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A State Transition MIP Formulation for the Unit
Commitment Problem

Semih Atakan, Guglielmo Lulli, Suvrajeet Sen, Member

Abstract—In this paper, we present the state-transition formu-
lation for the unit commitment (UC) problem. This formulation
uses new decision variables that capture the state transitions
of the generators, instead of their on/off statuses. We show
that this new approach produces a formulation which naturally
includes valid inequalities, commonly used to strengthen other
formulations. We demonstrate the performance of the state-
transition formulation and observe that it leads to improved
solution times especially in longer time-horizon instances. As an
important consequence, the new formulation allows us to solve
realistic instances in less than 12 minutes on an ordinary desktop
PC, leading to a speed-up of a factor of almost two, in comparison
to the nearest contender. Finally, we demonstrate the value of
considering longer planning horizons in UC problems.

Index Terms—Mixed-integer linear programming, unit com-
mitment

I. INTRODUCTION

Every day regional electricity networks deliver millions of
kilowatt-hours of energy from generating units to consumers.
These production requirements vary by season, day-of-the
week, and hour. As a result, efficient scheduling of electricity
production continues to attract significant attention from both
industry and academia in the form of the so-called unit
commitment (UC) problem. Such a model must recommend
which generators to use, and how much they should produce
so that demand over a planning horizon is met, while obeying
certain operating rules, maintenance schedules, and in some
instances, transmission capacity requirements. The goal is to
obtain the most cost-effective operating schedule over a large
set of generators, and ensure that the demand is completely
fulfilled during the planning horizon.

With the liberalization of the energy industry, the introduc-
tion of energy market concepts and privatization, the role of
the UC models has changed [1]. UC problems are solved
by a variety of constituents of the electric power industry,
each for a different purpose. A specific utility may solve
the UC problem for the purposes of planning production
within their delivery area. Their costs also helps them to
place bids in the Independent System Operator (ISO) exchange
market. On the other hand, the ISO solves its UC model
to decide which bids to accept and to set prices that will
be paid to the suppliers. These problems are much larger
because they involve multiple suppliers, and with a number
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of generating units in the order of thousands. Providing high-
quality solutions to these realistic problems is computationally
very demanding but has the potential for significant reduction
in costs. A 2011 report of the Federal Energy Regulatory
Commission (FERC) suggests that savings approaching a $100
million annually can be expected by replacing heuristics with
methods that seek optimal solutions (see [2]). Consequently,
developing solution methods that can achieve high-quality
solutions in a short amount of time has been the focus of
significant research over the last several decades.

Many optimization methods have been proposed to solve
the UC problem. For example, we mention branch-and-
bound methods [3], dynamic programming approaches [4], La-
grangian relaxation methods [5], [6], and unit decommitment
[7], among others. For a detailed review, the reader is referred
to [8], [9]. In recent years, mixed-integer programming (MIP)
has emerged as a popular tool for solving UC problems. A
discussion on its merits and drawbacks (with respect to La-
grangian relaxation) were given in [10]. The popularity of MIP
led to significant advances in the mathematical description
of specific features of the UC problem. For instance, [11]
have identified the convex hull for a minimum up/downtime
polytope, [12] provided the convex hull of generation lim-
its and this minimum up/downtime polytope, [13] provided
strengthened inequalities of a ramping polytope, and [14]
provided the convex hull of a two-period ramping polytope.

Nevertheless, it is well known that in general, mixed-integer
programs are NP-hard, and solving problems of realistic size,
involving thousands of generators, over several time periods,
remains challenging. Moreover, the introduction of variable
energy resources (e.g., wind and solar) leads to circumstances
in which predictions from deterministic models are subject to
significant errors. In order to accommodate such challenges,
there have been recommendations that UC models should be
solved using either the stochastic or the robust UC formula-
tions (see, e.g., [15] and [16], respectively). In either case, the
speed with which large scale deterministic UC models can be
solved becomes important.

In this paper, we study MIP formulations of the UC problem
with components that are of critical interest, although our
study does not consider transmission networks. The contri-
bution of our study is threefold. First, we develop a new
formulation using a novel set of state-transition variables.
These variables are named after their role in capturing the
transition of generator states between consecutive time peri-
ods. They introduce a network sub-structure into the problem
formulation. As observed originally by [17], and more recently
by [18], this structure is much more amenable to LP-based
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solution methods, leading to faster solution times without mod-
ifying the underlying optimization methodologies. Second, we
show that the use of state-transition variables naturally lead to
certain facet-defining constraints in our problem-of-interest.
This contrasts with the majority of other formulations available
in the literature which often require the addition of further in-
equalities in order to generate the same strong (facet-defining)
valid inequalities. Finally, we perform a computational study
to demonstrate the behaviors of the new, and two relatively
recent and well regarded benchmark formulations. This study
sheds further light on the classes of instances for which the
new formulation outperforms the contenders.

II. FORMULATING PRODUCTION AND OPERATIONS IN UNIT
COMMITMENT

Beginning with the MIP formulation of [19], a plethora of
mathematical formulations have been proposed in the literature
to solve instances of the UC problem. These have extended
the work of Garver in several directions. The mathematical
modeling has been enriched with many additional aspects of
the problem, and made it more realistic. For instance, several
operational and technological restrictions have been included
in the UC formulations, and significant efforts have been
made in improving the formulation of operating costs. Other
objectives have also been considered, such as the minimization
of no load or turn off costs, maximization of social welfare, or
maximization of the profit of generator companies (see [20]).
In addition to refining the mathematical modeling, a lot of
academic research in this field has been devoted to developing
strong MIP formulations, so that real-scale instances of the
problem can be handled with advanced MIP solvers.

As considered in [13] and [21], the core requirements of a
UC problem involves the following components:

• minimum and maximum production restrictions,
• start up / shut down limits, and ramping restrictions,
• minimum up/downtime requirements,
• demand and reserve requirements (modeled as stand-by

capacities)
• start up costs (defined as step-functions of the generators’

idle times) and production costs (defined as piecewise-
linear convex functions of the production amounts)

We adopt this core setup although other advanced requirements
(e.g., transmission, power flow, line flow, and voltage limits,
etc) are typically accommodated in realistic applications [22].
The purpose of our study will be to compare three alternative
MIP formulations, which consider the above listed modeling
considerations of a UC problem.

To begin our discussion, we present a prototypical MIP
formulation of this UC model. Given a set of generators G, and
hourly discretized time periods T , we introduce the following
decision variables that are ubiquitous in the literature:

xg,t: State variable (1 if g is operational at time t, 0
otherwise),

sg,t / zg,t: Start up / shut down variable (1 if g is turned
on / off at time t, 0 otherwise),

pg,t: Amount of production by g at time t.

The state variables are fundamental for the scheduling of
generators. The start up / shut down variables are used
to formulate the operating costs of the generators, whereas
the production variables determine the dispatch amounts. In
what follows, a vector of variables of the same type (say
xg,t, ∀g ∈ G, t ∈ T ) will be typed in bold (say x).

The objective of the mathematical formulation is to compute
a power generation plan which satisfies production require-
ments along with operational constraints. The total opera-
tional costs include both the production and the start up
costs. Both of these costs are nonlinear, in general. In our
prototypical formulation, these costs are represented with the
following (nonlinear) functions: Fg(·), for the start up costs,
and Vg(·), for the production costs. The argument of the
cost functions are respectively i- and j-dimensional vectors
xg,[t] = (xg,t−i . . . xg,t) and pg,[t] = (pg,t−j . . . pg,t), for
some i ≥ 0 and j ≥ 0. This indicates the dependency of
the costs, respectively, on the past states and the production
levels of the generator.

A prototypical formulation is given below:

min
∑
g∈G

∑
t∈T

(
Fg(xg,[t]) + Vg

(
pg,[t]

))
s.t. xg,t − xg,t−1 = sg,t − zg,t ∀g ∈ G, t ∈ T , (1a)

pg,t ≥
¯
Cgxg,t ∀g ∈ G, t ∈ T , (1b)

pg,t ≤ C̄gxg,t ∀g ∈ G, t ∈ T , (1c)∑
g∈G pg,t ≥ dt ∀t ∈ T , (1d)

(x, s, z, p) ∈ D (1e)

(x, s, z) ∈ {0, 1}3|G||T |, p ≥ 0. (1f)

Above, dt is the demand for electricity at period t, C̄g is the
maximum generation capacity and

¯
Cg is the minimum required

production amount when the generator is operational.
The constraints (1a) links the sg,t and zg,t variables to the

state variables. Indeed, these variables are completely deter-
mined once the values of x are known. They are introduced
exclusively to capture the transition of a generator between
idle and operational state, and to formulate the operating costs
of a generator. Constraints (1b) and (1c) model the lower and
upper bounds, respectively. Constraints (1d) impose that the
production levels must meet the demand for energy at any
period. Finally, constraints (1e) state that a feasible solution
must belong to the polyhedron D, which will be described in
detail in the following paragraphs.

The integrality requirements on the (s, z) variables can be
relaxed without invalidating the formulation. This observation
was exploited by [23] to formulate the UC problem with inte-
grality restrictions on x alone. However, the assumed benefit
of using considerably smaller number of binary variables does
not necessarily lead to superior computational performance, as
observed by [13]. This is due to improved formulations and
more robust MIP solvers.

Before proceeding further, we define the following notation
which will be used throughout this paper:
R̄g /

¯
Rg: Ramp-up / ramp-down limit,

S̄g /
¯
Sg: Start up / shut down limit,

UTg /DTg: Minimum uptime / downtime limit.
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The data of a typical UC instance usually obey the following
relations: C̄g ≥ R̄g ≥ S̄g ≥

¯
Cg > 0 and C̄g ≥

¯
Rg ≥

¯
Sg ≥

¯
Cg > 0, ∀g ∈ G. We assume UTg ≥ 1 and DTg ≥ 1 to avoid
cases where the generator is simultaneously turned on and off.

A. Formulating the components

The majority of the UC formulations in the literature can
be perceived as extensions of the prototypical formulation
(1). These formulations differ in the way they define oper-
ational constraints, nonlinear objective functions, and produc-
tion quantities. Nonetheless, the state of a generator is almost
unanimously determined by (x, s, z) variables, as first defined
in the seminal work of [19]. In this section, we will identify all
the components that go into modeling different considerations
in a UC problem. In the next section, we will integrate them
together into specific formulations, which correspond to the
studies of [13] and [21]. In what follows, we will allow
nonpositive indices of the decision variables to make it explicit
that a solution of the problem might depend on the past states
of the generators. In the actual implementation, we fix such
variables to their realized values according to the available
past data.

a) Formulating production quantities: An integral part
of a UC formulation is the description of feasible produc-
tion schedules that consider demand and operating reserve
requirements along with minimum/maximum production re-
strictions. In the UC literature, the predominant choice for
formulating production amounts has been through the pg,t
variables. These variables are intuitive and simple, however,
they may inadvertently introduce unneeded complexity into
an MIP formulation. In particular, the presence of minimum
production restrictions (1b) implicitly alters the continuous
nature of these variables, leading to semi-continuous variables
that must either equal 0 or lie within the range [

¯
Cg, C̄g]. To

avoid this, the following variables can be used in lieu of pg,t:
p′g,t: The production amount beyond

¯
Cg provided by gen-

erator g at time t.
This new variable only accounts for the variable portion of
production. The fixed portion of production (i.e., the minimum
production amount) is associated with the state variables as

¯
Cgxg,t. Combining these, we can form the linear mapping
pg,t → (p′g,t +

¯
Cgxg,t) which can be used to infer the

total production amount. Moreover, after applying this map-
ping throughout the formulation, one can observe that the
minimum production constraints are immediately satisfied.
Consequently, |G| × |T | constraints in (1b) can be omitted
from the formulation without sacrificing its fidelity.

The idea to treat the minimum and the variable production
amounts separately was originally considered in [19]. Over
the decades, this idea had been set aside, until the study of
[21], who provided a modern look at this representation. Along
with the use of p′g,t variables, their study provides tighter
descriptions of the production capacity restrictions which will
be presented later in this section.

We continue with formulating the operating reserves. These
requirements are stand-by capacities that must be kept ready
to provide for unplanned outages of generating units. System

operators use operating reserves to maintain system reliability
and to ensure that the supply-demand balance is achieved
seamlessly. [22] and [24] provide examples on how to for-
mulate these requirements. To demonstrate, we introduce the
following alternate sets of variables:
p̄g,t: The maximum generation amount that g can supply

at time t,
rg,t: The generation amount that g can supply at time t

for reserve requirements.
Both of these variables, by themselves, capture all the neces-
sary information to formulate the reserve requirements. Indeed,
the relation between these variables can be described with the
mapping p̄g,t → (pg,t + rg,t).

In view of the discussion in this section, we provide two
alternatives for formulating production, which respectively
appeared in the state-of-the-art formulations of [13] (see
constraints (2)-(3)) and [21] (see (4)-(6)). We begin with
the former, where the (pg,t, p̄g,t) variables are used and the
following production limits are imposed for all g ∈ G, t ∈ T :

¯
Cgxg,t ≤ pg,t ≤ p̄g,t ≤ C̄gxg,t + (

¯
Sg − C̄g)zg,t+1. (2)

The above constraints ensure that (i) if the generator is idle
(i.e., xg,t = 0), the production amounts cannot be positive,
(ii) if the generator is operational (i.e., xg,t = 1), the
minimum production requirements and capacity restrictions
must be obeyed, and (iii) if the generator is scheduled to be
turned off in the next period (i.e., zg,t+1 = 1), the maximum
generation amount cannot exceed the shut down limit. For
t = |T |, the zg,t+1 variable on the right-most inequality
in (2) is assumed to be 0. The p̄g,t variables must also be
smaller than the start up limit S̄g whenever the generator is
turned on at time t, however, this requirement will already
be satisfied by the ramping inequalities presented in the next
section. Finally, letting ρt be the required reserve amount at
time t, the following constraints make sure that the reserve
requirements are fulfilled:∑

g∈G p̄g,t ≥ dt + ρt ∀t ∈ T . (3)

As an alternative for the above formulation of production,
[21] utilize the (p′g,t, rg,t) variables. As previously stated, the
minimum production constraints are redundant when p′g,t vari-
ables are in use, therefore omitted. The following constraints
provide a tight description of production limits:

p′g,t + rg,t ≤ (C̄g −
¯
Cg)xg,t − (C̄g − S̄g)sg,t

−max(S̄g −
¯
Sg, 0)zg,t+1 ∀g ∈ G, t ∈ T , (UTg = 1)

(4a)

p′g,t + rg,t ≤ (C̄g −
¯
Cg)xg,t − (C̄g −

¯
Sg)zg,t+1

−max(
¯
Sg − S̄g, 0)sg,t ∀g ∈ G, t ∈ T , (UTg = 1)

(4b)

p′g,t + rg,t ≤ (C̄g −
¯
Cg)xg,t − (C̄g − S̄g)sg,t

−(C̄g −
¯
Sg)zg,t+1 ∀g ∈ G, t ∈ T , (UTg > 1).

(4c)

In the above inequalities, zg,t+1 = 0 whenever t = |T |. As
shown in [12], these inequalities are facets of the convex hull
of the polytope defined by generation limits and the minimum
up/downtime constraints that will be presented shortly.



4

With respect to constraints (1d), the use of p′g,t variables
necessitate an update in the demand constraints, as below:∑

g∈G p
′
g,t +

¯
Cgxg,t ≥ dt ∀t ∈ T . (5)

Finally, the following inequalities ensure that the reserve
requirements can be fulfilled:∑

g∈G rg,t ≥ ρt ∀t ∈ T . (6)

b) Formulating operational and technological restric-
tions: In order to compute realistic production schedules,
the MIP formulations must take into account the physical
limitations of the components of the power systems. Among
these limitations, some of the most essential ones are the min-
imum up/downtime and ramping restrictions. The minimum
up/downtime restrictions ensure that the on/off status of the
generators do not change rapidly. Frequent state transitions
have several adverse consequences including (i) increased
operator stress, (ii) diminished generator life, and (iii) in-
creased emission of pollutants during transient periods (see
[25]). Such restrictions are quite practical and are included
in many commercial tools. To formulate these restrictions,
several constraints were proposed in [24], [25], [26]. Following
[11], the minimum uptime and downtime constraints are best
formulated using the following constraints:∑t

i=t−UTg+1 sg,i ≤ xg,t g ∈ G, t ∈ T , (7a)∑t
i=t−DTg+1 sg,i ≤ 1− xg,t−DTg g ∈ G, t ∈ T . (7b)

Observe that when the generator g is operational at time
t, the right-hand side of constraint (7a) is set to 1. In this
case, the generator may have been turned on at most once in
the last UTg periods (due to minimum uptime restrictions).
On the other hand, if it is idle at time t, it could not have
been turned on in the last UTg time periods, as otherwise
it should be operational at time t. Constraint (7b) is just a
rewritten version of a similar constraint for the downtime
requirements. It has been widely observed that these turn
on/off inequalities significantly outperform its contenders [13].
Indeed, [11] showed that constraints (7) define facets of the
polytope defined by the minimum up/downtime constraints.

The ramping restrictions limit the maximum change in
production between consecutive periods and ensure that the
generation requirements can be matched by the electricity
production without exceeding the generator limitations over
extended periods of time. A basic representation of these
ramping restrictions, in the space of p′g,t and rg,t variables,
appears below:

p′g,t + rg,t − p′g,t−1 ≤ R̄g ∀g ∈ G, t ∈ T , (8a)

p′g,t−1 − p′g,t ≤ ¯
Rg ∀g ∈ G, t ∈ T . (8b)

The above inequalities, by themselves, do not take into account
the start up and shut down rates of the generators. Indeed,
certain generation limit constraints (such as (4)) must be used
in conjunction with (8) to make sure these restrictions are also
satisfied.

The ramping inequalities may also be written in the space
of pg,t and p̄g,t variables. Below, we give the formulation of
ramping restrictions that appeared in [13].

p̄g,t − pg,t−1 ≤ S̄gsg,t + R̄gxg,t−1 ∀g ∈ G, t ∈ T , (9a)
pg,t−1 − pg,t ≤

¯
Sgzg,t +

¯
Rgxg,t ∀g ∈ G, t ∈ T . (9b)

Constraint (9a) ensures that generator g cannot ramp up more
than S̄g if it has just been turned on, or R̄g if it remains on
at time t. Similarly, constraint (9b) limits the decrease in the
power output by

¯
Rg at any time that the generator remains

operational. If the plant is turned off at t (xg,t = 0), then
the output of the generator cannot be larger than

¯
Sg to obey

the shut down limits. To account for the reserve requirements,
constraint (9a) can be modified as follows:

Observe that (9a) cannot be tight if the generator is turned
off at time t (p̄g,t = 0) because −pg,t−1 ≤ −

¯
Cg < 0, but the

right-hand-side is R̄g > 0. A similar argument also applies
to (9b) when the generator is turned on at time t. In fact,
these (along with many others) were the motivation behind
studying tighter ramping constraints and valid inequalities in
[13], [14], [27], [28]. In particular, [14] provided the following
strengthened ramping constraints:

pg,t − pg,t−1 ≤ (S̄g − R̄g −
¯
Cg)sg,t

+(R̄g +
¯
Cg)xg,t −

¯
Cgxg,t−1 ∀g ∈ G, t ∈ T ,

(10a)

pg,t−1 − pg,t ≤ (
¯
Sg −

¯
Rg −

¯
Cg)zg,t

+(
¯
Rg +

¯
Cg)xg,t−1 −

¯
Cgxg,t ∀g ∈ G, t ∈ T .

(10b)

These inequalities were proved to be facet-defining for the
two-period ramp-up and ramp-down polytopes (i.e., the poly-
topes of the UC problem that are limited to two consecutive
periods and consider only the ramp-up and ramp-down con-
straints, respectively).

c) Linearization of the objective function: The nonlinear
operating cost functions in the objective of a UC problem
are typically approximated with piecewise-linear convex func-
tions. We begin with the linearization of the start up costs. For
a generator g, we use the set Ig = (t1g . . . t

|Ig|
g ) ⊆ T to denote

the set of idle periods after which the cost incurred to turn on
a generator changes. The start up costs are given by fcτg where
τ ∈ Ig . These costs are assumed to obey fc|Ig|g ≥ . . . ≥ fc1g ,
∀g ∈ G, indicating that the start up costs tend to increase as
the idle time of the generators grow. Accordingly, a generator
that has been idle for 1 to t1g − 1 periods will incur a start up
cost of fc1g , t2g to t3g − 1 periods will incur fc2g , and so forth.
It is easy to see that the start up costs are determined by a
step-function. This function can be incorporated into an MIP
formulation using the approaches in [29] and [21], where the
former linearizes it and the latter partitions its domain. These
approaches respectively require the following variables:
fg,t: Incurred start up cost for generator g at time t,
δg,t,τ : Start up cost selection variable (1 if g must incur

the start up cost fcτg at time t, 0 otherwise).
Using the fg,t variables, [29] determine the cost of turning on
a generator with the following start up cost constraints:

fg,t ≥ fcτg
(
xg,t −

tτg∑
i=1

xg,t−i

)
∀g ∈ G, t ∈ T , τ ∈ Ig. (11)
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To minimize the total start up costs, the objective must
then contain the sum of all fg,t variables. Alternatively, the
approach in [21] formulates the start up costs as follows:

δg,t,τ ≤
tτ+1
g −1∑
i=tτg

zt−i ∀g ∈ G, t ∈
(
tτ+1
g . . . |T |

)
,

τ ∈ Ig \
{

1 . . . DTg − 1, t|Ig|g

}
,

(12a)

∑|Ig|
τ=1 δg,t,τ = sg,t ∀g ∈ G, t ∈ T . (12b)

Constraints (12) ensure that a single and correct start up type is
selected based on how long the unit has been idle. Notice that
(12a) need not be defined for τ < DTg (since an idle generator
must obey the minimum downtime restrictions) and for τ =

t
|Ig|
g (as it will be redundant due to (12b)). The integrality

restrictions on δg,t,τ need not be enforced provided that the
start up costs are monotonically increasing with the number
of periods the generator remains idle.

In general, the production costs are formulated with
piecewise-linear convex functions, as the marginal cost of
production increases with increasing levels of production. We
define a set of production amounts pκg (with κ ∈ {1 . . . κmax

g })
at which the incurred unit cost of production for generator
g changes. These production levels can be interpreted as the
breakpoints where the slope of the piecewise-linear function is
altered. The unit generation cost within the interval

[
pκg , p

κ+1
g

)
is denoted with vcκg . Similar to the start up costs, we assume

that vc
κmax
g
g ≥ . . . ≥ vc1g, ∀g ∈ G, which suggests that the

marginal costs increase as the outputs approach the generator
capacities. Finally, the aggregate cost of generating pκg units of
output is represented through the function V̂ (pκg ). Following
these definitions, the production amounts can be accounted
by the variables vg,t with the following production-cost con-
straints:

vg,t ≥ vcκg (pg,t − pκ−1g ) + V̂g(p
κ−1
g )

∀g ∈ G, t ∈ T , and ∀κ = {1 . . . κmax
g }.

(13)

Above, we assume that p0g = 0 (and hence, V̂g(p0g) = 0).
Along with others, the use of p′g,t variables also eases the

formulation of piecewise-linear production costs. Recall that
the total production of a generator is now accounted by two
terms, p′g,t and

¯
Cgxg,t. As long as the generator is operational,

the cost of producing the initial
¯
Cg units of energy is fixed and

can be computed a-priori (herein denoted as V̂g(
¯
Cg)). This cost

can be associated with the sg,t and x̃g,t variables and directly
accounted in the objective function. Therefore, the variables
vg,t now provides the cost of producing an amount of energy
in addition to

¯
Cg . This cost is computed by the following

production-cost constraints:

vg,t ≥ vcκg (p′g,t +
¯
Cg − pκ−1g ) + V̂g(p

κ−1
g )− V̂g(

¯
Cg)

∀g ∈ G, t ∈ T , and ∀κ = {lg . . . κmax
g }.

(14)

Above, lg (≥ 1) is the value of the index κ for which plg−1g =

¯
Cg . For values of κ ∈ {1 . . . lg − 1}, constraints (14) are
omitted because their right-hand side will be no larger than
zero and will be trivially satisfied due to the nonnegativity of
the variables.

B. Benchmark formulations

Using the inequalities presented in the previous section, we
provide two complete UC formulations, which are primarily
based on [13] and [21], respectively. The formulations are
named after the initials of their corresponding authors.

OAV: min
∑
t∈T

∑
g∈G

(
fg,t + vg,t

)
s.t. (1a), (1b), (2), (1d), (3), (7), (9), (11), (13),

(x, s, z) ∈ {0, 1}3|G||T |, (p, p̄, f , v) ≥ 0.

MLR: min
∑
t∈T

∑
g∈G

(
¯
Cgxg,t + vg,t +

∑
τ∈Ig

fcτgδg,t,τ
)

s.t. (1a), (4), (5), (6), (7), (8), (12), (14),

(x, s, z) ∈ {0, 1}3|G||T |, (p′, r, δ, v) ≥ 0.

C. The state-transition formulation

In this section, we present the state-transition formulation
(STF) for the UC problem. We develop this formulation
through the use of the following state-transition variables:
x̃g,t: 1 if g remains operational at time t, 0 otherwise.
s̃g,t /z̃g,t: 1 if g is turned on / off at time t, 0 otherwise,
To see how these variables capture the transition of gener-

ator states, we provide an illustration in Fig. 1. In this figure,
the on/off status of a generator is denoted with nodes and
the feasible state transitions are represented with arcs. Notice
that the variables for the decision remaining off has not been
defined and the corresponding arc in Fig.1 is marked with
a dashed line. This is because such a transition is completely
determined by the values of the other state-transition variables.
Indeed, exactly one state transition occurs at each time period,
and the corresponding decision variable is set to 1. If none of
these variables are set to 1, then the remaining off transition
corresponding to the dashed line is said to occur. Following
this discussion, it is easy to see that the inequality

s̃g,t + x̃g,t + z̃g,t ≤ 1 ∀g ∈ G, t ∈ T . (15)

is true for any feasible generator schedule formulated with
state-transition variables.

ont-1

offt-1

ont

offt

x̃t

s̃t

z̃t

Fig. 1. Illustration of the state-transition variables.

A deeper look at Fig.1 reveals the network sub-structure
embedded in the new formulation. In particular, we observe
that a sequence of state transitions of a single generator can
be de facto represented by a path on the graph comprising
states as nodes and state transitions as arcs. Writing out the
flow conservation constraints at the nodes of this graph, we
immediately obtain the following state-transition constraints
for the UC problem:

s̃g,t−1 + x̃g,t−1 = z̃g,t + x̃g,t ∀g ∈ G, t ∈ T . (16)
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Constraints (16) are the flow conservation constraints at the
nodes where the state of the generator is on. At the off
nodes, the flow conservation constraints are the same, therefore
omitted. This can be easily verified by assigning the expression
1 − sg,t − x̃g,t − zg,t to the dashed arc in Fig.1. From our
perspective, these constraints indicate that if a generator is
operational at time t − 1 then it must either be turned off or
remain on at time t.

The linear mapping (xg,t)→ (s̃g,t+x̃g,t) allows us to trans-
late any constraint derived for the benchmark formulations into
the constraints of our formulation. Although the constraints
differ in essence, it is easy to verify that (16) can also be
derived from (1a) using the transformation described above.

In a UC problem, the above formulation of the state
transitions can potentially lead to significant computational
gains, especially when large numbers of state transitions
are anticipated. Accordingly, for problems involving longer
planning horizons and facing variable demand patterns, one
should expect a better performance from this new formulation,
compared to contenders that use (x, s, z) variables. While
other components of a UC problem can be formulated in
alternative ways, the constraints presented in the rest of this
section perform well in tandem, and some naturally define the
facets of their corresponding polytopes.

a) Formulating production: In our formulation, we opt
for the p′g,t and p̄g,t variables for formulating production
amounts and reserve requirements. With the state-transition
variables, the on/off status of a generator is given by the
expression s̃g,t + x̃g,t. Accordingly, the production limits for
each g ∈ G, t ∈ T can be given as follows:

p̄g,t ≥ p′g,t +
¯
Cg(s̃g,t + x̃g,t), (17a)

p̄g,t ≤ C̄g(s̃g,t + x̃g,t) + (
¯
Sg − C̄g)z̃g,t+1. (17b)

Constraints (17a) ensure that the maximum possible generation
amount at time t (p̄g,t) is greater than the actual production
amount at the same time period, and constraints (17b) bound
p̄g,t by the total capacity or the shut down limit of the
generator. The minimum production constraints are redundant
due to the use of the p′g,t variables. As is the case in (2),
the variable p̄g,t must also respect the start up limits, but
this restriction is omitted in (17) as it will be implied by the
ramping constraints.

The demand constraints of the STF are similar to that of
MLR given in (5):∑

g∈G
(
p′g,t +

¯
Cg(s̃g,t + x̃g,t)

)
≥ dt ∀t ∈ T . (18)

Finally, the reserve requirements are formulated without effort
by adopting the constraints in (3).

b) Formulating operational and technological restric-
tions: We now formulate the minimum up/downtime and the
ramping restrictions. We begin with the former, and translate
the minimum up/downtime inequalities (7) into our formulation
as presented below:∑t−1

i=t−UTg+1 s̃g,i ≤ x̃g,t ∀g ∈ G, t ∈ T , (19a)∑t
i=t−DTg s̃g,i ≤ 1− x̃g,t−DTg ∀g ∈ G, t ∈ T . (19b)

Constraint (19a) ensures that if the generator remains on, it
could have been turned on at most once in the previous UTg−
1 time periods. If it does not remain on, then it could not
have been turned on in these time periods due to minimum
uptime restrictions. Similarly, constraint (19b) ensures that if
the generator remains on, it cannot be restarted in the current
time period or in the next DTg time periods due to minimum
downtime restrictions. On the other hand, if it does not remain
on, it can be turned on at most once in these time periods, due
to minimum uptime and downtime restrictions.

To formulate the ramping restrictions, we take advantage
of both the state-transition and the production variables, and
provide the following ramp up constraints:

p̄g,t−p′g,t−1 ≤ S̄g s̃g,t+(R̄g+
¯
Cg)x̃g,t ∀g ∈ G, t ∈ T . (20a)

The coefficient of the remain-on variable is increased by

¯
Cg because the p′g,t−1 variable only accounts for the power
generation beyond

¯
Cg . When a generator is turned on in period

t, it should have been idle in period t−1. Therefore p′g,t−1 = 0
and no increment for the s̃g,t coefficient is necessary. The
ramp down constraints are formed in a similar manner and
given below.

p′g,t−1−p′g,t ≤ (
¯
Sg−

¯
Cg)z̃g,t+

¯
Rgx̃g,t ∀g ∈ G, t ∈ T . (20b)

Whenever the generator remains on, the above inequality limits
the reduction in the power output such that the ramp down
restrictions are obeyed. When the generator is turned off at
time t, the inequality reduces to a tight upper bound on the
p′g,t−1 variable. When the reserve requirements are ignored, it
can be shown that (20) is equivalent to (10).

c) Linearization of the objective function: For the lin-
earization of the start up costs, we opted for the use of the
fg,t variables. Observe that, when turned on, the start up cost
of a generator will at least be its warm-start cost, i.e., the start
up cost incurred when the generator has not cooled down since
the previous operational state. Due to the minimum downtime
restriction, this cost is at least fcDTgg . Furthermore, it can be
associated with the start up variable and accounted directly
in the objective function using the additional term fc

DTg
g sg,t.

Therefore, the variable fg,t will now represent the extra cost
of turning on a generator which has been idle for some time
that is longer than its minimum downtime (DTg). In view of
this observation, variables fg,t must satisfy the following start
up cost constraints:

fg,t ≥ (fcτg − fcDTgg )

(
s̃g,t −

τ∑
i=DTg

s̃g,t−i − x̃g,t−τ
)

∀g ∈ G, t ∈ T , and τ ∈ Ig \ {1 . . . DTg}
(21)

We note that, in general, the number of constraints to
formulate the piecewise-linear cost functions can make mixed-
integer programs extremely large. As in MLR, the representa-
tion above mitigates this potential issue by eliminating up to
|T | ×

∑
g∈G DTg constraints.

Finally, the production costs can be formulated by directly
incorporating (14) into our formulation. Similar to MLR,
the cost of minimum required production is determined by

¯
Cg(s̃g,t + x̃g,t), and appended to the objective function.
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d) The state-transition formulation: A summary of the
new formulation is provided below:

STF: min
∑
t∈T

∑
g∈G

fg,t + vg,t + (fc
DTg
g +

¯
Cg)sg,t +

¯
Cgx̃g,t

s.t. (3), (16)-(21), (14), (x̃, s̃, z̃) ∈ {0, 1}3|G||T |, (p, p̄, f ,v) ≥ 0

In STF, we do not include constraints (15) as they are implied
by minimum downtime constraints (see Appendix A).

III. COMPUTATIONAL EXPERIMENTS

Our analysis will focus on two classes of instances. The first
stems from the synthetic instances of [13], which are based on
[23]. These are single-day instances, involving 24 time periods,
and are characterized by increasing numbers of generators.
They are known to be challenging for branch-and-bound
algorithms, therefore commonly experimented in the literature.
Using these instances, we generated two additional data sets.
In the first, the numbers of generators are increased tenfold,
and in the latter, the time horizon is extended to seven days.
Instances with a longer time horizon are more challenging not
simply because of the increased dimensions but also due to
the daily trends and fluctuations in the demand. The second
class of instances are based on the realistic instances obtained
through the FERC. Further details can be found in [30]. For
both classes of instances, details are given in Appendix B and
the references therein.

For dynamic planning models it is well known that the
planning horizon can have a significant impact on the de-
cisions. The resulting decisions are often myopic, and this
phenomenon is commonly referred to as the planning horizon
effect. Such myopic choices can be remedied by choosing to
solve longer-horizon models, and only implementing the day-
ahead plan. This approach is sometimes also referred to as a
receding horizon approach (RHA). In case of the UC model,
since a week can be considered as a regeneration point for
demands (see [31], [32]), such an RHA is likely to avoid
myopic choices. In keeping with this outlook, the choice of a
168 periods reflects the UC problem for the RHA.

In Table I, we present statistics regarding the considered
formulations. We observe that the number of binary variables
is the same across all formulations. In terms of the numbers
of variables, constraints, and nonzero coefficients, STF attains
the minimum amounts, leading to compact descriptions of
UC problems. We note that the week-long realistic instance
contains a significantly larger set of generators compared to
other week-long instances that we have experimented with.

All runs were performed on a single thread of a Dell
Desktop PC with Intel R© Core

TM
i7-3770S CPU @ 3.10 GHz,

7.68 GB of RAM, and running Ubuntu Linux 12.04.3 LTS.
The formulations were solved with CPLEX 12.5.1. The
default parameters of CPLEX were preserved, but a time limit
of 2 hours is imposed. For instances which could not be
solved within this limit, we report the relative optimality gap
based on the best available solution and lower bound. It is
important to note that the benchmark formulations are true
to the mathematical representations provided by the original
authors. In making comparisons, certain choices -such as
software parameters- are kept the same across all formulations,

TABLE I
FORMULATION STATISTICS (SYNTHETIC INSTANCES WITH |T | = 24

CONTAIN TEN TIMES MORE GENERATORS)

Synthetic Instances (averaged)

|T | Binary / Total Vars. Constraints Nonzeros

OAV 24 77,076 / 179,845 304,789 1,178,779
168 53,953 / 125,892 214,676 868,319

STF 24 77,076 / 179,845 231,313 1,012,799
168 53,953 / 125,892 163,243 748,272

MLR 24 77,076 / 205,537 257,125 1,048,143
168 53,953 / 143,876 181,312 769,461

Realistic Instances

OAV 24 67,608 / 157,753 287,108 1,050,268
168 473,256 / 1,104,265 2,016,548 9,327,706

STF 24 67,608 / 157,753 225,188 925,739
168 473,256 / 1,104,265 1,583,108 8,416,361

MLR 24 67,608 / 180,289 241,532 945,153
168 473,256 / 1,262,017 1,697,516 8,519,871

and no tuning was performed to individually improve their
performances.

In Table II, we report the solution times for the synthetic
instances, along with the numbers of cuts and nodes generated
by the solver. When accompanied with fast solution times,
small numbers of cuts could indicate that the instances are
amenable to producing integer solutions fast and with little
need for tightening. Likewise, small numbers of branch-and-
bound nodes (or the lack thereof) imply that the nonconvexity
in the instances can be easily tamed. We first make compar-
isons on the single-day instances. We observe that STF and
MLR perform considerably faster than OAV, especially as the
number of generators grow. In terms of solution times, there
does not appear to be a significant contender among STF and
MLR. However, it is promising to see that the total solution
time for all instances is the smallest when STF is used, and the
individual times never exceed a minute. Moreover, with STF,
all of the instances were solved at the root node, with the
minimum number for cutting planes. In contrast, we observe
that multiple nodes were explored in a few instances using
the benchmark formulations. When we consider week-long
instances, we observe an important feature of our formulation.
Recall from §II-C that the STF involves an implicit network
sub-structure, and it has better potential in capturing the
state transitions of the generators between consecutive time
periods. Aligned with our expectations in §II-C, we observe
that the complexity introduced by a longer time horizon is best
tamed with STF. The solution times are significantly better
than the benchmark formulations for almost every instance.
Furthermore, there are only two instances for which multiple
branch-and-bound nodes have been explored. In contrast, the
benchmark formulations needed to explore hundreds of nodes
to optimize a significant portion of the instances. These results
reveal the potential of our formulation to scale up to more
realistic instances solved by the power industry.

We turn our attention to our realistic instances. We consider
both a day-long and a week-long version of the instance
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TABLE II
PERFORMANCE MEASURES OF BRANCH-AND-BOUND FOR SYNTHETIC INSTANCES.

|T | = 24 OAV STF MLR |T | = 168 OAV STF MLR

|G| Cuts/Nodes Time Cuts/Nodes Time Cuts/Nodes Time |G| Cuts/Nodes Time Cuts/Nodes Time Cuts/Nodes Time

280 - / - 2.5 - / - 1.9 - / - 1.1 28 428 / - 3.3 12 / - 3.4 252 / 170 5.8
350 506 / - 5.2 - / - 2.7 - / - 1.6 35 914 / - 6.4 - / - 2.1 865 / - 4.4
440 3,729 / - 11.0 - / - 3.5 - / - 2.2 44 1,188 / - 7.9 - / - 2.8 684 / - 4.9
450 3,867 / - 34.4 218 / - 5.0 1,019 / 100 12.4 45 3,016 / 417 34.3 158 / - 4.7 984 / 413 12.5
490 6,334 / - 29.8 - / - 4.7 63 / - 5.9 49 2,981 / 210 25.1 92 / 75 8.7 517 / 506 21.3
500 9,520 / - 83.5 863 / - 8.5 2,142 / 80 24.7 50 3,191 / 529 61.2 216 / - 6.0 837 / 806 23.1
510 1,850 / - 18.0 - / - 4.3 2 / - 4.6 51 1,263 / - 11.3 18 / - 5.1 105 / - 4.9
510 6,080 / - 23.5 - / - 4.1 - / - 2.8 51 1,550 / - 11.0 - / - 3.1 273 / 185 8.8
520 6,043 / - 26.8 - / - 4.6 1 / - 3.8 52 2,099 / - 14.5 100 / - 4.7 469 / - 6.4
540 7,299 / - 36.0 - / - 4.6 12 / - 4.4 54 2,470 / - 14.7 88 / 63 8.2 373 / 739 21.9
1320 2,676 / - 35.9 - / - 16.1 - / - 9.8 132 1,206 / - 32.9 - / - 11.9 2,159 / - 18.8
1560 12,059 / - 187.2 - / - 23.4 1 / 10 33.4 156 2,781 / - 60.7 51 / - 23.5 285 / 200 39.6
1560 12,737 / - 111.6 - / - 21.6 - / - 19.4 156 3,413 / - 48.3 - / - 15.7 1,994 / 342 52.0
1650 17,249 / - 133.1 - / - 28.6 - / - 23.9 165 6,564 / - 102.8 - / - 21.3 3,306 / 531 89.6
1670 19,588 / - 230.5 - / - 29.6 - / - 27.0 167 8,292 / - 111.1 243 / - 22.1 638 / 1,880 432.2
1720 7,642 / - 81.3 - / - 26.4 - / - 18.9 172 2,705 / - 75.4 310 / - 33.5 2,522 / - 28.2
1820 22,170 / 524 1,069.9 - / - 33.8 753 / 10 61.9 182 7,556 / - 103.6 189 / - 24.6 2,469 / 150 51.8
1820 24,087 / 250 944.3 36 / - 49.1 306 / 485 263.7 182 11,135 / - 171.5 440 / - 25.1 2,935 / 474 101.9
1830 15,978 / - 281.3 - / - 36.7 2 / - 41.8 183 9,038 / - 129.7 285 / - 24.4 1,887 / 577 110.3
1870 24,373 / - 508.8 1,386 / - 58.7 3,636 / - 65.9 187 10,979 / 140 205.9 389 / - 35.4 3,209 / 120 60.4

Total: 203,787 / 774 3,854.3 2,503 / - 367.8 7,937 / 685 629.2 82,769 / 1,296 1,231.8 2,591 / 138 286.3 26,763 / 7,093 1,098.8

made accessible by [30]. The analysis of these instances will
provide better intuition on how the new and the benchmark
formulations perform in the problems solved in the energy
industry. Comparing Table III with Table II, we observe that
the differences in the computational performance of the new
model and the benchmark formulations are more pronounced.
For instance, we observe that OAV hits the time limit on
the week-long problem, whereas MLR spends more than 20
minutes to obtain an optimal solution. In comparison, the new
model can provide an optimal solution within 12 minutes,
achieving a 45% reduction. We conclude our analysis by
discussing the percentage of fractional variables in Table III.
A small number of fractional variables in the continuous
relaxation of the problem could serve as an indication of the
tightness of a formulation. Observe that the new formulation
provides far larger numbers of integer variables in the linear-
programming (LP) relaxations of the problems, confirming
the effectiveness of the formulation. The objective value of
the LP-relaxation of STF can be 1.4% and 0.2% better than
that of OAV and MLR, respectively. More importantly, in the
root relaxation (i.e., the starting LP relaxation created within
CPLEX), the percentage of fractional variables shrink even
further. Indeed, in the week-long instance, 99.82% of the
integer variables are observed to be integral, leading to an
almost-integer (lower-bounding) solution.

In order to further assess the behavior of the formulations,
we have experimented with modified versions of the original
synthetic and realistic instances. In particular, the hourly
demand and reserve data are multiplied with (1 + α), where
α is chosen to mimic realistic changes in demand (see [33]).
Generator capacities are perturbed with the same coefficient
for synthetic instances, however, kept the same for realistic
instances, in order to preserve their authenticity. Table IV
gives a summary of our analysis. Examining the results for

TABLE III
PERFORMANCE MEASURES OF BRANCH-AND-BOUND AND THE % OF
FRACTIONAL VARIABLES (|G| = 939, RELATIVE OPTIMALITY GAP IS

REPORTED -IN BRACKETS- WHEN THE TIME LIMIT IS HIT)

Branch-and-Bound Frac. Vars. (%)

|T | Cuts/Nodes Time LP/Root Relaxation

OAV 24 4,499 / - 264.1 2.19 / 0.15
168 15,605 / - [0.5%] 1.54 / 0.37

STF 24 478 / 10 53.6 1.09 / 0.13
168 1,940 / - 679.8 0.73 / 0.18

MLR 24 2,914 / - 66.9 2.39 / 0.20
168 11,566 / - 1,243.7 1.76 / 0.29

synthetic instances, we observe that STF is slightly more
favored than MLR in the day-long problems, and performs
significantly better for the week-long instances. A similar
outcome is also observed for the realistic instances, although,
for these instances, the performance delivered by STF is
consistently better. Notice that the computational gains ob-
served for the week-long realistic instances are much larger
than the total gains observed for the 20 week-long synthetic
instances, indicating the potential of STF for instances with
more realistic and diverse problem parameters (e.g., distinct
generator capacities, ramping rates, or variable-cost functions
with many more pieces).

In our final analysis, we demonstrate the value of consid-
ering longer planning horizons in UC problems. Single-day
problems are not designed to capture the day to day dynamics
of a continuously-evolving demand pattern, and may lead to
suboptimal decisions at later periods of the planning horizon.
We show this on the realistic instances, by solving 7 sequential
day-long UC problems, and their week-long counterpart. Fig.
2 illustrates the optimal production patterns of two generators
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TABLE IV
SOLUTION TIMES FOR MODIFIED INSTANCES (|G| IS 10-FOLD WHEN
|T | = 24 FOR SYNTHETIC INSTANCES, AND |G| = 939 FOR REALISTIC

INSTANCES).

Synthetic Instances (summed over 20 instances)

|T | α = -5% -2.5% -1% 1% 2.5% 5%

OAV 24 4407.2 4662.3 4363.8 3699.6 4177.9 5343.6
168 1340.2 1154.8 1210.1 1538.2 1484.0 1478.8

STF 24 397.0 367.4 371.8 414.6 491.7 597.5
168 301.2 287.3 300.6 319.8 371.7 348.2

MLR 24 394.3 441.2 367.1 451.1 546.0 579.3
168 730.4 757.3 1111.0 1293.1 916.2 904.0

Realistic Instances

|T | α = -5% -2.5% -1% 1% 2.5% 5%

OAV 24 280.3 328.6 233.8 294.5 167.3 254.7
168 [0.5%] [0.7%] [0.5%] [0.8%] [0.4%] [0.4%]

STF 24 30.4 33.8 35.8 36.0 35.8 33.9
168 835.7 523.2 761.8 712.5 497.2 658.0

MLR 24 58.9 47.7 43.5 49.5 37.7 38.4
168 1417.7 1847.9 1329.7 1336.2 1362.2 1338.1

under the commitment decisions of these runs. The same
pattern appears for most nonbase-load generators. The day-
long problems recommend turning these generators off at
the end of each day. In contrast, the week-long problem
acts with better foresight and recommends less-frequent state
transitions, leading to more stable commitment schedules.
More importantly, the week-long problem reports 1.8% lower
operational costs.
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Fig. 2. Production patterns of two generators based on the commitment
decisions of 7 day-long UC problems, and a week-long problem.

IV. CONCLUSION

In this study, we developed the state-transition formu-
lation for the UC problem. Our formulation replaces the
long-established state variables of the UC formulations with
state-transition variables. We compare the performance of
the new formulation with two benchmark formulations. We
observe that the state-transition formulation performs the best
especially for long-horizon instances. The new formulation
naturally includes valid inequalities that have been used to
strengthen alternative formulations. The induced network sub-
structure of the formulation allows the effect of these valid
inequalities to propagate throughout the planning horizon.

APPENDIX A
INSIGHTS ON THE POLYHEDRAL STRUCTURE

This appendix summarizes the polyhedral features of our
formulation and draws connections with other formulations
from the literature. Our discussion will focus on modeling
components that involve a single generator, therefore the
generator indices are neglected for notational ease. We begin
by showing the redundancy of (15) in STF.

Proposition 1. Constraints (15) are implied by the minimum
downtime constraints (19b) and the state-transition constraints
(16).

Proof. Consider constraint (19b) for time t+DT − 1,

1 ≥ x̃t−1 +

t+DT−1∑
i=t−1

s̃i = x̃t−1 + s̃t−1 +

t+DT−1∑
i=t

s̃i [by (16)]

= z̃t + x̃t + s̃t +

t+DT−1∑
i=t+1

s̃i ≥ z̃t + x̃t + s̃t.

Remark 1. If DT = 1, constraints (15) become equivalent to
the minimum downtime constraints.

The following definitions and facts will be useful in the
remainder of this appendix. We use dim(P) to denote the
dimension of a polyhedron P . A facet F of P has dim(F) =
dim(P)−1. Accordingly, to prove that a constraint πᵀx ≤ π0
defines a facet of P , it is sufficient to identify dim(P) affinely-
independent points (xi) which satisfy πᵀxi = π0, ∀i =
1 . . . dim(P). A facet-defining inequality will dominate all
other constraints, therefore sought in most polyhedral analyses.
For proofs of this type appealing to affine independence for
facet-defining inequalities, the reader may refer to [34].

We show that the use of the state-transition decision vari-
ables does not affect the polyhedral properties of the original
minimum up/downtime constraints (19) of [11], proposed for
formulations with (x, s, z) variables. Consider the minimum
up/downtime polytope of the STF:

M =
{
s̃, x̃, z̃ ∈ {0, 1}|T | :∑t−1

i=t−UT+1 s̃i ≤ x̃t ∀t ∈ {UT . . . |T |},∑t
i=t−DT s̃i ≤ 1− x̃t−DT ∀t ∈ {DT + 1 . . . |T |},
s̃t−1 + x̃t−1 = z̃t + x̃t ∀t ∈ {2 . . . |T |}.

}
In the definition above, the history of the generators is ne-
glected by removing the corresponding turn on/off constraints
defined for periods {1 . . . UT − 1}, and {1 . . . DT}, respec-
tively.

Let conv(P) to denote the convex hull of polytope P .

Proposition 2. The minimum up/downtime constraints (19)
define the facets of the polytope conv(M).

Proof. Observing the linear independence of equations in (16),
dim(conv(M)) can at most be 2×|T |+1. This is indeed true
because the following 2 × |T | + 2 integer solutions of M
are affinely-independent. To see this, note that by ordering
the solution in a matrix and placing first the x̃ variables and
then the s̃ and the z̃ variables, we obtain a lower-triangular
submatrix.
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• Consider a set of |T | solutions (̃s, x̃, z̃)i, where i ∈
{1 . . . |T |}. This solution has the following structure. The
components of the vector s (resp. z) are set to zero with the
only exception of the ith component (resp. (i + UT + 1)th

or |T |, whichever is smaller). This element is set to 1. The
components of x̃ are set as

x̃k =

{
1, i+ 1 ≤ k ≤ min{i+ UT, |T |}
0, otherwise.

• |T | additional solutions (̃s, x̃, z̃)j , j ∈ {1 . . . |T |}, which
belong to a set J , are obtained by setting the s̃ and z̃ vectors
to null, while the vector x̃ has the following components:

x̃k =

{
1, k ≤ j
0, otherwise.

• The last two solutions are (̃s, x̃, z̃) = (0,0, (1, 0, . . . 0))
and the null solution.

Given the dimension of conv(M), any constraint (19a) is a
facet if it has dimension 2× |T | (i.e., if there are 2× |T |+ 1
affinely independent solutions which satisfy the inequality as
equality). For some t ∈ {UT . . . |T |}, consider the set

Ut =
{
s̃, x̃, z̃ ∈ {0, 1}|T | :

∑t−1
i=t−UT+1 s̃i = x̃t

}
.

All the solutions listed above belong to the set Ut, with
the exception of |T | − (t + 1) solutions of set J . In these
solutions, the generator is turned off at time t + 1 or later
(i.e., all solutions (̃s, x̃, z̃)j where j > t). For each of these
solutions, turn the generator on at time t−UT + 1 by setting
the (t − UT + 1)th component of the vector s to 1, and
setting the first t − UT + 1 components of the vector x̃ to
0. 2 × |T | + 1 affinely independent solutions have thus been
generated, proving that Ut is a facet of conv(M).

The proof for minimum downtime constraints (19b) is
analogous and can be obtained with the same arguments made
for constraints (19a).

Next, we show the validity of the ramping inequalities (20),
and demonstrate their relation to their counterparts in [13].

Proposition 3. For each t ∈ T , the ramp-up inequality (20a)
is valid and dominates constraint

p̄t − pt−1 ≤ S̄s̃t + R̄x̃t, (P1a)

which is equivalent to (9a) when the state-transition variables
are used.

Proof. It is straightforward to verify the validity of constraints
(20a). The inequality limits the increase in production by S̄ if
the generator has just been turned on (in this case p′t−1 = 0),
or by (R̄+

¯
C) if it remains on. As also pointed out in §II-A,

the ramp-up inequality (P1a) is inactive if the generator has
just been turned off; but it can be strengthened by lifting it to
the space of z̃t variables.

p̄t −
[
p′t−1 +

¯
C(s̃t−1 + x̃t−1)

]
≤ S̄s̃t + R̄x̃t −

¯
Cz̃t. (P1b)

The term within brackets is pt−1. To verify that (P1b) is valid,
it is sufficient to consider the case where z̃t = 1 (the case z̃t =
0 is trivial). As the generator is not operational at time period t,
p̄t is 0 and the inequality reduces to p′t−1 +

¯
C(s̃t−1 + x̃t−1) =

pt−1 ≥
¯
C, which is the minimum production requirement.

Therefore (P1b) is valid and dominates (P1a), which is easy
to see as the left-hand side of (P1a) assumes no smaller value
than the left-hand side of (P1b). Constraints (20a) can then be
obtained from (P1b) using (16):

p̄t − p′t−1 ≤ S̄s̃t + R̄x̃t −
¯
Cz̃t +

¯
C(s̃t−1 + x̃t−1)

= S̄s̃t + R̄x̃t −
¯
Cz̃t +

¯
C(z̃t + x̃t)

= S̄s̃t + (R̄+
¯
C)x̃t.

The analysis for the ramp down constraints is provided next.

Proposition 4. For each t ∈ T , the ramp-down inequality
(20b) is valid and dominates the seed inequality pt−1 − pt ≤

¯
Sz̃t+

¯
Rx̃t, which is equivalent to (9b) when the state-transition

variables are are used.

Proof. Consider the seed inequality:[
p′t−1 +

¯
C(s̃t−1 + x̃t−1)

]
−
[
p′t +

¯
C(s̃t + x̃t)

]
≤

¯
Sz̃t +

¯
Rx̃t,

which can be strengthened by a lifting to the space of s̃t,[
p′t−1+

¯
C(s̃t−1+x̃t−1)

]
−
[
p′t+¯

C(s̃t+x̃t)
]
≤

¯
Sz̃t+

¯
Rx̃t−

¯
Cs̃t.

When s̃t = 1, the power output at time t − 1 must be 0,
and the first term in brackets disappears. Since x̃t = z̃t = 0,
the inequality simply reduces to p′t ≥ 0, which confirms its
validity. By simple algebra, we obtain

p′t−1 − p′t ≤ ¯
Sz̃t + (

¯
R+

¯
C)x̃t −

¯
C(s̃t−1 + x̃t−1)

=
¯
Sz̃t + (

¯
R+

¯
C)x̃t −

¯
C(z̃t + x̃t) (P2)

= (
¯
S −

¯
C)z̃t +

¯
Rx̃t

where (P2) is achieved using (16).

Using the relations (1a) and (16), it is trivial to verify the
following remark.

Remark 2. When the reserve requirements are neglected, the
ramping inequalities (20a) and (20b) of the new formulation
are equivalent to the facet-defining two-period ramping in-
equalities of the base formulation, proposed by [14], i.e., con-
straints (10a) and (10b). In contrast, the ramping constraints
in MLR are such that the state variables do not explicitly guide
the ramping rates of generators.

For our final analysis, we introduce the two-period ramping
polytope in our formulation, under the assumption that UT >
1. For clarity of exposition, we first give the generation and
ramping constraints for a given t as follows:

p̄t ≥ p′t +
¯
C(s̃t + x̃t) (23a)

p̄t ≤ S̄s̃t + C̄x̃t + (
¯
S − C̄)z̃t+1 (23b)

p′t−1 − p′t ≤ (
¯
S −

¯
C)z̃t +

¯
Rx̃t (23c)

p̄t − p′t−1 ≤ S̄s̃t + (R̄+
¯
C)x̃t + (

¯
S − R̄−

¯
C)z̃t+1. (23d)

It is easy to see that (23b) is a tightened version of (17b),
whereas (23d) is the lifted version of the ramp up inequality
(20a). Our computations do not consider (23b) and (23d) in
order to simplify the exposition, and avoid detracting from the
paper’s main messages. It should also be noted that (23d) is



11

equivalent to the valid inequality (23) of [13], when written in
terms of the state-transition and p′t−1 variables. We give the
two-period ramping polytope below.

R2
t =

{
(p̄t, p

′
t−1, p

′
t, s̃t, x̃t, z̃t z̃t+1) ∈ <3

+ × {0, 1}4 :

(23a), (23b), (23c), (23d), s̃t + x̃t + z̃t ≤ 1, z̃t+1 ≤ x̃t
}

With respect to the two-period ramping polytope defined in
[14], the above definition has some differences. For instance,
we consider both the ramp up and ramp down constraints
together, which were treated separately in [14]. Furthermore,
our polytope is defined in the space of p̄t, p′t, p

′
t−1, s̃t, x̃t, z̃t

and z̃t+1 variables, and considers the reserve requirements.

Proposition 5. Assuming C̄ > R̄ +
¯
R ≥ 2 ×

¯
R and the

generation limit constraints, (23a) and (23b), and the ramping
down inequality (23c) and (23d) are facets of conv(R2

t ).

Proof. The dimension of conv(R2
t ) can at most be 7. In Table

V, we present feasible solutions for this polytope. The first
8 solutions are affinely-independent, thus proving the full
dimensionality of conv(R2

t ).

TABLE V
SET OF FEASIBLE SOLUTIONS FOR THE TWO-PERIOD RAMPING POLYTOPE.

# p̄t p′t−1 p′t s̃t x̃t z̃t z̃t+1 Inactive Cons.

1 0 0 0 0 0 0 0
2 0 0 0 0 0 1 0 (23c)
3 0

¯
S −

¯
C 0 0 0 1 0 (23d)

4 S̄ 0 0 1 0 0 0 (23a)
5 S̄ 0 S̄ −

¯
C 1 0 0 0 (23c)

6 C̄ C̄ C̄ −
¯
R 0 1 0 0 (23a); (23d)

7
¯
R +

¯
C 2

¯
R

¯
R 0 1 0 0 (23b); (23d)

8
¯
S

¯
S +

¯
R−

¯
C

¯
S −

¯
C 0 1 0 1 (23d)

9 R̄ +
¯
C

¯
R 0 0 1 0 0

Using the solutions displayed in Table V, it is also easy to
verify that constraints (23a), (23b), (23c) and (23d) are facet-
defining for conv(R2

t ). In the last column of Table V, we
report the constraints which are not active in the corresponding
solution. To prove that each of the constraints are facet-
defining, we modify the coefficients of the solutions in Table
V as follows.

• Constraint (23a): change the coefficient of p̄t from S̄ to

¯
C in Solution 4.

• Constraint (23b): seven solutions out of the eight already
satisfy the constraint as equality.

• Constraint (23c): substitute Solution 5 with Solution 9.
• Constraint (23d): change the coefficients of p′t−1 from C̄

to C̄ − R̄ −
¯
C, from 2

¯
R to 0, and from

¯
S +

¯
R −

¯
C to

¯
S − R̄−

¯
C in Solutions 6, 7 and 8 respectively.

For each of the constraints, we have provided six affinely
independent feasible solutions which satisfy all constraints as
equality, thus proving the proposition.

Remark 3. Observe that for every t ∈ T , the inequality (15)
is also facet-defining for conv(R2

t ).

APPENDIX B
DETAILS ON DATA GENERATION

A. Synthetic Instances

The instances studied in [13] consider a time horizon of
24 hours, where the hourly demands are given as percentages
of the total generation capacity of the system, and the hourly
reserve amounts are set to 3% of the resulting demand. To
increase the number of generators, we duplicated all generators
tenfold, as in [21]. To extend the time horizon, we utilized
the demand pattern in our realistic instance (see Appendix
B-B). For hour h ∈ {1 . . . 24} and day d ≥ 2, we compute
dh,d/dh,1, where dh,d is the corresponding demand in the
realistic instance. These ratios are multiplied with the demand
percentages given in [13], and rounded to the nearest integer
(see Table VI).

TABLE VI
HOURLY DEMANDS, GIVEN AS PERCENTAGES OF THE TOTAL GENERATION

CAPACITY OF THE SYSTEM (%).

Days Days

Hrs 1 2 3 4 5 6 7 Hrs 1 2 3 4 5 6 7

1 71 68 66 64 63 63 63 13 82 87 87 85 83 87 83
2 65 63 60 58 58 57 58 14 80 85 86 84 82 87 82
3 62 60 58 55 55 55 55 15 79 84 86 84 82 87 82
4 60 59 56 54 54 53 52 16 79 84 87 84 82 88 82
5 58 58 55 52 53 52 50 17 83 88 91 88 86 92 85
6 58 60 57 54 56 54 50 18 91 95 97 94 92 97 91
7 60 66 63 59 62 59 52 19 90 93 93 91 89 92 89
8 64 71 68 65 67 64 56 20 88 90 89 88 87 88 86
9 73 80 76 74 75 73 65 21 85 87 85 84 84 83 82

10 80 86 83 81 81 81 75 22 84 85 83 82 82 81 81
11 82 87 86 84 83 84 79 23 79 79 77 76 76 76 77
12 83 88 87 85 84 87 83 24 74 72 71 70 70 70 72

B. Realistic Instances

The realistic instances of §III are based on the winter
test problem, made available by FERC1 and documented in
[30]. Here, we only list our assumptions. We set C̄g to
the seasonal capabilities of the generators, and let S̄g =
(0.7)R̄g,

¯
Sg = (0.7)

¯
Rg .

¯
Cg is either set to the given values,

or to min{S̄g,
¯
Sg}, whichever is the minimum. If no posi-

tive value is available, we set them to 1. Likewise, missing
UTg, DTg are set to 1. We assumed that the minimum
up/downtime requirements are not restrictive at t = 0, and
generators incur cold start-up cost after 5 time periods. Gener-
ators with no cost entries are neglected (104 cases). Finally, we
consider the realized demand data2 of the PJM region between
01/31/2010 and 01/06/2010, where the former marks the date
pertaining to the winter test problem.
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[31] J. Dupačová, N. Gröwe-Kuska, and W. Römisch, “Scenario reduction
in stochastic programming,” Math. Prog., vol. 95, no. 3, pp. 493–511,
2003.

[32] S. Sen, L. Yu, and T. Genc, “A stochastic programming approach to
power portfolio optimization,” Oper. Res., vol. 54, no. 1, pp. 55–72,
2006.

[33] New York ISO, “Power trends 2016: The changing energy landscape,”
Tech. Rep., 2016. [Online]. Available: http://www.nyiso.com/public/
webdocs/media room/publications presentations/Power Trends/Power
Trends/2016-power-trends-FINAL-070516.pdf

[34] G. L. Nemhauser and L. A. Wolsey, Integer programming and combi-
natorial optimization. New York: John Wiley and Sons, 1999.

Semih Atakan received his B.Sc. degree in man-
ufacturing systems engineering, and M.Sc. degree
in industrial engineering from Sabancı University,
Istanbul, Turkey, in 2010 and 2012, respectively.

He is currently a Ph.D. student at the University
of Southern California, Los Angeles, CA. His main
research interests are stochastic, convex, and mixed-
integer optimization; risk measures; optimization ap-
plications, such as power systems planning, disaster
management, and scheduling.

Guglielmo Lulli is Senior Lecturer in the Depart-
ment of Management Science at Lancaster Univer-
sity. Prior to join Lancaster University, he was Assis-
tant Professor at University of Milano-Bicocca. He
earned his PhD in Operations Research at University
of Rome “La Sapienza” in 2003. During his studies,
he visited University of Maryland and University of
Arizona, both for one year appointment. He received
a Fulbright Fellowship at Massachusetts Institute
of Technology, and the 2013 INFORMS TSL Best
Published Paper award.

Lulli’s research interests focus on deterministic and stochastic optimization
particularly as applied to transportation and logistic operations and energy.
He participated in several research projects financed by Italian, European and
American agencies.

Suvrajeet Sen is a Professor in the Daniel J. Epstein
Department of Industrial and Systems Engineering
at the University of Southern California. Over the
years, Professor Sen has held several other positions,
including Professor at the University of Arizona,
and a Program Director of Operations Research, as
well as Service Enterprise Systems at the National
Science Foundation (NSF). In the past few years he
has led a group of world-renowned OR visionaries
to identifying new themes of OR for problems moti-
vated by Grand Challenges of the National Academy

of Engineering. His research is devoted to many categories of optimization
models, algorithms, and applications of stochastic programming problems.
He is a Fellow of INFORMS. Recently he led a group which was awarded
the 2015 INFORMS Computing Society Prize for their work on stochastic
mixed-integer programming.

http://www.ferc.gov/industries/electric/indus-act/rto/rto-iso-soft-2011.pdf
http://www.ferc.gov/industries/electric/indus-act/rto/rto-iso-soft-2011.pdf
http://www.ferc.gov/legal/staff-reports/rto-COMMITMENT-TEST.pdf
http://www.ferc.gov/legal/staff-reports/rto-COMMITMENT-TEST.pdf
http://www.nyiso.com/public/webdocs/media_room/publications_presentations/Power_Trends/Power_Trends/2016-power-trends-FINAL-070516.pdf
http://www.nyiso.com/public/webdocs/media_room/publications_presentations/Power_Trends/Power_Trends/2016-power-trends-FINAL-070516.pdf
http://www.nyiso.com/public/webdocs/media_room/publications_presentations/Power_Trends/Power_Trends/2016-power-trends-FINAL-070516.pdf

	Introduction
	Formulating production and operations in unit commitment
	Formulating the components
	Benchmark formulations
	The state-transition formulation

	Computational Experiments
	Conclusion
	Appendix A: Insights on the polyhedral structure
	Appendix B: Details on Data Generation
	Synthetic Instances
	Realistic Instances

	References
	Biographies
	Semih Atakan
	Guglielmo Lulli
	Suvrajeet Sen


