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Abstract—Cloud computing research is in great need of
statistical parameters derived from the analysis of real-world
systems. One aspect of this is the failure characteristics of
Cloud environments composed of workloads and servers;
currently, few metrics are available that quantify failure and
repair times of workloads and servers at a large-scale.
Workload metrics in particular are critical for characterizing
and modeling accurate workload behavior, enabling more
realistic workload simulation and failure scenarios of systems.
This paper presentsthe analysis of failure data of a large-scale
production Cloud environment (consisting of over 12,500
servers), and includes a study of failure and repair times and
characteristics for both Cloud workloads and servers. Our
results show that failure characteristics for workload and
servers are highly variable and that production Cloud
workloads can be accurately modeled by a Gamma
distribution. Repair times range between 30 seconds to 4 days,
and 25 minutes to 8 days, for workloads and servers
respectively.

Keywords— Cloud computing, Failure
analysis, Repair analysis.
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l. INTRODUCTION

grained failure characteristics of workload and servers within
Cloud environments. The authors of [6] characterize the
hardware reliability of Cloud datacenters from a number of
data sources, but do not analyze the failure of workloads.
The authors of [7] present workload failure characteristics
from a production MapReduce supercomputing cluster, but
this work is confined to MapReduce type jobs and does not
consider workload repair or server failure characteristics. It
should also be noted that [6] and [7] utilize datasets that are
not publically available.

As a result of this lack of empirical study, a sizable body
of current Cloud dependability mechanisms and workload
characterization research is derived from analysis of other
distributed systems [80] or incorporates theoretical values
[11-14]. While such work is relevant to enhancing Cloud
dependability mechanisms and workload characterization, it
comes with significant limitations. Firstly, analyzing the
failures of small-scale workloads may not sufficiently
represent failure characteristics seen in larger Cloud
environments, which are greatly affected by system size and
complexity [L5. Moreover, researchers that analyze
workloads deployed within production Cloud environments

In order to research and create effective solutions for thE0M @ consumer perspective are often unable to see

problems faced by large-scale Cloud

computing
environments, it is imperative to analyze data from rea
world sources; for example, in the dependability field, a larg

mportant details of the system, such as server characteristics

jas well as other workloads residing within the environment.
gecondly, Cloud computing systems contain a number of

characteristics not found in other distributed paradigms;

portion of the statef-the-art relies on statistical properties . h
and accurate modeling of failure and repair characteristic&;/0Uds have highly heterogeneous environments due to the

According to the National Institute of Standards anddiversity of workloads driven by user behavid€]l Such

Technology (NIST) [1], Cloud computing is defined as " diversity ha_s_ b_een already been _quantlfled in terms of
model for enabling [Jbiquitous convenient. on-demandé€source utilization and user behavior [17] as well as server
network access to a shared pool of configurable computingSOUrce waste [20]. However, such analysis of Cloud

resources that can be rapidly provisioned and released vaz;/r(iaezzlimy h%z . nol;ee%eergjer%%rrzgigfed g f?g fﬁ:L:JJgﬁ;ceSLf[ﬁz
minimal management effort or servi rovider interaction”. . . ; L ;
al management effort or service provider interactio anifestation of failures within systeni®,18,31]. Finally,

The failure characteristics of such environments are of &N . . U .
particular concern as failures can result in degradation da}pplymg theoretical failure characteristics to dependability

; : Dol b hanisms and workload simulation parameters may not
Quality of Service (QoS), availability, reliability and energy- mec )
wastety[Z] that can ﬁltimgtely lead ttoy economig loss for bgoﬁhreflect accurately the behavior of real-world Cloud systems.
Cloud consumers and providers. In addition to facilitating research, accurate real-world
It has been identified that developing Cloud large-scale failure and repair characteristics allow Cloud

environments that are both available and reliable (attributfgo\”qers o create concrete failure-scenarios _taremystem

of dependability [3]) is a critical and challenging researcHi€CiSion making. For example, such scenarios can help to
problem [4]. However, such analysis is notably chalIenging(,jic'(]l/e \r/1vhat ttype ofldet[;]endaplllty (;necrt]anlsrrr]]s to use, tand
due to the limited real-world Cloud datasets that are availabl§€VWhere 1o apply theém in ordér 1o enhance system
due to confidentiality reasons and - more importantly - theavallablhty, reliability and energy-efficiency.

difficulties in analyzing massive system data logs The major contribution of this paper is an empirical
approaching big-data size and complexity. Currently, only dailure analysis of a large-scale heterogeneous production
limited amount of work has attempted to analyze CloudCloud environment. Specifically, we present and stitsly
failures characteristics empirically. For example, the authorstatistical properties, and analyze the distributiohfailure

of [5] analyze outages and incidents reported by companiegd repair times for tasks and servers. In this context, we
and news outlets, but do not sufficiently capture the finedefine a task as a program - possibly running multiple



Update

processes - on a single server which is assigned and executed
within the Cloud environment, and when integrated with user
behavior forms the Cloud workload. A server is defined as
the hardware as well as the software managing the hardware
— for example, the Hypervisor, OS, etc. Furthermore, we also
present the statistical properties of Termination Events th
occur within the system, which include task eviction,
migration and user-determined termination. Finally, we
provide the distribution parameters failure and repair
times br tasks and servers so that they can be integrated into
simulation tools.

Our analysis is performed on the Google Cloud trace log The data recorded for a server event includes the Server
(described in SectioB), consisting of over 12,500 servers Identifier (Server ID), server attributes (Platform ID, CPU
and spanning a time period of 29 days, containing over 28nd Memory capacity; unique combinations of these
million unique submitted tasks. The objective of this paper igttributes create a server architecture ID), event type and the
to understand and quantify the statistical paramefe@doud  time of event occurrence. There are three possible server
failure and repair characteristics in order to study systervents that can occur: A server is made available to the

behavior as well as provide realistic simulation parameters gfystem environment (ADD), a server is removed from the
Cloud computing environments. cluster due to maintenance or failure (REMOVE) or the

i ) . available resources of a server are modified (UPDATED).
The paper is structured as follows: Section 2 describes

the analyzed dataset and event logs; Section 3 discusses theThe task event log contains entries shared in the server
methodology and failure assumptipr®ection 4 details the eventlog such as the task identifier, time of event occurrence
statistical properties of Termination Events; Section 5and event type as well as additional attributes such as the
presents the analysis of failures and repairs for servers af@rver ID where the task was allocated, the task owner and
tasks; Section6 discusses the application of this work; the scheduling priority of the task. The scheduling decisions
Finally, Sectiori7 contains the conclusions and future work. Of the system are predominately based on task priorities
which are identified within the task event log. The priority
Il.  CLOUD DATASET scale ranges from 0 to 11 to indicate lowest to highest
- . priority respectively. As identified in2fl], lower priority
A Dataset Description and Analysis Challenges _ tasks are most likely used for development and testing while
The Google tracelog features 12,532 servers spanning Zfigher priority tasks are characterized as production tasks
days of operation starting from 1st May, 2011 which isyithin the system.
publically available at 9. The trace log consists of a ) ] .
number of system logs including resource utilization of tasks, DPuring the task life cycle, a task can transition through
task constraints, as well as event logs for tasks and servefdree different states: Pendjnigunning, and Dead that are
Details about the statistical properties of the data such as tadkven by a number of events including task submission,
submission task resource utilizaton and server Scheduling, successful task completion, failure, eviction and
characteristics can be found in [17][2}. killing amongst others described 2] and depicted in
_ Figure 1. A task is assigned Pending status when it is waiting
We encountered a number of challenges extrapolating thg be allocated to a server after being submitted by a user or
data to facilitate the analysis presented within this papefesubmitted by the task scheduler. Once the scheduler
First, the total size of the trace log is approximately 400GEByjocates the task to a server and begins execution, the task
distributed across hundreds of Comma Separated Filesiate changes to Running. It is possible for a task to be
causing challenges when performing complex queriegescheduled to a different server after being resubmitted by
necessary to facilitate the analysis. Second, the data {ige scheduler.
unprocessed in nature, requiring extensive understamding i o
the nature of the data as well as the relationships that exist to AS depicted in Figure 1, there are three events that can

develop an efficient analysis infrastructure and databaséhange the state of a task to Dead without successful
system completion; we define these events as Termination Events

) (TEs). First, it is possible for a task to be cancelled due to a

To tackle these two problems, it was necessary tQser, loss of dependencies with other tasks, migration o
develop a 50 node Hadoop MapRedugd luster running  ynknown cause of termination (KILL). Second, it is possible
Hive [34], a data warehouse system to facilitate storage anghr a task to be evicted from a server (EVICT) due to
query execution. This allowed us to extrapolate data ofvercommitment of the scheduler, the server the task is
interest from the trace log orders of magnitude faster than @ecuting on becomes unstable or the server disk fails.
centralized system approach. Lastly, it is possible for a task to terminate due to a task
software crash (FAIL). If any of the three events occur, the
task is automatically re-submitted and returns to Pending

Within the trace, there are over 144 million and 37giats. Further information about all event attributes can be
thousand events for tasks and servers respectively. Thegs ng in 2.

event logs are divided into two types: "server events" and

"task events". In this paper, an event is defined as an action [ll. METHODOLOGY AND FAILURE ASSUMPTIONS
that changes the state of a server or task at a certain time and
place.

Update Schédule

Evict, Fail\Kill, Finish

Submit Fail, Kill

Pending

Resubmit

Figure 1. Task life cycle in Google trace log.

B. Event Logs

The main objective of this paper is to study and quantify
the failure and repair characteristics of tasks and servers
within the Google Cloud trace log in order to study system



behavior as well as provide accurate simulation parameterdistinguish server failure from server maintenance as
This section describes the methodology to extrapolatdiscussed in1]. As a result, instead of arbitrarily choosing

failures from the dataset and the assumptions made whevhich servers fail or require maintenance, we classify all
defining the failure modes. REMOVE events as a server failure (agnostic of
maintenance), as this event results in tasks currently

A Event Log Sampling executing within the server to deviate from correct service.

Event logs are sampled and divided into two different , . :
failure catalogs; task and servers. For the analysis it is Task failures are characterized as software crash failures.

necessary to calculate the elapsed time between failures ah@SK failures are identified by tasks that exhibit the FAIL
time to repair. For failure time, we calculate the elapsed tim&Vent filtered from the task event log. 2], FAIL events

as the time between scheduling and a TE, and the elaps@tf explicilly defined as a software crash of the task.

time between ADD and REMOVE events for tasks and |t is well understood that the root cause of task and server
servers respectively. Repair time is calculated as the elapsflures might vary; from physical, design (typically
time between a TE and rescheduling (we observe within theoftware), human-machine interaction, malicious attacks, or
trace log that all tasks are resubmitted by the scheduler aftgrcombination of any of the abov23. In reality, transient

a TE occurs) and the elapsed time between REMOVE angardware faults, hardware design faults and software bugs
ADD events for tasks and servers respectively. Thesgften cause similar system behavi@d][ In addition, it is
elapsed times are calculated using timestamps recorded whgssible each failure event recorded may not necessarily
an event occurs. Failure and repair timésasks caused by correspond to a unique failure, and failure events that are
FAIL events are filtered separately from TEs, and are thgamporally close together may be a result of the same failure.
main focus of this empirical analysis. Within this work, instead of arbitrarily and subjectively

This study does not consider task failures or repairs thaelecting d_iffergant failure root causes for servers we de_cid_ed
occur outside the trace log observational period, as it is ndlt to distinguish root causes for servers due to ambiguity
possible to characterize an accurate time between failure affft €xists within the trace log. However, it is possible to
repair without knowledge of both schedule and terminatiori!ter task failures that are caused by hardware or software
times for tasks and servers. Inclusion of any data that do&k@shes either by tasks failing when the server fails or when a
not contain both timestamps would likely skew results. Thig AlL event occurs respectively. In addition, we also assume
condition mainly excludes task monitoring services runninghat all failures that occur within the trace are caused by
within the Cloud grouped in priorities 10 and 11, which have!nique failures. Such assumptions are well supported by
started before the trace log observational period. With thiBrévious failure analysis [125,26] that also found that it is
assumption, the task failure catalog consists of 13,572’45170red|_bly difficult to identify the root cause and the duration
ewvents, representing just ové8% of the FAIL events ©fafailure

recorded in the trace log. IV. TERMINATION EVENT ANALYSIS

B. Failure Definition We present a concise analysis of the TEs to provide
It is necessary to define the nature of failures that occunsight into the events that cause task termination within the
within the trace log based on meaningful observations frorsystem and more importantly demonstrate the significance of
the data as well as the supporting literature. Using thigilures within the Cloud environment. Out of the 25,927,826
approach, we identify two types of failures that occur withinTEs identified, 52% events correspeddto task failures
the trace log as shown in Table 1. Server failures arwhile 22% and 26% correspond to EVICT and KILL events
characterized as a software or hardware crash failure. In thigspectively as shown in Figure 2(a), signifying that the
context, we define crash as a fail-stop failure, i.e. processesajority of TEs are caused by task failures. Furthermore we
or hardware fail by halting without doing anything. Basedidentify that 326% of the total unique tasks within the
on observations from the data, when a server REMOVBystem experience one or more FAIL events within their life
event occurs, all tasks currently executing on the servdime. From Figure 2(b) it is observable that a large
subsequently terminate. As stated &%][the reason for a proportion of FAIL events occur within Day 2 and Days 10-
REMOVE event is either due to server failure or16. This behavior is postulated in [21] as a result of ‘crash-
maintenance. Due to this ambiguity, it is not possible tdoops’; where tasks deterministically fail shortly after

TABLE 1. FAILURE DEFINITIONS OFSERVERS AND TASKS.

Failure

Observation Server Crash Failure Task Crash Failure

Actors Server and Task Task

Description Server experiences a software or hardware crashefailur Task experiences a software crash failure.
Precondition 1. Server is operational. 1. Task is currently executing on a server

2. Tasks eligible for submission or currently executinghenserver.

1. Server REMOVE event occurs. 1. Task event FAIL occurs.

Post Condition 2. Tasks currently scheduled on the server result in EMICFILL event. | 2. Server continues operating.

1. After a server experiences a REMOVE event, all tasksvirat
scheduled onto the server subsequently experience &iBVICT event
microseconds apart from each other.

2. No further tasks are scheduled onto the servéritugicovers and
rejoins the system where possible.

1. A large portion of tasks within the trace log
experience a FAIL event.

2. After a variable amount of time, the task
recovers and is rescheduled onto a server.

Dataset
Observation
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Figure 2. Number of Termination Events a) Total, b)dsr.

execution, yet are repeatedly rescheduled back into th& Servers

system (There are extreme cases where a single task is \ithin the trace log observational period, 8.954 server
resubmitted over 40,000 times). This crash-loop behaviogjjyres occurred in within 5,056 servers as depicted in
occurs to such an extent th_at it results on average 14 t'm?-?gure 3 and Figure 5 with an average of 308 servers failing
the amount of task resubmissions compared to other daygaily with a standard deviation of 101 as depicted in Figure
This type of behavior is a concern in large-scale systery \ye can observe from Figure 5 that a small proportion of

environments, as it causes significant increase t0 thearyers exhibit high failure occurrenead that most servers
Ecehv(\a/gg':g(rj workload, as well as work performed by tasks tgyperience less failure events with similar proportions.

Table 2 presents the statistical properties as well as the
V.  FAILURE AND REPAIRANALYSIS data distributions of server failures for each server

The following section presents the analysis of the failurérchitecture population greater than 1%, as these represent
and repair characteristics for both servers and tasks. WR9.56% of the total servers within the observational period
present the statistical properties for failure and repair timed/Ve observe that all server failures visually and statistically
including the Meany(, Standard Deviations] and Squared best fita Weibull distribution as shown in Figure 6, which
Coefficient of Variance (8. Furthermore, we match the conforms to server failure modeling in previous findings
closest theoretical distributions applying Anderson-Darling10], With a C value for all server architectiwdetween
Goodness of Fit (GoF) tests to obtain the statisticaP-237-0.435 signifying low variance of server MTBF.
parameters of Mean Time Between Failure and Mean Time \joreover, 59,583 tasks within the trace log fail due to
to Repair (MTBF and MTTR respectively). Due to the largeseryer hardware failures, which are identified as termination
amount of records present after extrapolating the data usi~~
the analysis infrastructure, we have used Minitad fo
efficiently perform a large portion of the analysis e

140 -

180

In addition, we have evaluated the data against a numk
of distributions including Weibull, Gamma, Loglogistic,
Exponential and Lognormal. Lastly, we have presented
visual fit comparison in the form of Empirical Cumulative
Distribution Functions (CDFs). We present the visua
distribution fit of the overall system where applicable as we 40
aspriority 9 tasks, as these represent production tasks witt 20
the Cloud environment, that we believe are of high relevan 0
and Importance tO the Cloud research COI’nmUI”IIty (1]} 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
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Figure 5. Distribution of servers failures.
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TABLE 2. STATISTICAL PROPERTIES ANDMODEL PARAMETERSOF SERVERMTBF AND MTTR

Failure Repair
Server Population| Best Fit u 4 2 Best Fit Median u 4 2
Architecture % Distribution Parameters (Days) | (Days) c Distribution Parameters (Hours) | (Hours) [(Hours) c
. k=2.191 1 =-1.620
1 1.36 Weibull 1=12.80 12.239| 5.952 | 0.237 | Lognormal o= 2964 0.28 9.17 28.8 9.86
. k=1.463 . a=-1.661
3 6.39 Weibull 121379 1255 | 8.28 | 0.435 | Loglogistic £ =0.7326 0.24 1.48 8.99 | 3689
’ k=1.516 - a=-1.249
5 8.98 Weibull 1 =14.01 12.489| 7.79 | 0.389 | Loglogistic £=1.075 0.27 481 13.32 | 7.67
. k=1.540 u=-1529
7 55.01 Weibull 1=13.77 12,71 | 8.057 | 0.402 | Lognormal »=2156 0.19 4.17 17.22 | 17.05
. k=1.641 u=-1.152
10 27.97 Weibull 1=1450 13.046| 7.784 | 0.356 | Lognormal o=2125 0.15 8.17 12.33 | 2.28
0 6 2 18 M -
Architecture 1 Architecture 5 TG - o ==
3 - I 0.75 0.8
>
g 7 L 050 %
= -7 & 06
© 2 ] '
° [ . £ Data
3 . . 0.00 '% 0.4 ’ Gamma bl
2 100 Architecture 7 Architecture 10 E | Weibull
® D i ~ 7 a | Loglogistic
3 0.754 0.2
£ y
Q 0.50- 5 o
S e gata —_— 9.0
0.25+ 3 amma ) ‘ ‘
ffﬁ \geg':glrlmm 0 10 Tlmiuto mpair3?semndl;0 % «
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5 o4 29 Figure 7. Empirical CDF of server repair times.
Time between failure (days)
Figure 6 Empirical CDF of time between failures for server archites.

0 6

required several days to be repaired, indicating more
complicated failures that cannot be corrected by just
events with 21% and 79% of the events corresponding teestarting the server. This is indicated by high variability
KILL and EVICT events, respectively. Such failures within the repair times of servers, reflected by the&ween
represent 0.44% of total task failures witthe trace log. 2.28 - 3689 as well as the distribution shajpeFigure 7.

Table 2 also presents the statistical properties and3. Tasks
distribution parameters for server repairs times. We observe Table 3 presents the statistical properties of task failures

t3h0att_the med|a|1|n r(?dp])aw ?r:n(;: fchrtr?Il server arcgltﬁcilﬂﬁsto di due to software crashes, as well as the best fit distributions
Imes smaller than that of the mean, and that all medigl),qgifieq by task priority. We discovered that attempting to

values are similar in value. Server repair ime was best fit by, e oretical distribution to tasks agnostic of priority was
Lognormal and Loglogisitc distribution classified by Server ot feasible, as it resulted in & @lue of 46 (representing

a{]Ch'tePt“Fr.e type% aﬁﬁ Logqotr.mt‘?" actoss ”t‘.e entire S?{Ster?hgiﬁnificant variability within the data), nor did it visually fit
shownin Figureé 7. These statistical properties as well as thi, pass a GoF test satisfactorily. The reason for this is due to

empirical CDF demonstrate that the vast majority of 'ePalte characteristics of task failures as shown in Table 3;as it

times are relatively short; just under 30 minutes. There areon pe observed, tasks of different priority levelsyvar

two ret_ason? gEchg\?Ehawor{ The f'aSt |stdescr_|bted In [2_1]tﬁ§ignificantly in terms of the mean and standard deviation for
a portion 0 events aré due 1o maintenance, TBF. It can be observed that 8 significantly lower when

second reason we postulate is that a large proportion (%’assifying task failures by priority. By separating tasks by

server failures can be repaired by restarting the server. I ey ;
. iori we wer I fficiently fi k MTBF
the other hand, we also found a proportion of servers that ority type, we were able to sufficiently fit tas oa

TABLE 3. STATISTICAL PROPERTIES ANDMODEL PARAMETERSOF TASK MTBF AND MTTR

Failure Repair
Priority Popliftion Dii?ﬁalftiiton Parameters | 0 o iours)| © Digﬁ)lftiitcm Parameters m%dl;?; (Seconds) | (Seconds)| €
0 | 3507 | Weibull ;‘zg:gég; 1.063 | 4.925 | 4.63 Lg;;ggrt?c “:Ofgi%z_ggzzzl'llf’ 290 | 12290 | 14722 1435
L | 1373 | Lognormal “77eS% | 1604 | 8083 477 SPEET | #=LE00A7 T8 1 400 | 161 | 7157 | 1076
2 | 106 | Lognormal| *~-93%9 3825 | 11,836 3.00| Lognormal noiae 200 | 2870 | 182.10 |40.26
4 42.77 | Lognormal /j;llgg; 1.019 | 4.967 | 4.87 ngoeggt’i‘c azo.ggeggigg.esss 191 | 16.32 | 173.36 |112.8
6 | 478 | Loghogisic| 7~ 5778 0062 | 0.003 |10 ST «TORDIIIO2T 167 | 267 | 406 | 231
8 043 | Loglogistic “;:'g'.zl‘éil 48.53 | 64.190 1.32 Li;;iﬁ\";l #=028710 " 2083 pa4 | 837 | 1452 | 3.00
o | 216 | Gamma K702 serz|esoso| 1z | SPA | 0TOMOMELEY 43 a5 | 577 | 148
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number of distributions; we found that different task
priorities best fit different distributions and that non-
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Figure 9 Empirical CDF of time between failure for producti@sks

Table 3 also presents the statistical properties of repair
times for tasks classified by priority. We encountered similar
challenges as described previously with fitting the empirical
data to a suitable theoretical distribution both visually and
using GoF tests. This is due to the extreme variability of task
recovery times within the trace log; especially lower priority

production priority tasks best fit Lognormal, Loglogistic andtaSkS which exhibit Evalues between 112 - 1976. We found
’ the mean and variance of repair times for task prioritie9 6-

\lé\i/gellj?gIl8d§1tjr(|:tr)1ugzrr]12vtig?ti:rseugsgr\?ilxyeng\;\rqeed n%?ios:?[\év:t Mo be con&dgrably more stable, indicated by the median and
large number of failures occur within the start up phase ?)g.'e mean being clqser together, as well as between the mean
tasks due to the crash-loops discussed in Section 4 nd 'standard deviation. In ad_d|t|.on,.these tasks contain a

: repair time under 10 seconds, indicating that restarting these

As stated previously, priority 9 tasks represent productiotiasks appears to correct a large proportion of faults.

tasks within the system environment. We observe thatthe C
value of MTBF is 1.62; considerably lower than other task
types, and that the MTBF mean and standard deviation

The reason for this behavior in lower priority tasks is due
%ﬁ) the scheduler and nature of tasks; lower priority tasks are
Ayt ore likely to be delayed for higher priority tasks to be
significantly larger. We observe that the MTBF of scheduled or resubmitted back into the system. We also

p;orgumcéltc;r: kta_slész)bggﬁn f';sreg tcc);zmg]ra digltfitlglt?ttiglr?sn t(sgngssume from observing the failure and repair characteristics
P e P YPES a5 \well as discussion in [21,22] that there is a correlation

shown in Figure 9. There appear to be two types of failurg oo task priority level and task criticality. (E.g. Lower
characteristics for tasks; tasks that experience failures ne iority tasks are less developmentally mature, and

the start of execution, and tasks that experience failures f anequently result in more frequent failures and longer

) S . . 0
into their life spans. Figure 9 shows that just over 70% o epair times). In addition, the crash-loops within the trace log

tasks fail within the first hour of execution resulting in a L A X
skew within the data. The reason for this is a result of usejkﬁghﬂ&?eraisglrﬁz Zgr]]'gg?; t(;)é’vggtsiglr:mg in a low median, yet

behavior; there exists a single user that is responsible for just
under 65% of total production tasks failures, all occurring Figure 10(a) and Figure 10(b) show the empirical CDF of
within Day 3 and failing just under a minute into execution.task repair times for all tasks and production tasks within the
As a result, this causes the distribution in Figure 9 to becomteace log respectively, as well as three distributions for visual
skewed. This behavior is worth noting, as Cloud computindit comparison. We observe that the Lognormal distribution
environments are driven by user behavior with varying QoS the best fit distribution; such a characteristic has been
demands. As a result, such environments are also influencethserved in other distributed systems [10]. However, this is
by the failure characteristics of these users. This is a potentialisleading in the case of Figure 10(a), as the Anderson-
concern in large-scale systems due to evidence of correlati@arling value calculated is unacceptably high, signifying that
between workload intensity [18], system size and complexityhe empirical data deviates significantly from the theoretical
that may result in other users being affected. distribution. The AD value calculated for Figure 10(b)
however is hundreds of times lower than that of Figure 10(a),
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allowing the empirical CDF for Figure 10(b) to fit a 3- 101 i
Parameter Lognormal distribution (threshold parameter T)
that both visually fits and satisfies GoF tests. Gamma and,, os
Weibull distributions are poorer fits for system wide and task S

specific repair times.

]

0.6 4

VI. APPLICATION OFWORK

0.4 W
Although the analysis presented in this work is specific to g /\f/
the studied environment, the observations and result ;| f_\/\

alized Va

presented are applicablesimilar Cloud systemsral can be

practically applied to enhance a number of research areas: 004
Provides Cloud workload failure and repair model 36 9 12 15 1 2 24 2
parameters derived from empirical data to develop Day

simulation models: The results derived within this paper canFigure 11. Temporal characteristics of energy-wastiesanver failures.

be used to not only generate the proportion of failures, but )

also provides distribution parameters of the MTBF and’€tween energweaste and server failures. We observe that
MTTR for Cloud workload and servers derived from €nergy-waste increases over subsequent days and that there
empirical data of a large-scale real-world syst&eseark e>§ists a strong correlation between the numb.er of server
into failure-aware scheduling [P&nd other fault-tolerant failures daily and the total energy consumption wasted,
mechanisms can all be enhanced by choosing experimer,qpresented by a Pearson correlation coefficient of 0.769.

parameters derived from the results within. _this paper \_/vhen These two examples are complementary to one another,
evaluating the effectiveness of dependability mechanismsyg \ith conjunction with the simulation parameters

Most importantly, these results can greatly assist work thgresented in this paper, allows providers to experiment with
simulate Cloud workload behavior by either introducingifferent system environment parameters and fault-tolerant

failure parameters or enhancing workloads that presentiechanism behavior in order to improve system reliability
depend on theoretical variables for failure characteristics.  gng energy-efficiency based on empirical findings.

Aids providers from .similar enviro_nments in decisi.o_n VII. CONCLUSIONS ANDFUTURE WORK
making when applying appropriate dependability . . o
their effectiveness Providers can deploy a number of failures and repairs from the dataset of a large-scale
dependability mechanisms within their systems as describgfoduction Cloud environment. It is our hope that the
previously; the results within this paper can assist provider@Pservations and analysis performed within this paper can be
in understanding the characteristics of failures within thejPeneficial to the larger research community in terms of

decisions on what type of mechanisms should be applied af§ale production Cloud environments, as well as enabling
when and where they should be deployed. more realistic modeling of Cloud workload behavior. Our

) ~ observations and conclusions from the study are as follows:
We give two concrete example$ how the results in this

paper can assist providers in developing practicat Failure rates of tasks vary significantly by priority type,
applications of this work. Providers continuously attempt to and rely less on the underlying server architecture
improve datacenter energy-efficiency; as stated in §2], reflecting the diversity of workload characterisfissich
substantial amount of energy-waste is due to failures. First, it findings quantify the degree of diversity that exists within
is ideal that dependability mechanisms deployed in a Cloud environment.

daacenters do not significantly degrade the energy; 3 260, of the total tasks within the trace log fail, with a
efficiency of the system. Mechanisms such as checkpointing large proportion failing early i their lifespan; the

can be applied in order to mitigate the amount of task o -iying'tasks exhibitlarge time between failures.
execution time wasted in terms of energy consumption. _ R
However, thewan aiso result in Significant OverheaAS a o PrOdUCtlon Cloud taSkS fO||OW a Gamma d|Str|bUt|On
result, it is necessary to calculate the total energy (Gamma shape parameter of 0.2) and 3-Parameter
consumption of wasted task execution, checkpoint overhead,Lognormal ~ (Lognormal location parameter 0.4) for
migration and rollback in order to create smart checkpoint failures and repair times respectively.

decision making mechanisms in order to decide when ang Fajlure rates of non-production tasks follow different
where to checkpoint, migrate or kill a task based on thegretical distributions such as Lognormal, Loglogistic
consumer QoS and system energy-efficiency. and Weibull. Such findings are in agreement with

Second, it is possible to quantify the energy-waste due to Previous analysis of distributed systems [7,10][29-30].
server failures by calculating the total amount of taske Repair times of both tasks and servers vary widely across
execution time wasted using the results within this paper. the system, ranging from 15 seconds to 4 days, and 25

This is accomplished by mapping the server configurations minutesto 8 days for tasks and servers respectively.
to the SpecPower2008 Benchmark [35] in order to derive : TR, . .
server energy consumption at different system loads and thénfAttempting to fit d|str|bgt|ons visually as well as applymg
calculating the amount of execution time wasted per task. fGFl)F testsd 1S Ch"?‘”ef‘g'”g y?‘uf]rtoh tr:je I?)rge V"I"r"".mte 0
This is crucial in order to identify operational inefficiencies 'allureé and repair times highlighted above. It is our

within the system environment. Figure 11 presents initial suggestion that for deriving accurate failure parameters of
results of this calculation, which shows the relationship



tasks and servers, using priority levels and architecture Engineering (IC2E), 2013 IEEE International Conference, vol.,

; ; ; no., pp.1,10, 25-27 March 2013
types is more effective for tasks and servers respectlvely.[ 13]3. AP%uiane-Ruiz C. Pinkel. J. Schad, and J. Dittf@AFTing

MapReduce: Fast recovery on the RAFT," in Data Enginge
(ICDE), 2011 IEEE 27th International Conference ori,120

14] T. Nguyen and W. Shi, "Improving resource efficiencydata centers
using reputation-based resource selection," in Pditge of the

Future work includes studying the failure correlation
between workload intensity and size of system. We also pl
to investigate in further detail how specific user behavio
effects the dependability of the Cloud environment, and if it |ntemational Conference on Green Computing: IEEE Coemput
is possible to perform distribution analysis when clustering  Society, 2010, pp. 389-396.
users with similar failure behavior by characterizing[15]Y. Liang, Y. Zhang, M. Jette, S. Anand, and R. SahBieGene/L
workload foIIowing the methodology in [17]_ Finally, we Failure Analysis and Prediction Models," in Dependéystems and
plan to use the results generated in this paper to enhancglg] get‘g’grks' 2006, pp. 425-434. = .

. . A . yya, et al., "InterCloud: utility-oriented fexhtion of cloud
number of de:pendablllty meChan_lsmS such aS_ check-pqmtl g computing environments for scaling of application s@wjtpresented
as well as failure-aware scheduling that considers additional

at the Proceedings of the 10th international confegeon Algorithms
dimensions such as performance and energy-efficiency. and Architectures for Parallel Processing - Volume PaBusan,

Korea, 2010.
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