
An Empirical Failure-Analysis of a Large-Scale
Cloud Computing Environment

Peter Garraghan, Paul Townend, Jie Xu
School of Computing
University of Leeds

Leeds, UK
{ scpmg, p.m.townend, j.xu @ leeds.ac.uk }

Abstract—Cloud computing research is in great need of

statistical parameters derived from the analysis of real-world
systems. One aspect of this is the failure characteristics of
Cloud environments composed of workloads and servers;
currently, few metrics are available that quantify failure and
repair times of workloads and servers at a large-scale.
Workload metrics in particular are critical for characterizing
and modeling accurate workload behavior, enabling more
realistic workload simulation and failure scenarios of systems.
This paper presents the analysis of failure data of a large-scale
production Cloud environment (consisting of over 12,500
servers), and includes a study of failure and repair times and
characteristics for both Cloud workloads and servers. Our
results show that failure characteristics for workload and
servers are highly variable and that production Cloud
workloads can be accurately modeled by a Gamma
distribution. Repair times range between 30 seconds to 4 days,
and 25 minutes to 8 days, for workloads and servers
respectively.

Keywords— Cloud computing, Dependability, Failure
analysis, Repair analysis.

I. INTRODUCTION

In order to research and create effective solutions for the
problems faced by large-scale Cloud computing
environments, it is imperative to analyze data from real-
world sources; for example, in the dependability field, a large
portion of the state-of-the-art relies on statistical properties
and accurate modeling of failure and repair characteristics.
According to the National Institute of Standards and
Technology (NIST) [1], Cloud computing is defined as "a
model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing
resources that can be rapidly provisioned and released with
minimal management effort or service provider interaction".
The failure characteristics of such environments are of
particular concern as failures can result in degradation of
Quality of Service (QoS), availability, reliability and energy-
waste [2] that can ultimately lead to economic loss for both
Cloud consumers and providers.

It has been identified that developing Cloud
environments that are both available and reliable (attributes
of dependability [3]) is a critical and challenging research
problem [4]. However, such analysis is notably challenging,
due to the limited real-world Cloud datasets that are available
due to confidentiality reasons and - more importantly - the
difficulties in analyzing massive system data logs
approaching big-data size and complexity. Currently, only a
limited amount of work has attempted to analyze Cloud
failures characteristics empirically. For example, the authors
of [5] analyze outages and incidents reported by companies
and news outlets, but do not sufficiently capture the fine-

grained failure characteristics of workload and servers within
Cloud environments. The authors of [6] characterize the
hardware reliability of Cloud datacenters from a number of
data sources, but do not analyze the failure of workloads.
The authors of [7] present workload failure characteristics
from a production MapReduce supercomputing cluster, but
this work is confined to MapReduce type jobs and does not
consider workload repair or server failure characteristics. It
should also be noted that [6] and [7] utilize datasets that are
not publically available.

As a result of this lack of empirical study, a sizable body
of current Cloud dependability mechanisms and workload
characterization research is derived from analysis of other
distributed systems [8-10] or incorporates theoretical values
[11-14]. While such work is relevant to enhancing Cloud
dependability mechanisms and workload characterization, it
comes with significant limitations. Firstly, analyzing the
failures of small-scale workloads may not sufficiently
represent failure characteristics seen in larger Cloud
environments, which are greatly affected by system size and
complexity [15]. Moreover, researchers that analyze
workloads deployed within production Cloud environments
from a consumer perspective are often unable to see
important details of the system, such as server characteristics
as well as other workloads residing within the environment.
Secondly, Cloud computing systems contain a number of
characteristics not found in other distributed paradigms;
Clouds have highly heterogeneous environments due to the
diversity of workloads driven by user behavior [16]. Such
diversity has been already been quantified in terms of
resource utilization and user behavior [17] as well as server
resource waste [20]. However, such analysis of Cloud
diversity has not been performed for failures; Such
variability has been demonstrated to influence the
manifestation of failures within systems [8,18,31]. Finally,
applying theoretical failure characteristics to dependability
mechanisms and workload simulation parameters may not
reflect accurately the behavior of real-world Cloud systems.

In addition to facilitating research, accurate real-world
large-scale failure and repair characteristics allow Cloud
providers to create concrete failure-scenarios to aid in system
decision making. For example, such scenarios can help to
decide what type of dependability mechanisms to use, and
when/where to apply them in order to enhance system
availability, reliability and energy-efficiency.

The major contribution of this paper is an empirical
failure analysis of a large-scale heterogeneous production
Cloud environment. Specifically, we present and study its
statistical properties, and analyze the distributions of failure
and repair times for tasks and servers. In this context, we
define a task as a program - possibly running multiple

processes - on a single server which is assigned and executed
within the Cloud environment, and when integrated with user
behavior forms the Cloud workload. A server is defined as
the hardware as well as the software managing the hardware
– for example, the Hypervisor, OS, etc. Furthermore, we also
present the statistical properties of Termination Events that
occur within the system, which include task eviction,
migration and user-determined termination. Finally, we
provide the distribution parameters of failure and repair
times for tasks and servers so that they can be integrated into
simulation tools.

Our analysis is performed on the Google Cloud trace log
(described in Section 2), consisting of over 12,500 servers
and spanning a time period of 29 days, containing over 25
million unique submitted tasks. The objective of this paper is
to understand and quantify the statistical parameters of Cloud
failure and repair characteristics in order to study system
behavior as well as provide realistic simulation parameters of
Cloud computing environments.

The paper is structured as follows: Section 2 describes
the analyzed dataset and event logs; Section 3 discusses the
methodology and failure assumptions; Section 4 details the
statistical properties of Termination Events; Section 5
presents the analysis of failures and repairs for servers and
tasks; Section 6 discusses the application of this work;
Finally, Section 7 contains the conclusions and future work.

II. CLOUD DATASET

A. Dataset Description and Analysis Challenges
The Google tracelog features 12,532 servers spanning 29

days of operation starting from 1st May, 2011 which is
publically available at [19]. The trace log consists of a
number of system logs including resource utilization of tasks,
task constraints, as well as event logs for tasks and servers.
Details about the statistical properties of the data such as task
submission, task resource utilization and server
characteristics can be found in [17][20-21].

We encountered a number of challenges extrapolating the
data to facilitate the analysis presented within this paper.
First, the total size of the trace log is approximately 400GB
distributed across hundreds of Comma Separated Files,
causing challenges when performing complex queries
necessary to facilitate the analysis. Second, the data is
unprocessed in nature, requiring extensive understanding of
the nature of the data as well as the relationships that exist to
develop an efficient analysis infrastructure and database
system.

To tackle these two problems, it was necessary to
develop a 50 node Hadoop MapReduce [33] cluster running
Hive [34], a data warehouse system to facilitate storage and
query execution. This allowed us to extrapolate data of
interest from the trace log orders of magnitude faster than a
centralized system approach.

B. Event Logs
Within the trace, there are over 144 million and 37

thousand events for tasks and servers respectively. These
event logs are divided into two types: "server events" and
"task events". In this paper, an event is defined as an action
that changes the state of a server or task at a certain time and
place.

The data recorded for a server event includes the Server
Identifier (Server ID), server attributes (Platform ID, CPU
and Memory capacity; unique combinations of these
attributes create a server architecture ID), event type and the
time of event occurrence. There are three possible server
events that can occur: A server is made available to the
system environment (ADD), a server is removed from the
cluster due to maintenance or failure (REMOVE) or the
available resources of a server are modified (UPDATED).

The task event log contains entries shared in the server
event log such as the task identifier, time of event occurrence
and event type as well as additional attributes such as the
Server ID where the task was allocated, the task owner and
the scheduling priority of the task. The scheduling decisions
of the system are predominately based on task priorities
which are identified within the task event log. The priority
scale ranges from 0 to 11 to indicate lowest to highest
priority respectively. As identified in [21], lower priority
tasks are most likely used for development and testing while
higher priority tasks are characterized as production tasks
within the system.

During the task life cycle, a task can transition through
three different states: Pending, Running, and Dead that are
driven by a number of events including task submission,
scheduling, successful task completion, failure, eviction and
killing amongst others described in [22] and depicted in
Figure 1. A task is assigned Pending status when it is waiting
to be allocated to a server after being submitted by a user or
resubmitted by the task scheduler. Once the scheduler
allocates the task to a server and begins execution, the task
state changes to Running. It is possible for a task to be
rescheduled to a different server after being resubmitted by
the scheduler.

As depicted in Figure 1, there are three events that can
change the state of a task to Dead without successful
completion; we define these events as Termination Events
(TEs). First, it is possible for a task to be cancelled due to a
user, loss of dependencies with other tasks, migration or
unknown cause of termination (KILL). Second, it is possible
for a task to be evicted from a server (EVICT) due to
overcommitment of the scheduler, the server the task is
executing on becomes unstable or the server disk fails.
Lastly, it is possible for a task to terminate due to a task
software crash (FAIL). If any of the three events occur, the
task is automatically re-submitted and returns to Pending
status. Further information about all event attributes can be
found in [22].

III. METHODOLOGY AND FAILURE ASSUMPTIONS

The main objective of this paper is to study and quantify
the failure and repair characteristics of tasks and servers
within the Google Cloud trace log in order to study system

Unsubmitted Pending

Running

Dead

Resubmit

Submit

Update

Update

Fail, Kill

Schedule Evict, Fail, Kill, Finish

Figure 1. Task life cycle in Google trace log.

behavior as well as provide accurate simulation parameters.
This section describes the methodology to extrapolate
failures from the dataset and the assumptions made when
defining the failure modes.

A. Event Log Sampling

Event logs are sampled and divided into two different
failure catalogs; task and servers. For the analysis it is
necessary to calculate the elapsed time between failures and
time to repair. For failure time, we calculate the elapsed time
as the time between scheduling and a TE, and the elapsed
time between ADD and REMOVE events for tasks and
servers respectively. Repair time is calculated as the elapsed
time between a TE and rescheduling (we observe within the
trace log that all tasks are resubmitted by the scheduler after
a TE occurs) and the elapsed time between REMOVE and
ADD events for tasks and servers respectively. These
elapsed times are calculated using timestamps recorded when
an event occurs. Failure and repair times of tasks caused by
FAIL events are filtered separately from TEs, and are the
main focus of this empirical analysis.

This study does not consider task failures or repairs that
occur outside the trace log observational period, as it is not
possible to characterize an accurate time between failure and
repair without knowledge of both schedule and termination
times for tasks and servers. Inclusion of any data that does
not contain both timestamps would likely skew results. This
condition mainly excludes task monitoring services running
within the Cloud grouped in priorities 10 and 11, which have
started before the trace log observational period. With this
assumption, the task failure catalog consists of 13,572,457
events, representing just over 98% of the FAIL events
recorded in the trace log.

B. Failure Definition
It is necessary to define the nature of failures that occur

within the trace log based on meaningful observations from
the data as well as the supporting literature. Using this
approach, we identify two types of failures that occur within
the trace log as shown in Table 1. Server failures are
characterized as a software or hardware crash failure. In this
context, we define crash as a fail-stop failure, i.e. processes
or hardware fail by halting without doing anything. Based
on observations from the data, when a server REMOVE
event occurs, all tasks currently executing on the server
subsequently terminate. As stated in [22] the reason for a
REMOVE event is either due to server failure or
maintenance. Due to this ambiguity, it is not possible to

distinguish server failure from server maintenance as
discussed in [21]. As a result, instead of arbitrarily choosing
which servers fail or require maintenance, we classify all
REMOVE events as a server failure (agnostic of
maintenance), as this event results in tasks currently
executing within the server to deviate from correct service.

Task failures are characterized as software crash failures.
Task failures are identified by tasks that exhibit the FAIL
event filtered from the task event log. In [22], FAIL events
are explicitly defined as a software crash of the task.

It is well understood that the root cause of task and server
failures might vary; from physical, design (typically
software), human-machine interaction, malicious attacks, or
a combination of any of the above [23]. In reality, transient
hardware faults, hardware design faults and software bugs
often cause similar system behavior [24]. In addition, it is
possible each failure event recorded may not necessarily
correspond to a unique failure, and failure events that are
temporally close together may be a result of the same failure.
Within this work, instead of arbitrarily and subjectively
selecting different failure root causes for servers we decided
not to distinguish root causes for servers due to ambiguity
that exists within the trace log. However, it is possible to
filter task failures that are caused by hardware or software
crashes either by tasks failing when the server fails or when a
FAIL event occurs respectively. In addition, we also assume
that all failures that occur within the trace are caused by
unique failures. Such assumptions are well supported by
previous failure analysis [15,25,26] that also found that it is
incredibly difficult to identify the root cause and the duration
of a failure.

IV. TERMINATION EVENT ANALYSIS

We present a concise analysis of the TEs to provide
insight into the events that cause task termination within the
system and more importantly demonstrate the significance of
failures within the Cloud environment. Out of the 25,927,826
TEs identified, 52% events corresponded to task failures
while 22% and 26% correspond to EVICT and KILL events
respectively as shown in Figure 2(a), signifying that the
majority of TEs are caused by task failures. Furthermore we
identify that 3.26% of the total unique tasks within the
system experience one or more FAIL events within their life
time. From Figure 2(b) it is observable that a large
proportion of FAIL events occur within Day 2 and Days 10-
16. This behavior is postulated in [21] as a result of 'crash-
loops'; where tasks deterministically fail shortly after

TABLE 1. FAILURE DEFINITIONS OF SERVERS AND TASKS.

Failure
Observation Server Crash Failure Task Crash Failure

Actors Server and Task Task

Description Server experiences a software or hardware crash failure. Task experiences a software crash failure.

Precondition
1. Server is operational.
2. Tasks eligible for submission or currently executing on the server.

1. Task is currently executing on a server

Post Condition
1. Server REMOVE event occurs.
2. Tasks currently scheduled on the server result in EVICT or KILL event.

1. Task event FAIL occurs.
2. Server continues operating.

Dataset
Observation

1. After a server experiences a REMOVE event, all tasks that were
scheduled onto the server subsequently experience KILL or EVICT event
microseconds apart from each other.
2. No further tasks are scheduled onto the server until it recovers and
rejoins the system where possible.

1. A large portion of tasks within the trace log
experience a FAIL event.
2. After a variable amount of time, the task
recovers and is rescheduled onto a server.

execution, yet are repeatedly rescheduled back into the
system (There are extreme cases where a single task is
resubmitted over 40,000 times). This crash-loop behavior
occurs to such an extent that it results on average 14 times
the amount of task resubmissions compared to other days.
This type of behavior is a concern in large-scale system
environments, as it causes significant increase to the
scheduler workload, as well as work performed by tasks to
be wasted.

V. FAILURE AND REPAIR ANALYSIS

The following section presents the analysis of the failure
and repair characteristics for both servers and tasks. We
present the statistical properties for failure and repair times,
including the Mean (ȝ), Standard Deviation (ı) and Squared
Coefficient of Variance (C2). Furthermore, we match the
closest theoretical distributions applying Anderson-Darling
Goodness of Fit (GoF) tests to obtain the statistical
parameters of Mean Time Between Failure and Mean Time
to Repair (MTBF and MTTR respectively). Due to the large
amount of records present after extrapolating the data using
the analysis infrastructure, we have used Minitab [27] to
efficiently perform a large portion of the analysis.

In addition, we have evaluated the data against a number
of distributions including Weibull, Gamma, Loglogistic,
Exponential and Lognormal. Lastly, we have presented a
visual fit comparison in the form of Empirical Cumulative
Distribution Functions (CDFs). We present the visual
distribution fit of the overall system where applicable as well
as priority 9 tasks, as these represent production tasks within
the Cloud environment, that we believe are of high relevance
and importance to the Cloud research community.

A. Servers
Within the trace log observational period, 8.954 server

failures occurred in within 5,056 servers as depicted in
Figure 3 and Figure 5 with an average of 308 servers failing
daily with a standard deviation of 101 as depicted in Figure
4. We can observe from Figure 5 that a small proportion of
servers exhibit high failure occurrence, and that most servers
experience less failure events with similar proportions.

Table 2 presents the statistical properties as well as the
data distributions of server failures for each server
architecture population greater than 1%, as these represent
99.56% of the total servers within the observational period.
We observe that all server failures visually and statistically
best fit a Weibull distribution as shown in Figure 6, which
conforms to server failure modeling in previous findings
[10], with a C2 value for all server architectures between
0.237-0.435 signifying low variance of server MTBF.

Moreover, 59,583 tasks within the trace log fail due to
server hardware failures, which are identified as termination

Figure 3. Unique server failures within the observational period.

Figure 5. Distribution of servers failures.

Figure 4. Number of server failure events daily.

Figure 2. Number of Termination Events a) Total, b) Per day.

(b) (a)

events with 21% and 79% of the events corresponding to
KILL and EVICT events, respectively. Such failures
represent 0.44% of total task failures within the trace log.

Table 2 also presents the statistical properties and
distribution parameters for server repairs times. We observe
that the median repair time for all server architectures is 6 to
30 times smaller than that of the mean, and that all median
values are similar in value. Server repair time was best fit by
Lognormal and Loglogisitc distribution classified by server
architecture type, and Lognormal across the entire system as
shown in Figure 7. These statistical properties as well as the
empirical CDF demonstrate that the vast majority of repair
times are relatively short; just under 30 minutes. There are
two reasons for this behavior. The first is described in [21] as
a portion of REMOVE events are due to maintenance; the
second reason we postulate is that a large proportion of
server failures can be repaired by restarting the server. On
the other hand, we also found a proportion of servers that

required several days to be repaired, indicating more
complicated failures that cannot be corrected by just
restarting the server. This is indicated by high variability
within the repair times of servers, reflected by the C2 between
2.28 - 36.89 as well as the distribution shape in Figure 7.

B. Tasks
Table 3 presents the statistical properties of task failures

due to software crashes, as well as the best fit distributions
classified by task priority. We discovered that attempting to
fit a theoretical distribution to tasks agnostic of priority was
not feasible, as it resulted in a C2 value of 46 (representing
significant variability within the data), nor did it visually fit
or pass a GoF test satisfactorily. The reason for this is due to
the characteristics of task failures as shown in Table 3; as it
can be observed, tasks of different priority levels vary
significantly in terms of the mean and standard deviation for
MTBF. It can be observed that C2 is significantly lower when
classifying task failures by priority. By separating tasks by
priority type, we were able to sufficiently fit task MTBF to a

Figure 6. Empirical CDF of time between failures for server architectures.

Figure 7. Empirical CDF of server repair times.

TABLE 3. STATISTICAL PROPERTIES AND MODEL PARAMETERS OF TASK MTBF AND MTTR

 Failure Repair

Priority Population
%

Best Fit
Distribution

Parameters ȝ
(Hours)

ı
(Hours) C2

Best Fit
Distribution

Parameters Median
(Hours)

ȝ
(Seconds)

ı
(Seconds) C2

0 35.07 Weibull
k = 0.5107
Ȝ = 0.3342

1.063 4.925 4.63
3-Param

Loglogistic
Į = 0.9497, ȕ = 1.115

T = 0.9822
2.90 122.90 1472.2 143.5

1 13.73 Lognormal
ȝ = -1.638
ı = 1.665

1.694 8.083 4.77
3-Param

Lognormal
ȝ = 1.206, ı = 1.758

T = 1.049
4.00 161 7157 1976

2 1.06 Lognormal
ȝ = -0.3489
ı = 2.152

3.825 11.836 3.09 Lognormal
ȝ = 1.216
ı = 1.227

2.00 28.70 182.10 40.26

4 42.77 Lognormal
ȝ = -1.921
ı = 1.763

1.019 4.967 4.87
3-Param

Loglogistic
Į = 0.0067, ȕ = 0.6553

T = 0.9737
1.91 16.32 173.36 112.8

6 4.78 Loglogistic
Į = -3.073
ȕ = 0.3129

0.062 0.093 1.50
3-Param

Loglogistic
Į =-0.529, ȕ = 0.5227

T = 1.089
1.67 2.67 4.06 2.31

8 0.43 Loglogistic
Į = -0.2421
ȕ = 2.154

48.53 64.190 1.32
3-Param

Lognormal
ȝ = 0.2871, ı = 2.083

T = 1.317
2.44 8.37 14.52 3.00

9 2.16 Gamma
k = 0.2215
Ȝ = 265.1

58.72 95.030 1.62
3-Param

Lognormal
ȝ = 0.4904, ı = 1.274

T = 1.031
2.43 4.75 5.77 1.48

TABLE 2. STATISTICAL PROPERTIES AND MODEL PARAMETERS OF SERVER MTBF AND MTTR

Failure Repair
Server

Architecture
Population

%
Best Fit

Distribution Parameters
ȝ

(Days)
ı

(Days) C2
Best Fit

Distribution Parameters
Median
(Hours)

ȝ
(Hours)

ı
(Hours) C2

1 1.36 Weibull
k = 2.191
Ȝ = 12.80

12.239 5.952 0.237 Lognormal
ȝ = -1.620
ı = 2.964

0.28 9.17 28.8 9.86

3 6.39 Weibull
k = 1.463
Ȝ = 13.79

12.55 8.28 0.435 Loglogistic
Į = -1.661
ȕ = 0.7326

0.24 1.48 8.99 36.89

5 8.98 Weibull
k = 1.516
Ȝ = 14.01

12.489 7.79 0.389 Loglogistic
Į = -1.249
ȕ = 1.075

0.27 4.81 13.32 7.67

7 55.01 Weibull
k = 1.540
Ȝ = 13.77

12.71 8.057 0.402 Lognormal
ȝ = -1.529
ı = 2.156

0.19 4.17 17.22 17.05

10 27.97 Weibull
k = 1.641
Ȝ = 14.50

13.046 7.784 0.356 Lognormal
ȝ = -1.152
ı = 2.125

0.15 8.17 12.33 2.28

number of distributions; we found that different task
priorities best fit different distributions and that non-
production priority tasks best fit Lognormal, Loglogistic and
Weibull distributions that are heavily skewed as shown in
Figure 8. Such behavior is supportive of the notion that a
large number of failures occur within the start up phase of
tasks due to the crash-loops discussed in Section 4.

As stated previously, priority 9 tasks represent production
tasks within the system environment. We observe that the C2

value of MTBF is 1.62; considerably lower than other task
types, and that the MTBF mean and standard deviation is
significantly larger. We observe that the MTBF of
production tasks best fits a Gamma distribution (shape
parameter k = 0.2) compared to other distributions types as
shown in Figure 9. There appear to be two types of failure
characteristics for tasks; tasks that experience failures near
the start of execution, and tasks that experience failures far
into their life spans. Figure 9 shows that just over 70% of
tasks fail within the first hour of execution resulting in a
skew within the data. The reason for this is a result of user
behavior; there exists a single user that is responsible for just
under 65% of total production tasks failures, all occurring
within Day 3 and failing just under a minute into execution.
As a result, this causes the distribution in Figure 9 to become
skewed. This behavior is worth noting, as Cloud computing
environments are driven by user behavior with varying QoS
demands. As a result, such environments are also influenced
by the failure characteristics of these users. This is a potential
concern in large-scale systems due to evidence of correlation
between workload intensity [18], system size and complexity
that may result in other users being affected.

Table 3 also presents the statistical properties of repair
times for tasks classified by priority. We encountered similar
challenges as described previously with fitting the empirical
data to a suitable theoretical distribution both visually and
using GoF tests. This is due to the extreme variability of task
recovery times within the trace log; especially lower priority
tasks which exhibit C2 values between 112 - 1976. We found
the mean and variance of repair times for task priorities 6-9
to be considerably more stable, indicated by the median and
the mean being closer together, as well as between the mean
and standard deviation. In addition, these tasks contain a
repair time under 10 seconds, indicating that restarting these
tasks appears to correct a large proportion of faults.

The reason for this behavior in lower priority tasks is due
to the scheduler and nature of tasks; lower priority tasks are
more likely to be delayed for higher priority tasks to be
scheduled or resubmitted back into the system. We also
assume from observing the failure and repair characteristics
as well as discussion in [21,22] that there is a correlation
between task priority level and task criticality. (E.g. Lower
priority tasks are less developmentally mature, and
consequently result in more frequent failures and longer
repair times). In addition, the crash-loops within the trace log
skew the results significantly, resulting in a low median, yet
a high mean and standard deviation.

Figure 10(a) and Figure 10(b) show the empirical CDF of
task repair times for all tasks and production tasks within the
trace log respectively, as well as three distributions for visual
fit comparison. We observe that the Lognormal distribution
is the best fit distribution; such a characteristic has been
observed in other distributed systems [10]. However, this is
misleading in the case of Figure 10(a), as the Anderson-
Darling value calculated is unacceptably high, signifying that
the empirical data deviates significantly from the theoretical
distribution. The AD value calculated for Figure 10(b)
however is hundreds of times lower than that of Figure 10(a),

Figure 9. Empirical CDF of time between failure for production tasks

Figure 8. Histograms of time between failures skew for task
(a) Priority 0, (b) Priority 2, (c) Priority 9, (d) Priority 10.

(a) (b)

(c) (d)

Figure 10. Empirical CDF of repair times for a) All tasks, b) Production tasks.
(a) (b)

allowing the empirical CDF for Figure 10(b) to fit a 3-
Parameter Lognormal distribution (threshold parameter T)
that both visually fits and satisfies GoF tests. Gamma and
Weibull distributions are poorer fits for system wide and task
specific repair times.

VI. APPLICATION OF WORK

Although the analysis presented in this work is specific to
the studied environment, the observations and results
presented are applicable in similar Cloud systems and can be
practically applied to enhance a number of research areas:

Provides Cloud workload failure and repair model
parameters derived from empirical data to develop
simulation models: The results derived within this paper can
be used to not only generate the proportion of failures, but
also provides distribution parameters of the MTBF and
MTTR for Cloud workload and servers derived from
empirical data of a large-scale real-world system. Research
into failure-aware scheduling [28] and other fault-tolerant
mechanisms can all be enhanced by choosing experiment
parameters derived from the results within this paper when
evaluating the effectiveness of dependability mechanisms.
Most importantly, these results can greatly assist work that
simulate Cloud workload behavior by either introducing
failure parameters or enhancing workloads that presently
depend on theoretical variables for failure characteristics.

Aids providers from similar environments in decision
making when applying appropriate dependability
mechanisms and when to apply them in order to maximize
their effectiveness: Providers can deploy a number of
dependability mechanisms within their systems as described
previously; the results within this paper can assist providers
in understanding the characteristics of failures within their
own environments, enabling them to make informed
decisions on what type of mechanisms should be applied and
when and where they should be deployed.

We give two concrete examples of how the results in this
paper can assist providers in developing practical
applications of this work. Providers continuously attempt to
improve datacenter energy-efficiency; as stated in [2], a
substantial amount of energy-waste is due to failures. First, it
is ideal that dependability mechanisms deployed in
datacenters do not significantly degrade the energy-
efficiency of the system. Mechanisms such as checkpointing
can be applied in order to mitigate the amount of task
execution time wasted in terms of energy consumption.
However, they can also result in significant overhead. As a
result, it is necessary to calculate the total energy
consumption of wasted task execution, checkpoint overhead,
migration and rollback in order to create smart checkpoint
decision making mechanisms in order to decide when and
where to checkpoint, migrate or kill a task based on
consumer QoS and system energy-efficiency.

Second, it is possible to quantify the energy-waste due to
server failures by calculating the total amount of task
execution time wasted using the results within this paper.
This is accomplished by mapping the server configurations
to the SpecPower2008 Benchmark [35] in order to derive
server energy consumption at different system loads and then
calculating the amount of execution time wasted per task.
This is crucial in order to identify operational inefficiencies
within the system environment. Figure 11 presents initial
results of this calculation, which shows the relationship

between energy-waste and server failures. We observe that
energy-waste increases over subsequent days and that there
exists a strong correlation between the number of server
failures daily and the total energy consumption wasted,
represented by a Pearson correlation coefficient of 0.769.

These two examples are complementary to one another,
and with conjunction with the simulation parameters
presented in this paper, allows providers to experiment with
different system environment parameters and fault-tolerant
mechanism behavior in order to improve system reliability
and energy-efficiency based on empirical findings.

VII. CONCLUSIONS AND FUTURE WORK

This work quantifies and analyzes the characteristics of
failures and repairs from the dataset of a large-scale
production Cloud environment. It is our hope that the
observations and analysis performed within this paper can be
beneficial to the larger research community in terms of
providing insights into the failures that occur within large-
scale production Cloud environments, as well as enabling
more realistic modeling of Cloud workload behavior. Our
observations and conclusions from the study are as follows:

 Failure rates of tasks vary significantly by priority type,
and rely less on the underlying server architecture,
reflecting the diversity of workload characteristics; such
findings quantify the degree of diversity that exists within
a Cloud environment.

 3.26% of the total tasks within the trace log fail, with a
large proportion failing early into their lifespan; the
remaining tasks exhibit a large time between failures.

 Production Cloud tasks follow a Gamma distribution
(Gamma shape parameter of 0.2) and 3-Parameter
Lognormal (Lognormal location parameter 0.4) for
failures and repair times respectively.

 Failure rates of non-production tasks follow different
theoretical distributions such as Lognormal, Loglogistic
and Weibull. Such findings are in agreement with
previous analysis of distributed systems [7,10][29-30].

 Repair times of both tasks and servers vary widely across
the system, ranging from 15 seconds to 4 days, and 25
minutes to 8 days for tasks and servers respectively.

 Attempting to fit distributions visually as well as applying
GoF tests is challenging due to the large variance of
failure and repair times highlighted above. It is our
suggestion that for deriving accurate failure parameters of

272421181512963

1.0

0.8

0.6

0.4

0.2

0.0

Day

N
o

rm
a

li
ze

d
 V

a
lu

e
s

Energy waste

Server failure

Figure 11. Temporal characteristics of energy-waste and server failures.

tasks and servers, using priority levels and architecture
types is more effective for tasks and servers respectively.

Future work includes studying the failure correlation
between workload intensity and size of system. We also plan
to investigate in further detail how specific user behavior
effects the dependability of the Cloud environment, and if it
is possible to perform distribution analysis when clustering
users with similar failure behavior by characterizing
workload following the methodology in [17]. Finally, we
plan to use the results generated in this paper to enhance a
number of dependability mechanisms such as check-pointing
as well as failure-aware scheduling that considers additional
dimensions such as performance and energy-efficiency.

ACKNOWLEDGEMENT

This work is supported by the National Basic Research
Program of China (973) (No. 2011CB302602), the UK
EPSRC WRG platform project (No. EP/F057644/1), the
Major Program of the National Natural Science Foundation
of China (No. 90818028), the STRAPP project (Trusted
Digital Spaces through Timely Reliable and Personalized
Provenance) funded by the UK Technology Strategy Board
(grant reference 1926-19253), RollsRoyce plc, Osys Ltd,
Cybula Ltd, and the UK Engineering and Physical Sciences
Research Council Knowledge Secondment Scheme.

REFERENCES
[1] P. Mell and T. Grance. NIST definition of Cloud computing. National

Institute of Standards and Technology. October 7, 2009.
[2] A. Gainaru, F. Cappello, M. Snir, and W. Kramer, "Fault prediction

under the microscope: a closer look into HPC systems," in
Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis Salt Lake City, Utah:
IEEE Computer Society Press,

[3] A. Avizienis, J.-C Laprie, B. Randell, C. Landwehr "Basic concepts
and taxonomy of dependable and secure computing," Dependable and
Secure Computing, IEEE Transactions on , vol.1, no.1, pp.11,33, Jan.-
March 2004

[4] Z.Zheng, T. Zhou, M.Lyu, I.King ‘FTCloud: A Component Ranking
Framework for Fault-Tolerant Cloud Applications’ 2010. IEEE 21st
International Symposium on Software Reliability Engineering, Nov.
2010, pp 398-407.

[5] L. Fiondella, S.S. Gokhale, V.B. Mendiratta "Cloud Incident Data: An
Empirical Analysis," Cloud Engineering (IC2E), 2013 IEEE
International Conference on , vol., no., pp.241,249, 25-27 March 2013

[6] K. V. Vishwanath and N. Nagappan. "Characterizing cloud computing
hardware reliability". In Proc. of ACM Symp. on Cloud Computing
(SOCC), 2010.

[7] S. Kavulya, J. Tan, R. Gandhi, P. Narasimhan, "An Analysis of Traces
from a Production MapReduce Cluster," Cluster, Cloud and Grid
Computing (CCGrid), 2010 10th IEEE/ACM International Conference
on , vol., no., pp.94,103, 17-20 May 2010

[8] R. K. Sahoo, A. Sivasubramaniam, M. S. Squillante, and Y. Zhang,
"Failure Data Analysis of a Large-Scale Heterogeneous Server
Environment," in Proceedings of the 2004 International Conference on
Dependable Systems and Networks: IEEE Computer Society, 2004.

[9] L. Hui, D. Groep, L. Wolters, and J. Templon, "Job Failure Analysis
and Its Implications in a Large-Scale Production Grid," in e-Science
and Grid Computing, 2006. e-Science '06. Second IEEE International
Conference on, 2006, pp. 27-27.

[10] B. Schroeder and G. A. Gibson, "A Large-Scale Study of Failures in
High-Performance Computing Systems," Dependable and Secure
Computing, IEEE Transactions on, vol. 7, pp. 337-351, 2010.

[11] T. Ropars, A. Guermouche, B. U, E. Meneses, L. V. Kal, and F.
Cappello, "On the use of cluster-based partial message logging to
improve fault tolerance for MPI HPC applications," in Proceedings of
the 17th international conference on Parallel processing - Volume Part
I Bordeaux, France: Springer-Verlag, 2011, pp. 567-578.

[12] A.M. Sampaio, J.G. Barbosa "Dynamic Power- and Failure-Aware
Cloud Resources Allocation for Sets of Independent Tasks," Cloud

Engineering (IC2E), 2013 IEEE International Conference on , vol.,
no., pp.1,10, 25-27 March 2013

[13] J. A. Quiane-Ruiz, C. Pinkel, J. Schad, and J. Dittrich, "RAFTing
MapReduce: Fast recovery on the RAFT," in Data Engineering
(ICDE), 2011 IEEE 27th International Conference on, 2011

[14] T. Nguyen and W. Shi, "Improving resource efficiency in data centers
using reputation-based resource selection," in Proceedings of the
International Conference on Green Computing: IEEE Computer
Society, 2010, pp. 389-396.

[15] Y. Liang, Y. Zhang, M. Jette, S. Anand, and R. Sahoo, "BlueGene/L
Failure Analysis and Prediction Models," in Dependable Systems and
Networks, 2006, pp. 425-434.

[16] R. Buyya, et al., "InterCloud: utility-oriented federation of cloud
computing environments for scaling of application services," presented
at the Proceedings of the 10th international conference on Algorithms
and Architectures for Parallel Processing - Volume Part I, Busan,
Korea, 2010.

[17] I.S. Moreno, P. Garraghan, P. Townend, J. Xu, "An Approach for
Characterizing Workloads in Google Cloud to Derive Realistic
Resource Utilization Models," Service Oriented System Engineering
(SOSE), 2013 IEEE 7th International Symposium on , vol., no.,
pp.49,60, 25-28 March 2013), USA,

[18] X. Castillo and D. Siewiorek. "Workload, performance, andreliability
of digital computing systems". In FTCS-11 , 1981

[19] Google, "Google Cluster Data V2." Available:
http://code.google.com/p/googleclusterdata/wiki/ClusterData2011_1

[20] P. Garraghan, P. Townend, J. Xu "An Analysis of the Server
Characteristics and Resource Utilization in Google Cloud," Cloud
Engineering (IC2E), 2013 IEEE International Conference, pp.124,131,
25-27 March 2013

[21] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch.
"Heterogeneity and dynamicity of clouds at scale: Google trace
analysis." In Proc. of the 3nd ACM Symposium on Cloud Computing,
SOCC '12, 2012.

[22] C. Reiss, J. Wilkes, and J. Helleirstein, "Google Cluster-Usage Traces:
Format + Schema," Google Inc., White Paper, 2011.

[23] J.N. Gray, “A census of Tandem system availability between 1985 and
1990,” IEEE Trans. Reliability, vol. 39, no. 4, pp.409-418, 1990.

[24] D. Powell (Ed.). “Delta-4: a generic architecture for dependable
distributed computing”, Springer (Berlin), 1991.

[25] D. Tang, R. K. Iyer, and S. S. Subramani, "Failure analysis and
modeling of a VAXcluster system," in Fault-Tolerant Computing,
1990. FTCS-20. Digest of Papers., 20th International Symposium,
1990, pp. 244-

[26] M. Kalyanakrishnam, Z. Kalbarczyk, and R. Iyer, "Failure data
analysis of a LAN of Windows NT based computers," in Reliable
Distributed Systems, 1999, pp. 178-187.

[27] Minitab, "Distribution Analysis," in Minitab Users' Guide, ed, 2011.
[28] S. Fu, C.Z. Xu "Quantifying event correlations for proactive failure

management in networked computing systems", Journal of Parallel
and Distributed Computing, Volume 70, Issue 11, November 2010,
Pages 1100-1109

[29] J. Xu, Z. Kalbarczyk, and R. K. Iyer. "Networked Windows NT
system field failure data analysis." In Proc. of the 199 Pacific Rim Int.
Symp. on Dependable Computing 1999

[30] T. Heath, R. P. Martin, and T. D. Nguyen. "Improving cluster
availability using workstation validation." In Proc. ACM
SIGMETRICS Conf. Measurement and Modeling of Computer
Systems, pp. 217–227, 2002

[31] M. Lyu and V. Mendiratta. "Software Fault Tolerance in a Clustered
Architecture: Techniques and Reliability Modeling". In Proceedings
1999 IEEE Aerospace Conference, pages 141 –150, 1999

[32] Adam J. Oliner , Larry Rudolph , Ramendra K. Sahoo, “Cooperative
checkpointing: a robust approach to large-scale systems reliability”,
Proceedings of the 20th annual international conference on
Supercomputing, June 28-July 01, 2006, Cairns, Queensland, Australia

[33] J. Dean and S. Ghemawat, "MapReduce: simplified data processing on
large clusters," in Proceedings of the 6th conference on Symposium on
Opearting Systems Design \& Implementation - Volume 6 San
Francisco, CA: USENIX Association, 2004, pp. 10-10.

[34] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H.
Liu, P. Wyckoff, and R. Murthy, "Hive: a warehousing solution over a
map-reduce framework," Proc. VLDB Endow., vol. 2, pp. 1626-1629,

[35] 2009 Standard Performance Evaluation Corporation,
"SPECpower_ssj2008 Results" vol. 2012, 2012. Available:
http://www.spec.org/power_ssj2008/results/

http://code.google.com/p/googleclusterdata/wiki/ClusterData2011_1
http://dl.acm.org/citation.cfm?id=1183406&CFID=237975408&CFTOKEN=77518576
http://www.spec.org/power_ssj2008/results/

