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Abstract—Web browsing is an activity that billions of mobile
users perform on a daily basis. Battery life is a primary concern
to many mobile users who often find their phone has died at most
inconvenient times. The heterogeneous multi-core architecture is
a solution for energy-efficient processing. However, the current
mobile web browsers rely on the operating system to exploit
the underlying hardware, which has no knowledge of individual
web contents and often leads to poor energy efficiency. This
paper describes an automatic approach to render mobile web
workloads for performance and energy efficiency. It achieves
this by developing a machine learning based approach to predict
which processor to use to run the web rendering engine and at
what frequencies the processors should operate. Our predictor
learns offline from a set of training web workloads. The built
predictor is then integrated into the browser to predict the
optimal processor configuration at runtime, taking into account
the web workload characteristics and the optimisation goal:
whether it is load time, energy consumption or a trade-off
between them. We evaluate our approach on a representative
ARM big.LITTLE mobile architecture using the hottest 500
webpages. Our approach achieves 80% of the performance
delivered by an ideal predictor. We obtain, on average, 45%,
63.5% and 81% improvement respectively for load time, energy
consumption and the energy delay product, when compared to
the Linux heterogeneous multi-processing scheduler.

Keywords-Mobile Web Browsing, Energy Optimisation,
big.LITTLE, Mobile Workloads

I. INTRODUCTION

Web browsing is a major activity performed by mobile
users on a daily basis [1]. However, it remains an activity of
high energy consumption [2], [3]. Heterogeneous multi-core
design, such as the ARM big.LITTLE architecture [4], is a
solution to energy efficient mobile processing. Heterogeneous
mobile platforms integrate multiple processor cores on the
same system, where each processor is tuned for a certain class
of workloads and optimisation goals (either performance or
energy consumption). To unlock the potential of the heteroge-
neous design, software applications must adapt to the variety
of different processors and make good use of the underlying
hardware, knowing what type of processors to use and at what
frequency the processor should operate. This is because the
benefits of choosing the right heterogeneous core may be large,
but mistakes can seriously hurt the user experience.

The current mobile web browser implementations rely on
the operating system to exploit the heterogeneous cores. The
drawback of this is that the operating system has no knowledge
of the individual web workload to be rendered by the browser;
and as a result, this often leads to poor energy efficiency,

draining the battery faster than necessary [5]. What we would
like to have is a technique that can exploit the web workload
characteristics to leverage the heterogeneous cores to meet
various user requirements: whether it is load time (responsive
time), energy consumption or a trade-off between them. Given
the diversity of mobile architectures, we would like to have
an automatic approach to construct optimisation strategies for
any given platforms with little human involvement.

This paper presents such an approach to exploit the hetero-
geneous mobile platform for energy efficient web browsing. In
particular, it focuses on determining – for a given optimisation
goal – the optimal processor configuration i.e. the type of
processor cores to use to render the webpage and at what
frequencies the processor cores of the system should operate.
Rather than developing a hand-crafted approach that requires
expert insight into the relative costs of particular hardware and
web contents, we develop an automatic technique that can be
portable across computing environments. We achieve this by
employing machine learning to automatically build predictors
based on knowledge extracted from a set of representative,
training web contents. The trained models are then used at
runtime to predict the optimal processor configuration for a
given workload and an optimisation target.

Our technique is implemented as an extension for the
Google Chromium browser. It is applied to the hottest 500
webpages ranked by www.alexa.com and is evaluated
for three distinct metrics: load time, energy consumption
and energy delay product (a trade-off between load time
and energy consumption). We evaluated our technique on
a representative big.LITTLE mobile platform. Our approach
delivers significant improvement over a state-of-the-art web-
aware scheduling mechanism [6] and the Linux Heterogeneous
Multi-Processing (HMP) scheduler for all the three metrics.

The key contribution of this paper is a novel machine
learning based predictive model that can be used to optimise
web workloads across multiple optimisation goals. Our re-
sults show that significant energy efficiency for mobile web
browsing can be achieved by making effective use of the
heterogeneous mobile architecture.

II. BACKGROUND

A. Web Rendering Process

Our prototype system is built upon Google Chromium,
an open source version of the popular Google Chrome
web browser. To render an already downloaded webpage,
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Figure 1: The rendering process of Chromium browser.

the Chromium rendering engine follows a number of steps:
parsing, style resolution, layout and paint. This process is
illustrated in Figure 1. Firstly, the input HTML page is parsed
to construct a Document Object Model (DOM) tree where
each node of the tree represents an individual HTML tag such
as <body> or <p>. CSS style rules that describe how the
web contents should be presented will also be translated to
the style rules. Next, the styling information and the DOM
tree are combined to build a render tree which is then used
to compute the layout of each visible element. Finally, the
paint process takes in the render tree to output the pixels to
the screen. In this work, we focus solely on scheduling the
rendering process on heterogeneous mobile systems.

B. Motivation Example

Consider rendering the landing page of
en.wikipedia.org and www.bbc.co.uk on an ARM
big.LITTLE mobile platform. The system has a Cortex-A15
(big) and a Cortex-A7 (little) processors, running with the
Ubuntu Linux operating system (OS) (see also Section V-A).
Here, we schedule the Chromium rendering process to run
on the big or little core under various clock frequencies. We
then record the best processor configuration found for each
webpage. To isolate network and disk overhead, we have
pre-downloaded and stored the webpages in the RAM and
disabled the browser’s cache.

Figure 2 compares the best configuration against the Linux
HMP scheduler for three lower is better metrics: (a) load time,
(b) energy consumption and (c) the energy delay product
(EDP), calculated as energy × load time. Table I lists the best
configuration for each metric. For load time, the best config-
uration gives 14% and 10% reduction for wikipedia and
bbc respectively over the HMP. For energy consumption, using
the right processor configuration gives a reduction of 58% and
17% for wikipedia and bbc respectively. For EDP, the best
configuration gives a reduction of over 55% for both websites.
Clearly, there is significant room for improvement over the OS
scheduler and the best processor configuration could change
from one metric to the other.

Figure 2 (d) normalises the best available performance of
bbc to the performance achieved by using the best configura-
tion found for wikipedia for each metric. It shows that the
best processor configuration could also vary across webpages.
The optimal configuration for wikipedia fails to deliver
the best available performance for bbc. In fact, there is a
reduction of 11.9%, 18.9% and 23.5% on load time, energy
and EDP available respectively for bbc when compared to us-
ing the wikipedia-best configuration. Therefore, simply

Table I: Optimal processor configurations for web rendering

Load time Energy EDP
A15 A7 A15 A7 A15 A7

en.wikipedia.org - GHz 1.8 1.4 0.9 0.4 1.3 0.5
www.bbc.co.uk - GHz 1.6 1.4 1.0 0.3 1.5 0.4
rendering engine ! ! !

applying one optimal configuration found for one webpage to
another is likely to miss significant optimisation opportunities.

This example demonstrates that using the right processor
setting has a significant impact on web browsing experience,
and the optimal configuration depends on the optimisation
objective and the workload. What we need is a technique
that automatically determines the best configuration for any
webpage and optimisation goal. In the remainder of this paper,
we describe such an approach based on machine learning.

III. OVERVIEW OF OUR APPROACH

Figure 3 depicts our three-stage approach for predicting
the right processor configuration when rendering a webpage.
After the web contents (e.g. the HTML source, CSS files and
javascripts) are downloaded, they will be parsed to construct
a DOM tree together with style rules. This is performed
by the default parser of the browser. Our approach begins
from extracting information (termed as feature extraction),
from the DOM tree and style data to characterise the web
workload. This information (or features) includes counting
different HTML tags, DOM nodes and style rules. A complete
list of the features is given in Table IV. Next, a machine
learning based predictor (that is built off-line) takes in these
feature values and predicts which core to use to run the
rendering engine and at what frequencies the processors of the
platform should operate. Finally, we configure the processors
and schedule the rendering engine to run on the predicted core.

Our approach is implemented as a web browser extension
which will be invoked as soon as a DOM tree is constructed.
Re-prediction and rescheduling will be triggered if there are
significant changes of the DOM tree structure, so that we can
adapt to the change of web contents. Note that we let the
operating system to schedule other web browser threads such
as the input/output process.

Optimisation Goals. In this work we target three important
optimisation metrics: (a) load time (which aims to render the
webpage as quick as possible), (b) energy consumption (which
aims to use as less energy as possible) and (c) EDP (which
aims to balance the load time and energy consumption). For
each metric, we construct a predictor using the same learning
methodology described in the next section.

IV. PREDICTIVE MODELING

Our model for predicting the best processor configuration is
a Support Vector Machine (SVM) classifier using a radial basis
function kernel [7]. We have evaluated a number of alternative
modeling techniques, including regression, Markov chains, K-
Nearest neighbour, decision trees, and artificial neural net-
works. We chose SVM because it gives the best performance,
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Figure 2: Best load time (a), energy consumption (b) and EDP (c) for rendering wikipedia and bbc over to the HMP
scheduler; and the performance of using wikipedia best configurations w.r.t to the best available performance of bbc (d).
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Figure 3: Our three-stage approach for predicting the best processor configuration and scheduling the rendering process.
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Figure 4: Training the predictor.

Table II: Useful processor configurations per metric.

Load time Energy EDP
A15 A7 A15 A7 A15 A7

1.6 1.4 0.8 0.4 1.3 0.4
1.7 1.4 0.9 0.4 1.4 0.4
1.8 1.4 1.0 0.4 1.5 0.4
1.9 1.4 0.3 1.1 0.5 1.2
- - 0.3 1.2 0.5 1.3
- - 0.3 1.3 0.5 1.4

Table III: Raw web features

DOM Tree #DOM nodes depth of tree
#each HTML tag #each HTML attr.
#rules #each propertyStyle Rules #each selector pattern

Other webpage size (KB)

can model both linear and non-linear problems and the model
produced by the learning algorithm is deterministic. The input
to our model is a set of features extracted from the DOM
tree and style rules. The output of our model is a label that
indicates the optimal core to use to run the rendering engine
and the clock frequencies of the CPU cores of the system.

Building and using such a model follows the well-known
3-step process for supervised machine learning: (i) generate
training data (ii) train a predictive model (iii) use the predictor,
described as follows.

A. Training the Predictor

Figure 4 depicts the process of using training webpages to
build a SVM classifier for one of the three optimisation met-
rics. Training involves finding the best processor configuration
and extracting feature values for each training webpage, and
learning a model from the training data.

Generate Training Data. We use over 400 webpages to
train a SVM model. These webpages are the landing page
of the top 500 hottest websites ranked by alexa [8]. These
websites cover a wide variety of areas, including shopping,
video, social network, search engine, E-commerce, news etc.
Whenever possible, we used the mobile version of the website.
Before training, we have pre-downloaded the webpages from
the Internet and stored the content in a RAM disk. For each
webpage, we exhaustively execute the rendering engine with
different processor settings and record the best performing
configuration for each optimisation metric. We then label each
best-performing configuration with a unique number. Table II
lists the processor configurations found to be useful on our
hardware platform. For each webpage, we also extract the
values of a selected set of features (described in Section IV-B).

Building The Model. The feature values together with the
labelled processor configuration are supplied to a supervised
learning algorithm. The learning algorithm tries to find a corre-
lation from the feature values to the optimal configuration and
outputs a SVM model. Because we target three optimisation
metrics in this paper, we have constructed three SVM models
– one for each optimisation metric. Since training is only
performed once at the factory, it is a one-off cost. In our case
the overall training process takes less than a week using two
identical hardware platforms.

One of the key aspects in building a successful predictor is
finding the right features to characterise the input data. This
is described in the next section which is followed by sections
describing how to use the predictor at runtime.



Table IV: Selected web features

#HTML tag a, b, br, button, div, h1, h2, h3, h4, i, iframe, li,
link, meta, nav, img, noscript, p, script, section,
span, style, table, tbody

#HTML attr alt, async, border, charset, class, height, con-
tent, href, media, method, onclick, placeholder,
property, rel, role, style, target, type, value,
background, cellspacing, width, xmlns, src

#Style selector class, descendant, element, id
#Style rules background.attachment/clip/color/image,

background.repeat.x/y, background.size, back-
ground.border.image.repeat/slice/source/width,
font.family/size/weight, color, display, float

Other info. DOM tree depth, #DOM nodes, #style rules,
size of the webpage (Kilobytes)

B. Web Features

Our predictor is based on a number of features extracted
from the HTML and CSS attributes. We started from 948
raw features that can be collected at runtime from Chromium.
Table III lists the raw features considered in this work. These
are chosen based on our intuitions of what factors can affect
scheduling. For examples, the DOM tree structures (e.g. the
number of nodes, depth of the tree, and HTML tags) determine
the complexity and layout of the webpage; the style rules
determine how elements (e.g. tables and fonts) of the webpage
should be rendered; and the larger size of the webpage the
longer the rendering time is likely to be.

Feature Selection. To build an accurate predictor using
supervised learning, the training sample size typically needs to
be at least one order of magnitude greater than the number of
features. Given the size of our training examples (less than 500
webpages), we would like to reduce the number of features
to use. We achieve this by removing features that carry little
or redundant information. For instances, we have removed
features of HTML tags or attributes that are found to have
little impact on the rendering time or processor selections.
Examples of those tags are <def>, <em> and <body>.
We have also constructed a correlation coefficient matrix to
quantify the correlation among features to remove similar
features. The correlation coefficient takes a value between −1
and 1, the closer the coefficient is to +/ − 1, the stronger
the correlation between the features. We removed features
that have a correlation coefficient greater than 0.75 (ignore
the sign) to any of the already chosen features. Exemplary
similar features include the CSS styles <marginTop> and
<marginRight> which often appear as pairs. Our feature
selection process results in 73 features listed in Table IV.

Feature Extraction. To extract features from the DOM
tree, our extension first obtains a reference for each DOM
element by traversing the DOM tree and then uses the
Chromium API, document.getElementsByID, to col-
lect node information. To gather CSS style features, it uses
the document.styleSheets API to extract CSS rules,
including selector and declaration objects.
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Figure 5: Runtime prediction and processor configuration.

Feature Normalisation. Before feeding the feature values
to the learning algorithm, we scale the value of each feature
to the range of 0 and 1. We also record the min and max
values used for scaling, which then can be used to normalise
feature values extracted from the new webpage during runtime
deployment (described in the next sub-section).

C. Runtime Deployment

Once we have built the models as described above, we can
use them to predict the best processor configuration for any
new, unseen web contents. The prediction is communicated to
a scheduler running as an OS service to move the rendering
process to the predicted core and set the processors to the
predicted frequencies.

Figure 5 illustrates the process of runtime prediction and
task scheduling. During the parsing stage, which takes less
than 1% of the total rendering time [9], our extension firstly
extracts and normalises the feature values, and uses a SVM
classifier to predict the optimal processor configuration for a
given optimisation goal. The prediction is then passed to the
runtime scheduler to perform task scheduling and hardware
configuration. The overhead of extracting features, prediction
and configuring processor frequency is small. It is less than
20 ms which is included in our experimental results.

As the DOM tree is constructed incrementally by the
parser, it can change throughout the duration of rendering. To
make sure our approach can adapt to the change of available
information, re-prediction and rescheduling will be triggered
if the DOM tree is significantly different from the one used for
the last prediction. The difference is calculated by counting the
number of DOM nodes between the currently used tree and
the newly available one. If the difference is greater than 30%,
we will make a new prediction using feature values extracted
from the new DOM tree and style rules. We have observed that
our initial prediction often remains unchanged, so rescheduling
and reconfiguration rarely happen in our experiments.

D. Example

As an example, consider rendering the landing page of
wikipedia for energy consumption. This scenario is most
useful when the mobile phone battery is low but the user
still wants to retrieve information from wikipedia. For this
example, we have constructed a SVM model for energy using
“cross-validation” (see Section V-B) by excluding the webpage
from the training example.

To determine the optimal processor configuration for energy
consumption, we first extract values of the 73 features listed
in Table IV from the DOM tree and CSS style objects.



Table V: None-zero feature values for en.wikipedia.org.

Feature Raw value Normalised value

#DOM nodes 754 0.084
depth of tree 13 0.285

number of rules 645 0.063
web page sieze 2448 0.091

#div 131 0.026
#h4 28 0.067
#li 52 0.031

#link 10 0.040
#script 3 0.015

#href 148 0.074
#src 36 0.053

#background.attachment 147 0.040
#background.color 218 0.058

#background.image 148 0.039
#class 995 0.045

#descendant 4454 0.0168
#element 609 0.134

#id 4 0.007
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Figure 6: The #DOM nodes (a) and webpage size (b) for the
webpages used in the experiments.

The feature values will then be normalised as described in
Section IV-B. Table V lists some of the non-zero values for
this website, before and after normalisation. These feature
values will be fed into the offline-trained SVM model which
output a labeled processor configuration (<A15, 0.9, 0.4>
in this case) indicating the optimal configuration is running
the rendering process on the big core at 900 MHz and the
little core should operate at the lowest possible frequency
400 MHz. This prediction is indeed the optimal configuration
(see also Section II-B). Finally, the processor configuration
is communicated to a runtime scheduler to configure the
hardware platform. For this example, our approach is able to
reduce 58% of the energy consumption when comparing to
the Linux HMP scheduler.

V. EXPERIMENTAL SETUP

A. Hardware and Software

Evaluation System. Our hardware evaluation platform is
an Odroid XU3 mobile development board with an A15 (big)
processor and an A7 (little) processor. The board has 2 GB
LPDDR3 RAM and 64 GB eMMC storage. Table VI gives
detailed information of the hardware platform. We chose this
platform as it is a representative big.LITTLE architecture
implementation. For example, the Samsung Galaxy S4 phone
uses the same architecture. The board runs the Ubuntu 14.04
LTS Linux OS. We implemented our model as an extension
to Chromium (version 48.0) which was compiled using the

Table VI: Hardware platform

big CPU LITTLE CPU GPU

Model Cortex-A15 Cortex-A7 Mali-T628
Core Clock 2.0 GHz 1.4 GHz 533 MHz
Fore Count 4 4 8

gcc compiler (version 4.6). As the current implementation of
Google Chromium for Android does not support extensions,
we did not evaluate our approach on the Android OS.

Webpages. We used the landing page of the top 500 hottest
websites ranked by www.alexa.com. Whenever possible,
we used the mobile version of the website for evaluation. To
isolate network and disk overhead, we have downloaded and
stored the webpages in a RAM disk. We also disabled the
browser’s cache in the experiments. Figure 6 shows the number
of DOM nodes and the size for the 500 webpages used in our
evaluation. As can be seen from this diagram, the webpages
range from small (4 DOM nodes and 40 Kilobytes) to large
(over 8,000 DOM nodes and over 5 MB).

B. Evaluation Methodology

Predictive Modelling Evaluation. We use leave-one-out
cross-validation to evaluate our machine learning model. This
means we remove the target webpage to be predicted from the
training example set and then build a model based on the re-
maining webpages. We repeat this procedure for each webpage
in turn. It is a standard evaluation methodology, providing an
estimate of the generalisation ability of a machine-learning
model in predicting unseen data.

Comparisons. We compare our approach to two alter-
native approaches, a state-of-the-art web-aware scheduling
mechanism [6] (referred as WS hereafter), and the Linux
Heterogeneous Multi-Processing (HMP) scheduler which is
designed for the big.LITTLE architecture to enable the use of
all different CPU cores at the same time. WS uses a regression
model built from the training examples to estimate webpage
load time and energy consumption under different processor
configurations. The model is used to find the best configuration
by enumerating all possible configurations.

Performance Report. We profiled each webpage under a
processor configuration multiple times and report the geomet-
ric mean of each evaluation metric. To determine how many
runs are needed, we calculated the confidence range using a
95% confidence interval and make sure that the difference
between the upper and lower confidence bounds is smaller
than 5%. We instrumented the Chromium rendering engine to
measure the load time. We excluded the time spent on browser
bootstrap and shut down. To measure the energy consumption,
we have developed a lightweight runtime to take readings from
the on-board energy sensors at a frequency of 10 samples per
second. We then matched the readings against the rendering
process’ timestamps to calculate the energy consumption.
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Figure 7: Achieved performance for load time (a), energy consumption (b) and EDP (c) over the Linux HMP scheduler.
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Figure 8: Our performance w.r.t. performance of an oracle
predictor. We achieve over 80% of the oracle performance.

VI. EXPERIMENTAL RESULTS

In this section, we first compare our approach against
WS and the HMP scheduler. We then evaluate our approach
against an ideal predictor, showing that our approach delivers
over 80% of the oracle performance. Finally, we analyse the
working mechanism of our approach.

A. Overall Results

Figure 7 shows the performance results of our approach and
WS for the three evaluation metrics across all websites. For
each metric, the performance improvement varies for different
webpages. Hence, the min-max bars in this graph show the
range of improvement achieved across the webpages we used.
The baseline in the diagram is the HMP scheduler.

Load Time. Figure 7 (a) shows the achieved performance
when fast response time is the first priority. For this metric, WS
achieves an averaged speedup of 1.34x but it causes significant
slowdown (up to 1.26x) for some websites. By contrast, our
approach never leads to deteriorative performance with up to
1.92x speedup. Overall, our approach outperforms WS with an
average speedup of 1.45x vs 1.34x over the HMP scheduler,
and has constantly better performance across websites.

Energy Consumption. Figure 7 (b) compares the achieved
performance when having a long battery life is the first priority.
In this scenario, adaptive schemes (WS and our approach) can
significantly reduce the energy consumption through dynam-
ically adjusting the processor frequency. Here, WS is able to

reduce the energy consumption for most websites. It achieves
on average an energy reduction of 57.6% (up to 85%). Once
again, our approach outperforms WS with a better averaged
reduction of 63.5% (up to 93%). More importantly, our
approach uses less energy for all testing websites compared to
HMP, while WS sometime uses more energy than HMP. This is
largely due to the fact that our approach can better utilise the
webpage characteristics to determine the optimal frequencies
for CPU cores. In addition, for several webpages, WS estimates
the big core gives better energy consumption, which are actual
a poor choice.

EDP. Figure 7 (c) shows the achieved performance for min-
imizing the EDP value, i.e. to reduce the energy consump-
tion without significantly increasing load time. Both adaptive
schemes achieve improvement on EDP when compared to
HMP. WS delivers on average a reduction of 69% (up to 84%),
but it fails to deliver improved EDP for some websites. Unlike
WS, our approach gives constantly better EDP performance
with a reduction of at least 20%. Overall, we achieve on
average 81% reduction (up to 95%) of EDP, which translates
to 38% improvement over WS on average.

B. Compare to Oracle

In Figure 8, we compare our scheme to an ideal predictor
(oracle) that always gives the optimal processor configuration.
This comparison indicates how close our approach is to
the theoretically perfect solution. As can be seen from the
diagram, our approach achieves 85%, 90% and 88% of the
oracle performance for load time, energy consumption and
EDP respectively. The performance of our approach can be
further improved by using more training webpages together
with more useful features to better characterise some of the
web workloads to improve the prediction accuracy.

C. Analysis

1) Optimal Configurations. Figure 9 shows how the distri-
bution of optimal processor configurations changes from one
metric to the other. To optimise for load time, we should al-
ways run the rendering process on the fast, big core (A15) with
a frequency of at least 1.6 GHz. For this optimisation goal,
nearly half of the websites benefit from using the A15 core at
1.9 GHz while others benefit from a lower frequency (1.6 to
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(c) EDP

Figure 9: The distribution of the optimal processor configurations for load time (a), energy consumption (b) and EDP (c).

1.8 GHz). We believe this is because for some webpages using
a lower frequency can reduce CPU throttling activities [10]
(i.e. the OS will greatly clock down the processor frequency
to prevent the CPU from over-heating). We also found that
running the rendering process at 2.0 GHz (a default setting
used by many performance-oriented schedulers) does not give
better load time. When optimising for energy consumption,
around 30% of the simple websites benefit from the low-power
A7 core. Furthermore, for the websites where the A15 core is
a good choice, they are in favour of a lower clock frequency
over the optimal one for load time. For EDP, using the A7
core benefits some websites but the optimal clock frequency
leans towards a median value of the available frequency range.
This is expected as EDP is a metric for quantifying the trade-
off between load time and energy consumption. This diagram
shows the need to adapt the processor settings to different web
workloads and optimisation goals.

2) Performance for each configuration. Figure 10 shows
the performance for using each of the processor configurations
listed in Table II across optimisation metrics. It shows that
a “one-size-fits-all” scheme fails to deliver the optimal per-
formance. For example, while the A15(0.8GHz)-A7(0.4GHz)
configuration is able to reduce the energy consumption by 40%
on average, it is outperformed by our approach that gives a
reduction of 63.5%. This is confirmed by Figure 9 (b), showing
that running the A15 core at 0.8GHz only benefits 20% of
the websites. Similar results can be found for the other two
optimisation metrics. This experiment shows that an adaptive
scheme significantly outperforms a hardwired strategy.

3) Prediction Accuracy. Our approach gives correct pre-
dictions for 82.9%, 88% and 85% of the webpages for load
time, energy consumption and EDP respectively. For those
webpages that our approach makes a misprediction, the re-
sulting performance is not far from the optimal, where we
still achieve a reduction of 24%, 21% and 56% for load time,
energy consumption and EDP when compared to HMP.

4) Breakdown of Overhead. Figure 11 shows the break-
down of runtime overhead. The runtime overhead of our
approach is low – less than 4% with respect to the rendering
time. Since the benefit of our approach is significant, we
believe such a small overhead is acceptable. Most of the time
(15 ms) is spent on moving the rendering process from one

F e a t u r e
e x t r a c t i o n

P r e d i c t i o n C o n f i g . T a s k  
m i g r a t i o n

0 . 0 %
0 . 5 %
1 . 0 %
1 . 5 %
2 . 0 %
2 . 5 %
3 . 0 %

 

 

 

Ov
erh

ea
d t

o l
oa

d t
im

e

Figure 11: Breakdown of runtime overhead to rendering time.
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Figure 12: A Hinton diagram showing the importance of
selected web features to the prediction accuracy. The larger
the box, the more important a feature is.

processor to the other. This is expected as task migration
involves initialising the hardware context (e.g. cache warm up),
which can take a few micro-seconds. The overheads of other
operations, i.e. feature extraction, predicting and frequency
setting, is very low, which are less than 5 ms in total.

5) Feature Importance. Figure 12 shows a Hinton diagram
illustrates some of the most important features that have an
impact on the load time, energy and EDP specific models. Here
the larger the box, the more significantly a particular feature
contributes to the prediction accuracy. The x-axis denotes the
features and the y-axis denotes the model for each metric. The
importance is calculated through the information gain ratio. It
can be observed that HTML tags and attributes (e.g. <li>,
<img>, <bgcolor>) and style rules are important when
determining the processor configurations for all optimisation
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Figure 10: The achieved performance for all configurations listed in Table II.
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Figure 13: Webpage rendering time to the time spent on
downloading the contents in different network environments.

metrics. Other features are extremely important for some
optimisation metrics (such as #DOM nodes is important for
energy, and #HTML.tag.table is important for load time and
energy) but less important for others. This diagram shows the
need for distinct models for different optimisation goals.

6) Adapt to Different Network Environments. In all the
previous experiments, we have isolated the network impact by
storing the webpage into a RAM disk. In practice, the device
can be used in different network environments. A natural
question to ask is: which of the three models developed in this
work best suits for a particular environment? Figure 13 shows
the webpage rendering time with respect to the download
time under different network settings: 2G, 3G, 4G and WiFi
(802.11). We further breakdown each environment into two
groups: poor and good. A network environment is considered
to be poor if the packet loss is greater than 30%, otherwise it is
considered to be good. As can be seen from the diagram, the
download time dominates the total processing time in poor
and good 2G network environments. In such environments,
our energy-tuned model can be used to trade rendering per-
formance for energy consumption without compromising the
user experience, by moving the rendering process to run on an
low power processor at a low clock frequency. Our EDP-tuned
model is mostly suitable for a good 3G network environment
with a limited download bandwidth. Finally, our load-time-
tuned model can be used in good 4G and Wifi environments
to satisfy the performance requirement if load time is the first
priority. This diagram demonstrates the need of an adaptive
scheme in different network environments.

VII. RELATED WORK

Our work lies at the intersection of numerous areas: web
browsing optimisation, task scheduling, energy optimisation
and predictive modeling.

Web Browsing Optimisation. A number of techniques
have been proposed to optimise web browsing, through e.g.
prefetching [11] and caching [12] web contents, scheduling
network requests [13], or re-constructing the web browser
workflow [14]. Most of the prior work are built for a ho-
mogeneous mobile systems where the processors are iden-
tical. Furthermore, prior work often targets one single opti-
misation goal (either performance or energy consumption).
Unlike previous research, our work targets a heterogeneous
mobile system with different processing units and multiple
optimisation goals. The work presented by Zhu et al. [6]
is the nearest work, which uses linear regression models
to estimate the load time and energy consumption for each
web event to determine where to run the rendering process.
While promising, there are two significant shortcomings with
this approach. Firstly, it schedules the webpage to the big
core with the highest frequency if no configuration meets
the cut-off latency. This leads to poor performance as can
be seen in Section VI-C6 in some networking environments.
Secondly, their linear regression models only capture the linear
correlation between the web workload characteristics and the
processor configuration, leading to a low prediction accuracy
for some webpages. Our work addresses both of these issues
by dynamically configuring all CPU cores of the system and
modelling both linear and non-linear behaviour.

Task Scheduling. There is an extensive body of work on
scheduling application tasks on homogeneous and heteroge-
neous multi-core systems e.g. [15], [16], [17]. Most of the
prior work in the area use heuristics or analytical models to
determine which processor to use to run an application task,
by exploiting the code or runtime information of the program.
Our approach targets a different domain by using the web
workload characteristics to optimise mobile web browsing for
a number of optimisation metrics.

Energy Optimisation. Many techniques have been pro-
posed to optimise web browsing at the application level.



These include aggregating data traffic [18], bundling HTTP re-
quests [19], and exploiting the radio state mechanism [20]. Our
approach targets a lower level, by exploiting the heterogeneous
hardware architecture to perform energy optimisation. Work
on application-level optimisation is thus complementary to our
approach. Studies on energy behaviour of web workloads [2],
[3], [21] are also orthogonal to our work.

Predictive Modelling. Machine learning based predictive
modelling is rapidly emerging as a viable way for sys-
tems optimisation. Recent studies have shown that this tech-
nique is effective in predicting power consumption [22],
program optimisation [23], [24], [25], [26], [27], [28], auto-
parallelisaton [29], [30], [31], task scheduling [32], [33], [34],
[35], benchmark generation [36], estimating the quality of
service [37], configuring processors using DVFS [38], and
grouping communication traffics to reduce power consump-
tion [39]. No work so far has used machine learning to predict
the optimal processor configuration for mobile web browsing
across optimisation goals. This work is the first to do so.

VIII. CONCLUSIONS

This paper has presented an automatic approach to optimise
mobile web browsing on heterogeneous mobile platforms,
providing a significant performance improvement over state-
of-the-art. At the heart of our approach is a machine learning
based model that provides an accurate prediction of the
optimal processor configuration to use to run the web browser
rendering process, taking into account the web workload char-
acteristics and the optimisation goal. Our approach is imple-
mented as an extension to the Google Chromium web browser
and evaluated on an ARM big.LITTLE mobile platform for
three distinct metrics. Experiments performed on the 500
hottest websites show that our approach achieves over 80%
of the oracle performance. It achieves over 40% improvement
over the Linux HMP scheduler across three evaluation metrics:
load time, energy consumption and the energy delay product.
It consistently outperforms a state-of-the-art webpage-aware
scheduling mechanism. Our future work will explore further
refinement to prediction accuracy and to dynamically adapt to
different networking environments.
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