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Abstract—Cloud computing research is in great need of 

statistical parameters derived from the analysis of real-world 
systems. One aspect of this is the failure characteristics of 
Cloud environments composed of workloads and servers; 
currently, few metrics are available that quantify failure and 
repair times of workloads and servers at a large-scale. 
Workload metrics in particular are critical for characterizing 
and modeling accurate workload behavior, enabling more 
realistic workload simulation and failure scenarios of systems. 
This paper presents the analysis of failure data of a large-scale 
production Cloud environment (consisting of over 12,500 
servers), and includes a study of failure and repair times and 
characteristics for both Cloud workloads and servers. Our 
results show that failure characteristics for workload and 
servers are highly variable and that production Cloud 
workloads can be accurately modeled by a Gamma 
distribution. Repair times range between 30 seconds to 4 days, 
and 25 minutes to 8 days, for workloads and servers 
respectively. 

Keywords— Cloud computing, Dependability, Failure 
analysis, Repair analysis. 

I.  INTRODUCTION 

In order to research and create effective solutions for the 
problems faced by large-scale Cloud computing 
environments, it is imperative to analyze data from real-
world sources; for example, in the dependability field, a large 
portion of the state-of-the-art relies on statistical properties 
and accurate modeling of failure and repair characteristics. 
According to the National Institute of Standards and 
Technology (NIST) [1], Cloud computing is defined as "a 
model for enabling ubiquitous, convenient, on-demand 
network access to a shared pool of configurable computing 
resources that can be rapidly provisioned and released with 
minimal management effort or service provider interaction". 
The failure characteristics of such environments are of 
particular concern as failures can result in degradation of 
Quality of Service (QoS), availability, reliability and energy-
waste [2] that can ultimately lead to economic loss for both 
Cloud consumers and providers. 

It has been identified that developing Cloud 
environments that are both available and reliable (attributes 
of dependability [3]) is a critical and challenging research 
problem [4]. However, such analysis is notably challenging, 
due to the limited real-world Cloud datasets that are available 
due to confidentiality reasons and - more importantly - the 
difficulties in analyzing massive system data logs 
approaching big-data size and complexity. Currently, only a 
limited amount of work has attempted to analyze Cloud 
failures characteristics empirically. For example, the authors 
of [5] analyze outages and incidents reported by companies 
and news outlets, but do not sufficiently capture the fine-

grained failure characteristics of workload and servers within 
Cloud environments. The authors of [6] characterize the 
hardware reliability of Cloud datacenters from a number of 
data sources, but do not analyze the failure of workloads. 
The authors of [7] present workload failure characteristics 
from a production MapReduce supercomputing cluster, but 
this work is confined to MapReduce type jobs and does not 
consider workload repair or server failure characteristics. It 
should also be noted that [6] and [7] utilize datasets that are 
not publically available.  

As a result of this lack of empirical study, a sizable body 
of current Cloud dependability mechanisms and workload 
characterization research is derived from analysis of other 
distributed systems [8-10] or incorporates theoretical values 
[11-14]. While such work is relevant to enhancing Cloud 
dependability mechanisms and workload characterization, it 
comes with significant limitations. Firstly, analyzing the 
failures of small-scale workloads may not sufficiently 
represent failure characteristics seen in larger Cloud 
environments, which are greatly affected by system size and 
complexity [15]. Moreover, researchers that analyze 
workloads deployed within production Cloud environments 
from a consumer perspective are often unable to see 
important details of the system, such as server characteristics 
as well as other workloads residing within the environment. 
Secondly, Cloud computing systems contain a number of 
characteristics not found in other distributed paradigms; 
Clouds have highly heterogeneous environments due to the 
diversity of workloads driven by user behavior [16]. Such 
diversity has been already been quantified in terms of 
resource utilization and user behavior [17] as well as server 
resource waste [20]. However, such analysis of Cloud 
diversity has not been performed for failures; Such 
variability has been demonstrated to influence the 
manifestation of failures within systems [8,18,31]. Finally, 
applying theoretical failure characteristics to dependability 
mechanisms and workload simulation parameters may not 
reflect accurately the behavior of real-world Cloud systems.   

In addition to facilitating research, accurate real-world 
large-scale failure and repair characteristics allow Cloud 
providers to create concrete failure-scenarios to aid in system 
decision making. For example, such scenarios can help to 
decide what type of dependability mechanisms to use, and 
when/where to apply them in order to enhance system 
availability, reliability and energy-efficiency. 

The major contribution of this paper is an empirical 
failure analysis of a large-scale heterogeneous production 
Cloud environment. Specifically, we present and study its 
statistical properties, and analyze the distributions of failure 
and repair times for tasks and servers. In this context, we 
define a task as a program - possibly running multiple 



processes - on a single server which is assigned and executed 
within the Cloud environment, and when integrated with user 
behavior forms the Cloud workload. A server is defined as 
the hardware as well as the software managing the hardware 
– for example, the Hypervisor, OS, etc. Furthermore, we also 
present the statistical properties of Termination Events that 
occur within the system, which include task eviction, 
migration and user-determined termination. Finally, we 
provide the distribution parameters of failure and repair 
times for tasks and servers so that they can be integrated into 
simulation tools. 

Our analysis is performed on the Google Cloud trace log 
(described in Section 2), consisting of over 12,500 servers 
and spanning a time period of 29 days, containing over 25 
million unique submitted tasks. The objective of this paper is 
to understand and quantify the statistical parameters of Cloud 
failure and repair characteristics in order to study system 
behavior as well as provide realistic simulation parameters of 
Cloud computing environments.   

The paper is structured as follows: Section 2 describes 
the analyzed dataset and event logs; Section 3 discusses the 
methodology and failure assumptions; Section 4 details the 
statistical properties of Termination Events; Section 5 
presents the analysis of failures and repairs for servers and 
tasks; Section 6 discusses the application of this work; 
Finally, Section 7 contains the conclusions and future work. 

II. CLOUD DATASET 

A. Dataset Description and Analysis Challenges 
The Google tracelog features 12,532 servers spanning 29 

days of operation starting from 1st May, 2011 which is 
publically available at [19]. The trace log consists of a 
number of system logs including resource utilization of tasks, 
task constraints, as well as event logs for tasks and servers. 
Details about the statistical properties of the data such as task 
submission, task resource utilization and server 
characteristics can be found in [17][20-21]. 

We encountered a number of challenges extrapolating the 
data to facilitate the analysis presented within this paper. 
First, the total size of the trace log is approximately 400GB 
distributed across hundreds of Comma Separated Files, 
causing challenges when performing complex queries 
necessary to facilitate the analysis. Second, the data is 
unprocessed in nature, requiring extensive understanding of 
the nature of the data as well as the relationships that exist to 
develop an efficient analysis infrastructure and database 
system.  

To tackle these two problems, it was necessary to 
develop a 50 node Hadoop MapReduce [33] cluster running 
Hive [34], a data warehouse system to facilitate storage and 
query execution. This allowed us to extrapolate data of 
interest from the trace log orders of magnitude faster than a 
centralized system approach. 

B. Event Logs 
Within the trace, there are over 144 million and 37 

thousand events for tasks and servers respectively. These 
event logs are divided into two types: "server events" and 
"task events". In this paper, an event is defined as an action 
that changes the state of a server or task at a certain time and 
place. 

The data recorded for a server event includes the Server 
Identifier (Server ID), server attributes (Platform ID, CPU 
and Memory capacity; unique combinations of these 
attributes create a server architecture ID), event type and the 
time of event occurrence. There are three possible server 
events that can occur: A server is made available to the 
system environment (ADD), a server is removed from the 
cluster due to maintenance or failure (REMOVE) or the 
available resources of a server are modified (UPDATED). 

The task event log contains entries shared in the server 
event log such as the task identifier, time of event occurrence 
and event type as well as additional attributes such as the 
Server ID where the task was allocated, the task owner and 
the scheduling priority of the task. The scheduling decisions 
of the system are predominately based on task priorities 
which are identified within the task event log. The priority 
scale ranges from 0 to 11 to indicate lowest to highest 
priority respectively. As identified in [21], lower priority 
tasks are most likely used for development and testing while 
higher priority tasks are characterized as production tasks 
within the system.  

During the task life cycle, a task can transition through 
three different states: Pending, Running, and Dead that are 
driven by a number of events including task submission, 
scheduling, successful task completion, failure, eviction and 
killing amongst others described in [22] and depicted in 
Figure 1. A task is assigned Pending status when it is waiting 
to be allocated to a server after being submitted by a user or 
resubmitted by the task scheduler. Once the scheduler 
allocates the task to a server and begins execution, the task 
state changes to Running. It is possible for a task to be 
rescheduled to a different server after being resubmitted by 
the scheduler. 

As depicted in Figure 1, there are three events that can 
change the state of a task to Dead without successful 
completion; we define these events as Termination Events 
(TEs). First, it is possible for a task to be cancelled due to a 
user, loss of dependencies with other tasks, migration or 
unknown cause of termination (KILL). Second, it is possible 
for a task to be evicted from a server (EVICT) due to 
overcommitment of the scheduler, the server the task is 
executing on becomes unstable or the server disk fails. 
Lastly, it is possible for a task to terminate due to a task 
software crash (FAIL). If any of the three events occur, the 
task is automatically re-submitted and returns to Pending 
status. Further information about all event attributes can be 
found in [22]. 

III.  METHODOLOGY AND FAILURE ASSUMPTIONS 

The main objective of this paper is to study and quantify 
the failure and repair characteristics of tasks and servers 
within the Google Cloud trace log in order to study system 
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Figure 1. Task life cycle in Google trace log. 



behavior as well as provide accurate simulation parameters. 
This section describes the methodology to extrapolate 
failures from the dataset and the assumptions made when 
defining the failure modes. 

A. Event Log Sampling 

Event logs are sampled and divided into two different 
failure catalogs; task and servers. For the analysis it is 
necessary to calculate the elapsed time between failures and 
time to repair. For failure time, we calculate the elapsed time 
as the time between scheduling and a TE, and the elapsed 
time between ADD and REMOVE events for tasks and 
servers respectively. Repair time is calculated as the elapsed 
time between a TE and rescheduling (we observe within the 
trace log that all tasks are resubmitted by the scheduler after 
a TE occurs) and the elapsed time between REMOVE and 
ADD events for tasks and servers respectively. These 
elapsed times are calculated using timestamps recorded when 
an event occurs. Failure and repair times of tasks caused by 
FAIL events are filtered separately from TEs, and are the 
main focus of this empirical analysis. 

This study does not consider task failures or repairs that 
occur outside the trace log observational period, as it is not 
possible to characterize an accurate time between failure and 
repair without knowledge of both schedule and termination 
times for tasks and servers. Inclusion of any data that does 
not contain both timestamps would likely skew results. This 
condition mainly excludes task monitoring services running 
within the Cloud grouped in priorities 10 and 11, which have 
started before the trace log observational period. With this 
assumption, the task failure catalog consists of 13,572,457  
events, representing just over 98% of the FAIL events 
recorded in the trace log. 

B. Failure Definition 
It is necessary to define the nature of failures that occur 

within the trace log based on meaningful observations from 
the data as well as the supporting literature. Using this 
approach, we identify two types of failures that occur within 
the trace log as shown in Table 1. Server failures are 
characterized as a software or hardware crash failure. In this 
context, we define crash as a fail-stop failure, i.e. processes 
or hardware fail by halting without doing anything.  Based 
on observations from the data, when a server REMOVE 
event occurs, all tasks currently executing on the server 
subsequently terminate. As stated in [22] the reason for a 
REMOVE event is either due to server failure or 
maintenance. Due to this ambiguity, it is not possible to 

distinguish server failure from server maintenance as 
discussed in [21]. As a result, instead of arbitrarily choosing 
which servers fail or require maintenance, we classify all 
REMOVE events as a server failure (agnostic of 
maintenance), as this event results in tasks currently 
executing within the server to deviate from correct service. 

Task failures are characterized as software crash failures. 
Task failures are identified by tasks that exhibit the FAIL 
event filtered from the task event log. In [22], FAIL events 
are explicitly defined as a software crash of the task.  

It is well understood that the root cause of task and server 
failures might vary; from physical, design (typically 
software), human-machine interaction, malicious attacks, or 
a combination of any of the above [23]. In reality, transient 
hardware faults, hardware design faults and software bugs 
often cause similar system behavior [24]. In addition, it is 
possible each failure event recorded may not necessarily 
correspond to a unique failure, and failure events that are 
temporally close together may be a result of the same failure. 
Within this work, instead of arbitrarily and subjectively 
selecting different failure root causes for servers we decided 
not to distinguish root causes for servers due to ambiguity 
that exists within the trace log. However, it is possible to 
filter task failures that are caused by hardware or software 
crashes either by tasks failing when the server fails or when a 
FAIL event occurs respectively. In addition, we also assume 
that all failures that occur within the trace are caused by 
unique failures. Such assumptions are well supported by 
previous failure analysis [15,25,26] that also found that it is 
incredibly difficult to identify the root cause and the duration 
of a failure.  

IV.  TERMINATION EVENT ANALYSIS 

We present a concise analysis of the TEs to provide 
insight into the events that cause task termination within the 
system and more importantly demonstrate the significance of 
failures within the Cloud environment. Out of the 25,927,826 
TEs identified, 52% events corresponded to task failures 
while 22% and 26% correspond to EVICT and KILL events 
respectively as shown in Figure 2(a), signifying that the 
majority of TEs are caused by task failures. Furthermore we 
identify that 3.26% of the total unique tasks within the 
system experience one or more FAIL events within their life 
time. From Figure 2(b) it is observable that a large 
proportion of FAIL events occur within Day 2 and Days 10-
16. This behavior is postulated in [21] as a result of 'crash-
loops'; where tasks deterministically fail shortly after 

TABLE 1.  FAILURE DEFINITIONS OF SERVERS AND TASKS. 

Failure 
Observation Server Crash Failure  Task Crash Failure 

Actors Server and Task Task 

Description Server experiences a software or hardware crash failure. Task experiences a software crash failure. 

Precondition 
1. Server is operational. 
2. Tasks eligible for submission or currently executing on the server. 

1. Task is currently executing on a server 

Post Condition 
1. Server REMOVE event occurs. 
2. Tasks currently scheduled on the server result in EVICT or KILL event. 

1. Task event FAIL occurs. 
2. Server continues operating. 

Dataset 
Observation 

1. After a server experiences a REMOVE event, all tasks that were 
scheduled onto the server subsequently experience KILL or EVICT event 
microseconds apart from each other. 
2. No further tasks are scheduled onto the server until it recovers and 
rejoins the system where possible. 

1. A large portion of tasks within the trace log 
experience a FAIL event. 
2.  After a variable amount of time, the task 
recovers and is rescheduled onto a server. 

 



execution, yet are repeatedly rescheduled back into the 
system (There are extreme cases where a single task is 
resubmitted over 40,000 times). This crash-loop behavior 
occurs to such an extent that it results on average 14 times 
the amount of task resubmissions compared to other days. 
This type of behavior is a concern in large-scale system 
environments, as it causes significant increase to the 
scheduler workload, as well as work performed by tasks to 
be wasted.  

V. FAILURE AND REPAIR ANALYSIS 

The following section presents the analysis of the failure 
and repair characteristics for both servers and tasks. We 
present the statistical properties for failure and repair times, 
including the Mean (ȝ), Standard Deviation (ı) and Squared 
Coefficient of Variance (C2). Furthermore, we match the 
closest theoretical distributions applying Anderson-Darling 
Goodness of Fit (GoF) tests to obtain the statistical 
parameters of Mean Time Between Failure and Mean Time 
to Repair (MTBF and MTTR respectively). Due to the large 
amount of records present after extrapolating the data using 
the analysis infrastructure, we have used Minitab [27] to 
efficiently perform a large portion of the analysis.  

In addition, we have evaluated the data against a number 
of distributions including Weibull, Gamma, Loglogistic, 
Exponential and Lognormal. Lastly, we have presented a 
visual fit comparison in the form of Empirical Cumulative 
Distribution Functions (CDFs). We present the visual 
distribution fit of the overall system where applicable as well 
as priority 9 tasks, as these represent production tasks within 
the Cloud environment, that we believe are of high relevance 
and importance to the Cloud research community. 

A. Servers 
Within the trace log observational period, 8.954 server 

failures occurred in within 5,056 servers as depicted in 
Figure 3 and Figure 5 with an average of 308 servers failing 
daily with a standard deviation of 101 as depicted in Figure 
4. We can observe from Figure 5 that a small proportion of 
servers exhibit high failure occurrence, and that most servers 
experience less failure events with similar proportions. 

Table 2 presents the statistical properties as well as the 
data distributions of server failures for each server 
architecture population greater than 1%, as these represent 
99.56% of the total servers within the observational period. 
We observe that all server failures visually and statistically 
best fit a Weibull distribution as shown in Figure 6, which 
conforms to server failure modeling in previous findings 
[10], with a C2 value for all server architectures between 
0.237-0.435 signifying low variance of server MTBF.  

Moreover, 59,583 tasks within the trace log fail due to 
server hardware failures, which are identified as termination 

 
Figure 3. Unique server failures within the observational period. 

 
Figure 5. Distribution of servers failures. 

 

 
Figure 4. Number of server failure events daily. 

 

 

Figure 2. Number of Termination Events a) Total, b) Per day. 
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events with 21% and 79% of the events corresponding to 
KILL and EVICT events, respectively. Such failures 
represent 0.44% of total task failures within the trace log. 

Table 2 also presents the statistical properties and 
distribution parameters for server repairs times. We observe 
that the median repair time for all server architectures is 6 to 
30 times smaller than that of the mean, and that all median 
values are similar in value. Server repair time was best fit by 
Lognormal and Loglogisitc distribution classified by server 
architecture type, and Lognormal across the entire system as 
shown in Figure 7. These statistical properties as well as the 
empirical CDF demonstrate that the vast majority of repair 
times are relatively short; just under 30 minutes. There are 
two reasons for this behavior. The first is described in [21] as 
a portion of REMOVE events are due to maintenance; the 
second reason we postulate is that a large proportion of 
server failures can be repaired by restarting the server. On 
the other hand, we also found a proportion of servers that 

required several days to be repaired, indicating more 
complicated failures that cannot be corrected by just 
restarting the server. This is indicated by high variability 
within the repair times of servers, reflected by the C2 between 
2.28 - 36.89 as well as the distribution shape in Figure 7. 

B. Tasks 
Table 3 presents the statistical properties of task failures 

due to software crashes, as well as the best fit distributions 
classified by task priority. We discovered that attempting to 
fit a theoretical distribution to tasks agnostic of priority was 
not feasible, as it resulted in a C2 value of 46 (representing 
significant variability within the data), nor did it visually fit 
or pass a GoF test satisfactorily. The reason for this is due to 
the characteristics of task failures as shown in Table 3; as it 
can be observed, tasks of different priority levels vary 
significantly in terms of the mean and standard deviation for 
MTBF. It can be observed that C2 is significantly lower when 
classifying task failures by priority. By separating tasks by 
priority type, we were able to sufficiently fit task MTBF to a 

 
Figure 6. Empirical CDF of time between failures for server architectures. 

 
Figure 7. Empirical CDF of server repair times. 

TABLE 3. STATISTICAL PROPERTIES AND MODEL PARAMETERS OF TASK MTBF AND MTTR 

  Failure Repair 

Priority Population 
% 

Best Fit 
Distribution 

Parameters ȝ 
(Hours) 

ı 
(Hours) C2 

Best Fit 
Distribution 

Parameters Median 
(Hours) 

ȝ 
(Seconds) 

ı 
(Seconds) C2 

0 35.07 Weibull 
k = 0.5107 
Ȝ = 0.3342 

1.063 4.925 4.63 
3-Param 

Loglogistic 
Į = 0.9497, ȕ = 1.115 

T = 0.9822 
2.90 122.90 1472.2 143.5 

1 13.73 Lognormal 
ȝ = -1.638 
ı = 1.665 

1.694 8.083 4.77 
3-Param 

Lognormal 
ȝ = 1.206, ı = 1.758 

T = 1.049 
4.00 161 7157 1976 

2 1.06 Lognormal 
ȝ = -0.3489 
ı = 2.152 

3.825 11.836 3.09 Lognormal 
ȝ = 1.216 
ı = 1.227 

2.00 28.70 182.10 40.26 

4 42.77 Lognormal 
ȝ = -1.921 
ı = 1.763 

1.019 4.967 4.87 
3-Param 

Loglogistic 
Į = 0.0067, ȕ = 0.6553 

T = 0.9737 
1.91 16.32 173.36 112.8 

6 4.78 Loglogistic 
Į = -3.073 
ȕ = 0.3129 

0.062 0.093 1.50 
3-Param 

Loglogistic 
Į =-0.529, ȕ = 0.5227 

T = 1.089 
1.67 2.67 4.06 2.31 

8 0.43 Loglogistic 
Į = -0.2421 
ȕ = 2.154 

48.53 64.190 1.32 
3-Param 

Lognormal 
ȝ = 0.2871, ı = 2.083 

T = 1.317 
2.44 8.37 14.52 3.00 

9 2.16 Gamma 
k = 0.2215 
Ȝ = 265.1 

58.72 95.030 1.62 
3-Param 

Lognormal 
ȝ = 0.4904, ı = 1.274 

T = 1.031 
2.43 4.75 5.77 1.48 

 

TABLE 2. STATISTICAL PROPERTIES AND MODEL PARAMETERS OF SERVER MTBF AND MTTR 

  

Failure Repair 
Server 

Architecture 
Population 

% 
Best Fit 

Distribution Parameters 
ȝ 

(Days) 
ı  

(Days) C2 
Best Fit 

Distribution Parameters 
Median 
(Hours) 

ȝ 
(Hours) 

ı 
(Hours) C2 

1 1.36 Weibull 
k = 2.191 
Ȝ = 12.80 

12.239 5.952 0.237 Lognormal 
ȝ = -1.620 
ı = 2.964 

0.28 9.17 28.8 9.86 

3 6.39 Weibull 
k = 1.463 
Ȝ = 13.79 

12.55 8.28 0.435 Loglogistic 
Į = -1.661 
ȕ = 0.7326 

0.24 1.48 8.99 36.89 

5 8.98 Weibull 
k = 1.516 
Ȝ = 14.01 

12.489 7.79 0.389 Loglogistic 
Į = -1.249 
ȕ = 1.075 

0.27 4.81 13.32 7.67 

7 55.01 Weibull 
k = 1.540 
Ȝ = 13.77 

12.71 8.057 0.402 Lognormal 
ȝ = -1.529 
ı = 2.156 

0.19 4.17 17.22 17.05 

10 27.97 Weibull 
k = 1.641 
Ȝ = 14.50 

13.046 7.784 0.356 Lognormal 
ȝ = -1.152 
ı = 2.125 

0.15 8.17 12.33 2.28 

 



number of distributions; we found that different task 
priorities best fit different distributions and that non-
production priority tasks best fit Lognormal, Loglogistic and 
Weibull distributions that are heavily skewed as shown in 
Figure 8. Such behavior is supportive of the notion that a 
large number of failures occur within the start up phase of 
tasks due to the crash-loops discussed in Section 4. 

As stated previously, priority 9 tasks represent production 
tasks within the system environment. We observe that the C2 

value of MTBF is 1.62; considerably lower than other task 
types, and that the MTBF mean and standard deviation is 
significantly larger. We observe that the MTBF of 
production tasks best fits a Gamma distribution (shape 
parameter k = 0.2) compared to other distributions types as  
shown in Figure 9. There appear to be two types of failure 
characteristics for tasks; tasks that experience failures near 
the start of execution, and tasks that experience failures far 
into their life spans. Figure 9 shows that just over 70% of 
tasks fail within the first hour of execution resulting in a 
skew within the data. The reason for this is a result of user 
behavior; there exists a single user that is responsible for just 
under 65% of total production tasks failures, all occurring 
within Day 3 and failing just under a minute into execution. 
As a result, this causes the distribution in Figure 9 to become 
skewed. This behavior is worth noting, as Cloud computing 
environments are driven by user behavior with varying QoS 
demands. As a result, such environments are also influenced 
by the failure characteristics of these users. This is a potential 
concern in large-scale systems due to evidence of correlation 
between workload intensity [18], system size and complexity 
that may result in other users being affected.  

Table 3 also presents the statistical properties of repair 
times for tasks classified by priority. We encountered similar 
challenges as described previously with fitting the empirical 
data to a suitable theoretical distribution both visually and 
using GoF tests. This is due to the extreme variability of task 
recovery times within the trace log; especially lower priority 
tasks which exhibit C2 values between 112 - 1976. We found 
the mean and variance of repair times for task priorities 6-9 
to be considerably more stable, indicated by the median and 
the mean being closer together, as well as between the mean 
and standard deviation. In addition, these tasks contain a 
repair time under 10 seconds, indicating that restarting these 
tasks appears to correct a large proportion of faults. 

The reason for this behavior in lower priority tasks is due 
to the scheduler and nature of tasks; lower priority tasks are 
more likely to be delayed for higher priority tasks to be 
scheduled or resubmitted back into the system. We also 
assume from observing the failure and repair characteristics 
as well as discussion in [21,22] that there is a correlation 
between task priority level and task criticality. (E.g. Lower 
priority tasks are less developmentally mature, and 
consequently result in more frequent failures and longer 
repair times). In addition, the crash-loops within the trace log 
skew the results significantly, resulting in a low median, yet 
a high mean and standard deviation. 

Figure 10(a) and Figure 10(b) show the empirical CDF of 
task repair times for all tasks and production tasks within the 
trace log respectively, as well as three distributions for visual 
fit comparison. We observe that the Lognormal distribution 
is the best fit distribution; such a characteristic has been 
observed in other distributed systems [10]. However, this is 
misleading in the case of Figure 10(a), as the Anderson-
Darling value calculated is unacceptably high, signifying that 
the empirical data deviates significantly from the theoretical 
distribution. The AD value calculated for Figure 10(b) 
however is hundreds of times lower than that of Figure 10(a), 

 
Figure 9. Empirical CDF of time between failure for production tasks 

 

Figure 8. Histograms of time between failures skew for task                   
(a) Priority 0, (b) Priority 2, (c) Priority 9, (d) Priority 10. 
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Figure 10. Empirical CDF of repair times for a) All tasks, b) Production tasks. 
(a) (b) 



allowing the empirical CDF for Figure 10(b) to fit a 3-
Parameter Lognormal distribution (threshold parameter T) 
that both visually fits and satisfies GoF tests. Gamma and 
Weibull distributions are poorer fits for system wide and task 
specific repair times. 

VI.  APPLICATION OF WORK 

Although the analysis presented in this work is specific to 
the studied environment, the observations and results 
presented are applicable in similar Cloud systems and can be 
practically applied to enhance a number of research areas: 

Provides Cloud workload failure and repair model 
parameters derived from empirical data to develop 
simulation models: The results derived within this paper can 
be used to not only generate the proportion of failures, but 
also provides distribution parameters of the MTBF and 
MTTR for Cloud workload and servers derived from 
empirical data of a large-scale real-world system. Research 
into failure-aware scheduling [28] and other fault-tolerant 
mechanisms can all be enhanced by choosing experiment 
parameters derived from the results within this paper when 
evaluating the effectiveness of dependability mechanisms. 
Most importantly, these results can greatly assist work that 
simulate Cloud workload behavior by either introducing 
failure parameters or enhancing workloads that presently 
depend on theoretical variables for failure characteristics.  

Aids providers from similar environments in decision 
making when applying appropriate dependability 
mechanisms and when to apply them in order to maximize 
their effectiveness: Providers can deploy a number of 
dependability mechanisms within their systems as described 
previously; the results within this paper can assist providers 
in understanding the characteristics of failures within their 
own environments, enabling them to make informed 
decisions on what type of mechanisms should be applied and 
when and where they should be deployed. 

We give two concrete examples of how the results in this 
paper can assist providers in developing practical 
applications of this work.  Providers continuously attempt to 
improve datacenter energy-efficiency; as stated in [2], a 
substantial amount of energy-waste is due to failures. First, it 
is ideal that dependability mechanisms deployed in 
datacenters do not significantly degrade the energy-
efficiency of the system. Mechanisms such as checkpointing 
can be applied in order to mitigate the amount of task 
execution time wasted in terms of energy consumption.  
However, they can also result in significant overhead. As a 
result, it is necessary to calculate the total energy 
consumption of wasted task execution, checkpoint overhead, 
migration and rollback in order to create smart checkpoint 
decision making mechanisms in order to decide when and 
where to checkpoint, migrate or kill a task based on 
consumer QoS and system energy-efficiency. 

Second, it is possible to quantify the energy-waste due to 
server failures by calculating the total amount of task 
execution time wasted using the results within this paper. 
This is accomplished by mapping the server configurations 
to the SpecPower2008 Benchmark [35] in order to derive 
server energy consumption at different system loads and then 
calculating the amount of execution time wasted per task. 
This is crucial in order to identify operational inefficiencies 
within the system environment. Figure 11 presents initial 
results of this calculation, which shows the relationship 

between energy-waste and server failures. We observe that 
energy-waste increases over subsequent days and that there 
exists a strong correlation between the number of server 
failures daily and the total energy consumption wasted, 
represented by a Pearson correlation coefficient of 0.769. 

These two examples are complementary to one another, 
and with conjunction with the simulation parameters 
presented in this paper, allows providers to experiment with 
different system environment parameters and fault-tolerant 
mechanism behavior in order to improve system reliability 
and energy-efficiency based on empirical findings. 

VII.  CONCLUSIONS AND FUTURE WORK 

This work quantifies and analyzes the characteristics of 
failures and repairs from the dataset of a large-scale 
production Cloud environment. It is our hope that the 
observations and analysis performed within this paper can be 
beneficial to the larger research community in terms of 
providing insights into the failures that occur within large-
scale production Cloud environments, as well as enabling 
more realistic modeling of Cloud workload behavior. Our 
observations and conclusions from the study are as follows: 

 Failure rates of tasks vary significantly by priority type, 
and rely less on the underlying server architecture, 
reflecting the diversity of workload characteristics; such 
findings quantify the degree of diversity that exists within 
a Cloud environment. 

 3.26% of the total tasks within the trace log fail, with a 
large proportion failing early into their lifespan; the 
remaining tasks exhibit a large time between failures. 

 Production Cloud tasks follow a Gamma distribution 
(Gamma shape parameter of 0.2) and 3-Parameter 
Lognormal (Lognormal location parameter 0.4) for 
failures and repair times respectively. 

 Failure rates of non-production tasks follow different 
theoretical distributions such as Lognormal, Loglogistic 
and Weibull. Such findings are in agreement with 
previous analysis of distributed systems [7,10][29-30]. 

 Repair times of both tasks and servers vary widely across 
the system, ranging from 15 seconds to 4 days, and 25 
minutes to 8 days for tasks and servers respectively.  

 Attempting to fit distributions visually as well as applying 
GoF tests is challenging due to the large variance of 
failure and repair times highlighted above. It is our 
suggestion that for deriving accurate failure parameters of 
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Figure 11. Temporal characteristics of energy-waste and server failures. 



tasks and servers, using priority levels and architecture 
types is more effective for tasks and servers respectively. 

Future work includes studying the failure correlation 
between workload intensity and size of system. We also plan 
to investigate in further detail how specific user behavior 
effects the dependability of the Cloud environment, and if it 
is possible to perform distribution analysis when clustering 
users with similar failure behavior by characterizing 
workload following the methodology in [17]. Finally, we 
plan to use the results generated in this paper to enhance a 
number of dependability mechanisms such as check-pointing 
as well as failure-aware scheduling that considers additional 
dimensions such as performance and energy-efficiency. 
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