Bχ.
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where gχ is the number of internal d.o.f. of χ (e.g. spin or colour), T is the

temperature, and µχ is the chemical potential of species χ (the energy associated

with the change in particle number) which we assume to be zero (see Appendix A).

Here (−) is for bosonic χ species whereas (+) is for fermionic χ species. In the

absence of Bose-Einstein condensation or Fermi degeneracy, one can neglect the

quantum statistical factors, and write the equilibrium number density as

nχ,eq ' gχ

∫
d3pχ
(2π)3

exp
[
−
(√
|pχ|2 +m2

χ − µχ
)
/T
]
. (2.7)

It is useful to express Eq. (2.1) in terms of the dimensionless quantities (DM

yields) Yχ ≡ nχ/s and Yχ,eq ≡ nχ,eq/s to scale out the redshift effect due to the

expansion of the Universe. Here,

s =
2π2

45
gsT

3 (2.8)

is the entropy density with

gs ≡
∑

i=bosons

gi

(
Ti
T

)3
+

7

8

∑
i=fermions

gi

(
Ti
T

)3
(2.9)

being the effective number of relativistic d.o.f. contributing to the total entropy

density (see e.g. [56]). Recall that in the early Universe with RD, all particle

species (apart from possibly χ and/or other hidden sector species) were in thermal

equilibrium, i.e. gs and gρ were the same 1. Henceforth, we will not distinguish the

two, and will take gρ=gs≡g which is valid for most of the thermal history of the

Universe. Assuming an adiabatic and isentropic (constant entropy per comoving

volume) expansion of the Universe, Eq. (2.1) can be re-written as [236, 363]

dYχ
dx

=
s〈σv〉
Hx

(
1 +

1

3

d ln g

d lnT

)(
Y 2
χ,eq − Y 2

χ

)
, (2.10)

1gs and gρ differ only when there are relativistic species not in equilibrium with photons
which happens in the SM for temperatures below the electron mass when the neutrinos have
already decoupled from the thermal bath, and e± pair-annihilation transfers entropy only to
the photons, thus making gs slightly higher than gρ today.
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with the introduction of a new independent variable x=mχ/T . Here the initial

DM yield is

Y (i)
χ '

3

4
Bχ

Trh

mφ

. (2.11)

For a Maxwell-Boltzmann distribution, the equilibrium DM yield and thermally-

averaged annihilation cross-section can respectively be expressed as

Yχ,eq(x) =
45

4π4

gχ
g
x2K2(x) , (2.12)

〈σv〉(x) =
x

8m5
χK

2
2(x)

∫ ∞
4m2

χ

ds s1/2(s− 4m2
χ)K1

(
x
√
s

mχ

)
σ(s) , (2.13)

where we used Eqs. (2.8), (A.15) and (A.16). Here Kn(x) is the n-th order

modified Bessel functions of the second kind, and
√
s is the total CM energy. At

x � 1, Yχ,eq = (45/2π4)(gχ/g) whereas for x & 1, Yχ,eq exhibits an exponential

suppression. The current abundance of the species χ – if non-relativistic today –

is given by

Ωχ,0h
2 ≡ ρχ,0

ρc/h2
' mχs0Yχ(x0)

3(H0/h)2M2
P

' 2.744× 108mχYχ(x0) , (2.14)

where we used the current values for the Hubble parameter, H0 ' 2.1332h ×
10−42h GeV [56], and the entropy density s0 = 2891.2 cm−3(T0/2.7255 K)3 [32].

The present yield of the DM species χ, Yχ(x0), is obtained by integrating Eq. (2.10)

from x= xrh≡mχ/Trh to x= x0≡mχ/T0, where T0 = 2.7255(6) K is the present

temperature of the CMB photons [32]. However, Eq. (2.10) is a form of the Riccati

equation for which there is no general, closed-form analytic solution. Therefore,

the current density Yχ(x0) in Eq. (2.14) has to be obtained either by numerically

solving Eq. (2.10) or by approximating it with an analytic solution in some special

cases.

As mentioned above, we seek a model-independent way to analyse the thermal

and non-thermal properties of DM, produced directly or indirectly from the de-

cay of inflaton/moduli condensate, in terms of their masses, the inflaton/moduli

branching ratio into DM and the strength of DM coupling to the thermal bath.
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For this purpose, we make the assumption that the inflaton/moduli condensate

decays into the SM d.o.f. and DM is a perturbative and instantaneous process;

hence on kinematic grounds, mχ < mφ/2
1. In this setup, the reheating tem-

perature is the maximum attainable temperature due to the decay of the scalar

condensate. Furthermore, the evolution of the DM particle number density can be

described by its thermally-averaged interaction rate with the thermal bath,〈σv〉
[see Eq. (2.10)], i.e. depending on the size of 〈σv〉, there are three possible sce-

narios 2:

1. For large enough 〈σv〉 (i.e. the DM interaction strength with the thermal

bath particles is of order of the weak interactions), the χ particles quickly

reach thermal equilibrium with the bath, thus losing their initial abundance,

and follow the equilibrium distribution until their reaction rate eventually

drops below the Hubble expansion rate, after which they freeze out as a

‘thermal relic’ with a constant comoving number density. This is the stan-

dard WIMP scenario [56] in which the final relic abundance is independent

of the initial conditions or the details of the production mechanism. De-

pending on their mass and interaction rate, they could freeze out as a cold,

warm, or hot relic [56]. It is well-known that 〈σv〉∼10−26 cm3s−1 naturally

gives the correct cold DM relic density inferred from the CMB measure-

ment [13], almost independent of the DM mass. In the freeze-out scenario,

1We do not consider non-perturbative DM production processes during the coherent os-
cillations of the scalar condensate, e.g. super-heavy DM with mχ � mφ for large enough
amplitude of the inflaton/moduli field [364]. Even in the perturbative case, the decay of the
inflaton/moduli can be an extended process which under the assumption of instantaneous ther-
malisation of the decay products may expose the Universe to temperatures much higher than
Trh [365] with the possibility of thermal excitation of super-heavy DM [366, 367]. We consider
this possibility in Chapter 3.

2A concrete example is MSSM inflation in which case the LSP, e.g. gravitino or neutralino
(which is a linear superposition of the neutral supersymmetric partners of the W, B and the
CP-even Higgs bosons), could be excited directly from the inflaton/moduli decay or its decay
products [368], besides the SM d.o.f. Since gravitinos mostly interact via Planck-suppressed
interactions, their abundance will freeze out soon after their production and will be mainly
determined by the reheating temperature, while neutralinos have weak interactions and can be
quickly brought into kinetic equilibrium (though not necessarily chemical equilibrium) with the
bath. Therefore, irrespective of how the neutralinos were initially created, their final abundance
is always set by the thermal decoupling temperature, as long as Trh≥mχ [365]. On the other
hand, for low reheating temperatures below the standard freeze-out temperature TF ∼mχ/20,
neutralinos could be a non-thermal DM candidate [235, 369].
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the current abundance is inversely proportional to 〈σv〉. As a consequence

for a wide range of the χ masses and 〈σv〉 � 10−26 cm3s−1, the current

abundance of χ particles is larger than the correct DM abundance.

2. The second possibility is that the interaction of χ particles with the thermal

bath is too small to bring them into full thermal equilibrium with the cosmic

bath but is sufficient to produce enough DM via the scattering of the bath

particles into χ particles. However, as the Universe expands, the interaction

rate decreases and the annihilation of the bath particles into χ’s stops being

significant and the DM species χ is said to be frozen-in. In this case, the

χ abundance is directly proportional to 〈σv〉 [367]. Again for large enough

interaction rate, DM can be overproduced in a wide range of the χ masses.

Further, the χ population could receive another contribution from the direct

decay of the inflaton/moduli into χ particles. Therefore in this scenario,

besides its mass, the abundance of the DM species χ is determined by

〈σv〉 and the initial conditions (i.e. Bχ, mφ and Trh). If the non-thermal

contribution to the χ population is negligible, the DM abundance will be

dominated by the thermally produced χ particles. Such a DM species is

known as a “FIMP” [259, 260].

3. For even smaller interaction rates than those considered above, the thermal

production of χ particles is insignificant, and they have to be produced

non-thermally in order to make the observed DM abundance. This leads to

a Super-WIMP (SWIMP)-like scenario [370], where the final abundance is

primarily determined by the initial conditions which, in our case, are set by

the inflaton/moduli mass, reheating temperature and branching ratio [371].

We discuss these possibilities in more detail below.

2.2 Freeze-out scenario

In this case, the χ particles were initially part of the cosmic thermal bath before

they dropped out of thermal equilibrium at some freeze-out temperature TF when
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the annihilation rate Γχ=nχ〈σv〉 fell below the Hubble expansion rate H 1. Here

the connection to the scalar condensate is lost, and the abundance of the species

χ is set by its equilibrium distribution at freeze-out 2. Now depending on the

value of xF =mχ/TF , one can have the following three scenarios:

• Non-relativistic DM if xF � 3. In which case the average momentum per

DM particle �mχ at the time of freeze-out. In this case, the thermal dis-

tribution, which the χ particles follow, exhibits a Boltzmann (exponential)

suppression. As a result, the current abundance of the species χ is very

dependent on the freeze-out temperature.

• If xF � 3, the χ particles are relativistic at the time of their decoupling from

the cosmic bath. Such a DM species is known as hot DM and its current

yield, Yχ(x0), is approximated by its corresponding equilibrium value at

freeze-out Yχ,eq(xF ) [56, 372]. In this case and away from phase transitions

at which the effective number of relativistic d.o.f. changes considerably

(see e.g. [56]), the current abundance of the species χ is less sensitive to the

freeze-out temperature.

• In the intermediate regime, xF ∼ 3, the χ particles are semi-relativistic

when they decouple from the thermal bath. This case is similar to the

non-relativistic freeze-out case; however, a more careful analysis is required

since, strictly speaking, one needs to use the appropriate statistical dis-

tributions when calculating 〈σv〉 which, in general, requires evaluating an

expression with multiple integrals. Even if one uses the Boltzmann distribu-

tion to thermally average σv which can be a good approximation [373, 374],

a Taylor expansion of 〈σv〉 in terms of the average particle velocity is not

very useful since the average velocity of χ particles is close to unity at the

time of their decoupling from the thermal bath.

The three cases mentioned above are considered in more detail in Sections 2.2.1,

2.2.2 and 2.2.3, respectively.

1The freeze-out of DM can take place during the course of inflaton/moduli decay before
radiation takes over [366, 367].

2The χ population can still receive a non-thermal contribution after they freeze out from
the decay of other species [259].
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2.2.1 Non-relativistic (cold) dark matter

For xF � 3, the DM particles are mostly non-relativistic when they decouple

from the thermal plasma. This leads to the usual cold DM scenario with free

streaming lengths of sub-pc scale [375]. Further, approximate analytic formulas

for their relic abundance can be obtained [236, 373, 376]. The key point is that

the actual abundance Yχ tracks with the equilibrium abundance Yχ,eq during the

early stages of evolution (for x . x∗), while at late stages (x & x∗), Yχ,eq is

exponentially suppressed and has essentially no effect on the final abundance

Yχ(x0). Here x∗ is some intermediate matching point (not the freeze-out point

xF , as commonly assumed) where the deviation from equilibrium starts to grow

exponentially. Hence, to calculate the freeze-out abundance more precisely, we

track the evolution of the quantity ∆χ ≡ (Yχ−Yχ,eq)/Yχ,eq which represents the

departure from equilibrium. From Eq. (2.10), the evolution equation for ∆χ is

obtained with the form

d ln (1 + ∆χ)

d lnx
= −d lnYχ,eq

d lnx
− Γχ,eq

H

(
1 +

1

3

d ln g

d lnT

)
∆χ(2 + ∆χ)

1 + ∆χ

, (2.15)

with Γχ,eq =nχ,eq〈σv〉=Yχ,eqs〈σv〉 being the equilibrium annihilation rate where

〈σv〉 is given by Eq. (2.13) 1. Following the strategy developed in [376] to solve

Eq. (2.15) for ∆χ, we note that in the early stages of evolution, Yχ tracks Yχ,eq

closely, and hence, ∆χ, d∆χ/dx�1. In this case, the left-hand side of Eq. (2.15)

can be safely dropped, thus leading to

∆χ(2 + ∆χ)

1 + ∆χ

' −d lnYχ,eq
d lnx

H

Γχ,eq

(
1 +

1

3

d ln g

d lnT

)−1

' H

sYχ,eq〈σv〉

(
x− 3

2
− d ln g

d lnT

)(
1 +

1

3

d ln g

d lnT

)−1

' 2.51× 10−35g1/2

gχmχ〈σv〉

(
(x− 3/2)ex

x1/2

)
, (2.16)

1Strictly speaking, Eq. (2.13) is only applicable for the non-relativistic case with xF � 1.
However, as noted in [373, 374], this is a good approximation (within 3% accuracy) even for the
semi-relativistic case with xF ∼1. For the relativistic case xF�1, the final yield of χ particles
is simply its equilibrium value.
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2.2 Freeze-out scenario

where in the second line, we used Yχ,eq(x� 1) = 45
2π4

(
π
8

)1/2 gχ
g
x3/2e−x [56] whereas

in the third line we used Eqs. (2.5) and (2.8). Note that in the third line, 〈σv〉 is

measured in cm3 s−1 units. As the χ particles start freezing out with increasing x

while Yχ,eq is exponentially decreasing, ∆χ increases exponentially [see Eq. (2.16)

above], eventually becoming much larger than 1. Thus, for some intermediate

value of x = x∗, ∆χ ∼ O(1), and for x > x∗, it grows exponentially. We define

x∗ when ∆χ(x∗) ≡ ∆χ,∗ = 1/2 1, and solve Eq. (2.16) iteratively for x∗ as a

function of mχ, 〈σv〉 and g∗. For the logarithmic derivative of of g(T ), we use

the calculations of [377] for the SM relativistic d.o.f.. For the cases with no phase

transition around T∗ = mχ/x∗, g(T ) is almost constant, and hence, this term

can be ignored in Eq. (2.16). Once the value of x∗ is found, one can determine

T∗=mχ/x∗ and Yχ(x∗)=(3/2)Yχ,eq(x∗) (corresponding to ∆χ,∗=1/2). The actual

freeze-out temperature TF is somewhere below T∗, since at T = T∗, (Γχ/H)∗ is

still larger than 1 [376].

For x > x∗, Yχ� Yχ,eq; hence, the Y 2
χ,eq term in Eq. (2.10) can be dropped.

Therefore, the current yield of the species χ, Yχ(x0)' Yχ(xF ), can be obtained

by integrating Eq. (2.10) from x=x∗ to x=xF ,

Yχ(x0) ' Yχ(x∗)

[
1 +

∫ xF

x∗

dxYχ(x∗)
s〈σv〉
Hx

(
1 +

1

3

d ln g

d lnT

)]−1

, (2.17)

which can be used in Eq. (2.14) to compute Ωχh
2. To perform the integration in

Eq. (2.17), we need to know the x-dependence of 〈σv〉 [as given by Eq. (2.13)]

which is one of the key quantities that determine the current relic density. For

xF�3, the χ particles are already non-relativistic at decoupling, and hence, one

can expand 〈σv〉 in a Taylor series in terms of the averaged relative velocity:

〈σv〉 = a+ b
〈
v2
r

〉
+ O

(〈
v4
r

〉)
= a+

b′

x
+ O

(
1

x2

)
. (2.18)

For s-wave annihilation, only the first term is considered, and in this case,

Eq. (2.17) can be evaluated to finally obtain an improved analytic solution for

1As verified in [376], other alternative choices of ∆χ,∗ change the final result only by about
0.1%.
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2.2 Freeze-out scenario

the relic density (in the s-wave limit) [376]:

Ωχ,0h
2 =

9.93× 10−28 cm3s−1

〈σv〉
x∗

g
1/2
∗

(Γχ/H)∗
1 + α∗(Γχ/H)∗

, (2.19)

where the subscript ∗ means the values evaluated at x=x∗, and

α∗ =

∫ T∗

TF

dT

T∗

(
g

g∗

)1/2(
1 +

1

3

d ln g

d lnT

)
. (2.20)

Here we substituted Yχ,∗=〈σv〉−1(Γχ/H)∗(H/s)∗ where (H/s)∗=(45/8π2)1/2m−1
χ

M−1
P (x/

√
g)∗. The analytic result in Eq. (2.19) agrees with the exact numerical

result within ∼ 3%, almost independent of the DM mass. Note that for an

arbitrary l-wave annihilation, the above formalism can be repeated by considering

higher order term of the Taylor expansion of 〈σv〉 in powers of v2
r∼1/x. Here, we

did not consider the model-dependent co-annihilation, resonant annihilation and

the forbidden channel annihilation which can in principle result in a decrease in

the final abundance of the species χ [378]. From Eq. (2.19), it is clear that the

final abundance is inversely proportional to the thermal annihilation rate. Thus,

the larger the cross-section, the longer the DM particles stay in equilibrium with

the thermal bath, and hence, the lower the final abundance.

The dependence of the yield function on the annihilation rate for the ther-

mal DM which has frozen out is illustrated in Figure 2.1. Here we have chosen

mχ=100 GeV. The dashed black line shows the equilibrium distribution which is

constant in the extreme relativistic regime (x�3), and exponentially suppressed

in the non-relativistic regime (x�3), as can also be seen from Eq. (2.12) by taking

the asymptotic limits of the Bessel function. The observed DM yield that corre-

sponds to the relic density as measured by Planck, shown as the horizontal gray

line, is obtained for the thermal annihilation rate of 〈σv〉=2.05× 10−26 cm3s−1,

as shown by the solid green line. As the annihilation rate decreases, the DM

freezes out earlier (with smaller xF ), thus giving a larger relic density.
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2.2 Freeze-out scenario

Figure 2.1: Illustration of the freeze-out and freeze-in scenarios in the evolution of
thermal DM yield as a function of x=mχ/T for different annihilation rates. Here
the dashed black curve represents the equilibrium DM yield, the solid (red, green
and blue) curves correspond to the freeze-out DM scenario and the dashed (red,
green and blue) curves correspond to the freeze-in DM scenario. For the purpose of
illustration, we have chosen mχ=100 GeV and for the initial conditions, mφ=1013

GeV, Trh =10 TeV, Bχ=10−15. The horizontal gray line corresponds to the correct
relic density [13].

2.2.2 Relativistic (hot) dark matter

In the other extreme limit, where the freeze-out occurs when the χ particles

are still relativistic (xF � 3) and the x-dependence of the equilibrium yield of

χ particles is only through g(x) which does not change much away from the

phase transitions, the current yield of the species χ, Yχ(x0), is approximated by

the corresponding equilibrium value at freeze-out, Yχ,eq(xF ) [56, 372]. In this

case, Eq. (2.6) gives nχ,eq = (ζ(3)/π2)geffT
3, where geff = gχ (3gχ/4) for bosonic

(fermionic) χ, and ζ(x) is the Riemann zeta function. Using the entropy density

as given by Eq. (2.8), we obtain Yχ,eq(xF ) = 0.28 geff/g(xF ) which to a good

approximation is insensitive to the details of freeze-out. From Eq. (2.14), the
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2.2 Freeze-out scenario

present relic density is then given by

Ωχ,0h
2 = 7.62× 10−2 geff

g(xF )

( mχ

1 eV

)
. (2.21)

Relativistic DM particles in our Universe will lead to large damping scales

& 10 Mpc (roughly the size of typical galaxy clusters), thereby suppressing the

growth of small-scale structures. They would predict a top-down hierarchy in

structure formation [379, 380], with small structures forming by fragmentation of

larger ones, while observations have shown no convincing evidence of such effects,

thereby imposing stringent upper limits on these ‘hot’ DM species. For instance,

the SM neutrino contribution to the nonbaryonic DM relic density is currently

constrained to be Ωνh
2≤0.0025 at 95% CL [13]. Thus, hot DM cannot yield the

total observed DM density in our Universe, and if it exists 1, must coexist with

other cold/warm components (see e.g. [382, 383]).

2.2.3 Semi-relativistic dark matter

In the intermediate regime xF ∼ 3, the χ particles are semi-relativistic when

they decouple from the thermal bath, in which case the thermally averaged cross-

section 〈σv〉 involves multiple integrals, and cannot be expanded in a Taylor series

of the velocity-squared. One way is to approximate the cross-section by interpo-

lating between its relativistic and non-relativistic expressions. For example, in

the case of s-wave annihilation of two Dirac fermions the following ansatz was

used [374] 2:

〈σv〉 =
α2
χm

2
χ

16π

(
12

x2
+

5 + 4x

1 + x

)
, (2.23)

where αχ denotes the coupling constant of the four-fermion interaction, which is

taken to be a free parameter. Following this approach, it was shown [374] that

1Recently, the presence of a hot DM component at 3σ CL has been proposed to resolve
the inconsistencies of the Planck measurements with other observations, such as the current
Hubble rate, the galaxy shear power spectrum and galaxy cluster counts [381].

2For p-wave annihilation, a similar ansatz for the thermally averaged cross-section times
Møller velocity holds [374]

〈σv〉 =
α2
χm

2
χ

16π

(
12

x2
+

3 + 6x

(1 + x)2

)
. (2.22)

64



2.3 Freeze-in scenario

the Maxwell-Boltzmann distribution can still be used to compute 〈σv〉, and the

more appropriate Fermi-Dirac or Bose-Einstein distributions are only needed for

the calculation of the freeze-out abundance Yχ,eq(xF ). The current abundance

of the DM species χ can then be calculated by using Eq. (2.23) to integrate

Eq. (2.10) for Yχ(x� xF ), where xF is defined here as Γχ,eq(xF ) =H(xF ), and

then substitute it into Eq. (2.14). This approach works well for DM species that

freeze-out between 0.5.xF .15 to obtain Ωχ,0h
2. We note here that for the case

of s-wave annihilation using a constant value for 〈σv〉 also works well in the semi-

relativistic case, and induces an error of only about 6% at most, as compared

to using the ansatz given by Eq. (2.23) above. We also note that similar to the

case of cold DM, the abundance of a semi-relativistic DM species is inversely

proportional to 〈σv〉. This is not true for the hot DM case, where its abundance

is insensitive to the interaction cross-section, as discussed in Section 2.2.2.

Note that a semi-relativistic DM species can act as warm DM if it is suf-

ficiently light. The current observations do not rule out the possibility of the

whole DM density being comprised of warm DM species (see e.g. [132, 384, 385]).

In fact, warm DM can solve the Milky Way satellite galaxies problem and the

larger amount of substructure [128, 129, 130, 131] predicted by cold DM simula-

tions [114, 115, 116]. Nevertheless, there exist strong constraints from observa-

tions of early structure, in particular, from Lyman-α forest data [97, 386].

2.3 Freeze-in scenario

In this scenario, the χ particles are very weakly coupled to the bath, and hence,

cannot reach thermal equilibrium with the cosmic bath before decoupling. How-

ever, the feeble interactions with the thermal bath could still produce χ parti-

cles [259, 260, 261]. In this case, the final abundance is directly proportional to

the interaction strength; the larger the interaction rate is, the more χ particles

are produced. In this sense, freeze-in can be viewed as the opposite process to

freeze-out. The final relic density in the freeze-in scenario will, in general, be

determined by both the interaction cross-section and the initial abundance which

in turn depends on the reheating temperature and the branching ratio of the
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2.3 Freeze-in scenario

inflaton/moduli to DM in our case. To see this, we note that the decoupling of

χ particles, in this case, occurs for small values of xF
1, where the equilibrium

abundance Yχ,eq is roughly independent of x, as can be seen from Eqs. (2.6) and

(2.8),

Yχ,eq(x� 1) =
45ζ(3)

2π2

geff

g
. (2.24)

Nevertheless, the DM thermally-averaged interaction rate can, in general, depend

on x. However, this is a model-dependent issue, and since in this chapter we are

interested in the identification of the gross features of the DM parameter space

in a model-independent paradigm, we take 〈σv〉 to be constant in x 2. Hence,

the general Boltzmann equation (2.10) can be approximated, in this case, to the

following simple form:

dYχ
dx
'
(

8π2g

45

)1/2

〈σv〉mχMP

x2
(Y 2

χ,eq − Y 2
χ ) ' −A

x2
(Y 2

χ −B) , (2.25)

where A and B are roughly independent of x 3. Eq. (2.25) has a simple analytic

solution in terms of the initial values xi=mχ/Trh and Y
(i)
χ , where the latter can

be obtained from Eqs. (2.2) and (2.8):

Y (i)
χ =

n
(i)
χ

s(Trh)
' 3

4
Bχ

Trh

mφ

. (2.26)

1The decoupling of FIMP DM from the cosmic bath can occur at larger xF in some cases.
For example, this is the case if the interaction of the DM particles with the thermal bath d.o.f.
is mediated by a light particle [387].

2This is actually the case in some scenarios such as the case where DM interaction with the
SM d.o.f. is dominated by a dimension-five coupling to the Higgs field [261]. In Chapter 3, we
consider the case where the DM interaction with the SM d.o.f. being dominated by a dimension-
six coupling to the SM fermions in which case the thermally average DM interaction rate has
x-dependence.

3In general, 〈σv〉 depends on x; however, its exact form is model dependent. For instance if
χ particles are of fermionic nature and their interactions with the bath particles is mediated via
a heavy mediator X, (MX�Trh,mχ), σ∼m2

χ/(x
2M4

X) and hence 〈σv〉 ∝ x−2; we discuss this
possibility in the next chapter. For now we treat 〈σv〉 as a constant since here we are interested
in identifying the gross feature of the (mχ,〈σv〉) parameter space in a model-independent setup.
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In the limit x→∞, the expression for Yχ(x) simplifies further, and the final relic

density can then be obtained using Eq. (2.14). This has two contributions:

Ωχ,0h
2 ' 2.06× 108 Bχ

mχ

mφ

(
Trh

1 GeV

)
+
√
g
( mχ

1 GeV

)( Trh

1 GeV

)
×
(

〈σv〉
10−50 cm3 s−1

)(
5.84× 10−8 g

2
eff

g2
− 4.26× 10−7B2

χ

T 2
rh

m2
φ

)
, (2.27)

where the first term represents the non-thermal contribution which only depends

on the initial abundance, and the other two terms represent the thermal contri-

bution which depend on the interaction rate. Note that the analytic expression

(2.27) is valid as long as mχ�Trh, otherwise the thermal production will occur at

higher values of x when the equilibrium distribution in Eq. (2.25) may no longer

be flat, but exponentially decaying. For the FIMP scenario, it is usually assumed

that the initial abundance is negligible, so that the final abundance is solely de-

termined by the interaction strength in Eq. (2.27), as in the freeze-out scenario.

This is illustrated in Figure 2.1 for a typical choice of parameters: mχ=100 GeV,

mφ=1013 GeV, Trh =10 TeV, and Bχ=10−15 so that the initial abundance given

by Eq. (2.26) is negligible. The different dashed lines in Figure 2.1 correspond

to the freeze-in scenario with various interaction rates, and hence, different final

abundances. Note that the final abundance increases with increasing interaction

rate, in contrast with the freeze-out scenario (the solid lines) where the final

abundance decreases with increasing interaction rate. As shown here, the ob-

served relic abundance shown by the gray horizontal line can be obtained in the

freeze-in scenario for an interaction rate of 10−47 cm3s−1, which is much smaller

than the typical value of 2× 10−26 cm3s−1, as in the freeze-out scenario.

We should mention here that besides the freeze-out and freeze-in scenarios

there could be other thermal production mechanisms for the DM in specific mod-

els, depending on its interaction with the SM particles and/or the model con-

struction for the beyond SM sector. For instance, a keV-scale sterile neutrino

DM can be produced by the Dodelson-Widrow mechanism [269], which is very

similar to the freeze-in mechanism discussed above. Likewise, there could be

other non-thermal DM production mechanisms such as the misalignment mech-

67



2.4 Non-thermal dark matter production

anism for axions and many ALP species (see e.g. [250]; for a recent review see

e.g. [253, 254]).

2.4 Non-thermal dark matter production

As discussed in Section 2.1, we assume that the DM particles χ directly couple

to the inflaton/moduli field, φ, so that they can be produced in the perturbative

inflaton/moduli decay for mχ <mφ/2. For sufficiently low interaction rate, the

DM particles are produced already decoupled from the thermal bath, in which

case, the annihilation rate, and consequently, the right-hand side of Eq. (2.10)

can be neglected, thus leading to dYχ/dx ' 0. As a result, the final yield of the

DM species χ is completely determined by the initial one given by Eq. (2.11).

Using the general expression (2.14), this yields the non-thermal relic DM density

Ωχ,0h
2 = 2.06× 108 Bχ

mχ

mφ

(
Trh

1 GeV

)
, (2.28)

which can also be identified with the first term on the right-hand side of Eq. (2.27)

where the other two terms are negligible. Thus, for super-weak interaction

rates, the final abundance only depends on the reheating temperature and in-

flaton/moduli branching fraction for a given DM species and the inflaton/moduli

masses 1. Clearly, the non-thermal contribution to DM can be sizeable for large

branching ratios. Some illustrative cases for the non-thermal DM are shown in

Figure 2.2 for two typical values of the branching ratio Bχ=10−5 and 10−15. The

choice of small values of Bχ will be justified below. The various contours show the

reheating temperatures required to obtain the correct relic density Ωχh
2 =0.1198

for given values of the inflaton/moduli and DM masses. These plots were obtained

by numerically solving the Boltzmann equation (2.10) for a typical annihilation

rate 〈σv〉=10−60 cm3s−1 (see Section 2.6 for details) following the procedure men-

tioned above, but the results agree quite well with the approximate analytic for-

1Similar results were obtained in [371, 388] for superheavy metastable DM candidates. Our
result is valid for all non-thermal DM production mechanisms as long as it is a perturbative
process.
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Figure 2.2: The coloured contours show the reheating temperature values re-
quired to give the correct relic density for non-thermal DM as a function of the
inflaton/moduli and DM masses, for a given branching ratio.

mula given in Eq. (2.28). From Figure 2.2, it is clear that as the inflaton/moduli

branching fraction increases, the allowed range of the DM masses shifts to lower

values in order to satisfy the observed relic density, in accordance with Eq. (2.28).

We have shown the results for the inflaton/moduli mass mφ in the range 103 -

1013 GeV, the reheating temperature Trh between 4 MeV–109 GeV and for the

DM mass mχ ≤mφ/2. Note that a late-time entropy production would induce

various cosmological effects, leading to a lower limit on the reheating tempera-

ture of about 1 MeV from BBN constraints [389], which, when combined with the

CMB and large scale structure data, increases to about 4 MeV at 95% CL [390].

Formχ�mφ, the non-thermal DM directly produced from the inflaton/moduli

decay will have a large velocity at the time of radiation-matter equality (teq), un-

less the reheating temperature is sufficiently high to make the velocity small due

to redshift. The comoving free-streaming length of non-thermal DM at radiation-

matter equality is given by

λ̃fs =

∫ teq

td

dt
vχ(t)

a(t)
, (2.29)

69



2.5 Theoretical and experimental constraints

where a(t) is the scale factor, td=Γ−1
φ is the time at inflaton/moduli decay, and

vχ(t) =
|pχ|
Eχ
'

εmφ
a(td)
a(t)√

m2
χ +

[
εmφ

a(td)
a(t)

]2
(2.30)

is the magnitude of the velocity of the DM particle with ε being the fraction of

inflaton/moduli CM energy per χ particle in each decay. Integrating Eq. (2.29),

and requiring that λfs(t0) . 1 Mpc, from Lyman-α constraints (for warm/cold

DM), one obtains a lower limit on the reheating temperature [391]

Trh & 106 GeV
( ε

2

)( g

200

)−1/4
(

1 GeV

mχ

)( mφ

1013 GeV

)
. (2.31)

Combining this with Eq. (2.28), and requiring Ωχh
2 ≤ 0.1228 to satisfy the ob-

served relic density for cold/warm DM relics, we derive an upper limit on the

branching ratio of the inflaton/moduli decay to DM: Bχ . (0.005/ε)(g/200)1/4.

This is complementary to what is already expected from the fact that for a stan-

dard cosmology, Bχ must be small in order to have a RD epoch immediately after

reheating, followed by MD epoch only at a late stage.

2.5 Theoretical and experimental constraints

In this section, we summarise the various observational and theoretical constraints

on the DM properties relevant for our analysis.

2.5.1 Overclosure

For any DM candidate, we must ensure that it does not lead to an overclosure of

the Universe. Thus, we set the upper limit on the relic density of our χ particles

coming from inflaton/moduli decay using the observed value ΩDM,0h
2 =0.1198±

0.0030 (95% CL; Planck) [13]. We do not set a lower limit on Ωχ,0 since for the

cases in which the χ particles do not account for the total observed abundance, the
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remaining fraction can be obtained by invoking a hidden-sector/multi-component

DM scenario (see e.g. [382, 383, 392]).

2.5.2 Unitarity

The partial-wave unitarity of the scattering matrix, together with the conser-

vation of total energy and momentum, impose a generic upper bound on the

cross-section of thermal DM annihilation into the j-th partial wave [393]:

σj ≤
4π(2j + 1)

m2
χv

2
r

(
1− v2

r

4

)
, (2.32)

where vr = 2
√

1−4m2
χ/s is the relative velocity between the two annihilating

particles in the CM frame with total energy
√
s. Assuming that the s-wave piece

with j=0 dominates in the partial-wave expansion, we obtain an upper bound on

the thermally-averaged annihilation rate 〈σv〉 as a function of the DM mass from

Eq. (2.13), where σ is replaced with (σ0)max from Eq. (2.32). Since the current

abundance of a non-relativistic frozen-out thermal relic scales as Ωχ∝1/〈σv〉, the

observed DM relic density constrains the mass of the thermal relic to be mχ.130

TeV to satisfy the unitarity bound. Note, however, that this bound may not be

applicable when the higher partial-waves are not suppressed, as is the case when

the DM particles decouple from the thermal bath while still being relativistic.

2.5.3 Planck

Precision measurements of the CMB angular power spectrum by Planck put strin-

gent constraints on the number of effective neutrino species (Neff), which param-

eterises the total radiation energy density of the Universe:

ρr = ργ

[
1 +

7

8

(
Tν
Tγ

)4
Neff

]
, (2.33)

where ργ = (π2/15)T 4 is the energy density of photons, and the neutrino-to-

photon temperature ratio is Tν/Tγ = (4/11)1/3 assuming exactly three neutrino
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flavors and their instantaneous decoupling. In the SCM, Tν/Tγ is slightly higher

than (4/11)1/3 due to partial reheating of neutrinos when electron-positron pairs

annihilate transferring their entropy to photons, thus giving Neff = 3.046 [394].

Now if the DM species remains in thermal equilibrium with the neutrinos or

electrons and photons after neutrino decoupling, and transfers its entropy to

them during its annihilation after it decouples at a later stage, it can increase or

decrease the value of Neff as we decrease the DM mass. Using the constraints

on Neff from Planck [13], together with the helium abundance Yp, references

[395, 396, 397] derived a robust lower bound of 2-10 MeV on the thermal DM mass,

depending on whether it is a fermion (Dirac/Majorana) or scalar (real/complex)

and whether it was in equilibrium with neutrinos or with electrons and photons.

Another generic lower bound on the cold DM mass can be obtained using the

CMB and matter power spectrum observations which place an upper bound on

the DM temperature-to-mass ratio: T/mχ≤1.07×10−14(1+z)2 [398]. Evaluating

this bound at radiation-matter equality with a redshift of zeq = 3393 [13] and

Tγ,eq ' 0.77 eV [56], we obtain a lower limit of mχ & 6.5 keV, which is much

weaker than the limit derived in [395, 396, 397] using Neff .

2.5.4 Dark radiation

The Planck constraints on Neff can also be used to set an upper limit on the

amount of dark radiation 1 at decoupling. From Eq. (2.33), the radiation energy

density apart from the photon and SM neutrino contribution is given by

Ωdarkh
2 =

7

8

(
4

11

)4/3
∆Neff Ωγh

2 , (2.34)

where Ωγh
2 = 2.473×10−5(T/2.7255)4 is the CMB radiation density [32], and

∆Neff =Neff−3.046. Using the 95% CL measured value of Neff = 3.15+0.41
−0.40 from

Planck (temperature anisotropy and lensing data)+Joint-Light-Curve Analysis

(JLA) of type Ia supernovae catalogue+Baryon Acoustic Oscillation (BAO) mea-

surements from large scale structure surveys [13], we obtain an upper limit on the

1Dark radiation refers to a hidden sector (dark) species which remains ultra-relativisitic
until the era of photon decoupling.

72



2.5 Theoretical and experimental constraints

amount of dark radiation from Eq. (2.34): Ωdarkh
2≤2.92×10−6. This also sets the

upper limit on the relic density of hot DM species. From the Ly-α constraints,

we require λfs(t0).1 Mpc for cold/warm DM candidates.

2.5.5 BBN and CMB

The late annihilation of DM particles (after freeze out) can deposit hadronic

and/or electromagnetic energy in the primordial plasma, thereby altering the his-

tory of BBN [399, 400, 401, 402] and recombination (CMB) [403, 404, 405, 406,

407, 408, 409, 410, 411]. These effects depend only on the type and rate of en-

ergy injection into the thermal bath allowing us to set rather model-independent

bounds on the annihilation rate, especially for DM masses in the MeV-GeV range.

During nucleosynthesis, the injection of hadronic and/or electromagnetic energy

can affect the abundance of nuclei via (i) raising the neutron-to-proton ratio

and therefore the primordial 4He abundance, and (ii) high energy nucleons and

photons disassociating nuclei. During recombination, the injected electromag-

netic energy ionises hydrogen atoms, which results in an increased number of

free electrons, causing the broadening of the surface of last scattering, and re-

sults in scale-dependent changes to the CMB temperature and polarisation power

spectra, especially in the low multipole modes. The precision measurements

of BBN and CMB from WMAP and Planck data have been used to set up-

per bounds on the DM annihilation cross-section 〈σv〉, as a function of the DM

mass [399, 400, 401, 406, 408, 409, 410, 411].

2.5.6 Indirect detection

The relic annihilations of WIMP DM may be indirectly observed by searching

for their annihilation products such as charged particles, photons and neutrinos.

In fact, a number of ID experiments have observed an excess of electrons and

positrons in the charged cosmic ray flux [300, 303, 304], and this was recently

confirmed with the precision measurements by AMS-02 [302]. Assuming a possi-

ble DM contribution to this positron excess and using the high quality of AMS-02
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data, the authors of [412, 413] have performed a spectral analysis to put strin-

gent constraints on the DM annihilation cross-section for various leptonic final

states 1. Similar constraints were obtained for the DM annihilation into hadronic

final states [419, 420, 421] in order to explain the absence of a corresponding

excess in the cosmic-ray antiproton flux in the PAMELA data [301, 422].

The DM annihilation to various SM final states can also lead to an observable

photon flux which can be produced either by direct DM annihilation (‘prompt’

gamma-rays) or by inverse Compton scattering and synchrotron emission of the

electrons and positrons created in the DM annihilation. These photon signals

are preferentially searched for in regions with high DM densities and/or regions

with reduced astrophysical background. The Fermi-LAT, with its unprecedented

sensitivity to gamma rays in the MeV-TeV energy range, has performed deep

searches for line spectrum (mono-energetic gamma-rays due to direct DM an-

nihilation) [423] as well as continuum spectrum (through DM annihilation into

intermediate states) [424] 2. They have derived additional constraints on the

DM annihilation cross-section from the isotropic diffuse gamma-ray emission in

the galactic halo [426], nearby galaxy clusters [427], and nearby dwarf spheroidal

galaxies [326]. Similar constraints were also derived from the galactic centre re-

gion for various DM density profiles [428] 3. Complementing the Fermi-LAT range

toward higher energies, the HESS collaboration has performed a number of DM

searches up to multi-TeV DM masses [434, 435, 436].

1There are many DM interpretations for the AMS-02 signal (see e.g. [414, 415, 416, 417,
418]). On the other hand, this excess can be explained by pulsars [312, 313, 314] and other
astrophysical sources [315]. Nevertheless, the absence of anisotropies in the electron-positron
excess is compatible with an astrophysical origin [316]. Further, the Fermi/LAT measurement of
the diffuse gamma-ray background [325], the Fermi/LAT observation of the Milky Way satellite
dwarf galaxies [326], and the observational data from cool-core clusters [327] rule out the DM
explanation of the electron-positron excess [328, 329, 330].

2There exists yet another class of spectral signature, namely, box-shaped gamma-ray spec-
trum, which arises if the DM annihilates/decays into intermediate particles which further decay
into photons [425]. The cross-section limits derived using this feature are currently comparable
to those obtained using the line-like spectral feature.

3A gamma-ray excess was observed by Fermi/LAT toward the galactic centre [305], to which
many DM interpretations exist (see e.g. [429, 430, 431, 432, 433]) and many other astrophysical
interpretations (see e.g. [317, 318, 319, 320, 321, 322, 323]). However, a recent study pointed
out that the point-like nature of the sources required by substructure considerations rule out
the DM interpretation of this galactic centre gamma-ray excess [324].
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The DM annihilation can also produce neutrinos which, like gamma-rays,

can travel essentially unabsorbed through the galaxy, and can be observed at

large neutrino detectors on Earth. Constraints on the DM annihilation rate were

derived by the IceCube (IC) experiment from the upper limits on the high-energy

neutrino fluxes from the galactic halo [437, 438], galactic centre [439, 440], dwarf

galaxies and clusters of galaxies [441] 1. These limits are currently somewhat

weaker than the gamma-ray limits for low DM masses, but become competitive

at larger DM masses. Combining the Fermi/LAT data on the diffuse gamma-ray

and the IceCube data on diffuse neutrino flux, robust constraints were derived on

the DM annihilation rate for heavy DM masses (1 TeV - 1010 GeV) [447].

2.6 Results and discussion

Using the model-independent approach outlined in Section 2.1, we solve the Boltz-

mann equation (2.10) numerically for the evolution of DM produced from infla-

ton/moduli decay. Here we assume an s-wave annihilation, and take the annihi-

lation rate 〈σv〉 to be a free parameter 2. Both thermal and non-thermal regions

are identified in the (mχ,〈σv〉) parameter space. Our results are shown in Fig-

ures 2.3 and 2.4 for a fixed inflaton/moduli mass mφ = 1013 GeV. We consider

two typical values of the reheating temperature Trh = 109 GeV and 104 GeV for

our illustration purposes. We have considered DM masses only below the reheat-

ing temperature, and do not analyse scenarios in which DM could be produced

during preheating or reheating (e.g. the WIMPzilla scenario [367]). For each

1The IceCube collaboration has reported the detection of a series of neutrino events
in the energy range 30−2000 TeV with high statistical significance above the atmospheric
background [306, 307, 308] for which many beyond SM explanations were proposed (see
e.g. [442, 443, 444]). However, it was shown that these events are consistent with the SM
expectation [445, 446]. Moreover, a recent analyses of the IceCube and ANTARES data in
search of point-like origin of the astrophysical neutrinos shows no statistical significance above
the background [331, 332, 333]. This rules out the DM interpretation of the IceCube neutrino
events.

2For a p-wave annihilation, 〈σv〉 depends on the temperature, and hence, cannot be taken
as a free parameter in the Boltzmann equation. Our assumption also obliterates additional
complications that could arise in special cases such as co-annihilation and resonant annihilation.
However, these are highly model-dependent effects, and we cannot easily generalise our results
to such scenarios. A more accurate, model-specific numerical analysis for the relic density can
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Figure 2.3: Model-independent constraints on the DM annihilation rate as a
function of the DM mass for both thermal and non-thermal production mechanisms.
Here we have chosen mφ = 1013 GeV, Trh = 109 GeV and Bχ = 0 as the initial
parameters for the DM evolution. The blue-shaded region is excluded from relic
density constraints, and the observed relic density is obtained at its boundary
(shown by the thick solid and dashed blue curves). The thin solid and dashed blue
curves show the parameters which result in a thermal abundance of χ particles
corresponding to 10% of the observed DM relic density. The unshaded regions are
allowed; however, non-thermal production mechanisms are required in order for χ
particles to make the entirety of the observed DM abundance. In particular, in the
unshaded region below the overclosure (blue) region of the parameter space, the
χ particles are very weakly coupled to the cosmic bath such that the χ particles
produced in the inflaton/moduli decay will not annihilate into bath particles and
survive as a non-thermal contribution to DM. The various coloured-shaded regions
in the thermal region are excluded (under certain assumptions) by the constraints
given in Section 2.5; see text for details.

case shown in Figures 2.3 and 2.4, we calculate the current relic density of the

thermal DM to show the overclosure region (blue-shaded) which rules out a wide

be done with publicly available codes [448, 449, 450].
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Figure 2.4: Same as Figure 2.3, except for Trh =104 GeV.

range of the parameter space, irrespective of the initial choice of parameters.

In the remaining allowed parameter space, we identify the regions correspond-

ing to both the freeze-out (above the overclosure region) and the freeze-in DM

scenarios (below the overclosure region). In particular, the thin (thick) solid

blue curve corresponds to the parameters that give 10% (100%) of the total DM

abundance for the freeze-out scenario whereas the thin (thick) dashed blue curve

represents the parameters that give 10% (100%) of the total DM abundance for

the freeze-in scenario. Clearly, in the allowed regions and away from the thick

curves another DM species and/or another production mechanism such as non-

thermal production are needed. In particular, in the region of the parameter

space corresponding to the freeze-in scenario, the χ coupling to the thermal bath

particles is very weak and hence the χ population produced in the inflaton/moduli

decay will not annihilate into bath particles and will survive as a non-thermal

contribution to the DM abundance. Below the thin dashed blue curve the thermal

contribution to the DM abundance is insignificant, and for χ particles to make the
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entirety of DM, the population of χ particles has to be produced non-thermally

from the decay of the inflaton/moduli (as discussed in Section 2.4.); otherwise,

other DM species are required. Similarly, for the allowed freeze-out region of the

parameter space, the contribution of other DM species is needed. Also, the late

decay of another dark species into χ particles can increase the population of χ

particles such that they may constitute the entirety of DM relic density. However,

here we focus on the decay of inflaton/moduli in which the overclosure condition

is determined solely by the initial conditions as discussed in Section 2.6.2 below.

2.6.1 Thermal case

In the thermal DM regime, the region above the overclosure region with large

annihilation rate belongs to the freeze-out scenario, while in the unshaded region

below the overclosure one with small annihilation rate belongs to either freeze-

in or non-thermal DM scenario, depending on the interaction rate and initial

conditions. The observed value of the relic density is obtained at the boundary

between these regions with the overclosure region (shown by the thick solid and

dashed blue lines). The thermal freeze-out region with large annihilation rate is

severely constrained by many experimental searches, as discussed in Section 2.5,

some of which are shown by the shaded regions 1-14 in Figures 2.3 and 2.4, and

also summarised below:

• Region 1 (shaded in gray) is excluded by the recent Planck measurements

of the effective number of neutrino species, as discussed in Section 2.5.3, as-

suming that the DM interacts with neutrinos or electrons and photons after

the neutrino decoupling. This sets a robust lower bound of order of MeV

on the thermal DM mass with large interaction rates. The precise value of

the lower bound depends on whether the DM is a scalar or fermion and on

whether it couples to neutrinos or to electrons and photons. The bound

shown by region 1 assumes a Majorana fermion DM coupling to neutrinos.

Note that [395, 396, 397] had originally derived this limit for a cold DM

candidate, but this is generically applicable as long as the interaction rate

is large enough to keep the DM in thermal equilibrium after the neutrino

decoupling, thus transferring entropy at a late stage and affecting Neff .
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• Regions 2 and 3 (shaded in light and dark yellow respectively) are excluded

by the BBN data, as discussed in Section 2.5.5, and assuming DM annihi-

lation into electron-positron and quark-antiquark pairs respectively [401].

Similarly, the region 8 (shaded in light orange) is excluded by constraints de-

rived from a combination of the CMB power spectrum measurements from

Planck, WMAP9, ACT and SPT, and low-redshift data sets from BAO,

HST and supernovae [406].

• Region 4 (shaded in light brown and bounded by dashed brown curve)

is excluded by the Fermi-LAT limit at 95% CL derived using the diffuse

gamma-ray flux from a combined analysis of 15 dwarf spheroidal galaxies,

for an NFW DM density profile and assuming DM annihilation into tau-

antitau final states [326]. Region 6 (shaded in cyan) is excluded by the

3σ Fermi-LAT limit obtained using the diffuse gamma-ray emission in the

Milky Way halo, assuming an NFW DM distribution and for annihilation

into bottom-antibottom quark pairs [426]. Region 7 (shaded in light purple)

is excluded by a similar analysis using the Fermi-LAT data from galactic

centre [428]. The corresponding limits for other SM final states are weaker

and are not shown here for clarity purposes.

• Region 5 (shaded in light brown and bounded by solid brown curve) is

excluded by the Fermi-LAT 95% CL upper limit on the cross-section of DM

annihilation to two photons from a dedicated search for the gamma-ray line

spectrum [423, 451]. Region 12 (shaded in light gold) is excluded from a

complementary search for the line spectrum by HESS [436, 452]. Note that

these limits, although very stringent, can be evaded in most of the popular

WIMP DM models, since the direct annihilation to photon final states is

suppressed due to loop effects.

• Region 9 (shaded in dark green) is excluded by the measurements of the

antiproton flux from PAMELA, and assuming the DM annihilation to bb̄

final states [420]. These limits are applicable only to hadronic final states.

Similarly, region 14 (shaded in purplish red) is excluded by the 95% CL
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upper limits, derived from the AMS-02 data, on the DM annihilation cross-

section for e+e− final state [412, 413]. The corresponding limits for other

leptonic final states are somewhat weaker, and hence, are not shown here.

• Region 10 (shaded in violet) is excluded by the IceCube upper limit on

the DM annihilation cross-section for neutrino final states for the Virgo

galaxy cluster including sub-halos [441]. The corresponding limits for other

final states as well as from searches in galactic halo [437, 438] and galactic

centre [439, 440] are somewhat weaker.

• Region 11 (shaded in magenta) is excluded by the cascade gamma-ray con-

straints obtained using the Fermi-LAT diffuse gamma-ray background data

up to very high energies [447]. The corresponding limits derived using the

IceCube high-energy neutrino data are stronger at higher DM masses but

weaker than the unitarity constraint (see Section 2.5.2).

• Region 13 (shaded in red) is excluded by the unitarity constraints [393], as

discussed in Section 2.5.2, which sets an upper limit on the CDM mass of

about 130 TeV for the allowed region, and rules out heavy thermal DM,

even with annihilation rates many orders of magnitude below the thermal

annihilation rate. This theoretical constraint is the most stringent one for

very heavy DM and is applicable as long as the DM is produced thermally

(via freeze-out).

Note that for the indirect detection constraints, we have shown only a few of them

(typically the most stringent ones) for illustration purposes. Most of these limits

have limited applicability, as they were derived assuming DM annihilation into a

particular final state, and can be evaded in specific models where some of these

annihilation channels might be suppressed due to various reasons. Also, note

that additional constraints on the annihilation cross-section for a given DM mass

might be derived using possible correlations with the DM direct detection cross-

section limits [453, 454] and collider search limits from mono-jet [455, 456, 457],

mono-photon [458, 459, 460], di-photon [461], mono-vector-boson [462, 463] and

mono-Higgs [464, 465] final states with large missing energy. In the absence of

a collider signal for DM, model-independent constraints can be derived on the
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mass and interactions of a generic WIMP DM candidate from direct and indirect

detection searches [466].

The other allowed thermal DM parameter space, namely, the region with very

low interaction rates such as the FIMP scenario, is hard to constrain from the

existing experimental limits. Various experimental tests of the freeze-in mecha-

nism by measurements at colliders or by cosmological observations were outlined

in [259]. However, these signals depend very much on the particular freeze-in sce-

nario under consideration, and hence, it is difficult to derive model-independent

constraints in the (mχ, 〈σv〉) parameter space, except for the generic dark radi-

ation constraint as shown in Figures 2.3 and 2.4. Just to give an example of

additional model-specific bounds, a keV-scale sterile neutrino DM, which has a

small interaction rate due to its mixing with the active neutrinos, could radiatively

decay to an active neutrino and a photon which will lead to a mono-energetic X-

ray line [467], the absence of which puts severe constraints on such keV-scale DM

models, including their production mechanisms [468].

2.6.2 Non-thermal case

Now we move on to discuss the non-thermal DM region (labelled in green) in

Figures 2.3 and 2.4. As already discussed at length in Section 2.4, the final relic

density of these DM particles is determined by the initial conditions, which in our

case, are set by the inflaton/moduli and DM masses, the reheating temperature

and the branching ratio of the inflaton/moduli decay to DM. For fixed reheating

temperature and inflaton/moduli branching ratio, we show in Figures 2.5 and

2.6 the contours for relic density computed using Eq. (2.28) in the (mφ,mχ)

plane. We also calculate the comoving free-streaming length using Eq. (2.29),

and identify the regions with λ̃fs . 100 kpc as cold DM (CDM), with λ̃fs & 1

Mpc as hot DM (HDM), and the rest as warm DM (WDM) 1. Note that there is

no well-defined boundary between these regions, and we have just chosen some

typical values derived from various astrophysical data [97, 469] for our illustration

1A comoving free-streaming length of 100 kpc corresponds to a non-thermal DM species
that becomes non-relativistic at temperature of several keV. We recall here that density per-
turbations of galaxy size today re-enter the Hubble patch at temperature∼1 keV.
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Figure 2.5: The colour-coded contours show the relic density of non-thermal DM
produced from inflaton/moduli decay as a function of the inflaton/moduli and DM
masses for a fixed reheated temperature Trh = 109 GeV and fixed inflaton/moduli
branching ratios Bχ=10−5 and 10−15. We identify the cold, warm and hot DM re-
gions in each case by assuming that the corresponding free-streaming length given
by Eq. (2.29) should be <0.1 Mpc, between 0.1–1 Mpc, and above 1 Mpc, respec-
tively. The blue-shaded region for the CDM case is excluded by the overclosure
constraint, as discussed in Section 2.5.1. The additional blue-shaded region in the
HDM case is ruled out by the dark radiation limit, as discussed in Section 2.5.4.

purposes. We find that the observed DM relic density can be satisfied for a narrow

parameter space in the CDM region (the boundary between the blue and orange

regions), and the region above this is excluded due to overclosure constraints.

For the HDM case with Trh = 109 GeV and Bχ = 10−5 (Figure 2.5, left panel),

an additional portion of the parameter space (blue-shaded region at bottom-

left corner) is ruled out due to the dark radiation constraint, as discussed in

Section 2.5.4.

2.7 Conclusion

In this chapter, we have investigated the thermal and non-thermal properties

of DM from inflaton/moduli decay in a model-independent manner, assuming
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Figure 2.6: The labels are the same as in Figure 2.5. Here Trh =104 GeV.

that the decay of inflaton/moduli and thermalisation of the resultant plasma

have happened instantly at a given unique temperature. In the thermal DM

scenario, the relic abundance of the DM species is determined by the freeze-

out abundance, irrespective of the initial conditions or production mechanism,

provided its interaction with the thermal bath is large enough to bring it into

thermal equilibrium soon after its production. For smaller interaction rates when

the DM does not attain thermal equilibrium, but can still be produced from

the thermal bath; one can obtain the correct relic density through this freeze-

in mechanism. On the other hand, if the interaction rate is negligibly small so

that the DM is decoupled from the thermal bath from the beginning, the relic

density is essentially determined by the initial conditions. Assuming that the

DM has a non-zero coupling to the inflaton/moduli so that it can be directly

produced from the inflaton/moduli decay, we have investigated all the above

scenarios by tracking the evolution of the DM species from the very onset of its

production. We have numerically solved the Boltzmann equation for DM number

density, and have shown that the annihilation of the cosmic bath particles and

inflaton decay into DM inevitably leads to an overclosure of the Universe for a

large range of parameter space, especially for non-thermal DM scenarios. This
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is an important constraint for hidden sector DM models with an arbitrary DM

coupling to the inflaton. For the thermal DM scenario with large annihilation

rates, we show the complementary constraints on the DM parameter space from

various experimental searches. On the other hand, the other viable regions for

both thermal and non-thermal DM candidates with very small interaction rate

remain mostly unexplored.
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Chapter 3

Ultra-violet freeze-in and

inflationary observables

As shown in Chapter 2, the popular freeze-out DM scenario is subjected to a

plethora of observational and theoretical constraints leaving only small viable

regions of the parameter space. These allowed regions are already shrinking with

the increasing sensitivity of DM detection experiments. Given the current rate

of increase in the sensitivity of DM direct and indirect detection experiment, one

would expect that either the DM will get discovered in the next few years or the

freeze-out DM scenario will be ruled out. On the other hand, the region of the

parameter space corresponding to the freeze-in scenario is subjected to almost no

constraint and is beyond the reach of the current and near future DM experiments

due to the very weak DM interactions with the visible sector in that region of

the parameter space. This is also the case for many of the non-thermal DM

candidates. Nevertheless, the CMB, which is measured with a great precision [2]

and is expected to be measured with even greater precision in the near future,

provides information from the early Universe. Motivated by this, we seek in this

chapter to a establish a connection between the freeze-in scenario and inflationary

observables which could provide us with a window of opportunity for unravelling

the properties of DM beyond the standard freeze-out paradigm. We show that

such a correlation indeed exists if the interaction of the DM with the visible sector
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is mediated via a heavy particle which is a natural freeze-in scenario. Further,

this connection surely exists for the non-thermal DM scenario.

3.1 Introduction

As discussed in Chapter 1, Primordial inflation can solve the initial condition

problems of the SCM. In particular, it explains the formation of the large scale

structures in our Universe and the observed features of the CMB spectrum [13].

Most likely both inflaton (the field deriving inflation) and DM require physics

beyond the SM 1. Although the masses and interactions of the inflaton and DM

are still unknown, both must couple to the visible sector in some way, if not

directly. It is also possible that the inflaton couples to DM. One can then imagine

that the net DM abundance can be created via two processes:

(a) Decay: The inflaton, φ, could directly couple to the DM, χ, via re-

normalisable interactions, as shown in Figure 3.1(a). For concreteness, we assume

a fermionic DM, so that the interaction is of the Yukawa type, i.e. y
φχ
φχ̄χ. We

could also have a scalar DM with a trilinear coupling to the inflaton. Apart from

the inflaton itself, any heavy hidden sector scalar field X could also directly decay

to DM via re-normalisable interactions.

(b) Scattering: The inflaton must couple to the visible sector for the success

of BBN. For instance, inflaton can couple to fermions via interactions of the

form y
φb
φb̄b. Through such interactions, the cosmic thermal bath gradually gets

established. Therefore, we can also create DM via inflaton mediation, as shown

in Figure 3.1(b). One can generalise this scenario to envisage that any heavy

mediator, such as a scalar particle X 2, could connect the thermal bath d.o.f.

with the dark sector through the couplings y
Xb
Xb̄b and y

Xχ
Xχ̄χ.

A rather natural outcome of this simple scenario is that the scale of inflation,

determined by the inflaton potential V (φ), can be correlated with the DM prop-

erties in a rather intriguing way. If, for some reason, the DM does not thermalise

1The SM Higgs can play the role of inflaton if it couples non-minimally to gravity (see
e.g. [470]).

2Considering for example a vector mediator instead does not change the results of our
analysis.
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(a) (b)

Figure 3.1: DM production from (a) non-thermal decay of inflaton/heavy scalar
and (b) thermal scatterings of the cosmic bath d.o.f. mediated by inflaton/heavy
scalar field.

with the primordial plasma during its evolution, it can, in principle, retain the

memory of how it was excited at the first instance, either (a) directly via the

inflaton decay or (b) indirectly via scatterings mediated by the inflaton or an-

other heavy field. In case (a), the DM is essentially decoupled from the thermal

bath since its creation. This leads to a non-thermal DM scenario, where the DM

relic abundance is directly determined by the initial inflaton energy density (see

Section 2.4). In case (b), if the effective coupling of the DM to the thermal bath

is too small to thermalise the DM with the bath, but sufficient enough to pro-

duce the observed abundance of DM, it leads to the FIMP DM or freeze-in DM

scenario in general (see section 2.3). In both cases, the final DM relic density is

sensitive to the initial conditions set by inflation, unlike in the standard thermal

freeze-out scenario (see section 2.2), thereby providing the possibility to directly

link the DM properties with inflation, in particular to the tensor-to-scalar ratio,

r.

The rest of this chapter is organised as follows: in Section 3.2, we discuss the

equations governing the evolution of the inflaton, radiation, and DM density; we

also evaluate the non-thermal and thermal DM production rates. We calculate

the non-thermal and thermal contributions to DM abundance in Section 3.2. In

Section 3.4, we discuss the class of inflationary models under consideration. We

present our results in Section 3.5. We discuss the results and conclude this chapter

in Section 3.6.
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3.2 Inflaton decay and dark matter production

According to our set up, DM interacts with the visible sector through heavy

mediators. Integrating out the heavy mediating states, the effective interaction

between the bath particles and DM will be determined by a dimension-6, four-

Fermion operator χ̄χb̄b/m2
φ or χ̄χb̄b/M2

X , which will be respectively suppressed

by the mass square of inflaton or the heavy mediator field, with O(1) Yukawa

couplings. This naturally leads to a FIMP or non-thermal DM scenario which

we are interested in here (see sections 2.3 and 2.4). We will keep our discussion

general, without referring to any particular DM model. Besides its couplings to

fermions, the inflaton can interact with scalar d.o.f. such as the Higgs and the

heavy mediator X via the couplings y2
φΦ
φ2|Φ|2 and y2

φX
φ2X2, respectively. For the

sake of simplicity and illustration, we may assume the couplings y
φΦ
, y
φX
≈0. Any

reasonable value of y
φΦ

(y
φX

)&mφ/φend, where ‘end’ refers to the value at the end of

inflation [φend≡φ(tend)], would in principle lead to a non-perturbative production

of X(Φ) [360, 361], but in this case the inflaton does not decay completely. One

would still require the inflaton to decay perturbatively, which will be guaranteed

to happen in our case via φb̄b [364]. Further, in order to have a standard radiation-

dominated era just after reheating, we require y
φχ
, y
φX
�y

φb
. We also require that

y
φb
�1, in which case we can ignore issues like fermionic preheating [471, 472] 1

or fragmentation of the inflaton [473, 474]. This also ensures negligible radiative

corrections to the inflationary potential [475].

The evolution of the inflaton field, φ, during the oscillation phase is governed

by the following background equation of motion during the inflaton oscillations

[see Eq. (1.26)] 2:

φ̈+ (3H + Γφ)φ̇+ ∂φV (φ) = 0 , (3.1)

where we added a phenomenological decay term, Γφφ̇
3 (see e.g. [56]), with Γφ

1The non-perturbative excitation of fermions can take place during the coherent oscillation
of the inflaton field if y

φb
�mφ/φend [472].

2Here we assume that the inflaton self-coupling is sufficiently small such that the fluctuations
in the inflaton field remains negligible.

3The perturbative decay of the coherently oscillating inflaton field can be treated as that
of inflaton particles at rest [476].
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3.2 Inflaton decay and dark matter production

being the total perturbative decay rate of the inflaton field which is obtained by

summing all the partial decay rates. Multiplying Eq. (3.1) by φ̇ and averaging

over the period of an oscillation, we obtain

ρ̇φ + (3H + Γφ)〈φ̇2〉 ' 0 , (3.2)

where ρφ = 〈1
2
φ̇2 +V 〉 is the average inflaton energy density and ρ̇φ = 〈φ̇φ̈+V̇ 〉=

〈φ̇φ̈+ φ̇∂φV 〉. In many inflation models, the potential can be approximated by

a quadratic one, 1
2
m2
φφ

2, around its minimum. This is quickly realised once the

inflaton field starts oscillating. Here we take the minimum of the potential to be

at φ=0. Using the virial theorem, we have 1
2
〈φ̇2〉= 〈V 〉, and thus, Eq. (3.1) can

be re-written as

ρ̇φ + 3Hρφ = −Γφρφ . (3.3)

Further, once the inflaton field start oscillating around its minimum, its pertur-

bative decay rate can be parametrised as Γφ≡αφmφ
1 where αφ can be defined

in terms of the reheating temperature, Trh, through the relation [56, 367]

H2(Γ−1
φ ) '

Γ2
φ

4
=

(αφmφ)2

4
' 1

3M2
P

π2

30
gT 4

rh , (3.4)

which gives the following expression for αφ:

αφ =

(
2π2

45

)1/2

g1/2 T 2
rh

MPmφ

. (3.5)

1For concreteness, we assume that inflatons decay dominantly to the SM fermions in which
case the inflaton decay rate is given by

Γφ '
∑
b

Γ(φ→ b̄b) '
∑
b

y2
φb

(mφ/8π)(1− 4m2
b/m

2
φ)3/2 '

∑
b

(y2
φb
/8π)mφ ≡ αφmφ ,

where αφ=
∑
b y

2
φb
/(8π).
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3.2 Inflaton decay and dark matter production

Eq. (3.3) can now be easily solved to obtain

ρφ(t) = ρφ(tend)

(
a(tend)

a(t)

)3
eΓφ(tend−t) . (3.6)

At t. Γ−1
φ , the inflaton dominates the energy density of the Universe (id) and

hence ρid(t) ' ρid
φ (t) ' ρφ(tend)[a(tend)/a(t)]3. On the other hand at t & Γ−1

φ

the Universe is dominated by the energy density of the visible sector relativistic

d.o.f. which for simplicity we assume to thermalise upon production establishing

a thermal bath with a well-defined temperature 1. In which case the thermal

bath can be treated as one fluid whose evolution is governed by the following

Boltzmann equation (see e.g.[56]):

ρ̇rad + 4Hρrad = (1−Bχ)Γφρφ ' Γφρφ , (3.7)

where ρrad denotes the energy density of relativistic d.o.f. and Bχ = Γ(φ →
χχ̄)/Γφ� 1 (see Section 2.4). Changing the independent variable to the scale

factor instead of cosmic time (d/dt= ȧ d/da), Eq. (3.7) can be re-written as

d[ρrada(t)4]

da(t)
' Γφ
H

[ρφ(tend)a(tend)3] , (3.8)

where the Hubble parameter, H '
√

(ρφ+ρrad)/(3M2
P), depends on the inflaton

energy density during inflaton domination [H id' (ρφ/3)1/2M−1
P ={ρφ(tend)/3}1/2

{a(tend)/a(t)}3/2M−1
P ], in which case Eq. (3.8) can be easily integrated to obtain

ρid
rad '

2
√

3

5
ΓφMPρφ(tend)1/2

[(
a(tend)

a(t)

)3/2
−
(
a(tend)

a(t)

)4
]
. (3.9)

This allows us to estimate the temperature of the ambient relativistic d.o.f. during

1In general, the thermalisation of the inflaton decay productions is an extended process
(see e.g. [477]). Nevertheless, the thermalisation process can be efficient enough in a fairly wide
range of the parameter space [478].
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3.2 Inflaton decay and dark matter production

the inflaton domination epoch [367]:

T id =

(
30

π2g
ρid

rad

)1/4
'
(

432

π4g2

)1/8
Γ

1/4
φ M

1/4
P ρφ(tend)1/8

[(
a(tend)

a(t)

)3/2
−
(
a(tend)

a(t)

)4
]1/4
.(3.10)

It is clear from Eq. (3.10) that during inflaton domination the temperature of the

building up thermal bath increases to a maximum value [365],

Tmax '
1.64√
π
g−1/4Γ

1/4
φ M

1/4
P ρφ(tend)1/8, (3.11)

which occurs at a(tmax)/a(tend) = (64/9)1/5' 1.48 and then decreases as a−3/8∝
t−1/4 till the end of the inflaton domination era. On the other hand, during RD

(t& Γ−1
φ ), ρrad =(π2/30)g T 4∝a−4∝ t−2 and consequently the temperature of the

plasma decreases as a−1∝ t−1/2.

Given that the DM species, χ, couples weakly to both the inflaton and the

thermal bath d.o.f. (indirectly through a scalar mediator), its production and

evolution can be traced by the following Boltzmann equation [see Eqs. (A.8) and

(A.19)]:

ṅχ + 3Hnχ ' 2 Γ(φ→ χ̄χ)nχ +
∑
b̄b→χχ̄

〈σ(b̄b→χχ̄)vMol〉n2
b,eq= 2BχΓφnχ + γχ , (3.12)

where nχ is the average number density of the χ particles, nφ ' ρφ/mφ is the

average number density of inflatons and Γ(φ→ χ̄χ) is the inflaton decay rate into

χ’s which is given by

Γ(φ→ χ̄χ) ' y2
φχ

mφ

8π

(
1−

4m2
χ

m2
φ

)3/2
. (3.13)

This leads to the following branching fraction:

Bχ ≡
Γ(φ→ χ̄χ)

Γφ
∼

y2
φχ

8παφ
∼

y2
φχ∑
b y

2
φb
cb
� 1 . (3.14)

91



3.2 Inflaton decay and dark matter production

Note that the finite temperature effects on the inflaton decay rate are negligible as

long as the maximum attainable temperature, Tmax�mφ [367, 479]. In Eq. (3.12)

γχ denotes the thermal production rate of DM from the annihilation of the bath

particles and is given by [see Eq. (A.21)]

γχ =
∑
bb̄→χχ̄

g2
bT

32π4

∫ ∞
smin

ds s1/2(s− 4m2
b)K1(s1/2/T )σ(bb̄→χχ̄) , (3.15)

where gb=2 is the spin d.o.f. of a given fermionic bath species, mb is its mass (we

take into account the plasma induced thermal masses for the bath particles [480])

and smin = max(4m2
χ, 4m

2
b). With the following change of variables: t ≡ (s−

smin)1/2/(2T ), Eq. (3.15) can be re-written as

γχ =
∑
bb̄→χχ̄

2g2
bT

6

π4

∫ ∞
0

dt t(t2+t2m)1/2(t2+t2m−z2
b )K1

(
2
√
t2 + t2m

)
σ(bb̄→χχ̄) , (3.16)

where zb≡mb/T and tm≡
√
smin/(2T ). The cross-section of the scattering of two

bath particles into DM via a scalar mediator, X, is given by 1

σ(bb̄→χχ̄) =
y2
Xχ
y2
Xb

16π
cb

√
s− 4m2

χ

s− 4m2
b

(s− 4m2
b)(s− 4m2

χ)

s[(s−M2
X)2 + Γ2

XM
2
X ]

=
y2
Xχ
y2
Xb
cb(t

2 + t2m − z2
b )

1/2(t2 + t2m − x2)3/2

4π(t2+t2m)[{1−(2T/MX)2(t2+t2m)}2+(ΓX/MX)2]

(
T 2

M4
X

)
, (3.17)

with cb being the colour factors. For simplicity, we focus on the case of a heavy

mediator, i.e. MX�Tmax in which case σ(bb̄→χχ̄)∝T 2/M4
X . Consequently, the

thermal production rate of χ particles, given by Eq. (3.16), can be expressed as

γχ = I(T )
T 8

M4
X

. (3.18)

For mχ,mb � T � MX , an analytical expression for I(T ) can be obtained by

1Here, we have assumed that ΓX�MX .
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3.2 Inflaton decay and dark matter production

integrating Eq. (3.16) which gives

I(T ) =
3y2

Xχ

∑
by

2
Xb
g2
b cb

2π5[1 + (ΓX/MX)2]
, (3.19)

which clearly is independent of temperature [see also Figure 3.2(a)].

(a) (b)

Figure 3.2: (a) A plot of I(T ) = γχ/(T
8/M4

X) [see Eq. (3.18)] as a function of
temperature. Here the solid red curve shows the numerical calculation while the
dashed blue curve shows the analytical approximation [see Eq. (3.19)] which clearly
works very well for mχ�T �MX . However for T .mχ/3, I(T ) decreases as the
temperature decreases due to the smaller phase space, for T ∼

√
s/6 ∼ MX/6,

I(T ) is larger due to the resonant annihilation, and for T ∼
√
s/6�MX/6, I(T )

deceases rapidly as the temperature increases because the cross-section decreases
as ∝s−1∝T−2. (b) The evolution of the DM thermal interaction rate as a function
of the scale factor, a, (normalised to aend) during inflaton domination, a . arh,
(γχ∝a−3) and during radiation domination, a&arh, (γχ∝a−8). Here for the sake
of illustration we set MX =1014 GeV, mχ=1 TeV and Trh =109 GeV.
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3.3 Thermal and non-thermal dark matter abundance

3.3 Thermal and non-thermal dark matter abun-

dance

The total present DM relic abundance is roughly given by the sum of thermal

(th) and non-thermal (nth) components [235]:

Ωχ,0h
2 ' Ωnth

χ,0h
2 + Ωth

χ,0h
2 ' 2.74× 108 (nnth

χ,0 + nth
χ,0)

mχ

s0

, (3.20)

where nnth
χ and nth

χ respectively denote the non-thermal and thermal contributions

to the population of the DM species χ, and s is the entropy density [see Eq. (2.8)].

With the assumptions mentioned in Section 3.2, namely, (i) y
φχ
�y

φb
�mφ/φend

which insures that the decay of φ is purely a perturbative process and (ii) mχ�
mφ, we proceed to derive analytical expressions for the DM abundance produced

either thermally or non-thermally.

Figure 3.3: Evolution of the DM yield, Yχ = nχ/s, (shown by the thick black
curve), the energy densities of the inflaton (ρφa

3 shown by thick solid blue curve
and ρφ shown by the dashed thin blue curve) and radiation energy density (ρrada

4

shown by thick solid curve and ρrad shown by the dashed thin red curve) as a
function of the scale factor, a, normalised to its initial value, aend, where the
different quantities are scaled to fit in the same plot. Here we set mχ = 1 TeV,
MX =1014 GeV and Trh =109 GeV.

94



3.3 Thermal and non-thermal dark matter abundance

3.3.1 Non-thermal contribution

Let us first compute the abundance of the χ particles produced non-thermally

[see Figure 3.1(a)] which is sourced by the first term on the right hand side

of Eq. (3.12) where the inflaton branching ratio to χ’s is given by Eq. (3.14).

Eq. (3.12) can be easily integrated for the non-thermal contribution to obtain 1

nnth
χ (t) = 2BχΓφ

ρφ(tend)

mφ

(
a(tend)

a(t)

)3 [
1− eΓφ(tend−t)

]
. (3.21)

Evaluating the resultant expression for nnth
χ at Trh

2, and accounting for the infla-

ton population decaying at T <Trh and the accompanying entropy release [365] 3,

we reproduce the non-thermal contribution to the current DM relic density (see

Section 2.4)

Ωnth
χ,0h

2

0.12
' 3.93×105Bχ

( g

100

)−1/4( αφ
10−13

)1/2( mχ

1 GeV

)( mφ

1013 GeV

)−3/4
(

ρφ(tend)

(1016 GeV)4

)1/8
' 4.44×105Bχ

( mχ

1 GeV

)( mφ

1013 GeV

)−1
(

Trh

109 GeV

)
. (3.22)

Here we have used Eq. (3.5) for αφ and Eq (3.10) to change the dependence from

arh to Trh in the second line. Clearly, Ωnth
χ,0h

2 depends on the inflaton energy at the

end of inflation, ρφ(tend). It is also sensitive to the steepness of the inflationary

potential around the minimum characterised by mφ.

3.3.2 Thermal contribution

As for the thermal contribution, one can easily show that the relevant contribution

comes from the X-mediated DM production in Figure 3.1(b). In particular,

1For simplicity, we integrate the non-thermal and thermal contributions separately. In
principle, there should be cross terms [see e.g. (2.27)]. However, these terms are relatively
small and can be neglected.

2At trh∼Γ−1
φ over 60% of the inflaton population has already decayed and the density of

the remaining inflatons drops faster as a function of the scale factor at t& trh, i.e. during RD
(see Figure 3.3).

3Note that the conservation of the comoving entropy density ensures that
nχ
s |T�Trh

=
nχ
s |T=T0

.
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3.3 Thermal and non-thermal dark matter abundance

b̄b→ φ→ χ̄χ would yield a sub-dominant DM contribution compared to b̄b→
X→ χ̄χ. This is due to the fact that both thermal and non-thermal contribution

to DM abundance in the inflaton-mediation case are proportional to y
φχ

[see

Eqs. (3.19), (3.14) and (3.12)], which has to be small in order not to non-thermally

overproduce DM (see Section 2.4). The thermal contribution due to inflaton

mediation dominates only when Tmax�mφ, in which case the thermal corrections

to the inflaton decay rate also become important [479]. On the other hand, such

complications do not arise in case of the X-mediation as long as MX�Tmax
1.

To compute the contribution of the thermally produced χ particles to the DM

abundance we re-write Eq. (3.12) in terms of the scale factor while ignoring the

non-thermal contribution,

d

da(t)
[nth
χ a(t)3] ' a(t)2

H
γχ , (3.23)

where γχ ∝ T (a)8/M4
X for mχ� T �MX [see Eq. (3.18)]. During inflaton dom-

ination, H id ' {ρφ(tend)/3}1/2{a(tend)/a(t)}3/2M−1
P and the temperature of the

ambient plasma is given by Eq. (3.10), in which case Eq. (3.23) can be integrated

to obtain

nth,id
χ '432

√
3

7π9

(
∑

b y
2
Xb
g2
b cb) y

2
Xχ

Γ2
φM

3
P ρ

1/2
φ,end

g2M4
X(1 + Γ2

X/M
2
X)

×
[
7
(aend

a

)3/2
−25

(aend

a

)3
+21

(aend

a

)4
−3
(aend

a

)13/2
]
, (3.24)

provided that mχ . Trh. Further during RD (t & trh), γχ ∝ T 8 ∝ a−8 [see Fig-

ure 3.2(b)], and hence Eq. (3.23) will in turn go as d[nth
χ a(t)3]/da(t) ∝ a(t)−4.

This means that except for a dilution factor due to the entropy released directly

after the transition to the radiation domination phase, the DM thermal yield be-

comes constant directly after the end of reheating Y th
χ (T�Trh)'ζ Y th

χ (T =Trh),

where ζ is the dilution factor.

1Typically the mediator, X, is heavier than the inflaton and hence it is sitting at the
minimum of its potential during and after inflation. Thus large couplings of a heavy mediator
to a SM fermion or DM do not lead to non-perturbative excitations of either the SM fermion
or DM.
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3.4 Inflationary set up

From Eqs. (2.8), (3.10) and (3.24) [see also Figure 3.3], one can see that

the thermal yield of the DM species χ, increases initially very fast to reach a

maximum at a(t)/a(tend) ' 6.73 and then decreases as a(t)−3/2 till the end of

reheating beyond which Y th
χ becomes constant up to a small correction factor

due to the entropy release at T . Trh. Thus, evaluating Y th
χ at T = Trh and

accounting for the entropy dilution factor, we obtain

Ωth
χ,0h

2

0.12
' 7.39×10−3 y2

Xχ

∑
b

y2
Xb
g2
b cb

( g

100

)−9/4( αφ
10−13

)3/2( mχ

1 GeV

)( MX

1013 GeV

)−4

×
( mφ

1013 GeV

)3/4( ρφ(tend)

(1016 GeV)4

)3/8
' 1.26×10−2 y2

Xχ

∑
b

y2
Xb
g2
b cb

( g

100

)−3/2( mχ

1 GeV

)( MX

1013 GeV

)−4(
Trh

109 GeV

)3
.

(3.25)

Here again we have used Eq. (3.5) for αφ and Eq (3.10) to change the dependence

from arh to Trh in the second line. It is clear that Ωth
χ,0h

2 is also sensitive to the

inflaton energy at the end of inflation and the inflaton mass around the minimum

of the potential.

3.4 Inflationary set up

To illustrate the connection between the non-thermal and thermal (frozen in via

heavy mediator) DM and the inflationary observables (in particular the tensor to

scalar ratio), we consider a simple class of inflationary models with an α-attractor

potential [481, 482] 1:

V (φ) =
3

4
M2

PM
2

[
1− e−

√
2

3α
φ
MP

]2

≡ 3

4
M2

PM
2 [1− x(φ)]2, (3.26)

where α is a free parameter and M is some mass scale governing inflation. For

α = 1, this is just the Starobinsky model [483], whereas in the limit α → ∞,

1Our results could be easily extended to other inflationary potentials.
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3.4 Inflationary set up

Eq. (3.26) reduces to the simple quadratic chaotic inflation potential [42] with

constant mass, M/
√
α'
√

6π2AsMP/N , where N denotes the number of e-folds.

In this class of models, inflation occurs above the scale of MP and terminates at

φend '
√

3α/2 ln(1+2/
√

3α)MP which approaches
√

2MP in the limit α→∞.

The potential at the end of inflation is then given by

Vend ≡ V (φend) ' 9M2M2
P

(2
√

3 + 3
√
α)2

. (3.27)

Moreover, the mass scale M can be expressed in terms of the amplitude of scalar

perturbations, As [482, 484]

M

MP

=

√
128π2As

3α

xobs

(1− xobs)2
, (3.28)

where xobs ≡ x(φobs) which can be evaluated once N is known [482, 484]:

N =

∫ φobs

φend

V dφ

M2
P∂φV

+
1√
6α

φobs−φend

MP

=
3

4
α

(
1

xobs

− 1

xend

)
+

(
3

4
α− 1

2

)
ln

(
xobs

xend

)
, (3.29)

where xend≡x(φend)=(1+2/
√

3α)−1. Here the number of e-folds can be estimated

by [41]

N ' 56− 2

3
ln

(
1016GeV

ρφ(tend)1/4

)
− 1

3
ln

(
109GeV

Trh

)
, (3.30)

provided that the reheating phase is matter-dominated. Eq. (3.30) gets modified

if the cosmic fluid does not effectively behave as a non-relativistic one. Using

Eq. (3.29), the tensor-to-scalar ratio for the potential in Eq. (3.26) is given by

r(α) =
64x2

obs(α)

3α[1− xobs(α)]2
. (3.31)

For α = O(1), M '
√

24π2αAsMP/N and r ' 12α/N2, whereas for α≫ 1,

M'
√

6π2αAsMP/N and r'8/N . In Figure 3.4, we show a plot of the potential,
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3.4 Inflationary set up

Figure 3.4: Shape of the potential given by Eq. (3.26) for α= 1 and 103. Here
‘end’ refers to the end of inflation.

Eq. (3.26), for α = 1 which leads to r ' O(0.004), and α = 103 which leads to

r ' O(0.1). We also show the value of φ at which inflation terminates in each

case. In Figure 3.5(a), we show the inflaton potential energy at the end of inflation

as a function of r(α) for 50 and 60 e-folds, since the precise value of N depends

on the details of reheating process [41]; see Eq. (3.29). Once inflation ends, the

field φ starts oscillating around the minimum of the potential with an effective

mass

mφ,eff ' [∂2
φV (φ)]1/2 ' M√

α

[
2e−2z − e−z

]1/2
, (3.32)

where z=
√

2/3αφ/MP. The evolution of the zero-mode of φ during the oscilla-

tion phase follows the equation of motion given by Eq. (3.1). For the potential

given by Eq. (3.26), the amplitude of φ oscillations quickly drops with the expan-

sion of the Universe right after the end of inflation; it becomes roughly 0.1–0.2

of its initial value after only one oscillation. Thus, after a few oscillations, φ be-

comes confined to a small region around the minimum of the potential for which

the potential can be approximated by a quadratic one with a constant mass,
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3.5 Results

mφ ≡mφ,eff(φ�MP)'M/
√
α. In Figure 3.5(b), we show mφ as a function of

r(α) for N=50 and 60.

(a) (b)

Figure 3.5: (a) The inflaton energy density at the end of inflation and (b) the
effective inflaton mass for φ�MP as a function of r(α) for N = 50 (60) shown by
the blue (red) curve.

3.5 Results

In Section 3.3, we have obtained approximate analytical expressions for the DM

non-thermal and thermal abundances, and argued that in both cases, the details

of the inflationary potential are carried over to DM abundance via both mφ and

ρφ(tend) ' Vend (see Figure 3.5 for the class of potentials under consideration),

thereby establishing a connection between Ω
th(nth)
χ,0 h2 and r(α). In order to pre-

cisely capture this connection between Ωχ,0h
2 and r, we integrate Eqs. (3.3), (3.7)

and (3.12) numerically for different r(α) values. The resulting DM thermal and

non-thermal abundances are shown in Figs. 3.6 (a) and (b), respectively, for a

typical choice of parameters: mχ=0.3 GeV and αφ'1.1×10−13. We find that for

the thermal case, Ωth
χ,0∝ r−3/8, while for the non-thermal case, Ωnth

χ,0 ∝ r4/5. This

is an interesting connection, especially the former one, since it relates thermal

production of DM at the time of reheating and thermalisation of the Universe
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with the value of r which provides a promising probe for the FIMP-like scenario

in near future. In other words, if the tensor-to-scalar ratio is measured in future,

one can test the properties of FIMP DM through this connection in the context

of a given inflationary model.

(a) (b)

Figure 3.6: Dark matter (a) thermal and (b) non-thermal abundance as a function
of the tensor-to-scalar ratio. Here we fix mχ= 0.3 GeV and αφ'1.1×10−13. The
brown regions are ruled out by the CMB bound on tensor-to-scalar ratio [55] and in
the blue regions DM are overproduced. The regions labelled by Planck correspond
to the Planck (2σ) favoured DM abundance [13].

To examine the dependence on the mediator mass, we scan the (mχ,MX)

parameter space for the correct DM abundance while fixing the mediator cou-

plings to DM and the thermal bath d.o.f. In Figure 3.7, we show the DM thermal

abundance heat map as a function of mχ and MX for r' 0.004. We have fixed

αφ'1.1×10−13, so that Trh∼O(109) GeV. For larger r, the allowed range of (mχ,

MX) shifts to larger values of mχ and smaller MX values. Similarly, for smaller

αφ, i.e. smaller reheating temperature, the allowed region of the parameter space

shifts to larger DM masses and smaller mediator masses, and vice versa. For

very small values of the branching fraction Bχ � 1, the thermal contribution

given by Eq. (3.25) can be dominant over the non-thermal contribution given by
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Figure 3.7: Map of the DM thermal abundance as a function of mχ and MX for
r'0.004 and Trh'109 GeV.

Eq. (3.22), and can account for the observed DM abundance for mχ as low as

roughly 300 MeV/(y
Xχ
y
Xb

)2. The unshaded region labelled by overclosure (below

the coloured region) gives Ωχ,0h
2>0.1228, which is ruled out at 2σ by the latest

Planck data [13]. The rest of the unshaded region (above the coloured region) is

still allowed, though for practical purposes, the corresponding DM thermal abun-

dance becomes negligible, and one has to allow for a non-thermal contribution to

the DM abundance or to invoke a multi-component DM to explain the observed

abundance, see e.g. [382, 383]. Note that for mχ & Trh, the thermal production

rate is suppressed due to a smaller phase space. This can be seen from the right

hand parts of the allowed (mχ, MX) parameter space in Figure 3.7.
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3.6 Discussion and conclusion

So far the CMB experiments have seen no evidence for the existence of primor-

dial tensor perturbations. The current CMB upper limit on the tensor-to-scalar

ratio is r < 0.07 at 95% CL from the joint analysis of Keck Array and BICEP-2

Collaborations [55]. Nevertheless, if the tensor-to-scalar ratio is measured in fu-

ture, it will provide an important indirect handle on the dark sector physics. In

this chapter, we have shown that a connection between the tensor-to-scalar ra-

tio and the DM abundance, indeed, exists for both non-thermally and thermally

produced DM. This connection is clear in the non-thermal case [Figure 3.1(a)] as

the DM relic abundance is directly determined from the inflaton energy density,

which in turn depends on r(α) [see Eq. (3.27) and (3.31); see also Figure 3.5(a)],

besides the sensitivity of the inflaton decay rate to the shape of the inflationary

potential around the minimum which also depends on r(α) [see Eq. (3.13), (3.31)

and (3.32); see also Figure 3.5(b)]. Thus, the connection between the DM proper-

ties and the primordial fluctuations is straightforward. We also showed that such

an interesting connection also exists in case (b) [see Figure 3.1(b)] if the mediator

mass is between Tmax and MP. This can be understood from Eqs. (3.10), (3.12)

and (3.18), where the term sourcing the DM thermal abundance is proportional

to T 8 ∼ ρ2
rad and since the thermal bath itself arises from the decay of inflaton

[see Eq. (2.3)], a connection between Ωth
χ,0h

2 and r(α) can be established.

Before we conclude, let us briefly mention that we could have also imagined

a similar mechanism for producing baryon/lepton (B/L) asymmetry, either from

the direct decay of the inflaton, if the inflaton were carrying any B/L num-

ber [485], or from the intermediate condensate X carrying B/L number [359], as

e.g. in GUT-baryogenesis [56]. As a concrete example, in non-supersymmetric

models, we can realise high-scale thermal leptogenesis via the production and de-

cay of right-handed heavy Majorana neutrinos [486]. In either case, we would be

able to relate the scale of inflation, and therefore the tensor-to-scalar ratio, with

the magnitude of the L-asymmetry. In the latter case, one would require a weak

washout regime in order to retain the sensitivity towards the initial conditions.

To conclude, if the future observations could pin down the exact value of

the tensor-to-scalar ratio, it would serve as an interesting way to constrain the
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hidden sector, including the properties of the DM feebly interacting with the

thermal bath and the DM produced in inflaton decay, which are otherwise very

hard to probe. Although for the sake of illustration we have used a particular

class of inflationary potential to derive our results, the idea of connecting the DM

abundance to the primordial tensor perturbations should hold true for a generic

model of inflation.
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Chapter 4

Axionic dark radiation and

constraints

In this chapter, we turn our attention to a well-motivated WISP DM candidate,

the axion, which arise as a by-product in an elegant solution to the strong CP

problem, the PQ mechanism. We briefly review the origin of axions and the

different theoretical and observational constraints. Moreover, we discuss the dy-

namics of PQ symmetry breaking and the possibility of thermal and non-thermal

production of ultra-relativistic axions which can significantly increase the effec-

tive number of relativistic d.o.f., Neff . This allows us to place constraints on the

axion parameter space, especially on the axion dark matter window with large

decay constant which is expected to be probed by future experiments. In addi-

tion, an upper bound on the reheating temperature can be placed, which further

constrains the thermal history of our Universe.

4.1 Introduction

The strong CP problem is one of the outstanding puzzle of particle physics to-

day. It is a well-known fact that QCD allows a CP-violating term of the form
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(g2
sΘ̄/32π2)GaµνG̃a

µν
1 where Ga

µν denotes the gluon field strength tensor, G̃aµν≡
1
2
εµνρσGa

ρσ is its dual with εµναβ being the totally-antisymmetric tensor (in four-

dimensional Minkowski space, ε0123 =−ε0123 =1), and Θ̄=Θ+arg detMquarks is a

constant physical parameter arising from the non-trivial nature of the QCD vac-

uum and the instanton effects [251, 252], and the quark mixing matrix [487, 488].

The Θ̄-term gives rise to an electric dipole moment (EDM) for the neutron (see

e.g. [489, 490, 491, 492]):

dn ' (1.08 -11)× 10−16Θ̄ e cm . (4.1)

The current stringent experimental bound on the EDM of neutron, |dn|< 9.3×
10−29 e cm (at 90% CL) [493, 494, 495], implies that |Θ̄| < 9 ×10−13. Such a

small value for Θ̄ is quite unnatural posing a fine-tuning problem in the SM. A

way out of this dilemma is possible if at least one quark is massless in which

case the Θ̄-term can be eliminated via a chiral rotation of the massless quark,

q→ eiαγ5q, making use of the chiral anomaly [496, 497]. Nevertheless, different

experimental measurements and lattice QCD simulations rule out this possibility

(see e.g. [32, 498, 499]). Another solution is that we happen to live in a Hubble

patch where the Θ̄ parameter is very tiny [500].

Nevertheless, the strong CP problem can be elegantly solved by the PQ mech-

anism in which a global U(1)PQ symmetry with a colour anomaly is introduced,

and the CP violating Θ̄-term can then be dynamically relaxed to zero [243, 244].

The U(1)PQ symmetry takes the form of a chiral rotation of the SM quarks:

u, d→ eiαγ5Xu,d u, d where Xu+Xd 6= 0 to ensure the colour anomaly. However,

the quark Yukawa terms are not invariant under this transformation. Therefore,

to realise the U(1)PQ symmetry, physics beyond the SM is necessary. In the

original PQ mechanism, an extra Higgs doublet was introduced such that one of

the doublets couples to the right-handed up-type quarks and the other couples

to right-handed down-type quarks. Both the Higgs doublet, Φ1,2, were assigned

PQ charges in such a way that the quark Yukawa terms remain invariant un-

der the U(1)PQ phase rotations. Around the EW scale, both doublets acquire

1This term violates both parity (P) and time reversal (T) but conserves charge conjugation
(C). Thus, it violates CP.
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vacuum expectation values (VEVs), v1,2, breaking the SU(2)L⊗U(1)Y ⊗U(1)PQ

symmetry and giving masses to up- and down-type quarks, respectively. The two

Higgs doublets contain eight d.o.f. in total, three of which get absorbed in giving

masses to the SM gauge bosons. Among the remaining d.o.f., a pseudoscalar state

coined the axion, corresponds to the Goldstone boson of the broken U(1)PQ sym-

metry [245, 246]. In the PQ model, the axion is identified as the common phase

of the two Higgs doublets orthogonal to the weak hypercharge. The axion, which

is massless at the classical level due to its shift symmetry, acquires a periodic

potential and consequently a mass inversely proportional to the PQ symmetry

breaking scale, v
PQ

= v
EM
≡
√
v2

1 +v2
2 ' 246 GeV, due to non-perturbative QCD

effects [251, 252]. Further owing to the shift symmetry, the axion couples only

derivatively to other fields apart from its coupling to gluons and photons which

arise due to the chiral anomaly and its mixing with neutral pions, respectively.

Hence, axion interactions with all other fields are suppressed by the axion decay

constant, Fχ = v
PQ
' 246 GeV. Due to the smallness of the axion decay con-

stant, the original PQ proposal was soon ruled out by several experiments and

astrophysical observations [501, 502, 503]. Nevertheless, other variants of the PQ

mechanism, known as “invisible” axion models, circumvent the problem by cre-

ating a hierarchy between the PQ breaking and EW scales via the introduction

of a new SM complex singlet field whose VEV breaks the PQ symmetry (for a

review see e.g. [504]) 1.

The scale of PQ symmetry breaking is subjected to several observational con-

straints. For instance, the observation of the supernova SN1987A, white dwarfs

and globular clusters set a lower bound of (2–4)×108 GeV on the scale of PQ

symmetry breaking 2 (see e.g. [247, 248, 249] and references therein). With such

a high PQ symmetry breaking scale, the axion can be a good dark matter (DM)

candidate [250, 509, 510] as its couplings to other fields are suppressed by powers

of v
PQ

. In fact, the energy stored in the coherent oscillations of axions today can

make the entirety of the observed DM abundance via the misalignment mecha-

1In Appendix B, we briefly review the most widely discussed viable PQ models, KSVZ-
model [505, 506] and DFSZ-model [507, 508].

2More precisely, on the axion decay constant, Fχ=vPQ/NDW, where NDW is the number of
domain walls; NDW≥1 for KSVZ models [505, 506], and NDW =6 for DFSZ models [507, 508].
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nism [250] for v
PQ
∼7×1011 GeVNDW〈Θ2

1〉−0.84 [253, 511, 512] where 〈Θ2
1〉1/2 is the

rms axion misalignment angle at the beginning of the axion oscillation phase.

On the other hand (as discussed in Section 1.3), many puzzles of early Uni-

verse cosmology can be solved by an early epoch of accelerated expansion, in-

flation. During inflation, if there exists any light field, such as moduli, whose

mass is well below O(Hinf), they obtain vacuum induced quantum fluctuations of

O(Hinf/2π) [37, 38], where Hinf denotes the Hubble parameter during inflation.

In this case, such a light moduli can obtain large VEV, i.e. O(MP). Typically,

the moduli field behaves like a condensate within our Hubble patch [359], and

begins its coherent oscillations when the Hubble expansion rate of the Universe

drops to the mass of the moduli.

Similarly, if the PQ field is light compared to the Hubble expansion rate during

inflation, then the PQ field can also be displaced from its minimum, which is

determined by v
PQ

, and consequently after the end of inflation the PQ field will

start coherent oscillations when its mass exceeds the time dependent Hubble scale.

The PQ field can also be displaced away from v
PQ

during inflation if it is coupled

to the inflaton field [500], and later starts oscillating once the inflaton begins

its own coherent oscillations around the minimum of its potential. If the initial

VEV of the PQ field during inflation is displaced by�v
PQ

, the initial phase of its

oscillations takes place around the origin. This can lead to the restoration of the

PQ symmetry and the formation of dangerous topological defects [513, 514, 515] 1.

This non-thermal restoration of the PQ symmetry can be avoided if the amplitude

of the PQ field at the beginning of the oscillation phase is less than . 104v
PQ

[520]

or, if there is a coupling between the PQ field and the total energy density of

the inflaton, and the oscillation of the PQ field is driven by a higher order term

1For NDW = 1 (i.e. for KSVZ-like models with only one extra heavy quark species), these
defects are unstable and decay to cold axions leading to an upper bound on the PQ breaking
scale, vPQ . (4.6–7.2)×1010 GeV (Ωχ/ΩDM)0.84, where Ωχ denotes the cold axions abundance
and ΩDM is the observed abundance of DM [516, 517]. On the other hand, when NDW > 1
(i.e. for DFSZ-like models or KSVZ-like models with several extra heavy quark species), the
topological defects are stable and dominate the energy density of the Universe ruling out such
scenarios unless one fine-tunes a bias term that explicitly breaks the shift symmetry, and in
this case vPQ is constrained to be less than O(1010) GeV in order to avoid the overproduction
of cold axions [517, 518, 519].
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in the potential [521, 522]. Note that similar constraints would follow had we

considered a moduli field instead of inflaton.

Once the amplitude of the PQ field drops below v
PQ

, the oscillation of the

field continues around its minimum at v
PQ

. In such a case, there will be no

non-perturbative production of QCD axion during the second phase of the os-

cillation (see Chapter 5), but it can still lead to dangerous consequences from a

perturbative decay of the PQ field.

In a wide range of parameter space, the coherent oscillation of the PQ field can

decay dominantly into ultra-relativistic axions. If this decay occurs at sufficiently

late times, the resultant axions will not thermalise with the plasma keeping their

initial abundance and momenta. Such hot axions will act as dark radiation,

increasing the effective number of relativistic d.o.f., i.e. Neff . The value of Neff

is constrained by the observation of CMB [13], allowing us to put constraints

on the PQ parameter space. In particular, we place an interesting constraint on

the axion dark matter window with large decay constant which is expected to be

probed by future experiments such as CASPEr [346]. Moreover, an upper bound

on the reheating temperature can be placed, which further constrains the thermal

history of our Universe.

Note that the constraints on the extra relativistic species induced by heavy

decaying particles are extensively discussed in the literature. These include the

discussion in the context of the supersymmetric axion models [523], and in the

context of the heavy moduli decay in string cosmology [524, 525], where reheating

SM d.o.f. remains a challenge.

Instead of considering these scenarios, where the mass of decaying particles

is generically controlled by the supersymmetry breaking effects, here we focus on

the standard non-supersymmetric PQ mechanism, in which the decaying particle

is identified as the radial component of the PQ field. The mass of the radial field

is determined by the self-coupling constant and the PQ symmetry breaking scale.

We show that an upper bound on the reheating temperature can be placed, which

is relevant to axion DM with a large decay constant.

The rest of this chapter is structured as follows: in Section 4.2, we review the

dynamics of the PQ symmetry breaking followed by a brief review of axion ther-

malisation and thermal production in Section 4.3. In Section 4.4, we discuss the
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non-thermal production of ultra-relativistic axions from the coherent oscillation

of the radial component of the PQ field. We then discuss the different constraints

on the axion parameter space in Section 4.5. Finally, we conclude our discussion

in Section 4.6.

4.2 Dynamics of the PQ symmetry breaking and

the coherent oscillation of the PQ field

Let us now consider the dynamics of the PQ symmetry breaking during the

evolution of a real scalar field φ in the background. The field φ could be an

inflaton or moduli. Our main focus in this chapter is to understand the dynamics

of the PQ field and φ field after inflation. The PQ symmetry breaking can be

realised via the following Mexican hat potential for the PQ field denoted below

by S.

V (φ, S) = λ

(
|S|2 −

v2
PQ

2

)2
− g φ2|S|2 + U(φ) , (4.2)

where g, λ>0 1 and v
PQ

=NDWFχ is the PQ breaking scale with Fχ and NDW being

the axion decay constant and the domain walls number, respectively, and U(φ)

is the potential of the scalar field φ which can be approximated by a quadratic

one,

U(φ) =
1

2
m2
φφ

2 . (4.3)

A minor departure from a quadratic potential will not affect our discussion once

φ starts oscillating around its minimum. Note that the coupling in Eq. (4.2),

g φ2|S|2, shifts the minimum of the PQ field to: |S|m =[v2
PQ
/2+(g/2λ)φ2]1/2. For

1Here we consider a negative coupling to φ, i.e. g > 0, in which case the effec-
tive PQ breaking scale, vPQ,eff ≡

√
2〈|S|〉, can be much larger than vPQ causing the PQ

field to oscillate once the slow-roll conditions break down, if φ is treated as an inflaton.
This can also ameliorate the isocurvature bound on v

PQ
, since large v

PQ,eff reduces the
power spectrum of isocurvature perturbation along the angular direction given by ∆2

iso =
(4/〈Θ2

1〉)(NDWHinf/2πvPQ,eff)2(Ωχ/ΩDM)2 [521], which is bounded to be < 7.8×10−11 from

CMB data [13]. On the other hand, if g<0 and
√
g φi/(

√
λ v

PQ
)&O(1), the PQ symmetry gets

broken after inflation leading to the formation of topological defects. However, the dynamics
of the oscillations should not be different in either case.

110



4.2 Dynamics of Peccei-Quinn symmetry breaking

convenience, let us write the PQ field in terms of polar coordinates,

S =
%√
2
eiΘ. (4.4)

The equations of motion for φ and the PQ radial field % are then given by

�φ+ 3Hφ̇+ ∂φU − g%2φ = 0 , (4.5)

�%+ 3H%̇+
[
λ(%2 − v2

PQ
)− gφ2

]
% = 0 , (4.6)

where �=∂2
t −∇2/a2(t). In Eq. (4.6), we have ignored an irrelevant coupling to

the angular field Θ, %2∂µΘ∂µΘ. Furthermore, we focus on the evolution of the

zero-modes; separating the background part from Eqs. (4.5) and (4.6) by writing

φ as φ̄(t)+δφ(t,x) and similarly for %, we obtain

¨̄φ+ 3H ˙̄φ+ [m2
φ − g%̄2]φ̄ = 0 , (4.7)

¨̄%+ 3H ˙̄%+
[
λ(%̄2 − v2

PQ
)− gφ̄2

]
%̄ = 0 , (4.8)

where over-barred quantities are the background values. Now depending on the

value of the parameters g and λ, there will be two cases.

4.2.1 Case I:
√
g φi/(

√
λv

PQ
)�1

In the limit when
√
gφi/(

√
λ v

PQ
)�1, where φi denotes the amplitude of φ at the

beginning of the oscillation phase after the end of inflation, the coupling between

the PQ field and φ can be ignored. In this case, the minimum of the potential

along the % direction occurs at v
PQ

. Assuming it starts from a large value [34, 56],

the % field follows an attractor solution [526]:

% =

(
2λ

∫ φ∗

φ

U−1
φ dφ

)−1/2

. (4.9)

Clearly, the effective PQ breaking scale, v
PQ,eff =〈%〉 can be much larger than v

PQ

during the slow-roll phase. If φ is the inflaton, large v
PQ,eff (�Hinf) is actually
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desirable in order to suppress the isocurvature fluctuations along the angular

direction.

We demand that the PQ field does not come to dominate the energy density

of the Universe during the slow-roll phase, which gives the constraint

λ .
H2

infM
2
P

%4
i

. (4.10)

Here, %i is the typical value of % during inflation. Once the Hubble parameter

drops below its mass, the PQ radial field starts oscillating. Due to the large

amplitude, %i�v
PQ

, the initial oscillations will take place around %=0. This can

result in large amplification of the quantum fluctuations in the PQ field especially

along the massless angular direction (see Chapter 5), which may lead to the

restoration of the PQ symmetry and consequently the formation of potentially

dangerous topological defects unless %i.104v
PQ

[520]. Note that we shall adhere

to this bound on %i here.

4.2.2 Case II:
√
g φi/(

√
λ v

PQ
)�1

In this case, the minimum of the PQ field gets shifted away from v
PQ

via the

coupling g %2φ2,

%m ' (g/λ)1/2 φ . (4.11)

If the PQ radial field is sufficiently heavy, m%,eff ' |λ(3%2−%2
m)|1/2&Hinf , it will

be sitting at its minimum, %=%m�v
PQ

, during the slow-roll phase. On the other

hand, if % is light, m%,eff�Hinf , it can get displaced from %m, i.e. % will get shifted

even further away from v
PQ

due to inflaton vacuum induced quantum fluctuations.

This results in an even larger initial amplitude of % once it start oscillating. We

follow Ref. [521], and take the amplitude of the PQ radial field at the beginning

of the oscillation phase to be %m. Once the PQ field starts oscillating around its

minimum, the PQ field sooner or later stops tracking its minimum to oscillate

around the origin with its own frequency. To see this, let us define Ξ = %̄/%m;
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substituting it in Eq. (4.8), we obtain

d2Ξ

d(ln t)2
+ F

dΞ

d(ln t)
+ (Ht)2

[
λ
%2

m

H2
(Ξ2 − 1) +G

]
Ξ = 0 , (4.12)

with

F = Ht

(
2

Hσm

d%m

dt
+ 3

)
− 1 ' −1 ,

and

G =
1

%mH2

d2%m

dt2
+

3

%mH

d%m

dt
,

where we substituted %m = [(g/λ)〈φ2〉]1/2∝ t−1 with 〈φ2〉 being the time average

of φ2 over its oscillation period. Initially, the PQ radial field is following its

minimum %m, i.e. Ξ is roughly constant in time. Upon the breakdown of the slow-

roll conditions, φ starts oscillating with frequency mφ and amplitude decaying as

a(t)3/2. Due to its coupling to φ [g φ2%2∝a(t)−5], the PQ radial field may continue

tracking %m for a while. As the damping coefficient F becomes negative once φ

starts oscillating, the % tracking of its minimum is rendered unstable and the

amplitude of Ξ will increase with time. Once the term λ%4∝ a(t)−4 takes over,

the amplitude of Ξ will continue increasing as a(t)1/2 and the oscillation of % will

follow the solution [527]:

% ∼ %i
a(τ)

cos[c
√
λ %i(τ − τi)] , (4.13)

where c'0.8472 is a constant and τ = τi +
∫

dt/a(t) denotes the conformal time.

Since %i/vPQ
' (g/λ)1/2(φi/vPQ

)� 1, the oscillation of % will initially take place

around %=0.

In both the cases, i.e. case-I and case-II, described above, the first phase of

the oscillation around the origin terminates when the amplitude of % ∝ a(t)−1

drops below v
PQ

, i.e. at

tc =

ti
(
a(tc)
a(ti)

)3/2
' H−1

inf

(
%i
v
PQ

)3/2
, (tc ≤ trh)

trh

(
a(ti)
a(trh)

)2(
a(tc)
a(ti)

)2
'H−4/3

inf t
−1/3
rh

(
%i
v
PQ

)2
, (tc > trh) ,

(4.14)
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with trh being the time of the reheating and ti being the time at the end of the

slow roll inflation. Here, we assumed that the Universe is dominated by matter

during the reheating epoch, i.e. a(t)∝ t2/3 for ti<t<trh. At t>tc, the amplitude

of % is less than v
PQ

, and hence its oscillation takes place around v
PQ

. If the PQ

symmetry does not get restored during the oscillation phase either thermally (if

v
PQ
< Trh) or non-thermally (if v

PQ
. 10−4%i), the energy density of the radial

field will be dominated by the zero-mode, ρ%(t ≥ tc) ' (λv4
PQ
/4) [a(tc)/a(t)]3.

Consequently at t>tc, the oscillation of % can be treated as % particles with mass

m%=
√

2λ v
PQ

setting at rest [476], which as we show below decay dominantly into

ultra-relativistic axions.

4.3 Thermalisation and thermal production of

relativistic axions

If the decay process of the φ field is sufficiently efficient to reheat the Universe

to a high temperature (such a scenario can be envisaged in SM gauge invariant

models of inflation [368, 528]), axions may thermalise with the cosmic plasma.

Later on, they decouple from the plasma with thermal distributions.

Note that the axion field, χ ≡ ΘFχ, couples to the SM particles via vPQ-

suppressed operators. Nevertheless, such an interaction can lead to the thermali-

sation of axions. Before EW symmetry breaking, the axion interaction rate with

SM particles is dominated by its couplings to quarks q and gluons g via the axion

coupling to gluons, χGaµνG̃a
µν/Fχ [529] 1. This is true for all axion models. The

relevant processes are then [529, 531]:

1. g + χ� q + q̄,

2. q + χ� q + χ and q̄ + χ� q̄ + χ,

3. g + χ� g + g.

1In DFSZ models the axion interaction rate with the SM fields is dominated by the axion
tree level coupling to quarks after EW symmetry breaking [530]. However, the possible ther-
malisation of axions occurs at temperature much higher than the EW scale, and in such a case,
the dominant contribution to the interaction rate arises from the axion-gluon coupling.
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These interactions lead to CM cross-sections of the form [531] 1

σ̃
CM

= A ln

(
s

m2
D

)
+B , (4.15)

where m
D

=
√

8παs T is the Debye mass [532], and A and B are constants whose

values are respectively given by

1. A = 0, B =
Nf
6π2

α3
s

F 2
χ

,

2. A =
Nf
π2

α3
s

F 2
χ

, B = −3Nf
4π2

α3
s

F 2
χ

,

3. A = 15
2π2

α3
s

F 2
χ

, B = − 55
8π2

α3
s

F 2
χ

,

withNf =6. Now using Eq. (A.18) one obtains the following interaction rate [531] 2:

Γχ,eq =

{
12

[
− ln(2παs) + 2

ζ ′(3)

ζ(3)
− 2γ

]
+

3

2
ln(2) +

83

4

}
ζ(3)

π4

α3
sT

3

F 2
χ

' 7.1× 10−6

(
αs

1/35

)3
T 3

F 2
χ

. (4.16)

Assuming that the SM quarks and gluons are part of the thermal bath, the

Boltzmann equation governing the number density of axions is given by [see

Eq. (A.17)]

ṅχ + 3Hnχ = Γχ,eq(nχ,eq − nχ) , (4.17)

where nχ,eq = (ζ(3)/π2)T 3 denotes the equilibrium average number density of

axions, and the Hubble parameter during RD is given by Eq.(2.5) 3. Introducing

1Here for convenience, the cross-sections are not averaged over the initial d.o.f.
2The tree level thermally-averaged interaction rate quoted above, Γχ,eqnχ,eq where nχ,eq

denotes the equilibrium number density of axions, is roughly the same as the one obtained
using the thermal field formalism [530] for sufficiently small gauge coupling, gs=

√
4παs, which

corresponds to sufficiently high temperature. They differ significantly only when gs& 1 which
corresponds to T .5×103 GeV. Since we are interested in axions with large Fχ which decouple
from the plasma at T � 5×103 GeV, the simple tree level calculation which gives the axion
interaction rate, Eq. (4.16), and also used throughout this section, is sufficient.

3Here, we consider the evolution of nχ during radiation domination, i.e for T ≤Trh. However,
the Universe may have been exposed to temperatures higher than Trh [367]. Nevertheless, from
the axion production point of view, Trh is effectively the maximum temperature as axions
produced at T >Trh get diluted away by the entropy produced in φ decay [530].
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4.3 Thermalisation and thermal production of relativistic axions

the function ηχ≡nχ/nχ,eq and changing the dependence from time to x≡Trh/T ,

where Trh is the reheating temperature, Eq. (4.17) can be re-written as

x2 dηχ
dx

= K(1− ηχ) , (4.18)

where

K ≡ x
Γχ,eq
H
' 5× 102

( g

100

)−1/2
(
αs

1/35

)3(
Trh

1010 GeV

)(
Fχ

1010 GeV

)−2

. (4.19)

Clearly, axions reach full thermal equilibrium with the SM particles if K � 1,

i.e. when Trh is sufficiently high. Assuming that g remains constant during the

course of integration, Eq. (4.18) can be easily solved to obtain [531]

ηχ = 1− eK(x−1−1) , (4.20)

where we assumed that ηχ(x= 1) = 0. Axions decouple from the plasma when

K∼x (equivalently Γχ,eq∼H). In other words, axions decouple at

Tχ,dec ' 107 GeV
( g

100

)1/2( αs
1/35

)−3(v
PQ
/NDW

1010 GeV

)2
. (4.21)

Since axions with v
PQ
& 4× 108 GeV decouple from the plasma at T � mZ ,

where mZ denotes the Z-boson mass, they are colder than photons at the time of

last scattering as photons get reheated by the annihilation of other SM particles

when the latter become non-relativistic. Therefore the contribution of thermally-

produced axions to Neff is quite small [530, 533]. Nevertheless, as a consequence

of the above discussion, the axions produced non-thermally in the decay of the

PQ radial field at temperature�Tχ,dec will never be in thermal contact with the

plasma, and hence keep their comoving number density and comoving momenta.

To see this let us consider the loss in the number density of the non-thermally

produced axions due to their possible scatterings into SM particles. Ignoring

Fermi blocking and stimulated emission, the Boltzmann equation governing the
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4.3 Thermalisation and thermal production of relativistic axions

time evolution of the axion number density can be written as [see Eq. (A.5)]

ṅχ+3Hnχ=−
∑∫

dp̃χdp̃adp̃idp̃j(2π)4δ(4)(Pχ+Pa−Pi−Pj) fχfa,eq|M|2, (4.22)

where the sum is over all the possible processes and dp̃j =d3pj/[(2π)32Ej]. Here

we ignore the axion production from the plasma. Again we assume that the

SM particles (a, i and j) are in thermal equilibrium. Using the definition of the

unpolarised cross-section, σ̃ (see Eq. [A.11)], we obtain∫
dp̃idp̃j(2π)4δ(4)(Pχ+Pa−Pi−Pj) |M|2 = σ̃vMol 2Eχ2Ea . (4.23)

Therefore, Eq. (4.23) can be re-written as (see Appendix A.2)

ṅχ + 3Hnχ ' −Γ(χa→ i j)nχ , (4.24)

with

Γ(χa→ i j) =
1

nχ

∑∫
dp̃χdp̃a fχfa,eq σ̃vMol 2Eχ2Ea , (4.25)

being the averaged interaction rates where vMol = [(P µ
χPaµ)2 −m2

χm
2
a]

1/2/(EχEa)

is the Møller velocity. In the relativistic limit, vMol 2Eχ2Ea ' 2s where s =

m2
χ+m2

a+2EχEa−2pχ·pa'2EχEa(1−cos θ) is the squared total CM energy. We

are free to evaluate Eq. (4.25) in the CM frame. Expressing pχ and pa in polar

coordinates, Eq. (4.25) can be re-written as

Γ(χa→ i j)=
1

4π4nχ

∑∫ 1

−1

1

2
d cos θ

∫ ∞
0

dpχ p
2
χ

∫ ∞
0

dpi p
2
i fχfi,eq σ̃CM . (4.26)

For non-thermal axions produced from the decay of % particles, one can approxi-

mate the phase space distribution of axions as

fχ(pχ, t) = 2π2nχ(td)

(
a(td)

a(t)

)3
δ(pχ − p̄χ)

gχp2
χ

, (4.27)

with p̄χ=pχ(td) [a(td)/a(t)]=(m%/2)[a(td)/a(t)] where for simplicity we assumed
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4.3 Thermalisation and thermal production of relativistic axions

a sudden decay of % at t= td
1. Again we focus on the axion interactions with the

SM quarks and gluons via the axion anomalous coupling listed above. Substitut-

ing for σ̃
CM

from Eq. (4.15) with the corresponding values of A and B for each of

the above listed interactions into Eq. (4.26) and summing up all the contributions,

we obtain

Γ(χa→ i j) =

{
12

[
ln
( p̄χ
T

)
− ln(2παs) +

ζ ′(3)

ζ(3)
− γ

E

]
+

3

2
ln(2) +

11

4

}
ζ(3)

π4

α3
sT

3

F 2
χ

'{4.5 + 3.5 ln(p̄χ/T )} × 10−6

(
αs

1/35

)3
T 3

F 2
χ

, (4.28)

where γ
E
'0.5772 is the Euler’s constant and ζ ′(3)'−0.1981. Clearly, the factor

ln(p̄χ/T ) is constant since during RD, T ∝ a(t)−1 away from the phase transitions.

As one would expect, Γ(χa→ i j) is larger than its thermal counterpart, Γχ,eq

which is given by Eq. (4.16) due to the monochromatic momentum distribution of

axions produced in % decay provided that pχ(td)�T . However, this enhancement

is not significant, Γ(χa→ i j)/Γχ,eq ' 1+{ln(p̄χ/T )−0.8}/{2.0− ln[αs/(1/35)]},
i.e. Γ(χa→ i j) is only enhanced by a logarithmic factor. Again introducing

the function ηχ = nχ/nχ,eq and the independent variable x≡ Td/T , where Td is

the temperature corresponding to the time td, the Boltzmann Eq. (4.24) can be

re-written as

x2dηχ
dx
' −Kηχ , (4.29)

where K≡xΓ(χa→ i j)/H. Eq. (4.29) admits the following solution:

ηχ(x) ' η(xd) eK(x−1−1) . (4.30)

Since x−1 = T/Td ≤ 1, axions keep their initial abundance if K � 1. In other

words, axions produced non-thermally at Td � Tχ,dec will keep their comoving

number density and comoving momenta.

1In general, the decay of the % particles takes place over an extended period of time leading
to a smeared momentum distribution for axions due to the expansion effect [534].
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4.4 Non-thermal production of axions dark radiation

4.4 Non-thermal production of axions dark ra-

diation

Let us now consider the decay of the coherent oscillation of the radial component

of the PQ field, %. If the PQ symmetry does not get restored during the initial

phase of oscillation, which takes place around %=0, ρ% will be dominated by the

zero mode of %. For t ≥ tc, the oscillation of σ continues around % = v
PQ

with

initial amplitude ∼v
PQ

. As the coherent oscillation of % behaves as % particles at

rest [476], the latter cannot scatter into other species. However, they can decay

into the particle species to which they couple. For instance, the % particles couple

to axions via the vertex %̃ ∂µχ∂
µχ/v

PQ
, where %̃=%−v

PQ
, allowing them to decay

into axions with the following rate:

Γ(%→2χ) =
1

32π

m3
%

v2
PQ

=
λ3/2

8
√

2π
v

PQ
. (4.31)

Moreover, the % particles can decay into species other than axions. For ex-

ample, in the KSVZ-like models [505, 506] (see Appendix B.1 for a brief review),

% couples to the extra heavy coloured fermions Q via the vertex (mQ/vPQ
) % Q̄Q

leading to the following % decay rate:

Γ(%→Q̄Q) =
3m2

Qm%

8πv2
PQ

(
1−

4m2
Q

m2
%

)3/2
, (4.32)

where for concreteness we assumed that the heavy quarks are colour triplets. The

perturbative decay of % into extra heavy quarks is only allowed if mQ<m%/2
1.

Similarly, in the DFSZ-like models [507] (see Appendix B.2 for a brief review), %

1The decay of % to extra heavy quarks with mQ>m%/2 can take place via non-perturbative
effects during the first phase of % oscillation as the extra heavy quarks become effectively
massless during parts of each oscillation of % [535]. However, once the amplitude of % drops
below vPQ , the extra heavy quarks cannot be made massless and hence this non-perturbative
decay channel is no longer open.

119



4.4 Non-thermal production of axions dark radiation

couples to the two Higgs doublets leading to the following decay rates:

Γ(σ→2Φ1,2) '
λ2
S1,2

8πm%

v2
PQ
'

λ2
S1,2

8π
√

2λ
v

PQ
, (4.33)

where λS1,2 have to be < (v
EW
/v

PQ
)2 in order not to affect EW symmetry break-

ing [536]. Comparing Eqs. (4.32) and (4.33) to Eq. (4.31), we can see that %

will decay mostly into axions in KSVZ-like models provided that mQ>m%/2 or

mQ <m%/(2
√

3), and similarly in DFSZ-like models as long as λ > (v
EW
/v

PQ
)2.

As a result, all or at least a large portion of the energy stored in the % field will

ultimately be transferred to the axion field.

We now proceed to estimate the axion energy density produced from the decay

of the radial component of the PQ field. For simplicity, we will assume that the

Universe is dominated by matter during the reheating epoch 1. We further assume

that all the % particles instantaneously decay at t= td which can take place during

inflaton domination (i.e. td<trh) if λ≥(256π4g/45)1/3(T 2
rh/vPQ

MP)2/3. Otherwise,

the % decay process occurs during the RD epoch (i.e. td>trh).

The energy density of % at t= tc is roughly (λ/4) v4
PQ

. Later at t= td, ρ% be-

comes (λ/4) v4
PQ

[a(tc)/a(td)]3. Assuming a sudden transition from inflaton dom-

ination to RD at t= trh, the energy density stored in the % coherent oscillation

can be expressed as

ρ%(td) ' λ

4
v4

PQ



(
tc
td

)2
, (td ≤ trh)(

tc
trh

)2 (
trh
td

)3/2
, (td > trh > tc)(

tc
td

)3/2
, (td > tc > trh) ,

(4.34)

where tc ' H−1
inf (%i/vPQ

)3/2 ≤ trh if %i/vPQ
≤ (90/π2g)1/3(HinfMP/T

2
rh)2/3; other-

wise, tc ' trh(Hinftrh)−4/3(%i/vPQ
)2. The energy density of % comes to dominate

1In principle, the effective equation of state during the reheating phase can be different
from that of a matter dominated Universe, i.e. the equation of state parameter, ωeff >0 [537],
in which case the energy density of the % field will be less diluted due to the slower expansion
rate during the reheating phase, a(t)∝ t2/[3(1+ωeff )]. As a result, the abundance of the extra-
relativistic axions due to % decay will be larger leading to a more stringent bound on the axion
parameter space.
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4.4 Non-thermal production of axions dark radiation

the energy density of the Universe before it decays if the following condition is

violated:

λ < 0.15× H8
infM

10
P

g(Trh)%12
i T

4
rhv

2
PQ

. (4.35)

The number density of % particles at td is n%(td) = ρ%(td)/m%. These % particles

decay dominantly into axions, and hence the number and energy density of axions

at td are nχ(td) ' 2n%(td) and

ρχ(td)'2[m2
χ + (m%/2)2]1/2n%(td) ' [1 + (2mχ/m%)

2]1/2ρ%(td) ,

respectively 1. In the range of interest, v
PQ
&108 GeV, axions are relativistic at the

era of photon decoupling (zdec'1090 [13]) and hence the factor 2mχ/m% can be

safely ignored. Thus, with the help of Eq. (4.34), the axion energy density during

the time interval max(td, trh)< t< teq, where teq is the time at radiation-matter

equality, is given by

ρχ(t) ' λ

4
v4

PQ



(
tc
td

)2(
td
trh

)8/3(
trh
t

)2
, (td ≤ trh)(

tc
trh

)2(
trh
td

)3/2(
td
t

)2
, (td > trh > tc)(

tc
td

)3/2(
td
t

)2
, (td > tc > trh) .

(4.36)

If the PQ radial field does not come to dominate the energy density of the Universe

before it decay 2, Eq. (4.36) can be re-written as

ρχ
ργ
' 0.37

(
g(Trh)

100

)1/3(
1013 GeV

Hinf

)2(
%i
MP

)3( v
PQ

1015 GeV

)1/3( Trh

1010 GeV

)4/3
(4.37)

1Here again we assume a monochromatic momentum distribution for axions due to the
instantaneous decay of % particles at t= td.

2If the PQ radial field had dominated the energy density of the Universe before it decayed,
we would have had a Universe different from the one we live in since the PQ radial field decays
dominantly into axions.
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for td≤ trh, and

ρχ
ργ
'0.04

(
g(Trh)

100

)1/4(
λ

10−11

)1/4(
1013 GeV

Hinf

)2(
%i
MP

)3( v
PQ

1015 GeV

)1/2( Trh

1010 GeV

)
(4.38)

for td>trh, where ργ =(π2/15)T 4 denotes the energy density of photons.

4.5 Constraints on the axion parameter space

The axion parameter space is subjected to a plethora of experimental, astrophys-

ical and cosmological bounds. We first review the most stringent ones and then

discuss the bound arising from the decay of the coherent oscillation of % into

axions.

• Supernovae: Considering an extra energy loss channel in stars due to the

emission of axions and comparing this to observations enables one to set

upper bounds on the axion couplings and hence lower bounds on the axion

decay constant, Fχ=v
PQ
/NDW. The most stringent and model-independent

bound on Fχ arises for the observation of the supernova SN1987A signal,

where the axion emission due to the nucleon bremsstrahlung N N→N Nχ,

if present, would have shortened the neutrino burst duration (for a review,

see e.g. [247] and references therein). This places the following bound on

Fχ [249]:

Fχ/C̃N & 2× 109 GeV , (4.39)

where C̃N = (YpC
2
p + YnC

2
n)1/2, Cp and Cn are axion-nucleon couplings

(LχNN = CN∂µχN̄γµγ5N/2Fχ for N = p, n), and Yp ' 0.3 and Yn ' 0.7

are the proton and neutron fractions, respectively. In the KSVZ models

Cp = −0.47(3) and Cn = −0.02(3), whereas in the DFSZ models Cp =

−0.617 + 0.435 sin2 β±0.025 and Cn=0.254− 0.414 sin2 β±0.025 with tan β

being the ratio of VEVs of two Higgs doublets [343]. Substituting for these

values in Eq. (4.39), we have

Fχ & (2–4)× 108 GeV . (4.40)
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4.5 Constraints on the axion parameter space

Note that the neutrino burst duration of supernova SN1987A is less sensitive

to the axion-nucleon coupling for Fχ. 6×105 GeV [247, 538], since axions

with smaller Fχ would have been trapped at earlier stages. Nevertheless,

their interaction with oxygen nuclei could have induced excitations in the

oxygen nuclei resulting in the release of gamma ray that would have been

seen at the Kamiokande detector [539]. As a result, axions with Fχ .

2×105 GeV are ruled out.

• Globular clusters: Another bound on Fχ arises from the observation of

globular clusters [540]. The possible axion energy loss via the Primakoff

process would accelerate the helium consumption reducing the helium-

burning lifetimes of horizontal-branch stars. This places an upper bound

on the axion-photon coupling, Eq. (1.75), gχγγ < 6.6×10−11 GeV−1 [541].

This translates to a lower bound of roughly 3 × 107 GeV and 1 × 107 GeV

on Fχ for KSVZ and DFSZ models, respectively. The same argument

of axion energy loss in the core of globular clusters stars can be used

to constrain the axion-electron coupling relevant for the DFSZ models.

The axion-electron coupling would lead to the emission of axions from

the core of red giants in globular clusters via the bremsstrahlung process

e+Ze→e+Ze+χ. Observations of red giants place an upper bound on the

axion-electron coupling [Lχee = −gχee χēγ5e with gχee = me cos2 β/(3Fχ)],

gχee.4.3×10−13 [542]. This translates to a lower bound on the axion decay

constant, Fχ&4.0× 108 cos2 βGeV.

• White dwarfs: Moreover, the axion-electron coupling gχee can also be

constrained from the observation of white dwarfs. If gχee were large, it

would increase the cooling rate of white dwarfs due to axion emission, which

places an upper bound of 3×10−13 on gχee [543]. This translates to a lower

bound of 6×108 GeV cos2 β on the axion decay constant for the DFSZ-like

models.

• Laboratory and hot DM bounds: In addition to the astrophysical

bounds discussed above, laboratory experiments rule out axions with Fχ.

O(10–102) GeV [502, 503]. Thus in short, astrophysical observations and
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4.5 Constraints on the axion parameter space

laboratory experiments rule out axions with decay constant Fχ . (2–4)×
108 GeV, except for a possible small window, 2×105 GeV.Fχ.6×105 GeV,

particular to KSVZ-like models. We note that axions with Fχ in this win-

dow are ruled out from cosmological considerations. Axions can be pro-

duced thermally if Trh > Tχ,dec, where Tχ,dec is given by Eq. (4.21). In

particular, axions with decay constant Fχ . O(107) GeV can be produced

thermally and decouple from the plasma after the QCD phase transition.

Hence, they contribute to the radiation density (not necessarily as an ef-

fectively massless d.o.f.) and later on act as hot DM, which sets an upper

bound of around 1 eV on the mass of axion or equivalently a lower bound

of around 6×106 GeV on Fχ [544]. This rules out KSVZ-axions with Fχ in

the small window not ruled out by astrophysical observations.

• DM abundance: On the other hand, the axion decay constant can be

bounded from above. The first upper bound on Fχ arises from the require-

ment that the abundance of cold axions today does not exceed the observed

DM abundance, which implies that [511]

Fχ . 7× 1011〈Θ2
1〉−0.84 GeV . (4.41)

Typically, 〈Θ2
1〉1/2 is O(1), and in such a case, Fχ.7×1011 GeV. However,

in principle 〈Θ2
1〉1/2 can be smaller than O(1), relaxing the upper bound on

Fχ.

• Isocurvature bound: if the PQ symmetry is broken before or during the

early stages of inflation, large quantum fluctuations along the massless an-

gular direction, δΘ =NDWHinf/(2πvPQ,eff
), develop 1. For sufficiently large

PQ scale, axions do not thermalise with the cosmic plasma [see Eq. (4.21)],

and hence the fluctuations along the angular direction show up on the

CMB sky as isocurvature perturbations with the following power spectrum

1Similarly, the radial field can acquire quantum fluctuations of O(Hinf) if it is sufficiently
light during inflation, m%�Hinf . This may contribute to the isocurvature perturbations as the
radial field dominantly decays into axions.
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(see [521] are references therein):

∆2
iso =

4

〈Θ2
1〉

(
NDWHinf

2πv
PQ,eff

)2(
Ωχ

ΩDM

)2
, (4.42)

where Ωχh
2'0.2〈Θ2

1〉(Fχ/1012 GeV)1.19 is the abundance of DM axions [511].

The recent measurement of the CMB [13] constrains the DM abundance,

ΩDMh
2 = 0.1198± 0.0030 (at 95% CL), and the CDM uncorrelated isocur-

vature perturbations, αc ≡ ∆2
iso(k∗)/[∆

2
iso(k∗)+∆2

R(k∗)]<0.033 where As≡
∆2

R(k∗) = 2.142±0.098×10−9 (at 95% CL) is the amplitude of adiabatic

perturbations. This places the following upper bound on the axion decay

constant:

Fχ < 9.6× 107 GeV

(
v

PQ,eff

〈Θ2
1〉1/2NDWHinf

)0.84

. (4.43)

The above bound need not be applied if φ is a moduli field.

• Superradiance: Another interesting upper bound on Fχ arises from the

consideration of the supperradiance effect of astrophysical rotating black

holes [545]. Axions with a large decay constant have a Compton wave-

length comparable to the size of astrophysical black holes thus forming

a bound system with different energy levels [546, 547, 548]. Such axions

can then superradiate extracting rotational energy and angular momentum

from the black hole through consecutive scatterings off the ergosphere and

hence populating several energy levels. Axions can then emit gravitational

waves via different processes 1 resulting in a continuous extraction of an-

gular momentum from the host black hole [547, 548]. This would result in

the absence of highly spinning black holes in a mass range corresponding to

the range of Fχ for axions involved in superradiance. The measurement of

the spin of stellar mass black holes disfavours axions with decay constant

in the range 3×1017 GeV.Fχ.1019 GeV [548].

1Axions can annihilate into gravitons in the presence of the gravitational potential of the
hosting black hole. Axions can also transit between levels which have the same angular quantum
number but different energies emitting gravitational waves.
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• Dark radiation: Axions are massless at the tree level, as they are protected

by a shift symmetry, but they acquire a small mass, mχ = 5.70(6)(4) eV

(Fχ/106GeV)−1 [343], due to the QCD instanton effect [251, 252]. As a

result, the axion is a natural candidate for dark radiation provided that

Fχ is sufficiently large. Hence, they contribute to the effective number of

relativistic d.o.f. other than photons Neff , which is defined via the relation,

Eq. (2.33), that parameterises the total radiation density of the Universe.

Using Eq. (2.33), the contribution from relativistic axions to Neff can be

estimated as

∆Neff = Neff −N ν
eff =

8

7

(
11

4

)4/3
ρχ
ργ
, (4.44)

where N ν
eff = 3.046 is the contribution from three active neutrinos. Note

that Eq. (4.44) applies only for axion species that remains relativistic till

the era of photon decoupling. Observation of the CMB sets an upper bound

Neff < 3.15+0.41
−0.40 at the time of photon decoupling [13]. Thus, ∆Neff . 0.52

which puts an upper bound on the abundance of relativistic axions. This

can be used to constrain the parameter space of axion models.

Now we turn to the case where axions are produced non-thermally from the

decay of the coherent oscillation of the radial component of the PQ field, %.

Such axions have very large initial momenta and, furthermore, they can be very

light provided that Fχ is sufficiently large. It is important here to note that

for sufficiently large Fχ, axions are never in thermal contact with the plasma

and hence keep their initial abundance and momenta, see Eq. (4.21). Therefore,

such axions are most likely to act as dark radiation contributing to Neff . From

Eqs. (4.37), (4.38) and (4.44), one can see that for large Fχ, ∆Neff can be much

larger than 0.52. In other words, too much axionic dark radiation is produced.

This further constrains the axion parameter space.

We plot various observational constraints in Figs. 4.1 and 4.2 where we fix the

number of domain walls, NDW =1 and consequently Fχ=v
PQ

. We have seen that

different astrophysical observations rule out axions with

Fχ.(2–4)×108 GeV and Fχ&3×1017 GeV.
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These bounds are shown in Figs. 4.1 and 4.2 by the blue and brown regions,

respectively. The current observational result on the DM abundance [13] puts an

upper bound on the axion decay constant, Fχ.7×1011〈Θ2
1〉−0.84 GeV. In Figs. 4.1

and 4.2, we show the DM bound on Fχ for different values of Θ1
∼= 〈Θ2

1〉1/2 by the

dotted black lines. The regions to the right of these lines are ruled out.

On the other hand, if the initial amplitude of the oscillation satisfies %i &

104 v
PQ

, the PQ symmetry can get restored non-thermally, which leads to the

formation of topological defects [520]. In order to avoid this, we require that

%i . min(MP, 104v
PQ

) . (4.45)

It is worth noting here that the PQ symmetry is not restored during inflation

as long as v
PQ,eff

' %i� Hinf/2π. However, the PQ symmetry can get restored

thermally if Trh & vPQ
=NDWFχ. Such a parameter space is shown in Figs. 4.1

and 4.2 by the yellow regions. In principle, the Universe may have been exposed

to temperatures much higher than Trh during the reheating epoch [367]. This

makes the bound even more stringent. We stress here that the restoration of

the PQ symmetry and the subsequent formation of topological defects are only

dangerous if NDW > 1. For models with NDW = 1, however, these topological

defects are unstable and decay into cold axions rendering the DM bound even

stronger, Fχ . (4.6–7.2)× 1010 GeV [516, 517].

For the case of φ being the inflaton, we show the isocurvature bound on Fχ

for Θ1 = 1, 0.1, 0.01 and 0.001 in Figs. 4.1 and 4.2 by the solid red lines. For

mφ = 1013 GeV (Figure 4.1), the isocurvature bound is much stronger than the

DM one. In this case, the entire parameter space is ruled out when Θ1 = 1. For

larger values of NDW, the isocurvature bound is even stronger.

The coherent oscillations of the PQ radial field lead to the excitation of ultra-

relativistic axions, which act as dark radiation and hence affect the expansion rate

of the Universe. In a region of the parameter space, the radial field can come to

dominate the energy density of the Universe, leading to an axionic dark radiation

dominated Universe. This scenario does not produce the Universe we live in and

hence can be ruled out. We show the region of the parameter space where this

scenario occurs in dark orange shade in Figs. 4.1 and 4.2. Even if the radial

127



4.5 Constraints on the axion parameter space

Figure 4.1: Observational constraints on the reheating temperature Trh and the
axion decay constant Fχ. In the region shaded in dark orange, % comes to dominate
the energy density of the Universe before it decays and hence is ruled out. The
adjacent hatched region shaded in lighter orange is ruled out by the CMB bound on
Neff . The blue region is ruled out by laboratory experiments and the observation
of supernova SN1987A and globular cluster stars. In the yellow region, the PQ
symmetry gets thermally restored. The vertical dotted black lines indicate the DM
upper bound on Fχ whereas the vertical solid red lines refer to the isocurvature
upper bound on Fχ for different values of misalignment angle. For Θ1 =1, the entire
parameter space is ruled out by the CMB bound on the isocurvature perturbations.
Note that the isocurvature bound need not apply if φ were a moduli field, the issue
is rather model dependent.

field does not come to dominate the energy density before it decays, the resultant

axionic contribution to Neff can exceed the CMB bound [13]. This additionally

rules out the hatched orange region shown in Figure 4.1 and 4.2. This constraint

consequently puts an upper bound on Trh, since if Trh is large the φ field decays
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4.5 Constraints on the axion parameter space

Figure 4.2: Same as Figure (4.1) but for mφ=1010 GeV and λ=10−17.

faster and the energy density of oscillating % field becomes relatively large. With

the help of Eqs. (4.38) and (4.44), the bound on the reheating temperature can

be expressed as

Trh. 2.6×1010 GeV

(
g(Trh)

100

)−1/4(
λ

10−11

)−1/4(
%i
MP

)−3(
Hinf

1013 GeV

)2( v
PQ

1015 GeV

)−1/2

. (4.46)

We also note that the duration of the oscillation of the % field becomes long if the

initial amplitude is large %i . 104 v
PQ

, which enhances the constraint in the large

Fχ region. Furthermore, if Hinf (or the energy density of φ) becomes small, the

energy density of the SM plasma is reduced, which makes the abundance of ultra-

relativistic axions relatively large. As a result, a stronger constraint is obtained

for a smaller value of mφ ≈Hinf , as shown in Figure 4.2. In Figs. 4.1 and 4.2,
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4.6 Conclusion

we fix λ to the maximum allowed value λ . H2
infM

2
P/|S|4i given by Eq. (4.10).

Note that, since the axion energy density is given by ρχ ∝ v4
PQ

= (NDWFχ)4 [see

Eq. (4.36)], for NDW > 1 our bound becomes even stronger. Furthermore, to

obtain conservative bounds, we assumed that the Universe is dominated by matter

during the reheating phase, i.e. the effective equation of state parameter, ωeff =0.

If the Universe has an effective equation of state parameter ωeff > 0 during the

reheating phase, the axionic dark radiation bound would be even stronger.

4.6 Conclusion

The PQ mechanism presents a neat solution to the strong CP problem, and the

angular field, the axion, can be a good DM candidate due to its largely suppressed

couplings to all SM particles. However, axions being very light can also act as

dark radiation if they are produced with large momenta at sufficiently late times.

We showed that this could happen if the PQ radial field, %, were displaced from

v
PQ

due to an initial condition or a direct coupling to the inflaton/moduli field.

The perturbative decay of % which we have discussed here happens when the

PQ field oscillates coherently, during which most of the co-moving energy density

stored in these coherent oscillations gets transferred into light axions. The energy

density of axions which contribute to the radiation energy density is constrained

by a number of observations listed above. The bound is mostly relevant to larger

values of the axion decay constant.

Axion DM with a large decay constant are expected to be probed by future

experimental studies such as CASPEr [346]. Since it is impossible to realise such

a large PQ scale in the post-inflationary PQ symmetry breaking scenario [549],

one should seriously consider the pre-inflationary PQ symmetry breaking scenario

if axion DM were to be found in such experiments. We have seen that the cos-

mological evolution of the PQ field is quite non-trivial in such a scenario, and the

overproduction of ultra-relativistic axions leads to an upper bound on the reheat-

ing temperature, which further constrains the thermal history of the Universe.

Furthermore, one can also expect many φ fields to oscillate simultaneously, either
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4.6 Conclusion

arising from inflation [550], or due to multi-moduli fields, whose effects can be

discussed by following similar arguments developed in this chapter.
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Chapter 5

Non-perturbative production of

axion-like particles

Axion-like particles or ALPs (χ) are quite generic in many scenarios for physics

beyond the SM. ALPs usually arise as the pseudoscalar Goldstone bosons associ-

ated with spontaneously broken global U(1) symmetries 1. Similar to the case of

QCD axions [243, 245, 246], whose mass arises due to the non-perturbative QCD

instantons [251, 252], ALPs gain their masses from various non-perturbative quan-

tum effects such as world-sheet instantons [551] and brane instantons [552] in the

context of string theory. The masses of ALPs could be large or small depend-

ing on the action of the instanton [258]. Due to the remnant shift symmetries,

which themselves may get broken down to n-fold discrete symmetries by the quan-

tum instanton effects, and apart form their anomalous coupling to gauge fields,

ALPs couple only derivatively to other fields via operators of dimension-five or

higher suppressed by the corresponding symmetry breaking scale (for a review,

see [241]). Among the fields to which ALPs can couple are inflaton and moduli

(see e.g. [524, 525, 553, 554, 555, 556, 557]) which act as scalar condensates (see

e.g. [359]), and begin their coherent oscillations once their slow-roll conditions

break down.

1A Nambu-Goldstone boson arises as massless excitation of the angular part of the complex
scalar field whose VEV spontaneously breaks the U(1) symmetry.
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Due to their weak interaction with baryonic matter fields, ALPs can act as

perfect DM candidates (for a review see e.g. [558]). Nevertheless, the decay of

scalar condensate into ALPs can give rise to a non-thermal distribution of DM

or dark radiation, depending on the mass of ALPs. One has to make sure that

ALPs produced perturbatively/non-perturbatively match the current observation

from the BBN [95], and the current CMB bound on DM and dark radiation

abundances [13].

Although weakly interacting, ALPs can be produced non-perturbatively from

the coherent oscillations of the homogeneous condensate of inflaton/moduli 1. In

this chapter, we study such production mechanism of ALPs via their derivative

coupling to the scalar condensate. Let us denote χ as an ALP species with a mass

mχ, which couples to the scalar condensate, φ, via non-renormalisable operators

suppressed by powers of the mass scale Λ. For the purpose of illustration, we

fix the initial amplitude of the oscillations of the scalar condensate, Φi, to be

MP, without loss of generality. As we show below what matters here is the ratio:

Φi/Λ. The rate at which particle production takes place is sensitive to this value.

This chapter is structured as follows: in Section 5.1, we discuss the ALPs’

interactions with a homogeneous scalar condensate, i.e. inflaton/moduli, their

equation of motion and their energy density. In Section 5.2, we study the non-

perturbative production of ALPs without and with expansion effects in the Φi.Λ

regime. In Section 5.3, we study the excitation of light, mχ < mφ, and heavy,

mχ&mφ, ALPs in the regime Φi&Λ while ignoring the effect of cosmic expansion

in Section 5.3.1. We then repeat the analysis taking into account of the expansion

effect in Section 5.3.2. Finally, we conclude this chapter in Section 5.4.

1Without loss of generality, we will not distinguish between inflaton and moduli since we are
interested in particle production taking place once the inflaton/moduli field starts oscillating
around its minimum. Nevertheless in the context of preheating after inflation, the strength of
inflaton coupling to ALPs may be bounded due to the constraints on different observational
signatures that may arise during inflation such as isocurvature perturbations [559, 560, 561],
and non-Gaussianity [562, 563], and PBHs [564].
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5.1 Interactions and equations of motion

5.1 Interactions and equations of motion

Let us consider the following Lagrangian with derivative couplings of the form 1:

L =
1

2
∂µφ∂µφ− V (φ) +

1

2
∂µχ∂µχ−

1

2
m2
χχ

2 +
1

2Λ2
φ2∂µχ∂µχ , (5.1)

where φ is a scalar condensate of the inflaton/moduli, which sets its coherent

oscillations around the minimum of the potential once the Hubble expansion

rate drops below the mass of the scalar field or more generally when the slow-

roll conditions of the scalar field breaks down. The stress-energy tensor for the

Lagrangian under consideration is given by

Tµν =∂µφ∂νφ−
1

2
gµν [g

αβ∂αφ∂βφ− V (φ)] +

(
1 +

φ2

Λ2

)(
∂µχ∂νχ−

1

2
gµνg

αβ∂αχ∂βχ

)
+

1

2
gµνm

2
χχ

2 . (5.2)

Assuming FLRW background, the energy density of the χ field can be written as

ρχ =
1

2

(
1 +

φ2

Λ2

)[
χ̇2 +

1

a2
(∇χ)2

]
+

1

2
m2
χχ

2 , (5.3)

where the pre-factor (1 + φ2/Λ2) exhibits an oscillatory behaviour with an am-

plitude which decays with the expansion of the Universe. When the amplitude

of φ drops well below Λ, the oscillating part of this pre-factor, i.e. φ2/Λ2, can

be ignored. Further, the equations of motion for φ and χ can respectively be

expressed as

�φ+ 3Hφ̇+ ∂φV (φ)− φ

Λ2
∂µχ∂µχ = 0 (5.4)(

1 +
φ2

Λ2

)
(�χ+ 3Hχ̇) +

2φ

Λ2
∂µφ∂µχ+m2

χχ = 0 . (5.5)

1For the purpose of illustration, we consider only the dimension-six operator,
φ2∂µχ∂µχ/2Λ2, which is enough to capture the non-perturbative behaviour. Note that op-
erators of odd order such as the dimension-five operator, φ∂µχ∂µχ/Λ, may lead to ghost-like
behaviour of χ as its kinetic term can oscillate to negative values if the initial amplitude of the
scalar condensate oscillations is large, Φi>Λ [565].
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5.1 Interactions and equations of motion

For simplicity, we will assume that V (φ) is quadratic around its minimum 1.

In general, an effective quadratic minimum is quickly realised once the infla-

ton/moduli condensate starts oscillating. Thus, during the oscillation phase

V (φ) ' 1

2
m2
φφ

2 , (5.6)

with mφ = ∂2V/∂φ2|φ=o being the inflaton/moduli mass where the minimum is

taking to be at φ=0. Assuming that φ is a homogeneous condensate and ignoring

the back-reactions, the equation of motion for φ, given by Eq. (5.4), during the

oscillation phase can be re-written as

φ̈+ 3Hφ̇+m2
φφ'0 . (5.7)

which admits the following solution:

φ(t) ' Φ(t) sin(mφt) ∼
Φi

mφt
sin(mφt) , (5.8)

where Φi ∼MP is the initial amplitude of φ during the oscillation phase. Note

that during the coherent oscillations, the average equation of state is that of the

MD epoch and hence the Hubble expansion rate is given by: H(t)∼ (2/3t). The

equation of motion for the χ field, Eq. (5.5), can be re-written as

�χ+

(
3H +

2φφ̇/Λ2

1 + φ2/Λ2

)
χ̇+

(
m2
χ

1 + φ2/Λ2

)
χ = 0 . (5.9)

Expanding χ in terms of Fourier modes, the energy density of a given mode would

then be given by [see Eq. (5.3)]

ρk =

(
1 +

φ2

Λ2

)[
1

2
|χ̇k|2 +

1

2
ω2
k,eff |χk|2

]
, (5.10)

1One can relax this condition and have oscillations around any kind of potential, but for
many examples, such as moduli oscillations, it is a fairly good approximation to consider co-
herent oscillations around a quadratic potential. A small deviation from a quadratic potential
would not affect the physical outcome drastically, see [368].
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where ωk,eff , denoting the effective frequency of a χk oscillation, is given by

ωk,eff =

(
k2

a2
+

m2
χ

1 + φ2/Λ2

)1/2
. (5.11)

For simplicity of the notation, we will use ωk instead of ωk,eff to denote the effective

frequency of the mode χk. In terms of ρk, the energy density of χ is given by

ρχ =
1

2π2

∫
dk k2ρk . (5.12)

Further, the equation of motion for the χ field, Eq. (5.9), can be re-expressed as

χ̈k + [3H(t) + α(t)]χ̇k + ω2
k(t)χk = 0 , (5.13)

Introducing the dimensionless measure of time z = mφt, Eq. (5.13) can be re-

written as

χ′′k + [3H̃ + α̃(z)]χ′k + ω̃2
k(z)χk = 0 , (5.14)

where ‘prime’ denotes derivative w.r.t. z, and

α̃(z) ≡ α(t)

mφ

=
2φφ′/Λ2

1 + φ2/Λ2
' (Φ2/Λ2) sin(2z)

1 + (Φ2/Λ2) sin2(z)
, (5.15)

and

ω̃2
k(z) ≡ ω2

k(t)

m2
φ

=
k2

m2
φa

2
+

m2
χ/m

2
φ

1 + φ2/Λ2
' k2

m2
φa

2
+

m2
χ/m

2
φ

1 + (Φ(z)2/Λ2) sin2(z)
. (5.16)

are the oscillating part of the scaled damping coefficient and effective frequency

squared, respectively. As we show below, the oscillating damping term leads

to tachyonic instabilities which is important for particle production. Here H̃ ∼
2/(3z) and Φ∼Φi/z. We now proceed to discuss the evolution of the dynamical

system for two cases: Λ&Φi and Λ.Φi.
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5.2 Excitation of ALPs when Λ&Φi

Let us first consider the case where Φi/Λ . 1. Expanding α̃ and ω̃2
k (given by

Eqs. (5.15) and (5.16), respectively) to first order in Φ2/Λ2, one obtains

α̃(z) ' Φ2

Λ2
sin(2z) , (5.17)

and

ω̃2
k(z) ' k2

m2
φa

2
+
m2
χ

m2
φ

(
1− Φ2

2Λ2

)
+
m2
χ

m2
φ

Φ2

2Λ2
cos(2z) . (5.18)

Let us for now ignore the effect of cosmic expansion, i.e. by setting a(z) = 1,

and consequently H̃(z) = 0 and Φ(z) = Φi. Further, introduce the following

transformation:

χk ≡ Xk(z)U(z) = Xk(z) exp

[
−
∫ z

zi

α̃(z̃)

2
dz̃

]
1, (5.19)

Eq. (5.14) can be recast into the form

X′′k +

[
Ak −

p2

2
− 2(p+ q) cos(2z) +

p2

2
cos(4z)

]
Xk = 0 , (5.20)

where

Ak =
k2

m2
φ

+
m2
χ

m2
φ

(
1− Φ2

2Λ2

)
, (5.21)

and

p =
Φ2

2Λ
.

1

2
, q =

Φ2

4Λ2

m2
χ

m2
φ

.
1

4

m2
χ

m2
φ

. (5.22)

1The function U(z) = exp
[
−
∫ z
zi
{α̃(z̃)/2}dz̃

]
can be easily integrated to hold U(z) =

exp[(Φ2/4Λ2){cos(2z)− cos(2zi)}]. This is a purely periodic function with a period π and
hence it has no contribution to the possible growth of χk. Further, upon the inclusion of the
expansion effect, Φ decays as z−1 and hence such oscillatory behaviour goes away within a few
oscillations of φ. We also note that U(z) is independent of both k and mχ.

137



5.2 Excitation of ALPs when Λ&Φi

Eq. (5.20) is a specific case of Hill’s equation [566] with two harmonics known

as the Whittaker-Hill equation [567] 1. In principle one should include higher

orders in Φ2/Λ2 from the Taylor expansions of α̃ and ω̃2
k which would result

in the presence of higher harmonics. Note that in the absence of the cos(4z)

term, Eq. (5.20) reduces to a simpler form of Hill’s equation known as the Math-

ieu equation [569, 570]. Using the Floquet theorem, Hill’s equation (including

Whittaker-Hill and Mathieu forms) admits a solution of the form

Xk = C1f(z)eµz + C2f(−z)e−µz (5.23)

where C1 and C2 are real constants, f(z) is a periodic function with a period

π, and µ is known as the Floquet exponent which, in general, is complex. The

real part of the Floquet exponent, <e(µ), characterises the instabilities of Hill’s

equation. Focusing on the special cases of Mathieu and Whittaker-Hill equations,

the instability bands of the latter is broader and consequently <e(µ) is larger pro-

vided that p= Φ2/2Λ2 & 1. For the case under consideration p . 1
2
. Moreover,

including the expansion effect, the amplitude of φ oscillations, Φ, drops to 0.1–0.2

of its initial value within only one oscillation (see Chapter 3 and [364]) rendering

the coefficients of the cos(4z) term and higher harmonics negligibly small com-

pared to that of the leading harmonic. Therefore, for simplicity, we will consider

only the leading harmonic, in which case Eq. (5.20) simplifies to the following

Mathieu equation:

X′′k + Ω2
kXk = X′′k + [Ãk − 2q̃ cos(2z)]Xk = 0 , (5.24)

where

Ãk =
k2

m2
φ

+
m2
χ

m2
φ

(
1− Φ2

2Λ2

)
− Φ4

8Λ4
, (5.25)

and

1For analysis of the instabilities of Whittaker-Hill equation see [568].
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q̃ =
Φ2

2Λ2

(
1 +

m2
χ

2m2
φ

)
.

1

2

(
1 +

m2
χ

2m2
φ

)
. (5.26)

The parameters Ãk and q̃ are related by

Ãk = k2 + 2q̃

(
2Λ2

Φ2
− 1

)
− 2

(
1− Φ2

4Λ2

)2
. (5.27)

In Figure 5.1, we show the instability bands of the Mathieu equation in gray.

Here, the brown line is for Ãk = 2q̃ below which the Xk-modes (consequently

those of χk) become tachyonic. We show the allowed values of the parameters,

given by Eq. (5.27), for Φi/Λ = 0.2, 0.5 and 1 by the red, blue, and black lines,

respectively; the solid lines are for k�mφ, the dashed lines are for k=mφ and

the dotted lines are for k=3mφ
1. We note that there are tachyonic instabilities

induced by the oscillating damping term when

k

mφ

<
Φ

Λ

(
1 +

Φ2

8Λ2

)1/2
. 1 if k � mχ (5.28)

or
mχ

mφ

<
Φ

Λ

[
1+(Φ2/8Λ2)

1−(Φ2/Λ2)

]1/2
if k � mχ

2. (5.29)

These tachyonic events take place at

Nφπ − z̃k < z < Nφπ + z̃k ,

where z̃k = 1
2

cos−1(Ãk/2q̃) and Nφ = 0, 1, 2, . . . is the number of φ oscillations

since the beginning of the oscillation phase. Using the WKB approximation, one

can estimate the growth rate of χk after Nφ oscillations by

χk ∝ Xk ∝ e2Nφβk , (5.30)

1Note that the instability bands for the case Φi/Λ = 1 (i.e. p= 1
2 ) should be a bit broader

due to the effect of higher harmonics (see e.g. [571]).
2There would be no tachyonic instabilities had the oscillating damping term been absent in

which case the squared frequency of oscillation would be given by Eq. (5.16) which is always
positive.
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(a) (b)

Figure 5.1: The instability bands of the Mathieu equation, Eq. (5.24), are shown
in gray. (a) The brown line Ãk=2q̃ indicates the lower limit below which tachyonic
instabilities may exist. The red, blue and black line show the allowed values of the
parameters for Φ/Λ=0.2, 0.5 and 1, respectively. Here the solid, dashed and dotted
lines corresponds to k/mφ � 1, k/mφ = 1 and k/mφ = 3, respectively. (b) The
black, blue and red solid curves show the allowed values of the parameters for
mχ�mφ, mχ =mφ and mχ = 3mφ, respectively. Again, the thick solid, dashed
and dotted curves corresponds to k/mφ�1, k/mφ=1 and k/mφ=3, respectively.
The thin, solid, vertical lines correspond to Φi/Λ=1 whereas the dot-dashed ones
correspond to Φi/Λ = 0.2. Clearly, for k .mφ, the Xk-modes (and consequently
χk-modes) can become tachyonic provided that Φi/Λ is very close to unity.

where the factor 2 in the exponent is due to Xk (or χk) becoming tachyonic twice

during each φ oscillation. Here

βk =

∫ π+z̃k

π−z̃k

√
−Ω2

k dz = 2 (2q̃ − Ãk)1/2E
(
z̃k;

4q̃

2q̃ − Ãk

)
, (5.31)
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with E(θ; l) =
∫ θ

0
(1− l2 sin2 θ̃)1/2 dθ̃ being the incomplete elliptic integral of the

second kind where θ<π/2 and 0<l2<1 [572]. The exponent βk can be approxi-

mated by [573]

βk = − x
√
q
Ãk + 2x

√
q̃ <

1.35− 1.20(k2/m2
φ)

[1 + (m2
χ/2m

2
φ)]1/2

, (5.32)

where x =
√
π

2
√

2

Γ(3/4)
Γ(5/4)

' 0.85 with Γ(z) being the gamma function. It is clear

from Eq. (5.32) that there are no tachyonic instabilities for k & mφ [see also

Eq. (5.28) and Figure 5.1]. It is also clear that the tachyonic growth is most

efficient for modes with mχ�mφ. In Figure (5.2), we show the growth of Xk

for k,mχ�mφ, normalised to the initial value, due to the tachyonic instabilities.

The characteristic exponent βk for Φi/Λ=0.2 is given by

βk =
0.24− 6.00(k2/m2

φ)− 5.75(m2
χ/m

2
φ)

[1 + (m2
χ/2m

2
φ)]1/2

. (5.33)

which is significantly smaller than when Φi/Λ is close to unity. Thus, the growth

rate, in this case, is much slower than the case when Φi/Λ is close to unity (see

also Figure 5.2) 1. It is also clear from Eq. (5.33) that only modes with k,mχ�mφ

can become tachyonic in this case [see also Eq. (5.29) and Figure 5.1].

Let us now consider the parametric resonance which may occur for k &mφ

[see Eq. (5.28)], or mχ&mφ when Φi/Λ is smaller than unity [see Eq. (5.29)]. For

simplicity, we split the the parameter space into two regions: (1) q̃ < 1 and (2)

q̃≥1.

(1) When q̃ <1: This is known as the narrow resonance regime and takes place

when mχ/mφ<{2[(2Λ2/Φ2)− 1]}1/2. In this regime, the first instability band is

the most important one. For simplicity, let us consider two cases (a) k>mχ and

(b) k<mχ.

• Case (a): when k > mχ. A Xk-mode enters the first instability band if

1We note that for small values of Φ/Λ, the analytical expressions Eqs. (5.31) and (5.33)
overestimate the growth rate of Xk. This is because the WKB approximation is only accurate
for Ak<2q − 2

√
q (see e.g. [573]).
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5.2 Excitation of ALPs when Λ&Φi

Figure 5.2: The tachyonic growth of Xk for k,mχ�mφ during the first five φ
oscillations while ignoring the effect of expansion. Here Nφ denotes the number of
φ oscillations since the commencement of the oscillation phase. Here the red, blue
and black curves are for Φi/Λ=0.2, 0.5 and 1, respectively.

1−q̃. Ãk.1+q̃ [569], i.e.

[
1− Φ2

2Λ2

]1/2
.

k

mφ

.

[
1 +

Φ2

2Λ2

]1/2
, (5.34)

which results in the parametric amplification of Xk (or χk) for mχ <mφ.

The real part of the Floquet exponent for the first instability band is given

by <e(µk)= 1
2

√
Ã2
k−(q̃−1)2 [569]. For the case at hand, µk.0.4. Further,

the parametric resonance occurs twice per each φ oscillation; hence the

growth of Xk (or χk) after Nφ oscillations can be estimated by

χk ∝ Xk ∝ e2Nφ<e(µk)∆z . (2.23)Nφ , (5.35)
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where ∆z . 1 is the time a Xk-mode spends in the resonance band. In

Figure 5.3, we show the parametric amplification of Xk, normalised to the

initial value, for k=mφ�mχ, and Φi/Λ = 0.2 and 1 by the red and black

curves, respectively.

• Case (b): when k<mχ. In this case, Xk-modes with

[
1− (Φ2/2Λ2)

1− (Φ2/4Λ2)

]1/2
.
mχ

mφ

.

[
1 + (Φ2/2Λ2)

1− (3Φ2/4Λ2)

]1/2
, (5.36)

and k <mφ enters the first resonance band. The real part of the Floquet

exponent characterising the growth rate can be estimated to be <e(µ). 0.5.

Thus, after Nφ oscillations, the growth rate of Xk (or χk) is given by

χk ∝ Xk ∝ e2Nφ<e(µk)∆z . (2.80)Nφ . (5.37)

(1) When q̃≥1: This takes place when mχ/mφ≥{2[(2Λ2/Φ2)− 1]}1/2 in which

case q̃' (Φ2/2Λ2)(m2
χ/2m

2
φ). As can be seen from Figure 5.1(a), in this regime

the resonant amplification of Xk can occur in instability bands beyond the first

one depending on the values of Ãk, q̃ and Φ/Λ (or k, mχ and Φ/Λ). Nevertheless,

the resonance still takes place in narrow bands. This is clear from Eqs. (5.26)

and (5.27), and Figure 5.1. Changing mχ, both Ãk and q̃ change (since Ãk

and q̃ are proportional to m2
χ); as a result, the dynamical system gets pushed

out of the resonance band if it was initially in a one. More explicitly, for a

given mχ, the parametric amplification of Xk takes place in a narrow momentum

range. For instance, when mχ ' 14.07mφ and Φi/Λ = 1 (i.e. q̃ = 50), the

parametric resonance takes place in a part of the eighth band, Ãk'100.1–102.5,

or equivalently k'(1.1–1.9)mφ. In Figure 5.5, we show the parametric growth of

the Xk-mode with mχ=14.07mφ and k=1.1mφ for Φ=0.2 and 1 by the red and

black curves, respectively. Nevertheless, the resonance can occur for a wide range

of momenta provided that Φi/Λ is a bit smaller than unity. For example, when

mχ'13.78mφ and Φi/Λ=0.99 (i.e. q̃=47), the parametric resonance occurs for

modes with 0≤k/mφ.1.7; see Figure 5.6.
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Figure 5.3: The parametric growth of Xk-mode with k = 1.1mφ � mχ during
the first five φ oscillations while ignoring the effect of expansion. Here the red and
black curves are for Φi/Λ=0.2 and 1, respectively.

Taking into account cosmic expansion: Let us now include the effect of

expansion of the Universe. In this case, the amplitude of φ oscillations, Φ, dies

out with time. In fact, Φ drops to roughly 0.1–0.2 of its initial value after the

first oscillation. One can see from Figure 5.1, that all resonant modes are pushed

to the narrow tips of the resonance bands rendering the parametric amplification

of Xk totally inefficient after only one φ oscillation. This can be easily seen

from Figures 5.1, 5.3, 5.4, 5.5 and 5.6. Similarly, all tachyonic modes, except

modes with k,mχ � mφ, are pushed out of the tachyonic region within only

one φ oscillation. Further, the characteristic exponent for the tachyonic mode

with k,mχ � mφ becomes significantly smaller after the first φ oscillation [see

Eq. (5.33)]. It becomes even smaller in the subsequent φ oscillations rendering

the tachyonic growth of these modes inefficient. One can see from Figure 5.2, that

the tachyonic growth of modes with k,mχ�mφ becomes completely inefficient
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Figure 5.4: The parametric growth of Xk for k�mχ=1.4mφ during the first five
φ oscillations while ignoring the effect of expansion. Here the red and black curves
are for Φi/Λ=0.2 and 0.8, respectively.

after the first φ oscillation. This is also the case for all other tachyonic modes.

Taking into account the redshift of Xk (or χk), one can see that any amplification

of Xk (or equivalently χk), that may take place during the first φ oscillation, will

go away with time.

To conclude this section, one can safely state that for Λ&Φi there is no signif-

icant amplification of χk. In other words, there is no significant non-perturbative

particle production of χ quanta in this case. The decay from the φ condensate to

χ quanta will be primarily perturbative (see e.g. [524]).
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Figure 5.5: The parametric growth of Xk for mχ'14.07 mφ and k=1.1mφ during
the first five φ oscillations. Here the red and black curves are for Φi/Λ=0.2 and 1,
respectively.

5.3 Excitation of ALPs when Λ.Φi

Now, let us consider the case when Φi/Λ & 1. For convenience, let us make a

transformation of the form of Eq. (5.19) 1. As a result, Eq. (5.14) becomes

X′′k + 3H̃X′k + Ω2
k Xk = 0 , (5.38)

1Again, we show below that U(z) = exp
[
−
∫ z
zi

α̃(z̃)
2 dz̃

]
is merely an oscillating function and

has no contribution to the possible growth of χk.
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Figure 5.6: The parametric growth of Xk for k � mχ ' 13.78 mφ during the
first five φ oscillations. Here the red and black curves are for Φi/Λ = 0.2 and 0.99,
respectively.

with

Ω2
k =

k2

m2
φa

2
+

(m2
χ/m

2
φ)− (φφ′′ + φ′2 + 3H̃φφ′)/Λ2

(1 + φ2/Λ2)
+

(φφ′/Λ2)2

(1 + φ2/Λ2)2

' k2

m2
φa

2
+

(m2
χ/m

2
φ)− (Φ2/Λ2) cos(2z)− (3Φ2/2Λ2)H̃ sin(2z)

[1 + (Φ2/Λ2) sin2(z)]

+
(Φ4/4Λ4) sin2(2z)

[1 + (Φ2/Λ2) sin2(z)]2
, (5.39)

being the square of the scaled frequency of the Xk oscillation.
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5.3.1 Non-perturbative excitations of ALPs, ignoring cos-

mic expansion

Let us first discuss the non-perturbative amplification of Xk (equivalently, χk) for

the case Φi/Λ&1 while ignoring the effect of expansion. In this case, Eq. (5.38)

simplifies to

X′′k + Ω2
k Xk = 0 , (5.40)

and the frequency of the Xk oscillation, Eq. (5.39), now reads

Ω2
k '

k2

m2
φ

+
(m2

χ/m
2
φ)− (Φ2/Λ2) cos(2z)

[1 + (Φ2/Λ2) sin2(z)]
+

(Φ4/4Λ4) sin2(2z)

[1 + (Φ2/Λ2) sin2(z)]2
. (5.41)

Figure 5.7 shows the time behaviour of the scaled squared frequency, Ω2
k for modes

with k= 3mφ�mχ (left panel) and mχ = 3mφ� k (right panel) for Φi/Λ = 20.

Moreover, the exponential part of Eq. (5.19), U(z), can now be easily evaluated

to obtain

U(z) = exp

[
−
∫ z

zi

α̃(z̃)

2
dz̃

]
= exp

[
−1

2

∫ z

z
I

(Φ2/Λ2) sin(2z)

1 + (Φ2/Λ2) sin2(z)
dz̃

]

=
[1 + (Φ2/2Λ2) cos(2zi)]

1/2

[1 + (Φ2/2Λ2) cos(2z)]1/2
, (5.42)

which is clearly a pure periodic function with a period π. Hence, it does not lead

to any enhancement of χk. Moreover upon the inclusion of the expansion effect, Φ

dies out with time and consequently such oscillatory behaviour goes away within

a few φ oscillations. Note that U(z) is independent of both k and mχ. Let us

now proceed to discuss the non-perturbative production mechanism for two mass

regimes: (1) light ALPs with mass mχ�mφ and (2) heavy ALPs with mχ&mφ.

5.3.1.1 Non-perturbative production of light ALPs, mχ�mφ

One can see from Eq. (5.41), see also Figure 5.7(a), that modes with k/mφ.Φ/Λ

becomes tachyonic during short time intervals, around z=Nφπ, Nφ = 0, 1, 2, · · · .
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(a) (b)

Figure 5.7: The time evolution of Ω2
k for k = 3mφ�mχ (left panel) and mχ =

3mφ� k (right panel), where the effect of expansion is ignored. Here Φi/Λ = 20.
The Ω2

k becomes negative for two short periods of time during each oscillation of
φ. The corresponding number of φ oscillations is shown on the upper horizontal
axis.

More precisely, Ω2
k becomes negative during the time intervals, ∆z = z+−z−,

where

z± ' Nφπ ±


[

Φ2

Λ2

(
1 +

k2

m2
φ

)]−1/4

−

(
1

3
+

k2

2m2
φ

)[
Φ2

Λ2

(
1 +

k2

m2
φ

)]−3/4
 . (5.43)

This leads to tachyonic excitation of χ modes with momenta in the range 0 ≤
k/mφ.Φ/Λ. We again note that these tachyonic instabilities are caused by the

oscillating damping coefficient, Eq. (5.15). On the other hand, from Figure 5.7(a),

one can see that Ω2
k sharply changes around z=Nφπ, before it becomes negative.

Hence, one would expect violation of the adiabaticity condition (i.e. |Ω′k/Ω2
k|

becomes & 1) around the time intervals where Ω2
k < 0. Indeed, this is the case

provided that k/mφ .Φ/Λ [see Figure 5.8(a)]. More precisely, the adiabaticity
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gets violated during the time intervals, ∆z̃−=z−−z̃− and ∆z̃+ = z̃+−z+, where

z̃± ' Nφπ ±
[
m3
φ

k3

2Λ2

Φ2

]1/5
(5.44)

and z± are given by Eq. (5.43). This leads to the parametric amplification of

Xk(or χk)-modes with momenta, mφ.k.mφ Φ/Λ. It is important to note that

the parametric enhancement of Xk (or χk) takes place only for very short time

periods around the tachyonic dimples in Ω2
k [see Figures 5.7(a) and 5.8(a)]. In

other words, both production mechanisms, tachyonic and parametric excitations,

go side by side. In Figure (5.9), we show the time evolution of Xk, normalised

to the initial value, for Φi/Λ = 20 and k = 3mφ�mχ, while ignoring the effect

of expansion. One can see that Xk exhibits an oscillatory behaviour, except for

short time intervals, where the aforementioned instabilities reside. During these

time intervals, Xk increases rapidly to stabilize at a larger value after each period

of instability. We also show ρk(z), defined by Eq. (5.10), in Figure 5.10. Clearly,

the growth rate is much larger than the case where Φi/Λ.1 (see Figures 5.2 and

5.3).

5.3.1.2 Non-perturbative production of heavy ALPs, mχ&mφ

The perturbative production of ALPs with mχ>mφ/2 is kinematically forbidden.

However, the excitation of such heavy particles can still take place during the

coherent oscillations of φ condensate via non-perturbative effects. Similar to

the case of light ALPs, Ω2
k becomes tachyonic for short time periods, around

z=Nφπ, Nφ = 0, 1, 2, · · · , provided that k,mχ.mφ(Φ/Λ) [see Eq. (5.41)]. This

occurs twice per each oscillation of φ, see Eq. (5.41) and Figure 5.7(b). More

precisely, Ω2
k<0 during the time intervals, ∆z=z+−z− around z=Nφπ, where

z± = Nφπ ±
(

Λ

Φ

)1/2
−

(
1

3
+

m2
χ

4m2
φ

)(
Λ

Φ

)3/2
−

(
m4
χ

32m4
φ

−
m2
χ

4m2
φ

− 1

20

)(
Λ

Φ

)5/2
(5.45)

for k <mχ whereas for k >mχ, z± are given by Eq. (5.43). During these time

periods, tachyonic amplification of Xk-modes with momenta in the range 0 ≤
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(a) (b)

Figure 5.8: The time evolution of |Ω′k/Ω2
k| for k = 3mφ�mχ (left panel) and

mχ = 3mφ� k (right panel), where the effect of expansion is ignored. One can
see easily that the adiabaticity gets violated around the time intervals where Ω2

k

becomes tachyonic which takes place twice per each oscillation of φ. Here Φi/Λ=20.

k.Φ/Λ can take place. In Figure 5.7(b), we show the time evolution of Ω2
k for

Φi/Λ=20, mχ=3mφ�k while ignoring the effect of expansion.

Moreover, around the time intervals of tachyonic instabilities mentioned above,

Ω2
k for Xk-modes with mχ>k changes sharply. As a result, the evolution of Ωk

becomes non-adiabatic during short time intervals around the tachyonic dimples

residing at z =Nφπ [see Figure 5.8(b)]. This leads to the parametric amplifica-

tion of Xk-modes with momenta in the range 0≤ k.mχ. Moreover, analogous

to the case of light ALPs, tachyonic and parametric production of particles with

mχ.k.mφ Φ/Λ is also possible. Therefore, during the short time intervals of

parametric and tachyonic instabilities, heavy ALPs with momenta in the range

0≤k.mφ Φ/Λ can be excited. In Figure 5.11, we show the time evolution of Xk

for mχ=4mφ�k and Φi/Λ=20 while ignoring the effect of expansion. We also

show ρk as a function of the dimensionless measure of time, z, in Figure 5.12.

One can easily see that Xk (and ρk) gets largely enhanced at every interval of
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Figure 5.9: The time evolution of Xk for Φi/Λ=20 and k=3mφ�mχ, where the
effect of expansion is neglected.

instability taking place twice per each oscillation of φ. However, comparing this

to Figures 5.9 and 5.10, one can see that the non-perturbative amplification of

Xk modes (and ρk) with momenta, k >mχ,mφ is more efficient than those with

momenta, k<mχ
1.

5.3.2 Non-perturbative excitations of ALPs, with expan-

sion

Let us now include the effect of expansion. This results in lowering the ALPs

production rate in two ways. First, the energy density of ALPs with a given

momentum, ρk, dilutes with the expansion. This becomes obvious at late times

1The maximum amplification of Xk with k>mχ happens for k∼mφ whereas for the case
where k<mχ the maximum amplification happens for mχ∼8mφ. We verify that the parametric
excitation of ALPs is more efficient in the former case.
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Figure 5.10: The time evolution of ρk for Φi/Λ = 20 and k= 3mφ�mχ, where
the effect of expansion is neglected.

where the excitation of χk quanta is less significant. Second, the amplitude of the

φ oscillations dies out with expansion, Φ∝a−3/2∝ t−1, causing the tachyonic dim-

ples in Ω2
k to become less and less deeper with time, see Figure 5.13. In the case

of heavy ALPs (mχ&mφ), these tachyonic dimples completely disappear within

a very few φ oscillations. Therefore, one would expect that the non-perturbative

excitation of χ quanta will cease being significant after a few oscillations of φ.

5.3.2.1 Non-perturbative production of light ALPs, mχ�mφ

We saw earlier that the non-perturbative production of light ALPs with mχ�mφ

is dominated by modes with momenta in the range mφ.k.mφΦ/Λ. For these

modes and away from the tachyonic dimples, Ω2
k behaves as k2/a2, in which case

it redshifts to lower values with the dimples keep being present, albeit becoming

shallower, see Figure 5.13(a). As a result, the violation of adiabaticity due to the

sharp change in Ω2
k on the sides of these dimples becomes more and more moderate
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Figure 5.11: Same as Figure 5.9, but for mχ=4mφ�k.

with time. Hence, the non-perturbative excitations of χ quanta becomes less and

less efficient with time, until it is completely taken over by the expansion of the

Universe. Nevertheless, as we shall see, one would still end up exciting a large

abundance of ALPs even, in this case, provided that Φi/Λ�1. In Figure (5.14),

we show the evolution of ρk for Φi/Λ=20 and k=2mφ�mχ taking into account

the effect of expansion. One can see that the non-perturbative production of

ALPs becomes insignificant within a few φ oscillations (roughly at the end of

the third oscillation of φ in this case). Next, we calculate the energy density

of the χ particles, defined by Eq. (5.12). For Φi/Λ = 20, mφ = 1013 GeV and

mχ � k, we show the time evolution of ρχ/(ρφ,ia
−3) in Figure (5.15). In this

case, a small portion of the condensate’s energy (roughly 0.2%) gets transferred

to the excitations of the χ field. However, when Φi/Λ' 26, most of the energy

stored in the φ field can be drained in which case the problem becomes non-linear

and full numerical simulation is needed. For smaller inflaton/moduli mass, the

fraction of the condensate energy transferred as excitation of ALPs is less efficient
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Figure 5.12: Same as Figure 5.10, but for mχ=4mφ�k.

[roughly ρχ/(ρφ,ia
−3)∝mφ]; see Figure 5.18 below. Hence, a larger value of Φi/Λ

is required to drain a significant portion of the condensate’s energy in the form

of excitations of the χ field.

5.3.2.2 Non-perturbative production of heavy ALPs, mχ&mφ

Let us now consider the effect of expansion on the non-perturbative production

of heavy ALPs. We saw that the non-perturbative excitation of modes with

k,mφ<mχ is far less efficient than for modes with mφ<mχ<k, see Figures 5.10

and 5.12. Including the expansion effect, the difference in efficiency between

the two cases becomes even more pronounced for the following reason: as the

amplitude of φ oscillations decays with time, Ω2
k behaves differently for k >mχ

and k<mχ. For the former case Ω2
k tends toward smaller values with the tachyonic

dimples in Ω2
k keep being present, albeit becoming shallower and the violation of

the adiabaticity condition on the sides of these dimples becomes milder with

time, see Figure 5.13(a). On the other hand, for k < mχ, Ω2
k tends toward
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(a) (b)

Figure 5.13: Same as Figure 5.7, but now the cosmic expansion is included.
Clearly, the tachyonic dimples become shallower with time. They even go away
completely within a very few φ oscillations for the case of heavy ALPs.

larger positive values, i.e. toward its maximum value which is m2
χ. Thus, the

tachyonic dimples, which are becoming shallower with time, disappear in a very

few φ oscillations; see Figure 5.13(b). Consequently, after a few φ oscillations, the

adiabaticity condition is no longer violated. Therefore, one would expect that the

non-perturbative excitation of modes with k>mχ last longer than that for modes

with k<mχ. This renders the non-perturbative particle production in the latter

case less efficient, which can be also seen from Figs. (5.14) and (5.16) that show

the time evolution of ρk for k >mχ and k <mχ, respectively, where Φi/Λ = 20

and mφ = 1013 GeV. For the latter case, the particle production ceases being

efficient roughly after the first φ oscillation whereas it keeps being significant

roughly till the end of the third φ oscillation for the former case. Now we proceed

to calculate the ρχ for heavy ALPs (mχ>mφ) taking into account the effect of

expansion. In Figure 5.17, we show the ratio of the energy density of ALPs with

mχ=2mφ to that of φ particles. It is evident that particle creation is less efficient

for heavy ALPs as compared to light ones. This is because of the smallness of
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Figure 5.14: Same as Figure 5.10 but now the cosmic expansion is taken into
account.

the window for the more efficient non-perturbative production of modes with

momenta k > mχ,mφ (i.e. mχ < k . mφΦi/Λ with mχ & mφ) in contrast to

the case mχ < mφ. Therefore, in order for the non-perturbative production of

heavy ALPs to be efficient, a larger Φi/Λ is required; see Figure 5.18 below. For

instance, when mχ = 3mφ and mφ = 1013 GeV, most of the condensate’s energy

can be transferred to the χ field within few oscillations of the scalar condensate

φ provided that Φi/Λ & 45. Heavier ALPs require even larger values of Φi/Λ.

In Figure 5.18, we show a plot of the maximum energy density of χ field to

the redshifted initial energy density of the scalar condensate as a function of

the ratio Φi/Λ. The dashed and solid curves correspond to mφ = 1010 GeV and

mφ = 1013 GeV, respectively. Here the black curves are for light ALPs whereas

the red and blue curves are for heavy ALPs (for mχ = 2mφ and mχ = 3mφ,

respectively). One can easily see the difference in efficiency between the two

cases. It is also clear that the ratio Φi/Λ being�1 is crucial for efficient particle

creation.
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Figure 5.15: The time evolution of ρχ/(ρφ,ia
−3) for light ALPs (mχ�mφ) where

mφ is fixed to 1013 GeV, Φi/Λ=20 and the effect of cosmic expansion is taken into
account.

5.4 Conclusion

In this chapter, we have considered the non-perturbative production of ALPs

during the coherent oscillations of a scalar condensate with mass mφ. ALPs

couple only derivatively to other fields including the inflaton or any moduli field.

To illustrate our point, we focused on the dimension-six operator: φ2(∂χ)2/2Λ2.

We have shown that there is no significant non-perturbative production of ALPs

when Φi/Λ . 1. Nevertheless, when Φi/Λ�1, the non-perturbative excitation of

ALPs can be significant. In this case, ALPs with masses in the range 0–mφΦi/Λ

can be copiously produced via non-perturbative effect. If Φi/Λ is sufficiently large

(Φi/Λ& 26 for mχ�mφ, Φi/Λ& 33 for mχ = 2mφ and Φi/Λ& 45 for mχ = 3mφ

when mφ = 1013 GeV, or Φi/Λ& 40 for mχ�mφ, Φi/Λ& 48 for mχ = 2mφ and

Φi/Λ&66 for mχ=3mφ when mφ=1010 GeV ) most of the energy density of the
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Figure 5.16: The time evolution of ρk for mχ = 4mφ � k where the effect of
cosmic expansion is included.

scalar condensate can be drained as excitations of the χ field 1.

Thus, irrespective of the scalar condensate being of inflatons or moduli, these

non-perturbative effects could cause an alarming problem for ALPs-dominated

Universe, as it would lead to a significant departure from the Standard Model

cosmology and could spoil the success of BBN, unless the ALPs are unstable and

decay sufficiently early before the era of BBN 2. Moreover, if χ is stable enough

to be DM, one can show that ALPs with a wide mass range can overclose the

universe. Only in a very fine-tuned region of the parameter space can one match

the observed DM abundance and the CMB constraint on the effective number of

1In such a case, the problem becomes non-linear due to the mode-mode interactions and
full numerical simulations are needed. One also has to consider the couplings of the scalar
condensate to other fields.

2In principle, ALPs can also couple to other fields allowing their decay to lighter species.
For instance, ALPs can couple to gauge bosons or fermions via the operators: ξ1χFµν F̃

µν/Λ
and ξ2∂

µχψ̄γµγ5ψ/Λ which respectively lead to the following decay rates: Γχ∼ ξ2
1m

3
χ/Λ

2 and
Γχ ∼ ξ2

2m
2
ψmχ/Λ

2 in the χ rest frame. These already slow decay rates are even slower in the
cosmic frame for light ALPs due to the time dilation effect.
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Figure 5.17: The time evolution of (ρχ/ρφ,ia
−3) for Φi/Λ = 20 and mχ = 2mφ,

where mφ=1013 GeV. Here the cosmic expansion is included.

relativistic species, Neff = 3.15+0.41
−0.40 [13]. These pieces of information can be used

to constrain the ALP’s parameter space.

To conclude, the most important aspect of our analysis suggests that ALPs

can efficiently be produced in the early Universe during the coherent oscillations

of the inflaton or a moduli condensate provided that Φi/Λ�1. The summary plot

is Figure 5.18, which shows the fraction of the condensate’s energy density that

gets transferred into ALPs as a fuction of Φi/Λ and the mass of the condensate.

We note, however, that in many scenarios Φi/Λ < 1, in which case the non-

perturbative production of ALPs is utterly inefficient.
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5.4 Conclusion

Figure 5.18: The above figure shows ρχ/(ρφ,ia
−3) as a function of ratio Φi/Λ for

mφ = 1010 GeV (dashed curves) and mφ = 1013 GeV (solid curves). The black
curves correspond to light ALPs whereas the red and blue curves are for heavy
ALPs. Here the effect of cosmic expansion is taken into account.
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Chapter 6

Conclusions

There is overwhelming evidence in support of the existence of DM in our Universe.

It is most likely that DM is of particle nature. However, the origin and nature of

the DM particles remain a mystery. There are already tremendous experimental

efforts in search of DM. On the theory side, there are plenty of DM candidates,

most of which belong to extensions of the SM (or new theories) which were

proposed to address other problems, such as axions which arise in the PQ solution

to the strong CP problem. Some of these candidates could be on the verge of

discovery like WIMPs which may get discovered in the next few years.

In this thesis, we have investigated some of the DM production mechanisms

in the context of inflationary cosmology. We have also utilised the current exper-

imental and theoretical bounds to constrain the DM parameter space.

In Chapter 2, we presented a simple model-independent investigation of the

parameter space for DM production after inflation. We showed that a big chunk

of the parameter space is ruled out by the observational upper bound on the DM

abundance. We identified the region of the parameter space corresponding to

WIMP DM and the freeze-out scenario in general. We showed that the abundance

of DM in this region arises from the annihilations of the cosmic bath particles and

that it is insensitive to the initial conditions. Including the current experimental

and theoretical bounds we show that only small parts of this region are still viable.

Thus, with the current and near future experimental sensitivity, WIMP DM will

soon be either discovered or ruled out.
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We also identified the region of the parameter space corresponding to FIMP

DM and the freeze-in scenario in general, which happens for much lower DM

interaction rates with the thermal bath as compared to the freeze-out scenario.

As a result, frozen-in DM particles were never part of the cosmic bath in contrast

to frozen-out DM particles. We showed that this region of the parameter space

is mostly unexplored territory. We showed that the abundance of DM in this

region is sensitive to the initial conditions set by inflaton decay, despite receiving

a contribution from the annihilations of the cosmic bath particles which can

dominate the DM abundance.

For even smaller DM interaction rate with the bath particles, DM has to be

produced mostly non-thermally from inflaton decay in order to make the observed

DM abundance. We explored the parameter space for the non-thermal DM pro-

duction. We showed that for even a small DM branching fraction, the decay of

inflatons could overproduce DM particles. We also identified the regions of the

non-thermal DM parameter space corresponding to cold, warm and hot DM.

In Chapter 3, we focused on the unexplored freeze-in region of the parameter

space. We showed that a DM species whose interactions with the cosmic bath is

mediated via a heavy (scalar or vector) particle makes a natural FIMP candidate.

The role of the mediator can be played by the inflaton itself; however in this case,

the non-thermal contribution from inflaton decay dominates the DM abundance.

Therefore, another massive species is needed. We have presented a scan of the

parameter space for the production of such FIMP DM species. We also showed

that for such FIMP DM species and non-thermally produced DM as well, a con-

nection to the inflationary observables (in particular to the tensor-to-scalar ratio)

can be established. Such a connection could provide a handle on the ultraviolet

freeze-in DM scenario.

We then focused on one of the very popular DM candidates, the axion, in

Chapter 4. The dominant contribution to axion abundance comes from what

is known as the misalignment mechanism. We showed that if the PQ symme-

try, whose excitations along the massless angular direction represent the axion,

gets spontaneously broken before or during the early stages of inflation, ultra-

relativistic axions can be produced abundantly. This is because the massive
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radial PQ field can get displaced from the minimum of the potential due to hav-

ing a mass smaller than the Hubble parameter during inflation or having a direct

coupling to the inflaton. The radial PQ field later decays dominantly to ultra-

relativistic axions which contribute to the effective number of relativistic degrees

of freedom. The latter is constrained by cosmological observations allowing us

to place bounds on the axion parameter space and the reheating temperature as

well. We also showed the current observational and theoretical bounds.

We finally considered the possible non-perturbative production of ALPs in

Chapter 5. ALPs couple to other fields including the inflaton or moduli only via

non-renormalisable operators suppressed by some mass scale. We showed that

if ALPs do couple to the inflaton or moduli, they can be abundantly produced

during the coherent oscillations of inflaton/moduli via non-perturbative effects

provided that the initial amplitude of the inflaton/moduli oscillations is much

larger than the associated mass scale. On the other hand, if the amplitude of the

oscillations is below the associated mass scale, the non-perturbative production

of ALPs is completely inefficient.

To sum up, we have presented some model- independent and dependent

bounds on certain DM scenarios. We also investigated some possible methods

to constrain other DM candidates which we intend to utilise to constrain the

parameter spaces of these candidates in future work.
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Appendix A

Boltzmann equation for dark

matter

The evolution of the phase space distribution of a certain particles species, χ,

in a fluid of multiple constituents χ,A1, A2, . . . , B1, B2, . . . is described by the

Boltzmann equation which in a general curved space-time takes the form (see

e.g. [574, 575])

L̂[fχ] ≡ dfχ
dλ

=
dxα

dλ

∂fχ
∂xα

+
dPα

χ

dλ

∂fχ
∂Pα

χ

= Pα
χ

∂fχ
∂xα
− ΓαµνP

µ
χP

ν
χ

∂fχ
∂Pα

χ

=
1

2
Ĉ[fχ, fA1 , fA2 , . . . , fB1 , fB2 , . . . ] , (A.1)

where L̂ and Ĉ respectively denote the Liouville and Collision operators acting

on the phase space distribution of that species, fχ ≡ fχ(xα(λ), Pα
χ (λ)), and λ

is an affine parameter characterising the world-line along which we consider the

variation of fχ. Here we made the assumption that between collisions the χ par-

ticles are only acted upon gravitationally and hence we substituted the geodesic

equation: dPα
χ /dλ+ΓαµνP

µ
χP

ν
χ =0, where Pα

χ =dxα/dλ, into Eq. (A.1) above.

For the homogeneous and isotropic FRLW background, the phase space den-

sity is also spatially homogeneous and isotropic, i.e. fχ≡fχ(pχ, t) where pχ≡|pχ|,
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in which case the Boltzmann equation [Eq. (A.1)] simplifies to (see e.g. [574])

∂fχ
∂t
−Hpχ

∂fχ
∂pχ

=
1

2Eχ(pχ)
Ĉ[fχ, fA1 , fA2 , . . . , fB1 , fB2 , . . . ] . (A.2)

Integrating over the momentum space of the χ particle species [gχ
∫

dp3
χ/(2π)3],

we obtain the following Boltzmann equation governing the time evolution of the

average number density of χ particles:

ṅχ + 3Hnχ =

∫
˜dpχ Ĉ[fχ, fa, . . . , fi, fj, . . . ]

=
∑
χA↔B

∫
˜dpχ ˜dpA ˜dpB(2π)4δ(4)(Pχ+PA−PB) {|M|2B→χAfB1fB2 . . .

×(1±fχ)(1±fA1). . .−|M|2χA→BfχfA1 . . .(1±fB1)(1±fB2). . .} ,

(A.3)

where d̃pi ≡ gid3p/[(2π)32Ei(pi)] with gi being the number of internal d.o.f. of

the ith particle species, ˜dpA≡
∏

i
˜dpAi ,

˜dpB≡
∏

j
˜dpBj , PA≡

∑
i PAi , PB≡

∑
jPBj ,

A ≡ {A1, A2, . . . } and B ≡ {B1, B2, . . . }. Here the sum,
∑

χA↔B, runs over all

the allowed processes and the factors (1± fi) account for the quantum statistical

effects, namely Pauli blocking [(−) for fermions] and stimulated emission [(+) for

bosons], and |M|2 is the transition amplitude averaged over the internal d.o.f. of

both the initial and final states with the appropriate symmetry factors included.

In Eq. (A.3), we used the definition of the average number density given by

ni(t) =

∫
gid

3pi
(2π)3

fi(p, t) , (A.4)

with fi being the phase space distribution of the species i where fi,eq = [exp[(Ei−
µi)/T ]∓ 1]−1 is the corresponding equilibrium distribution [(+) for fermions and

(−) for bosons].

In full generality, the Boltzmann equations are a set of coupled partial integro-

differential equations which can be impossible to solve. However, the Boltzmann

equations can be greatly simplified via some physical assumptions. First ne-
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A.1 Non-thermal dark matter

glecting CP-violation, we have |M|2B→χA = |M|2χA→B = |M|2 1. Further in the

dilute limit – which is a good approximation for many cosmological problems

– the quantum statistical effects can be neglected and one can use Boltzmann

distribution, fi=exp[(−Ei−µi)/T ], instead of the Fermi-Dirac and Bose-Einstein

counterparts. Consequently, Eq. (A.3) simplifies to

ṅχ + 3Hnχ =
∑
χA↔B

∫
˜dpχ ˜dpA ˜dpB(2π)4δ(4)(Pχ+PA−PB) |M|2

×{fB1fB2 . . .−fχfA1 . . .} . (A.5)

From Eq. (A.5), it is clear that the average χ number density depends on the

expansion rate of the Universe and the collisional integral on the right hand side.

The latter may include scattering and decay processes. In what follows, we will

assume that the χ species is DM; as a result, we will not consider the decay of χ

as DM should be stable on time scale larger than the age of the Universe. Let us

now consider the production of DM via the decay and scattering of other particle

species.

A.1 Non-thermal dark matter

Dark matter can be produced non-thermally in the decay of a heavier unstable

species, a 2. From Eq. (A.5), the Boltzmann equation governing the time evolu-

tion of the daughter DM particles, χ, produced in the decay process, a → χψ,

can be written as

ṅχ+3Hnχ=

∫
˜dpa ˜dpχ ˜dpψ(2π)4δ(4)(Pa−Pχ−Pψ) |M|2{fa−fχfψ}

= Γ(a→χψ)na−
∫

˜dpa ˜dpχ ˜dpψ(2π)4δ(4)(Pa−Pχ−Pψ) |M|2fχfψ ,

(A.6)

1CP violating interactions – if present – play a crucial role in baryogenesis (see e.g. [56])
and leptogenesis (see e.g. [486]). They are also important for the asymmetric DM scenario (see
e.g. [576]).

2Other non-thermal DM production mechanism exist. For example axions or axion-like
particles can be produced via the misalignment mechanism [250, 509, 510, 577].
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A.2 Thermally produced dark matter

where in the second line of Eq. (A.6), we used the standard expression for the

two-body decay rate (see e.g. [45]),

Γ(a→χψ) =
1

2Ea

∫
˜dpχ ˜dpψ(2π)4δ(4)(Pa−Pχ−Pψ) |M|2

=
1

2ma

∫
d3pχ

(2π)32Eχ

d3pψ
(2π)32Eψ

(2π)4δ(
√
s−Eχ−Eψ)δ(3)(pχ+pψ) |M|2

=
1

8ma

∫
p2dp d cos θ dφ

(2π)3EχEψ

(2π)δ(p−p
f
)|M|2

(p/Eχ)+(p/Eψ)

∣∣∣∣
Ei=(m2

i+p
2)1/2

=
p
f

8πma

|M|2

Eχ+Eψ

∣∣∣∣
Ei=(m2

i+p
2
f )1/2

=
p
f

8πm2
a

|M|2 , (A.7)

where we evaluated the expression in the CM frame. Here p = pχ = pψ, p
f

=

{[s−(mχ+mψ)2][s−(mχ−mψ)2]}1/2/(2s1/2), Eχ=(s1/2/2)(1+m2
χ/s−m2

ψ/s) and

Eψ=(s1/2/2)(1+m2
ψ/s−m2

χ/s). In cases of interest to us, the inverse decay process

is either exponentially suppressed (if ψ and/or χ is a part of a thermal bath with

temperature much below the mass of a) or even kinematically blocked (if neither

of the daughter particles is a part of a thermal bath). As a result, Eq. (A.6)

reduces to

ṅχ + 3Hnχ=Γ(a→χψ)na = B(a→χψ) Γa na , (A.8)

where Γa denotes the total decay rate of particle species a and B(a→ χψ) ≡
Γ(a→χψ)/Γa is its branching fraction to the decay channel a→χψ. For a decay

process that results in the production of nχ particles, a factor n should be added

to the right hand side of Eq. (A.8).

A.2 Thermally produced dark matter

Dark matter can also be produced via inelastic scatterings of the thermal bath

particles, ab→ χψ in which case [with the help of Eq. (A.5)], the Boltzmann
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A.2 Thermally produced dark matter

equation governing the abundance of DM particles, χ, can be written as

ṅχ + 3Hnχ =
∑
ab↔χψ

∫
˜dpad̃pb ˜dpχ ˜dpψ(2π)4δ(4)(Pa+ Pb−Pχ−Pψ) |M|2

×{fafb−fχfψ} . (A.9)

Let us consider the following cases.

A.2.1 Case 1: Freeze-out of dark matter

The DM particles are initially in thermal equilibrium with the cosmic thermal

bath. As the Universe expands, the number densities of different species dilute

and hence the interaction rates decrease with time. Once the interaction rate

of a particle species with the thermal bath becomes smaller than the expansion

rate, the species decouples from the thermal bath. Such a species is said to be

frozen-out. For concreteness, let us consider the case of fermionic DM, χ (χ̄), that

interact with the cosmic bath fermions, a (ā), aā↔χχ̄ in which case Eq. (A.9)

can be re-written as

ṅχ+3Hnχ =
∑
aā↔χχ̄

∫
˜dpχd̃pχ̄ ˜dpad̃pā(2π)4δ(4)(Pa+Pb−Pχ−Pψ) |M|2{fa,eqfā,eq−fχfχ̄}

=
∑
aā↔χχ̄

∫
˜dpχd̃pχ̄

(
e−(µa+µā)/T− nχnχ̄

nχ,eqnχ̄,eq

)
e−(Eχ+Eχ̄)/T

×
∫

˜dpad̃pā(2π)4δ(4)(Pa+ Pā−Pχ−Pχ̄) |M|2 , (A.10)

where the δ-function imposes energy conservation, Ea+Eā =Eχ+Eχ̄. Here we

assumed that the χ particles are in kinetic equilibrium with the thermal bath

and hence substituted fχ(χ̄) =
nχ(χ̄)

nχ(χ̄),eq
e−Eχ(χ̄)/T in the second line of Eq. (A.10)

(see e.g. [236, 578]). Note that µa + µā=µχ + µχ̄=0 (provided that the reaction

aā→ γγ takes place at sufficiently fast rate), na = nā and nχ = nχ̄ for the case

of negligible CP asymmetry under consideration. Further using the standard

expression for the total unpolarised cross-section (see e.g. [45, 236]), one can

write:
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A.2 Thermally produced dark matter

∫
˜dpad̃pā(2π)4δ(4)(Pa+ Pā−Pχ−Pχ̄) |M|2 = 2Eχ2Eχ̄σ(χχ̄→aā)vMol , (A.11)

where vMol =[(P µ
χPχ̄µ)2−m4

χ]1/2/(EχEχ̄)=
√

(vχ−vχ̄)2−(vχ × vχ̄)2 is the Møller

velocity. Substituting into Eq. (A.10), we have

ṅχ + 3Hnχ = (n2
χ,eq−n2

χ)
1

n2
χ,eq

∑
χχ̄→aā

∫
gχd3pχ̄
(2π)3

gχ̄d3pχ̄
(2π)3

fχ,eqfχ̄,eq σ(χχ̄→aā)vMol

=
∑
χχ̄→aā

〈σ(χχ̄→aā)vMol〉(nχ,eqnχ̄,eq − nχnχ̄)

= 〈σtotvMol〉(n2
χ,eq − n2

χ) , (A.12)

with

〈σtotvMol〉 =
1

n2
χ,eq

∑
χχ̄→aā

∫
gχd3pχ̄
(2π)3

gχ̄d3pχ̄
(2π)3

e−(Eχ+Eχ̄)/T σ(χχ̄→aā)vMol

=
1

n2
χ,eq

∑
χχ̄→aā

g2
χ

8π4

∫ 1

−1

d cos θ

∫ ∞
mχ

pχEχdEχ

∫ ∞
mχ

pχ̄Eχ̄dEχ̄ e
−(Eχ+Eχ̄)/T σ(χχ̄→aā)vMol ,

(A.13)

being the thermal average of the total (unpolarised) cross-section times the Møller

velocity, vMol = [(P µ
χPχ̄µ)2−m4

χ]1/2/(EχEχ̄) = [s(s−4m2
χ)]1/2/(2EχEχ̄). Follow-

ing [236], we change the integration variables E1, E2 and θ to E+ ≡ Eχ+Eχ̄,

E− ≡ Eχ−Eχ̄ and the CM squared energy, s = 2m2
a + 2EaEā − 2papā cos θ.

Eq. (A.13) can be re-written as

〈σtotvMol〉 =
1

n2
χ,eq

∑
χχ̄→aā

g2
χ

64π4

∫ ∞
smin

ds[s(s− 4m2
χ)]1/2σ(χχ̄→aā)

∫ ∞
√
s

dE+e
−E+/T

∫ E
(+)
−

E
(−)
−

dE−

=
1

n2
χ,eq

∑
χχ̄→aā

g2
χT

32π4

∫ ∞
smin

ds s1/2(s− 4m2
χ)K1(s1/2/T )σ(χχ̄→aā) , (A.14)

where smin =max(4m2
a, 4m

2
χ), E

(±)
− ≡±[s−1(s−4m2

χ)(E2
+−s)]1/2 and Kn(x) is the

nth-order modified Bessel function of the second kind. Further, one can express

nχ,eq as
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A.2 Thermally produced dark matter

nχ,eq = gχ

∫
d3pχ̄
(2π)3

e−Eχ/T =
gχ
2π2

∫ ∞
mχ

dEχEχ

√
E2
χ −m2

χ e
−Eχ/T =

gχ
2π2

m2
χTK2(mχ/T ) .

(A.15)

Using the above expression for the equilibrium number denstity, Eq. (A.14) now

reads [236]

〈σtotvMol〉 =
1

8m4
χTK

2
2(mχ/T )

∑
χχ̄→aā

∫ ∞
smin

ds s1/2(s− 4m2
χ)K1(s1/2/T )σ(χχ̄→aā) ,

(A.16)

Another case of interest to us is when a bosonic DM species, χ, initially

in thermal equilibrium with the cosmic bath through the interactions χa↔ ij,

freezes-out. From Eqs. (A.10)-(A.12), the Boltzmann equation governing the

number density of χ particles can be written as

ṅχ + 3Hnχ = Γχ(nχ,eq−nχ) , (A.17)

where

Γχ =
1

nχ,eq

∑
χa→ij

∫
˜dpχ ˜dpafχ,eqfa,eq 2Eχ2Eaσ(χa→ ij)vMol , (A.18)

is the average interaction rate with vMol =[(P µ
χPaµ)2−m2

χm
2
a]

1/2/(EχEa).

A.2.2 Case 2: Freeze-in of dark matter

Let us now consider the case where DM is feebly interacting with the thermal

bath such that it does not reach kinetic nor chemical equilibrium with the bath,

i.e. the DM interaction rate with the thermal bath is always smaller than the

expansion rate. Nevertheless, the DM interaction rate can still be large enough

to produce DM with the observed abundance. For concreteness, we will again

focus on the case of fermionic DM, χ(χ̄), produced from the annihilation of the

bath fermions, aā→χχ̄, in which case the DM number density evolves according
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A.2 Thermally produced dark matter

to the Boltzmann equation [see Eq. (A.9)],

ṅχ + 3Hnχ =
∑
aā→χχ̄

〈σ(aā→χχ̄)vMol〉na,eqnā,eq = γχ , (A.19)

with [see Eqs. (A.13) and (A.14)]

γχ =
∑
aā→χχ̄

∫
˜dpad̃pā ˜dpχd̃pχ̄(2π)4δ(4)(Pa+ Pā−Pχ−Pχ̄) |M|2fa,eqfā,eq

=
∑
aā→χχ̄

∫
gad

3pa
(2π)3

gād
3pā

(2π)3
e−(Ea+Eā)/T σ(aā→χχ̄)vMol

=
∑
aā→χχ̄

g2
a

64π4

∫ ∞
smin

ds[s(s− 4m2
a)]

1/2σ(aā→χχ̄)

∫ ∞
√
s

dE+e
−E+/T

∫ E
(+)
−

E
(−)
−

dE− ,

(A.20)

where vMol =[(P µ
a Pāµ)2−m4

a]
1/2/(EaEā)=[s(s−4m2

a)]
1/2/(2EaEā), smin =max(4m2

a,

4m2
χ), and E

(±)
− ≡±[s−1(s − 4m2

a)(E
2
+ − s)]1/2. Again for the CP-invariant case

under consideration, µa+µā= 0 (provided that the reaction aā→γγ takes place

at sufficiently fast rate). Here we assume that the DM abundance is initially neg-

ligible and hence fχfχ̄ � fχ,eqfχ̄,eq (i.e. fχfχ̄ � fa,eqfā,eq) as the DM interaction

with the cosmic bath is sufficiently small such that it does not reach thermal

equilibrium with the bath. In the second line of Eq. (A.20), we used the standard

expression for the unpolarised cross-section [see Eq. (A.11)]. Carrying out the

integration over E− and E+, one obtains

γχ =
∑
aā→χχ̄

〈σ(aā→χχ̄)vMol〉n2
a,eq=

∑
aā→χχ̄

g2
aT

32π4

∫ ∞
smin

ds s1/2(s−4m2
a)K1(s1/2/T )σ(aā→χχ̄) .

(A.21)
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Appendix B

Axion Model

In this appendix, we briefly review the most widely discussed viable PQ mech-

anisms, namely the Kim-Shifman-Vainshtein-Zakharov (KVSZ) model [505, 506]

and the Dine-Fischler-Srednicki-Zhitnisky (DFSZ) model [507, 508].

B.1 KSVZ-like models

In the KSVZ-like models, a new complex scalar singlet S (PQ field) and heavy

quarks Qj (at least one) are added to the SM. The PQ field S couples to the

extra heavy quarks Qj via the vertices

L ⊃ −hj(Q̄j
LSQ

j
R + h.c.) , (B.1)

where for simplicity we assumed real diagonal Yukawa coupling matrix. Under

U(1)PQ, S and Qj transform as Qj→ exp(iγ5α)Qj and S→ exp(−2iα)S, respec-

tively, and all the other fields are invariant. The PQ symmetry gets spontaneously

broken when S develops a VEV, 〈|S|〉=v
PQ
/
√

2, due to a Mexican-hat potential

which gives mass to the extra heavy quarks, mQj = hjvPQ
/
√

2. Moreover, the

following couplings of the PQ radial field σ and the angular field χ (axion) to the

173



B.2 DFSZ-like models

heavy quarks arise,

L ⊃ −mQj

σ̃

v
PQ

Q̄jQj +
1

2

∂µχ

v
PQ

Q̄jγµγ5Qj , (B.2)

where σ̃ = σ − v
PQ

. Note that there are no couplings between the axion and the

SM quarks and leptons at tree-level since the SM fields do not carry PQ charges.

Assuming that there is at least one heavy quark Q with mQ<mσ/2, the decay

rate of the σ into the heavy quark sector is given by

Γ(σ→Q̄Q) '
3m2

Qmσ

8πv2
PQ

(
1−

4m2
Q

m2
σ

)3/2
, (B.3)

where Q is the heaviest of the extra quarks with mQ < mσ/2. Equation (B.3)

has to be multiplied by a factor n if we have instead n nearly degenerate quarks.

Here for concreteness, we assumed that Q is a colour triplet.

B.2 DFSZ-like models

In the DFSZ-like models, the original PQ model which contains two Higgs dou-

blets, Φ1,2, is augmented with a complex scalar singlet, S (PQ field) which

carries PQ charge and transforms as S → eiαXSS under the U(1)PQ phase ro-

tation. Similarly, the two Higgs doublets, the SM quarks, and the SM charged

leptons all carry PQ charges and transform non-trivially under the U(1)PQ group:

Φ1,2→ eiαX1,2Φ1,2, u, d→ eiαγ5Xu,d u, d and l→ eiαγ5Xl l. The PQ field couples to

the two Higgs doublets via the following vertices:

L ⊃−|S|2(λ1S|Φ1|2 + λ2S|Φ2|2)− λS12[S2Φ1εΦ2 +S∗2(Φ1εΦ2)∗] , (B.4)

where ε is the totally anti-symmetric tensor. Note that although the SM fermions

carry U(1)PQ charges, they do not couple to the S field via re-normalisable oper-

ators. Once the PQ symmetry gets broken by the VEV of the PQ field, 〈|S|〉=
v

PQ
/
√

2�v
EW

, the two Higgs doublets acquire extra mass terms (λ1Sv
2
PQ
/2)|Φ1|2
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and (λ2Sv
2
PQ
/2)|Φ2|2, respectively. Here for simplicity, we assume that the mixing

term is sufficiently small, λS12� λ1S, λ2S. Later on the two Higgs doublets ac-

quire VEVs, v1,2, breaking the SU(2)L⊗U(1)Y gauge symmetry. The EW VEV

is then v
EW

={v2
1 +v2

2−[λ1S/(2λ1)+λ2S/(2λ2)] v2
PQ
}1/2 where λ1,2 are respectively

the quartic couplings of Φ1,2. Since v
PQ
�v

EW
, the PQ field couplings to both the

Higgs doublets have to be very small, λ1S, λ2S, λS12<(v
EW
/v

PQ
)2 [536]. Above the

EW scale, the PQ radial field, σ, couples to the Higgs doublets via the vertices:

L ⊃ − λ1SvPQ
σ̃|Φ1|2 − λ2SvPQ

σ̃|Φ2|2 − λS12vPQ
σ̃Φ1εΦ2

− λ1S

2
σ̃2|Φ1|2 −

λ2S

2
σ̃2|Φ2|2 −

λS12

2
σ̃2Φ1εΦ2 , (B.5)

where σ̃=σ− v
PQ

. The decay rates of σ into these fields are respectively given by

Γ(σ→2Φ1,2) '
λ2
S1,2

8πmσ

v2
PQ
'

λ2
S1,2

8π
√

2λ
v

PQ
, (B.6)

where for simplicity we assumed that each Higgs doublet contains two complex

fields. Note that there is also a cross coupling, which leads to a similar decay rate

of σ.
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