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Abstract

A solvable Lie algebra L has the property that its nilradical N
contains its own centraliser. This is interesting because gives a repre-
sentation of L as a subalgebra of the derivation algebra of its nilradical
with kernel equal to the centre of N . Here we consider several pos-
sible generalisations of the nilradical for which this property holds in
any Lie algebra. Our main result states that for every Lie algebra L,
L/Z(N), where Z(N) is the centre of the nilradical of L, is isomorphic
to a subalgebra of Der(N∗) where N∗ is an ideal of L such that N∗/N
is the socle of a semisimple Lie algebra.
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1 Introduction

Throughout, L will be a finite-dimensional Lie algebra, over a field F , with
nilradical N and radical R. If L is solvable, then N has the property that
CL(N) ⊆ N . This property supplies a representation of L as a subalgebra
of Der(N) with kernel Z(N). The purpose of this paper is to seek a larger
ideal for which this property holds in all Lie algebras. The corresponding
problem has been considered for groups (see, for example, Aschbacher [1,
Chapter 11]). In group theory, the quasi-nilpotent radical (also called by
some the generalised Fitting subgroup), F ∗(G), of a group G is defined to
be F (G) + E(G), where F (G) is the Fitting subgroup and E(G) is the set
of components of G: that is, the quasi-simple subnormal subgroups of the
group. It is also equal to the socle of CG(F (G))F (G)/F (G). The generalised
Fitting subgroup, F̃ (G), is defined to be the socle of G/Φ(G), where Φ(G) is
the Frattini subgroup of G (see, for example, [7]). Here we consider various
possible analogues for Lie algebras.

First we introduce some notation that will be used. The centre of L is
Z(L) = {x ∈ L : [x, y] = 0 for all y ∈ L}; if S is a subalgebra of L, the
centraliser of S in L is CL(S) = {x ∈ L : [x, S] = 0}; the Frattini ideal,
φ(L), of L is the largest ideal contained in all of the maximal subalgebras
of L; we say that L is φ-free if φ(L) = 0; the socle of S, SocS, is the sum
of all of the minimal ideals of S; and the L-socle of S, SocL S, is the sum of
all of the minimal ideals of L contained in S. The symbol ‘⊕’ will be used
to denote an algebra direct sum, whereas ‘+̇’ will denote a direct sum of the
vector space structure alone.

We call L quasi-simple if L2 = L and L/Z(L) is simple. Of course, over
a field of characteristic zero a quasi-simple Lie algebra is simple, but that
is not the case over fields of prime characteristic. For example, An where
n ≡ −1(modp) is quasi-simple, but not simple. This suggests using the
quasi-simple subideals of a Lie algebra L to define a corresponding E(L).
However, first note that quasi-simple subideals of L are ideals of L. This
follows from the following easy lemma.

Lemma 1.1 If I is a perfect subideal (that is, I2 = I) of L then I is a
characteristic ideal of L.

Proof. If I is perfect then I = In for all n ∈ N. It follows that [L, I] =
[L, In] ⊆ L (ad I)n ⊆ I for some n ∈ N, and hence that I is an ideal of L.
But now, if D ∈ Der(L), then D([x1, x2]) = [x1, D(x2)] + [D(x1), x2] ∈ I for
all x1, x2 ∈ I. Hence D(I) = D(I2) ⊆ I. �
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Combining this with the preceding remark we have the following.

Lemma 1.2 Let L be a Lie algebra over a field of characteristic zero. Then
I is a quasi-simple subideal of L if and only if it is a simple ideal of L.

We say that an ideal A of L is quasi-minimal in L if A/Z(A) is a minimal
ideal of L/Z(A) and A2 = A. Clearly a quasi-simple ideal is quasi-minimal.
Over a field of characteristic zero, an ideal A of L is quasi-minimal if and
only if it is simple. So an alternative is to define E(L) to consist of the
quasi-minimal ideals of L. We investigate these two possibilities in sections
3 and 5.

In sections 4 and 6 our attention turns to two further candidates for
a generalised nilradical: the L-socle of (N + CL(N))/N and the socle of
L/φ(L). All of these possibilities turn out to be related, but not always
equal.

2 Preliminary results

Let L be a Lie algebra over a field F and let U be a subalgebra of L. If F
has characteristic p > 0 we call U nilregular if the nilradical of U , N(U),
has nilpotency class less than p − 1. If F has characteristic zero we regard
every subalgebra of L as being nilregular. We say that U is characteristic
in L if it is invariant under all derivations of L. Then we have the following
result.

Theorem 2.1 (i) If I is a nilregular ideal of L then N(I) ⊆ N(L).

(ii) If I is a nilregular subideal of L and every subideal of L containing I
is nilregular, then N(I) ⊆ N(L).

Proof.

(i) We have that N(I) is characteristic in I. This is well-known in charac-
teristic zero, and is given by [6, Corollary 1] in characteristic p. Hence
it is a nilpotent ideal of L and the result follows.

(ii) Let I = I0 < I1 < . . . < In = L be a chain of subalgebras of L with
Ij an ideal of Ij+1 for j = 0, . . . , n − 1. Then N(I) ⊆ N(I1) ⊆ .... ⊆
N(In) = N(L), by (i).
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Similarly, we will call the subalgebra U solregular if the underlying field
F has characteristic zero, or if it has characteristic p and the (solvable)
radical of U , R(U), has derived length less than log2p. Then we have the
following corresponding result.

Theorem 2.2 (i) If I is a solregular ideal of L then R(I) ⊆ R(L).

(ii) If I is a solregular subideal of L and every subideal of L containing I
is solregular, then R(I) ⊆ R(L).

Proof. This is similar to the proof of Theorem 2.1, using [8, Theorem 2].
�

We also have the following result which we will improve upon below, but
by using a deeper result than is required here.

Theorem 2.3 Let L be a Lie algebra over a field F , and let I be a minimal
non-abelian ideal of L. Then either

(i) I is simple or

(ii) F has characteristic p, N(I) has nilpotency class greater than or equal
to p− 1, and R(I) has derived length greater than or equal to log2p.

Proof. Let I be a non-abelian minimal ideal of L and let J be a minimal
ideal of I. Then J2 = J or J2 = 0. The former implies that J is an
ideal of L by Lemma 1.1, and hence that I is simple. So suppose that
J2 = 0. Then N(I) 6= 0 and R(I) 6= 0. But if I is nilregular we have that
N(I) ⊆ N(L) ∩ I = 0, since I is non-abelian, a contradiction. Similarly,
if I is solvregular, then R(I) ⊆ R(L) ∩ I = 0, a contradiction. The result
follows. �

As a result of the above we will call the subalgebra U regular if it is
either nilregular or solregular; otherwise we say that it is irregular. Then
we have the following corollary.

Corollary 2.4 Let L be a Lie algebra over a field F . Then every minimal
ideal of L is abelian, simple or irregular.

Block’s Theorem on differentiably simple rings (see [3]) describes the
irregular minimal ideals as follows.
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Theorem 2.5 Let L be a Lie algebra over a field of characteristic p > 0 and
let I be an irregular minimal ideal of L. Then I ∼= S⊗On, where S is simple
and On is the truncated polynomial algebra in n indeterminates. Moreover,
N(I) has nilpotency class p− 1 and R(I) has derived length dlog2pe.

Proof. Every non-abelian minimal ideal I of L is ad|I (L)-simple, so the
first assertion follows from [3, Theorem 1]. Now N(I) = R(I) ∼= S ⊗ O+

n ,
where O+

n is the augmentation ideal of On. It is then straightforward to
check that the final assertion holds. �

Note that if N and S are the classes of Lie algebras that are themselves
nilregular and solregular respectively, then N 6⊆ S and S 6⊆ N , as the
following examples show.

Example 2.1 Let L be a filiform nilpotent Lie algebra of dimension n over
a field F . Then L has nilpotency class n− 1 and derived length 2. Thus, if
F has characteristic p > 3, and n ≥ p, then L has nilpotency class greater
than or equal to p − 1, and so is not nilregular. However, it is solregular,
since 2 < log2p.

Example 2.2 Let L = Fe1 + Fe2 with product [e1, e2] = e2 and let F have
characteristic 3. The N(L) = Fe2 has nilpotency class 1 < p − 1 and so L
is nilregular. But R(L) = L, so L has derived length 2 > log2p and is not
solregular.

For every Lie algebra L(n) ⊆ L2n , so any nilregular nilpotent Lie algebra of
nilpotency class 2n is solregular, since 2n < p−1 < p implies that n < log2p.
However, it is not true generally that a nilpotent nilregular Lie algebra is
solregular, as the following example shows.

Example 2.3 Let L be the seven-dimensional Lie algebra over a field F of
characteristic p = 7 with basis e1, . . . , e7 and products [e2, e1] = e4, [e3, e1] =
e5, [e3, e2] = e5, [e4, e3] = −e6, [e5, e1] = e7, [e5, e2] = 2e6, [e5, e4] = e7,
[e6, e1] = e7 and [e6, e2] = e7 (see [4, page 87]). Then L has nilpotency class
5 < p− 1 and so is nilregular, but its derived length is 3 > log2p, so it is not
solregular.

We also have the following result.

Corollary 2.6 If L is a Lie algebra and A is a regular ideal of L, then A
is quasi-minimal in L if and only if it is a quasi-simple ideal of L.
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However, the above result is not true for all ideals, as the following
example shows.

Example 2.4 Let L = sl(2)⊗Om+ 1⊗D, where Om is the truncated poly-
nomial algebra in m indeterminates, D is a non-zero solvable subalgebra of
Der(Om), Om has no D-invariant ideals, and the ground field is algebraically
closed of characteristic p > 5. Then L is semisimple and A = sl(2)⊗Om is
the unique minimal ideal of L (see [13, Theorem 6.4]). Since Z(A) = 0, A
is clearly quasi-minimal but not quasi-simple.

If S is a subalgebra of L, we denote by Rc(S) the (solvable) characteristic
radical of S; that is, the sum of all of the solvable characteristic ideals of L.
(see Seligman [9]).

Theorem 2.7 Let L be a Lie algebra over any field F . Then Rc(CL(N)) =
Z(N). Moreover, if CL(N) is regular, then Rc(CL(N)) = R(CL(N)).

Proof. Let Z = Z(N), L = L/Z and H = Rc(CL(N)). Then H is a
characteristic ideal of CL(N), and hence an ideal of L. Assume that H 6= 0.
Then there exists k ≥ 1 such that H(k+1) ⊆ Z but X = H(k) 6⊆ Z. Then
X2 ⊆ Z and X3 ⊆ [N,CL(N)] = 0, since X ⊆ CL(N). It follows that X
is a nilpotent ideal of L, and hence that X ⊆ N . But [X,N ] = 0, giving
X ⊆ Z, a contradiction.

Now suppose that CL(N) is nilregular. Then, clearly, Rc(CL(N)) ⊆
R(CL(N)). Suppose that R(CL(N)) 6= Z. Let A/Z be a minimal ideal of
CL(N)/Z with A ⊆ R(CL(N)). Then A3 = 0 and so A ⊆ N(CL(N)) ⊆
N(L), by Theorem 2.1 (i). Hence A = Z, a contradiction.

Finally, suppose that CL(N) is solregular. Then R(CL(N)) = R(L) ∩
CL(N) is an ideal of L, and arguing as in the first paragraph of this proof
shows that R(CL(N)) = Z(N). �

This has the following useful corollary.

Corollary 2.8 Let L be a Lie algebra over a field F , let N be its nilradical
and let C = CL(N) be regular. Then

(i) if φ(C)∩Z(N) = 0, C = Z(N)+̇B where B is a semisimple subalgebra
of L and B2 is an ideal of L;

(ii) if φ(L)∩Z(N) = 0, C = Z(N)⊕B where B is a maximal semisimple
ideal of L; and
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(iii) if F has characteristic zero, then C = Z(N)⊕S where S is the maximal
semisimple ideal of L.

Proof.

(i) Suppose that φ(C)∩Z(N) = 0. Then C = Z(N)+̇B for some subalge-
bra B of C, by [10, Lemma 7.2]. Moreover, B ∼= C/Z(N) is semisimple,
by Theorem 2.7, and B2 = C2 is an ideal of L.

(ii) Suppose that φ(L)∩Z(N) = 0. The L = Z(N)+̇U for some subalgebra
U of L, by [10, Lemma 7.2] again. It follows that C = Z(N)⊕B where
B = C ∩ U , which is an ideal of L, and B is semisimple. Moreover, if
S is a semisimple ideal of L with B ⊆ S, then [S,N ] ⊆ S ∩N = 0, so
S ⊆ C. Hence S = B.

(iii) So suppose now that F has characteristic zero. Then C = Z(N)+̇B
where B is a Levi factor of C. Also, B = B2 = C2 is an ideal of L, so
C = Z(N)⊕B. Moreover, if S is the maximal semisimple ideal of L,
then B ⊆ S and [S,N ] ⊆ S ∩N = 0, so S ⊆ C. It follows that S = B.

�

Finally, the following straightforward results will prove useful.

Lemma 2.9 Let K be an ideal of L with K ⊆ CL(N). Then Z(K) =
Z(N) ∩K.

Proof. Clearly Z(K) is an abelian ideal of L, so Z(K) ⊆ N . Moreover,
[Z(K), N ] ⊆ [K,N ] = 0, so Z(K) ⊆ Z(N) ∩ K. Also [Z(N) ∩ K,K] ⊆
[N,K] = 0, so Z(N) ∩K ⊆ Z(K). �

Lemma 2.10 Let L be any Lie algebra and suppose that A is an ideal of L
with A2 = A. Then Z(A) ⊆ φ(L). If A is a quasi-minimal ideal of L, then
Z(A) = A ∩ φ(L).

Proof. Suppose that Z(A) 6⊆ φ(L). Then there is a maximal subalgebra U
of L such that L = Z(A)+U . Thus A = Z(A)+U ∩A and U ∩A is an ideal
of L. It follows that A = A2 = (U ∩ A)2 ⊆ U ∩ A ⊆ A, whence Z(A) ⊆ U ,
a contradiction. Hence Z(A) ⊆ φ(L).

Suppose now that A is a quasi-minimal ideal of L. Then Z(A) ⊆ A ∩
φ(L) ⊆ A, so A ∩ φ(L) = A or Z(A). The former implies that A ⊆ φ(L),
which is impossible since φ(L) is nilpotent. Hence A ∩ φ(L) = Z(A). �
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3 The quasi-minimal radical

Here we construct a radical by adjoining the quasi-minimal ideals of L to
its nilradical N .

Lemma 3.1 Quasi-minimal ideals of L are characteristic in L.

Proof. This follows from Lemma 1.1. �

Lemma 3.2 Let A/Z(A) be a minimal ideal of L/Z(A). Then A = A2 +
Z(A) and A2 is quasi-minimal in L.

Proof. Let P = A2 and L = L/Z(A). Then P is an ideal of L and
A is minimal, so P = 0 or A. The former implies that A is abelian, a
contradiction. Hence P = A, so A = P + Z(A) = A2 + Z(A). Also, P =
A2 = P 2 and [Z(P ), A] = [Z(P ), P ]+[Z(P ), Z(A)] = 0, so P∩Z(A) = Z(P ).
Thus P/Z(P ) = P/P ∩ Z(A) ∼= P + Z(A)/Z(A) = A/Z(A) is a minimal
ideal of L/Z(P ). �

Proposition 3.3 Let A be quasi-minimal in L and B be an ideal of L.
Then either A ⊆ B or A ⊆ CL(B).

Proof. Clearly A ∩ B + Z(A)/Z(A) is an ideal of L/Z(A) contained in
A/Z(A), so A∩B+Z(A) = A or A∩B+Z(A) = Z(A). The former implies
that A = A2 ⊆ A∩B ⊆ A, whence A = A∩B and A ⊆ B. The latter yields
that A ∩ B ⊆ Z(A), giving [A,B] = [A2, B] ⊆ [A, [A,B]] ⊆ [A,A ∩ B] ⊆
[A,Z(A)] = 0 and so A ⊆ CL(B). �

The quasi-minimal components of L are its quasi-minimal ideals. Write
MComp(L) for the set of quasi-minimal components of L, and let E†(L) be
the subalgebra generated by them. Then E†(L) is a characteristic ideal of
L, by Lemma 1.1.

Corollary 3.4 E†(L) ⊆ CL(R).

Proof. Let A ∈ MComp(L) and put B = R in Proposition 3.3. Then either
A ⊆ R or A ⊆ CL(R). But the former is impossible, since A2 = A, whence
A ⊆ CL(R). �

Corollary 3.5 Distinct quasi-minimal components of L commute, so

E†(L) =
∑

P∈MComp(L)

P,

where [P,Q] = 0 and P ∩Q ⊆ Z(R) for all P,Q ∈ MComp(L).
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Proof. This first assertion follows directly from Proposition 3.3. But then
P ∩ Q ⊆ Z(P ) ∩ Z(Q) ⊆ N and [P,R] = [Q,R] = 0, using Corollary 3.4.
Hence P ∩Q ⊆ Z(R). �

Lemma 3.6 If B is an ideal of L, then MComp(B) ⊆ MComp(L) ∩ B.
Moreover, if B is regular, then this is an equality.

Proof. Let A be a quasi-minimal ideal of B. Then A is a quasi-minimal
ideal of L, by Lemma 3.1. Thus MComp(B) ⊆ MComp(L) ∩B.

Now suppose that B is regular, and let A ∈ MComp(L) ∩ B, so A is
a quasi-minimal ideal of L and A ⊆ B ∩ CL(N), by Corollary 3.4. Let
C/Z(A) be a minimal ideal of B/Z(A) with C ⊆ A. Then C2 ⊆ Z(A) or
C2 + Z(A) = C. The former implies that C3 = 0, and hence that C is a
nilpotent ideal of B. If B is nilregular, it follows from Theorem 2.1 that
C ⊆ N , whence [C,A] = 0 and C ⊆ Z(A), a contradiction. Similarly, if B is
solregular, then C ⊆ R(B) ⊆ R(L), by Theorem 2.2. But then [C,A] = 0,
by Corollary 3.4, since A ∈ E†(L), leading to the same contradiction. Hence
C2 + Z(A) = C. But now

[L,C] = [L,C2 + Z(A)] ⊆ [[L,C], C] + Z(A) ⊆ [B,C] + Z(A) ⊆ C,

so C is an ideal of L. But A/Z(A) is a minimal ideal of L/Z(A), so C = Z(A)
or C = A. It follows that A/Z(A) is a minimal ideal of B/Z(A) and A2 = A.
Thus A ∈ MComp(B). �

Example 3.1 Note that if B is not regular then the inclusion in Lemma
3.6 can be strict. For, let L be as in Example 2.4. Then Om has a unique
maximal ideal O+

m and A+ = sl(2) ⊗ O+
m is the unique maximal ideal of A

(and is nilpotent). Hence MComp(A) ⊆ A+ 6= A, whereas MComp(L) = A.

Proposition 3.7 Let L be a Lie algebra in which CL(N) is regular. Put
Z = Z(N), L = L/Z, S = Soc(CL(N)). Then E†(L) = S2 and S =
E†(L) + Z.

Proof. Let H = CL(N). Then R(H) = 0, by Theorem 2.7. Hence each
minimal ideal of H is quasi-minimal in H, and so is a quasi-minimal com-
ponent of H. Thus S ⊆ E†(H). Let K ∈ MComp(H) ⊆ MComp(L), by
Lemma 3.6. Hence K/Z(K) is a quasi-minimal ideal of L/Z(K), by Lemma
2.9. Then K = K2 + Z with K2 quasi-minimal in L, since Z(K) = Z by
Lemma 3.2. Hence K2 ∈ MComp(L), so S ⊆ E†(L) + Z.
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Let P ∈ MComp(L). Then P ⊆ H since E†(L) ⊆ H, by Corollary 3.4.
Hence P ∈ MComp(L) ∩ H = MComp(H), by Lemma 3.6. Hence P is a
minimal ideal of H, so P ⊆ S. Thus S = E†(L) + Z and E†(L) = S2. �

We define the quasi-minimal radical of L to beN †(L) = N+E†(L). From
now on we will denote N †(L) simply by N †. Then this has the property we
are seeking.

Theorem 3.8 If L is a Lie algebra, over any field F , with nilradical N ,
then CL(N †) = Z(N). In particular, CL(N †) ⊆ N †.

Proof. Let C = CL(N †). Then Z(N) ⊆ C, by Corollary 3.4. Suppose that
Z(N) 6= C and let A/Z(N) be a minimal ideal of L/Z(N) with A ⊆ C.
Then [A,Z(N)] ⊆ [C,N †] = 0, so Z(N) ⊆ Z(A). Thus A = Z(A) or
Z(A) = Z(N). The former implies that A ⊆ N . But [A,N ] ⊆ [C,N †] = 0,
so A ⊆ Z(N), a contradiction. The latter implies that A2 ⊆ E† ⊆ N †, by
Lemma 3.2. Hence A3 ⊆ [C,N †] = 0, so A ⊆ N , which leads to the same
contradiction as before. The result follows. �

Proposition 3.9 Let L be a Lie algebra in which N † is regular. Then
N †(N †) = N †.

Proof. Clearly N †(N †) ⊆ N †. But E†(L) ⊆ E†(N †), by putting B = N †

in Lemma 3.6, and, clearly, N ⊆ N(N †), giving the reverse inclusion. �

Example 3.2 Again, Proposition 3.9 does not hold if N † is not regular.
For, let L be as in Example 2.4. Then N † = A, but N †(N †) = A+.

Next we investigate the behaviour of N † with respect to factor algebras,
direct sums and ideals.

Proposition 3.10 Let L be a Lie algebra over any field, and let I be an
ideal of L. Then

N †(L) + I

I
⊆ N †

(
L

I

)
.

Proof. Clearly N(L)+I/I ⊆ N(L/I). Let A be a quasi-minimal ideal of L,
so A/Z(A) is a minimal ideal of L/Z(A) and A2 = A. Put C = CL(A+I/I).
Then Z(A) ⊆ C ∩ A ⊆ A, so C ∩ A = A or C ∩ A = Z(A). The former
implies that A = A2 ⊆ I, whence A + I/I ⊆ N(L/I). If the latter holds,
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then C = C ∩ (A+ I) = C ∩A+ I = Z(A) + I and A ∩ I ⊆ A ∩C = Z(A),
whence

A+ I/I

Z(A+ I/I)
∼=
A+ I

C
=

A+ I

Z(A) + I
∼=

A

Z(A) +A ∩ I
=

A

Z(A)

and (
A+ I

I

)2

=
A+ I

I
.

Thus A+ I/I is a quasi-minimal ideal of L/I and

E†(L) + I

I
⊆ E†

(
L

I

)
.

The result follows. �

The above inclusion can be strict, as we shall see later.

Proposition 3.11 Let L be a Lie algebra over any field, and suppose that
L = I ⊕ J , where I, J are ideals of L. Then N †(L) = N †(I)⊕N †(J).

Proof. It is easy to see that N †(I) ⊕ N †(J) ⊆ N †(L). Let πI , πJ be the
projection maps onto I, J respectively. Then N(L) = πI(N(L))⊕πJ(N(L)).
Clearly πI(N(L)) ⊆ N(I) and πJ(N(L)) ⊆ N(J), so N(L) ⊆ N(I)⊕N(J).

Let A be a quasi-minimal ideal of L, so A/Z(A) is a minimal ideal of L
and A2 = A. Then

A = A2 ⊆ [A, I ⊕ J ] = [A, I]⊕ [A, J ] ⊆ A,

so A = [A, I] ⊕ [A, J ]. Since A = A2 = [A, I]2 + [A, J ]2, we also have
that [A, I]2 = [A, I] and [A, J ]2 = [A, J ]. Now [A, I] + Z(A) = Z(A) or A.
The former implies that [A, I] ⊆ Z(A), which gives that [A, I] = [A, I]2 =
0. The latter yields that A/Z(A) ∼= [A, I]/Z(A) ∩ [A, I]. Now Z(A) ∩
[A, I] ⊆ Z([A, I]), so Z([A, I]) = [A, I] or Z(A) ∩ [A, I]. The former gives
[A, I] = [A, I]2 = 0 again, whereas the latter yields that [A, I]/Z[A, I] is
quasi-minimal and [A, I] ∈ E†(I).

Similarly [A, J ] = 0 or else [A, J ] ∈ E†(J). It follows that E†(L) ⊆
E†(I)⊕ E†(J), whence the result. �

Proposition 3.12 Let L be a Lie algebra over any field, and let I be a
nilregular ideal of L. Then N †(I) ⊆ N †(L).
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Proof. Since I is nilregular, we have that N(I) ⊆ N(L), by Theorem 2.1
(i). Also, E†(I) ⊆ E†(L), by Lemma 3.6, whence the result. �

The following result describes the ideals of L contained in E†.

Proposition 3.13 Let A be an ideal of L with A ⊆ E†(L). Then A =
P1 + . . . + Pk + Z(A), where Pi is a quasi-minimal component of L for
1 ≤ i ≤ k.

Proof. Let E†(L) = P1 + . . .+ Pn, where Pi is a quasi-minimal component
of L for each 1 ≤ i ≤ n. Then Pi ⊆ A or Pi ⊆ CL(A) for each i = 1, . . . , n,
by Proposition 3.3. Let Pi ⊆ A for 1 ≤ i ≤ k and Pi 6⊆ A for k + 1 ≤ i ≤ n.
Then A ∩ (Pk+1 + . . .+ Pn) ⊆ Z(A), so A = (P1 + . . .+ Pk) + Z(A). �

Finally we give two further characterisations of N †, valid over any field.
Recall that A/B is a chief factor of L if B is an ideal of L and A/B is a
minimal ideal of L/B.

Theorem 3.14 Let L be a Lie algebra, over any field F , with radical R.
Then

N † = ∩{A+ CL(A/B) | A/B is a chief factor of L}.

Proof. Denote the given intersection by I, let A/B be a chief factor of L
and let P be a quasi-minimal component of L. Then P ⊆ A or P ⊆ CL(A),
by Proposition 3.3. Hence E† ⊆ I. Moreover, N ⊆ I, by [2, Lemma 4.3], so
N † ⊆ I.

If P is a quasi-minimal component of L then P/Z(P ) is a chief factor
of L. Also, if C = CL(P/Z(P )) we have [C,P ] = [C,P 2] ⊆ [[C,P ], P ] ⊆
[Z(P ), P ] = 0, so C = CL(P ) and N ⊆ C, by Corollary 3.4. Hence I ⊆
P +CL(P/Z(P )) = P +CL(P ). Now, if P , Q are quasi-minimal components
of L, then

(P + CL(P )) ∩ (Q+ CL(Q)) = P +Q+ CL(P ) ∩ CL(Q),

since P ⊆ CL(Q) and Q ⊆ CL(P ). It follows that I ⊆ N † + CL(E†) and
I = N † + I ∩ CL(E†).

If
0 = N0 ⊂ N1 ⊂ . . . ⊂ Nk = N

is part of a chief series for L then I ⊆ ∩ki=1CL(Ni/Ni−1), so I acts nilpotently
on N . Suppose that N ⊂ I ∩ CL(E†). Let A/N be a minimal ideal of
L/N with A ⊆ I ∩ CL(E†). Then A2 ⊆ N or A2 + N = A. The former
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implies that A ⊆ N , since A acts nilpotently on N , a contradiction. Hence
A = A2 +N ⊆ Ar +N for all r ≥ 1. But now

[A,N ] ⊆ [Ar +N,N ] ⊆ N(ad, A)r +N r,

so [A,N ] = 0, whence A ⊆ CL(E†)∩CL(N) = CL(N †) = Z(N), by Theorem
3.8, a contradiction again. Thus I ∩ CL(E†) = N and I = N †. �

We put

IL(A/B) = {x ∈ L | ad (x+B)|A/B = ad (a+B)|A/B for some a ∈ A}.

The map ad (x+B)|A/B is called the inner derivation induced by x on A/B.
Then IL(A/B) = A + CL(A/B), by [11, Lemma 1.4 (i)], so we have the
following corollary.

Corollary 3.15 Let L be a Lie algebra over any field F . Then N † is the set
of all elements of L which induce an inner derivation on every chief factor
of L.

4 The generalised nilradical of L

We define the generalised nilradical of L, N∗(L), by

N∗(L)

N
= SocL/N

(
N + CL(N)

N

)
As usual we denote N∗(L) simply by N∗. The following result shows that
this is, in fact, the same as the quasi-nilpotent radical.

Theorem 4.1 Let L be a Lie algebra with nilradical N over any field. Then
N∗ = N †.

Proof. Put C = CL(N). Let A/Z(A) be a minimal ideal of L/Z(A) for
which A2 = A. Then Z(A) ⊆ A ∩N , so A ∩N = A or A ∩N = Z(A). the
former implies that A ⊆ N , which is a contradiction, so the latter holds. It
follows that (A+N)/N ∼= A/A∩N = A/Z(A), so (A+N)/N is a minimal
ideal of L/N . Moreover, [A,N ] = [A2, N ] ⊆ [A, [A,N ] ⊆ [A,Z(A)] = 0, so
A ⊆ C and (A+N)/N ⊆ N∗/N . Hence N † ⊆ N∗.

Now let A/N be a minimal ideal of L/N with A ⊆ N + C. Then
A = N + A ∩ C. Now Z(A ∩ C) = Z(N), by Lemma 2.9, so A/N ∼=
A∩C/N∩C = A∩C/Z(N) = A∩C/Z(A∩C). It follows that A∩C/Z(A∩C)
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is a minimal ideal of L/Z(A ∩ C). Thus (A ∩ C)2 is a quasi-minimal ideal
of L, by Lemma 3.2. Moreover, (A ∩ C)2 + Z(N) = Z(N) or A ∩ C. The
former implies that (A ∩ C)2 ⊆ Z(N), which yields that (A ∩ C)3 = 0 and
A∩C ⊆ N , a contradiction. Hence A∩C = (A∩C)2 +Z(N) ⊆ N †, and so
A ⊆ N †. This shows that N∗ ⊆ N †. �

This last result together with Theorem 3.8 gives the following.

Theorem 4.2 Let L be a Lie algebra over any field F . Then L/Z(N) is
isomorphic to a subalgebra of Der(N∗), and N∗/N is a direct sum of minimal
ideals of L/N which are simple or irregular.

Proof. The isomorphism results from the map θ : L → Der(N∗) given by
θ(x) =adx |N∗ . Let A/N be a minimal ideal of L/N with A ⊆ A+ C. The
A = N+A∩C and, as in the second paragraph of the proof of Theorem 4.1,
(A∩C)2 is quasi-minimal in L, which implies that A/N cannot be abelian.
It follows from Corollary 2.4 that A/N is simple or irregular. �

Proposition 4.3 Let L be a Lie algebra with nilradical N over a field F ,
and suppose that CL(N) is nilregular in L. Then

N∗

N
= Soc

(
N + CL(N)

N

)
.

Proof. Put C = CL(N), D = N + C. Let A/N be a minimal ideal of
D/N . Then A2 + N = N or A. The former implies that A2 ⊆ N , whence
A3 ⊆ [N,N + C] ⊆ N2, and an easy induction shows that An+1 ⊆ Nn = 0
for some n ∈ N. It follows that A is a nilpotent ideal of D, which is an
ideal of L, and thus that A ⊆ N(D) = N +N(C) ⊆ N , by Theorem 2.1, a
contradiction. Hence A = A2 +N and

[L,A] = [L,A2 +N ] ⊆ [[L,A], A] + [L,N ] ⊆ [D,A] +N ⊆ A,

so A/N is a minimal ideal of L/N inside D/N .
Now suppose that B/N is a minimal ideal of L/N inside D/N , and let

A/N be a minimal ideal of D/N inside B/N . Then, by the argument in
the paragraph above, A/N is an ideal of L/N , and so A = B. The result
follows. �

Proposition 4.4 (i) If CL(N) is regular and φ(L) ∩ Z(N) = 0 then
N∗(L) = N(L) ⊕ S, where S is the socle of a maximal semisimple
ideal of L.

14



(ii) Over a field of characteristic zero, N∗(L) = N(L) ⊕ S = N(L) +
CL(N), where S is the biggest semisimple ideal of L.

Proof. This follows from Corollary 2.8. �

Proposition 4.5 Let L be a Lie algebra over a field of characteristic zero
and let I ⊆ N∗(L) be an ideal of L. Then

N∗(L)

I
⊆ N∗

(
L

I

)
.

Proof. This is a special case of Proposition 3.10. �

As a result of Example 3.2 we define, for each non-negative integer n,
N∗n, inductively by

N∗0 (L) = L and N∗n = N∗(N∗n−1(L)) for n > 0.

Clearly the series
L = N∗0 (L) ⊇ N∗1 (L) ⊇ . . .

will terminate in an equality, so we put N∗∞(L) equal to the minimal subal-
gebra in this series. It is easy to see that N∗∞(N∗∞(L)) = N∗∞(L). Then we
have

Proposition 4.6 Let n ∈ N ∪ {0}, and let I, J be ideals of the Lie algebra
L over the field F . Then

(i) if N∗k (I) is a nilregular ideal of N∗k (L) then N∗k+1(I) is a characteristic
ideal of N∗k (L) for k ≥ 0;

(ii) if I ⊆ N∗n(L)) is an ideal of L then N∗n+1(L)/I ⊆ N∗n+1(L/I).

(iii) if L = I ⊕ J , then N∗k (L) = N∗k (I)⊕N∗k (J) for all k ≥ 0.

Proof.

(i) This follows from Theorem 2.1 (i) and Lemma 3.1.

(ii) The case n = 1 is given by Proposition 4.5. So suppose that the case
n = k holds, where k ≥ 1, and let I ⊆ N∗k (L). Then I ⊆ N∗k−1(L).
Hence

N∗k+1(L)

I
=
N∗(N∗k (L))

I
⊆ N∗

(
N∗k (L)

I

)
⊆ N∗

(
N∗k

(
L

I

))
= N∗k+1

(
L

I

)
.

The result now follows by induction
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(iii) This is a straightforward induction proof: the case k = 1 is given by
Proposition 3.11

�

Corollary 4.7 Let n ∈ N, and let I, J be ideals of the Lie algebra L over
the field F . Then

(i) if N∗∞(I) is nilregular, it is a characteristic ideal of N∗∞(L);

(ii) if I ⊆ N∗∞(L) is an ideal of L then N∗∞(L)/I ⊆ N∗∞(L/I).

(iii) if L = I ⊕ J , then N∗∞(L) = N∗∞(I)⊕N∗∞(J).

5 The quasi-nilpotent radical

Here we construct a radical by adjoining the quasi-simple ideals of L to the
nilradical N . Since quasi-simple ideals are quasi-minimal they are charac-
teristic in L.

Lemma 5.1 Let L/Z(L) be simple. Then L = L2 + Z(L) and L2 is quasi-
simple.

Proof. Let P = L2 and L = L/Z(L). Then P is an ideal of L and L is
simple, so P = 0 or L. The former implies that L is abelian, a contradiction.
Hence P = L, and so L = P + Z(L) = L2 + Z(L). Also, P = L2 = P 2 and
P/Z(P ) = P/P ∩ Z(L) ∼= (P + Z(L))/Z(L) = L/Z(L) is simple. �

Lemma 5.2 Let A be a quasi-simple ideal of L and B an ideal of L. Then
either A ⊆ B or A ⊆ CL(B).

Proof. Since quasi-simple ideals are quasi-minimal the result follows from
Proposition 3.3. �

The quasi-simple components of L are its quasi-simple ideals. We will
write SComp(L) for the set of quasi-simple components of L, and put
Ê(L) =<SComp(L) >, the subalgebra generated by the quasi-simple com-
ponents of L. Clearly SComp(L) ⊆ MComp(L), Ê(L) ⊆ E†(L) and Ê(L) is
characteristic in L.

Lemma 5.3 If B is an ideal of L, then SComp(B) = SComp(L) ∩B.
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Proof. If A is a quasi-simple ideal of B, it is an ideal of L since it is char-
acteristic in B, and so SComp(B) ⊆ SComp(L) ∩ B. The reverse inclusion
is clear. �

Proposition 5.4 Let P ∈ SComp(L) and let B be an ideal of L. Then P ∈
SComp(B) or [P,B] = 0.

Proof. Suppose that [P,B] 6= 0. We have that P is a quasi-simple ideal of
L, so P ⊆ B, by Lemma 5.2. Hence P ∈ SComp(B), by Lemma 5.3. �

Corollary 5.5 Distinct quasi-simple components of L commute, so

Ê(L) =
∑

P∈SComp(L)

P,

where [P,Q] = 0 and P ∩Q ⊆ Z(R) for all P,Q ∈ SComp(L).

Proof. This follows easily as in Corollary 3.5. �

Theorem 5.6 Suppose that L is a Lie algebra in which E†(L) is regular,
then Ê(L) = E†(L).

Proof. Let P be a quasi-simple ideal of L. Then N(P ) and R(P ) are ideals
of E†(L), by Corollary 5.5. It follows that P is a regular ideal of L and the
result follows from Corollary 2.6. �

Clearly, if L is as in Example 2.4 we have Ê(L) = 0 6= A = E†(L), so
Theorem 5.6 does not hold for all Lie algebras.

Corollary 5.7 Let L be a Lie algebra in which E†(L) and CL(N) are reg-
ular. Put Z = Z(N), L = L/Z, S = Soc(CL(N)). Then Ê(L) = S2 and
S = Ê(L) + Z.

Proof. This follows from Proposition 3.7 and Theorem 5.6. �

We define the quasi-nilpotent radical of L to be N̂(L) = N+Ê(L). From
now on we will denote N̂(L) simply by N̂ . The following is an immediate
consequence of Theorems 3.8 and 5.6.

Corollary 5.8 Suppose that L is a Lie algebra in which N †(L) is regular.
Then CL(N̂) = Z(N). In particular CL(N̂) ⊆ N̂ .
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Once more, Example 2.4 shows that the above result does not hold with-
out some restrictions. For, if L is as in that example, then N̂(L) = 0 and
CL(N̂(L)) = L.

Proposition 5.9 Let L be a Lie algebra a field F , and let B be a nilregular
ideal of L. Then N̂(B) ⊆ N̂ .

Proof. Under the given hypotheses N(B) is a characteristic ideal of B (see
[6]), so N(B) ⊆ N . Moreover, Ê(B) ⊆ Ê(L) by Lemma 5.3. �

Proposition 5.10 Let L be a Lie algebra over any field. Then N̂(N̂) = N̂ .

Proof. Clearly N̂(N̂) ⊆ N̂ . But Ê(N̂) = Ê(L), by Lemma 5.3, and, clearly,
N ⊆ N(N̂), giving the reverse inclusion. �

Proposition 5.11 Let L be a Lie algebra over any field, and let I be an
ideal of L. Then

N̂(L) + I

I
⊆ N̂

(
L

I

)
.

Proof. This follows exactly as in Proposition 3.10. �

6 Another generalisation of the nilradical

We put Ñ(L)/φ(L) = Soc(L/φ(L)). We write Ñ(L) simply as Ñ . Then we
see that this radical also has our desired property.

Theorem 6.1 Let L be a Lie algebra over any field, with nilradical N . Then
CL(Ñ) ⊆ Z(N) ⊆ Ñ .

Proof. Put C = CL(Ñ). Suppose first that φ(L) = 0. Then L = N+̇U
where N = AsocL and U is a subalgebra of L, by [10, Theorems 7.3 and 7.4].
Then C = N+̇C ∩ U and C ∩ U is an ideal of L. Suppose that C ∩ U 6= 0
and let A be a minimal ideal of L with A ⊆ C ∩ U . Then A ⊆ Ñ , so
A2 ⊆ [Ñ , C] = 0. Hence A ⊆ N ∩ U = 0, a contradiction. It follows that
C = N .

If φ(L) 6= 0 we have

C + φ(L)

φ(L)
⊆ CL/φ(L)

(
Ñ

φ(L)

)
⊆ N

φ(L)
.

Hence C ⊆ N , which yields C ⊆ Z(N). �
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Theorem 6.2 Let L be a φ-free Lie algebra over any field F and suppose
that Ñ(L) is nilregular. Then L/CL(Ñ(L)) is isomorphic to a subalgebra of

M−r ⊕

(
s⊕
i=1

Der (Ai)

)

where Mr is the set of r × r matrices over F , r is the dimension of the
nilradical, and A1, . . . , As are the simple minimal ideals of L.

Proof. Since L is φ-free we have that Ñ(L) = N(L) ⊕ (⊕ri=1Ai) where
A1, . . . , Ar are the non-abelian minimal ideals of L. Also, each Ai is nilregu-
lar and hence simple, by Corollary 2.4. The map θ : L→ Der (Ñ(L)) given
by θ(x) = adx |Ñ(L) is a homomorphism with kernel CL(Ñ(L)). But N(L)
is characteristic, since it is nilregular, and the Ai’s are characteristic, since
they are perfect, so

Der (Ñ(L)) = Der (N(L))⊕

(
s⊕
i=1

Der (Ai)

)
,

whence the result. �

Proposition 6.3 N∗ ⊆ Ñ .

Proof. There is a subalgebra U/φ(L) of L/φ(L) such that L/φ(L) =
N/φ(L)+̇U/φ(L), by [10, Theorems 7.3 and 7.4]. Let A/N be a min-
imal ideal of L/N with A ⊆ N + CL(N). Then A = N+̇A ∩ U , so
[N,A] = [N,N + A ∩ C] ⊆ φ(L) and A ∩ U/φ(L) is a minimal ideal of
L/φ(L). Moreover, N/φ(L) ⊆ Soc(L/φ(L)), by [10, Theorem 7.4]. Hence
A/N ⊆ Soc(L/φ(L)), and so N∗ ⊆ Ñ . �

In general we can have N∗ ⊂ Ñ and Ñ(Ñ) ⊂ Ñ , as we will show below.
Recall that the category O is a mathematical object in the representation
theory of semisimple Lie algebras. It is a category whose objects are certain
representations of a semisimple Lie algebra and morphisms are homomor-
phisms of representations. The formal definition and its properties can be
found in [5]. As in other artinian module categories, it follows from the
existence of enough projectives that each M ∈ O has a projective cover
π : P → M . Here π is an epimorphism and is essential, meaning that no
proper submodule of the projective module P is mapped onto M . Up to
isomorphism the module P is the unique projective having this property
(see [5, page 62]).

19



Example 6.1 So let S be a finite-dimensional simple Lie algebra over a
field F of prime characteristic, let P be the projective cover for the trivial
irreducible S-module and let R be the radical of P . Then R is a faithful
irreducible S-module and P/R is the trivial irreducible S-module. Let T =
PoS be the semidirect sum of P and S. Then T 2 = RoS is a primitive Lie
algebra of type 1 and dim(T/T 2) = 1, say T = T 2 + Fx. Put L = T + Fy
where [x, y] = y and [T 2, y] = 0.

Then φ(T ) ⊆ T 2, so φ(T ) is an ideal of L and φ(T ) ⊆ φ(L), by [10,
Lemma 4.1]. But φ(L) ⊆ T and, if M is a maximal subalgebra of T
then M + Fy is a maximal subalgebra of L, so φ(L) = φ(T ) = R. Also
Soc(L/R) = (T 2 + Fy)/R, so Ñ(L) = T 2 ⊕ Fy. However, N(L) = R⊕ Fy
and CL(N(L)) = N(L), so N∗(L) = N(L) 6= Ñ(L).

Moreover, φ(Ñ(L)) = 0, so Ñ(Ñ(L)) = Soc(Ñ(L)) = R⊕ Fy 6= Ñ(L).
Notice that we also have N∗(L)/φ(L) = N(L)/R ∼= Fy, whereas

N∗(L/φ(L)) = T 2 + Fy/R. Hence the inclusions in Propositions 3.10, 4.5,
4.6 and Corollary 4.7 can be strict.

Note that a similar example can be constructed in characteristic p. Let
L be a finite-dimensional restricted Lie algebra over a field F of prime char-
acteristic, and let u(L) denote the restricted universal enveloping algebra
of L. Then every restricted L-module is a u(L)-module and vice versa, and
so there is a bijection between the irreducible restricted L-modules and the
irreducible u(L)-modules. In particular, as u(L) is finite-dimensional, every
irreducible restricted L-module is finite-dimensional. So, in the above exam-
ple we could take S to be a restricted simple Lie algebra, as the projective
cover of the trivial S-module again exists.

Proposition 6.4 If I is an ideal of L then

Ñ + I

I
⊆ Ñ

(
L

I

)
.

Moreover, if I ⊆ φ(L), then Ñ(L)/I = Ñ(L/I).

Proof. Let A/φ(L) be a minimal ideal of L/φ(L). Then

A+ I/I

φ(L) + I/I
∼=

A+ I

φ(L) + I
∼=

A

A ∩ (φ(L) + I)
.

Now φ(L) ⊆ A∩(φ(L)+I), so A∩(φ(L)+I) = A or φ(L). But φ(L)+I/I ⊆
φ(L/I), so the former implies that A+I/I = φ(L/I) and A+I/I ⊆ Ñ(L/I).
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If the latter holds then A ∩ I ⊆ φ(L). But now, φ(L)/A ∩ I = φ(L/A ∩ I),
by [10, Proposition 4.3], so

A/A ∩ I
φ(L/A ∩ I)

=
A/A ∩ I

φ(L)/A ∩ I
∼=

A

φ(L)
.

It follows that A/A ∩ I ⊆ Ñ(L/A ∩ I), whence A+ I/I ⊆ Ñ(L/I).
The second assertion follows from the definition of Ñ and the fact that

φ(L/I) = φ(L)/I. �

Proposition 6.5 Ñ(L)/φ(L) = N∗(L/φ(L)).

Proof. Suppose first that φ(L) = 0. Then Ñ(L) is the socle of L. Now
N(L) = Asoc(L), by [10, Theorem 7.4]. Also, if A is a minimal ideal of L
with A 6⊆ N(L) = N , then [A,N ] ⊆ A ∩ N = 0, so A ⊆ CL(N). Hence
Ñ(L) ⊆ N∗(L).

If φ(L) 6= 0 the above shows that Ñ(L/φ(L)) ⊆ N∗(L/φ(L)). The result
now follows from Propositions 6.3 and 6.4. �

Proposition 6.6 If L = I ⊕ J , then Ñ(L) = Ñ(I)⊕ Ñ(J).

Proof. We have that N(L) = N(I)⊕N(J) and φ(L) = φ(I)⊕φ(J) by [10,
Theorem 4.8]. Let A/φ(L) be a minimal ideal of L/φ(L) and suppose that
A 6⊆ N(L). Then A = A2 +φ(L). But φ(L) = φ(I)⊕φ(J), by [10, Theorem
4.8], so

A = A2 + φ(I) + φ(J) = [A, I] + φ(I) + [A, J ] + φ(J).

Hence
A

φ(L)
∼=

[A, I] + φ(I)

φ(I)
⊕ [A, J ] + φ(J)

φ(J)
.

It is easy to see that the direct summands are minimal ideals of I/φ(I)
and J/φ(J) respectively, so Ñ(L) ⊆ Ñ(I) ⊕ Ñ(J). Also, if A/φ(I) is a
minimal ideal of I/φ(I), then A+ φ(J)/φ(L) is a minimal ideal of L/φ(L),
so Ñ(I) ⊆ Ñ(L). Similarly Ñ(J)) ⊆ Ñ(L), which gives the result. �

As a result of Example 6.1 we define, for each non-negative integer n,
Ñn(L) inductively by

Ñ0(L) = L and Ñn(L) = Ñ(Ñn−1(L)) for n > 0.

Clearly the series
L = Ñ0(L) ⊇ Ñ1(L) ⊇ . . .

will terminate in an equality, so we put Ñ∞(L) equal to the minimal subal-
gebra in this series. It is easy to see that Ñ∞(Ñ∞(L)) = Ñ∞(L).
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Proposition 6.7 Let n ∈ N ∪ {0}, and let I, J be ideals of the Lie algebra
L over a field F .

(i) If I ⊆ φ(Ñn−1(L)) then Ñn(L/I) = Ñn(L)/I.

(ii) N(Ñn(L)) ⊆ N(Ñn+1(L)) for each n ≥ 0.

(iii) If Ñ∞(L) is nilregular, then φ(Ñn+1(L)) ⊆ φ(Ñn(L)) for each n ≥ 0.

(iv) If Ñ∞(L) is nilregular then N(Ñn(L)) = N(L) and Ñn(L) is an ideal
of L for all n ≥ 0.

(v) If N∗(L) is nilregular then N∗(L) ⊆ Ñn(L) for each n ≥ 0.

(vi) If Ñn(L) is nilregular and φ(Ñn(L)) = 0 then Ñn+1(L) = N∗(L).

(vii) If N∗(L) is nilregular then CL(Ñn(L)) = Z(N(L)).

(viii) If F has characteristic zero, then Ñn(I) ⊆ Ñn(L).

(ix) If F has characteristic zero, then Ñn(L) + I/I ⊆ Ñn(L/I).

(x) If L = I ⊕ J then Ñn(L) = Ñn(I)⊕ Ñn(J).

Proof.

(i) The case n = 1 is given by Proposition 6.4. A straightforward induc-
tion argument then yields the general case.

(ii) We have that N(L) ⊆ Ñ(L), by [10, Theorem 7.4], whence N(L) ⊆
N(Ñ(L)). Thus N(Ñ(L)) ⊆ N(Ñ2(L)), and a simple induction argu-
ment gives the general result.

(iii) Put Ñi = Ñi(L). Then

Ñn+1

φ(Ñn)
=

r⊕
i=1

Ai

φ(Ñn)
,

where each direct summand is a minimal ideal of Ñn/φ(Ñn). Now

N

(
Ai

φ(Ñn)

)
⊆ N

(
Ñn

φ(Ñn)

)
=
N(Ñn)

φ(Ñn)

and N(Ñn) ⊆ N(Ñ∞) by (ii), so the direct summands are nilregular,
and hence are abelian or simple, by Corollary 2.4. It follows that they
are φ-free, and thus, so is Ñn+1/φ(Ñn). The result follows.
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(iv) Consider the first assertion: it clearly holds for n = 0. Suppose that
Ñ∞(L) is nilregular and that the result holds for k ≤ n (n ≥ 0). Then
Ñk(L) is nilregular for all k ≥ 0, by (ii). It follows from [8, Corollary 1]
that N(Ñn(L)) is a characteristic ideal of Ñn(L), and hence an ideal of
Ñn−1(L). Thus N(Ñn(L)) = N(Ñn−1(L)), and so N(Ñn(L)) = N(L)
by the inductive hypothesis, which proves the first assertion.

Put Ñn = Ñn(L), φn = φ(Ñn) and let A/φn be a minimal ideal of
Ñn/φn. If A 6⊆ N(Ñn), then A/φn is a perfect subideal of L/φn and
so an ideal of L/φn, by Lemma 1.1. The result follows.

(v) The case n = 1 is Proposition 6.3. So suppose that N∗(L) ⊆ Ñk(L)
for some k ≥ 1. Then

N∗(L) = N∗(N∗(L)) ⊆ N∗(Ñk(L)) ⊆ Ñk+1(L),

by Propositions 3.9, 3.12 and 6.3.

(vi) If φ(Ñn(L)) = 0 then

Ñn+1(L) ⊆ N∗(Ñn(L)) ⊆ N∗(L) ⊆ Ñn+1(L),

since Ñn(L) is nilregular (and hence so is N∗(L)), by Propositions 6.5,
3.12 and (v) above.

(vii) Using (v) above we have that CL(Ñn(L)) ⊆ CL(N∗(L)) = Z(N), by
Theorem 3.8.

(viii) We have φ(I) ⊆ φ(L), by [10, Corollary 3.3], so Ñ(L/φ(I)) = Ñ(L)/φ(I).
Now

Ñ(I)/φ(I) = N∗(I/φ(I) ⊆ N∗(L/φ(I)) ⊆ Ñ(L/φ(I)) = Ñ(L)/φ(I),

by Propositions 6.5, 3.12 and 6.3. Hence Ñ(I) ⊆ Ñ(L). Then a simple
induction proof shows that Ñn(I) ⊆ Ñn(L).

(ix) The case n = 1 is given by Proposition 6.4. Suppose it holds for some
k ≥ 1. Then

Ñk+1(L) + I

I
=
Ñ(Ñk(L)) + I

I
⊆ Ñ(Ñk(L) + I) + I

I

⊆ Ñ

(
Ñk(L) + I

I

)
⊆ Ñ

(
Ñk

(
L

I

))
= Ñk+1

(
L

I

)
,

by (viii) and Proposition 6.4.

23



(x) The case n = 1 is given by Proposition 6.6. A straightforward induc-
tion argument then gives the general result.

�

Corollary 6.8 Let I, J be ideals of L.

(i) If I ⊆ φ(Ñ∞(L)) then Ñ∞(L/I) = Ñ∞(L)/I.

(ii) If Ñ∞(L) is nilregular the N(Ñ∞(L)) = N(L) and Ñ∞(L) is an ideal
of L.

(iii) If N∗(L) is nilregular then N∗(L) ⊆ Ñ∞(L).

(iv) If Ñ∞(L) is nilregular and φ(Ñ∞(L) = 0 then Ñ∞(L) = N∗(L).

(v) If N∗(L) is nilregular then CL(Ñ∞(L)) = Z(N(L)).

(vi) If F has characteristic zero, then Ñ∞(I) ⊆ Ñ∞(L).

(vii) If F has characteristic zero, then Ñ∞(L) + I/I ⊆ Ñ∞(L/I);

(viii) If L = I ⊕ J then Ñ∞(L) = Ñ∞(I)⊕ Ñ∞(J).

If S is a subalgebra of L the core of S, SL, is the biggest ideal of L
contained in S. The following is an analogue of a result for groups given by
Vasil’ev et al. in [12].

Theorem 6.9 Let L be a Lie algebra over any field. Then the core of the
intersection of all maximal subalgebras such that L = M + Ñ(L) is equal to
φ(L).

Proof. Put P equal to the intersection of all maximal subalgebras such
that L = M + Ñ . Clearly Ñ 6⊆ φ(L) and φ(L) ⊆ PL. Factor out φ(L) and
suppose that PL 6= 0. Let A be a minimal ideal of L contained in PL. Then
A ⊆ Ñ(L).

Since φ(L) = 0 there is a maximal subalgebra of L such that A 6⊆ M .
If L = Ñ(L) + M we have A ⊆ PL ⊆ M , a contradiction. If not, then
A ⊆ Ñ(L) ⊆M , a contradiction again. Hence PL = 0.

It follows that PL ⊆ φ(L), whence the result.
�
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