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Abstract: The article develops two novel feedback control–based Inverse Kinematics (IK) solvers. They 
are evaluated for a dual–manipulator mobile robotic system with application to nuclear decommissioning. 
The first algorithm has similarities to other feedback control based solvers, and borrows ideas from the 
Cyclic Coordinate Decent and the Jacobian Transpose methods. This yields a particularly straightforward 
algorithm with tunable Proportional–Integral–Derivative (PID) gains to determine performance. The 
second approach utilises a discrete–time state space modelling framework to solve the IK problem. 
Although the second solver is more complex to implement, preliminary simulation results for the case study 
example, show that it can converge quicker, and has improved immunity to the kinematic singularities that 
can occur in Jacobian based methods. 
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1. INTRODUCTION 

The global nuclear industry is expanding with new 
constructions, while many existing installations are 
approaching the end of their operating life. Hence, the need for 
nuclear decommissioning is increasing everywhere. Following 
the Fukushima disaster in 2011, Japan has chosen to close most 
of its 54 reactors. In Europe, more than 50 reactors are being 
closed down before 2025. Nuclear installations are built with 
resistant materials that have specific mechanical properties, 
and present various radioactive and chemical hazards. Their 
architecture is often complex and they were not necessarily 
designed with the decommissioning problem in mind. 
In areas of significant contamination where the use of people 
is not always possible, remote–controlled robots provide an 
invaluable option for the safe retrieval of contaminated 
materials, whilst safeguarding the environment and 
minimizing radiation exposure to operators. Hence, in the last 
four decades, robots have already been used for many tasks in 
the nuclear industry, such as performing tests, inspections and 
repairs (e.g. Bogue, 2011; Bloss, 2011). 
For research into decommissioning using increased levels of 
autonomy, such as cutting and welding, Lancaster University 
has developed a dual–arm mobile robotic platform, namely a 
Brokk–40 demolition robot with caterpillar tracks, to which 
two seven–function hydraulically–actuated HydroLek–7W 
robotic manipulators have been attached (Bakari et al., 2007, 
Taylor & Seward, 2010). The resulting dexterous dual–arm 
system illustrated in Fig. 1 is potentially capable of achieving 
many manipulation tasks, by combining the strength of the 
hydraulic actuators with the cooperative work of dual grippers 

or other tools. However, with six degrees–of–freedom (DOF) 
determining the position and orientation of the end–effector, 
and the actuation of a tool nominally representing a 7th DOF, 
these manipulators are kinematically redundant. Furthermore, 
they have particularities in their geometry that exclude a 
closed–form analytic solution to the Inverse Kinematics (IK). 
Hence, earlier studies into control of the device have used a 
reduced number of joints (Taylor & Robertson, 2013), or have 
applied the Jacobian transpose method (Buss, 2004) to solve 
the IK (Besset & Taylor, 2014). By contrast, the present article 
concerns the development of novel iterative IK algorithms that 
do not use the Jacobian matrix. Building on existing concepts 
in feedback control–based IK methods (see later citations), the 
first solver, called IK–PID, utilises a Proportional–Integral–
Derivative algorithm. By contrast, the second approach uses a 
discrete–time state space modelling framework. These two 
complementary solvers have wide applicability but in this 
article they are evaluated for the HydroLek manipulator. 

 
Fig. 1. Brokk–HydroLek Robotic platform. 



 
 

 
 

 

Section 2 provides a brief overview of the nuclear robotics 
work currently being undertaken by the authors and thereby 
gives motivation for the case study. Section 3 describes 
conventional kinematic analysis, while section 4 develops the 
IK–PID algorithm with a focus on simplicity. Section 5 
describes preliminary research into the second approach that 
focuses on speed. This is followed in section 6 by application 
of these two methods to the HydroLek, and comparison with 
the Jacobian approach, with the conclusions in section 7. 

2. RESEARCH CONTEXT & CASE STUDY 
With rapid start and stop, fast responses in general, and large 
torque–to–weight ratios, hydraulic robots are suitable for 
many applications. They are commonly employed by the 
construction and mining industries, in addition to the nuclear 
sector, where semi–automatic control systems are being 
adopted as a means of improving the efficiency, quality and 
safety of operations. In contrast to a typical machine driven by 
electric motors, however, hydraulic actuators generally have 
higher loop gains, wider bandwidths and lightly–damped, 
nonlinear dynamics (Merritt, 1976). 
Particular challenges associated with such hydraulic systems 
include their friction characteristics, asymmetric actuation 
(Taylor & Robertson, 2013), hydraulic fluid compressibility 
(Sirouspour & Salcudean, 2001), valve saturations and dead-
bands (Mohanty & Yao, 2011). Model uncertainties 
encompass the accumulation of oil contamination, potential 
leakages in the hydraulic circuit (Mohanty & Yao, 2011) and 
the changing viscosity of hydraulic fluid due to temperature 
variations (Kotzev et al., 1992). In the construction industry, 
automated prototypes include hydraulic manipulators for 
excavation and ground compaction (Shaban et al., 2008). For 
nuclear decommissioning, it is also necessary to take into 
account the large variety of items that have to be dismantled 
and the geometric changes that occur during the dismantling 
process (Taylor & Seward, 2010).  
Although relatively few articles concentrate on control design 
specifically for hydraulic manipulators, selected examples 
consider generalized predictive control (Kotzev et al., 1992), 
backstepping (Sirouspour & Salcudean, 2001), adaptive robust 
(Mohanty & Yao, 2011) and state–dependent parameter (SDP) 
design. In the latter regard, the present final author has utilised 
a true digital control approach, in which data–based model 
identification is followed by non–minimal state space control 
system design, using a digital, sampled–data standpoint 
throughout (Taylor et al., 2013). In the nonlinear case, the 
approach yields SDP control systems (Taylor et al., 2011), in 
which the model parameters are functionally dependent on 
measured variables, such as joint angles and velocities. 
Practical examples of this approach have included vibro–lance 
ground compaction (Shaban et al., 2008) and, more recently, 
SDP control of the Brokk–HydroLek system (Taylor & 
Robertson, 2013). Present research by the authors using this 
robotic platform falls into four main categories: (i) computer 
vision systems; (ii) improved dynamic modelling so as to 
better address system nonlinearities; (iii) autonomous cutting 
and wielding case studies; and (iv) co-ordination between 
aerial robots and ground based nuclear robots. 

The broad goal is to provide improved data collection and 
decision making. The demolition environment inside a nuclear 
reactor provides many obstacles for ground based robots trying 
to collect data. The environment is cluttered, there is little 
room to manoeuvre and off-the-shelf robots are generally large 
and lack mobility. Secondly, the reactors are tall, with heights 
that cannot be surveyed by ground based robots. Finally the 
environment is dynamic and information must be updated 
quickly. This is difficult for robots such as the BROKK, which 
are often stationary during work. 
Hence, an important recent aspect of the research is the use of 
aerial vehicles such as multirotors. These aim to bypass some 
of the problems alluded to above and provide a richer 
information stream to the ground based robots. Although 
outside of the scope of the present article, this provides many 
research challenges including Simultaneous Localisation and 
Mapping (SLAM), SLAM in dynamic environments and 
multiple viewpoint vision systems, among other areas. 
However, the present article focuses on improved IK solutions 
for robotic manipulators. For later reference, the kinematics of 
each HydroLek manipulator are described with the ubiquitous 
‘D-H’ parameters, as shown in Table I. The joints 1–6 are 
known as the the azimuth yaw, shoulder pitch, elbow pitch, 
forearm role, wrist pitch and wrist role. 
Table I D-H Parameters for HydroLek–7W manipulator.  

Joint θ (°) d (mm) a (mm) α (°) Joint Range (°) 
 ଵ 0 70.0 90 -27.07 to 40.60ߠ 1
 ଶ 0 523.4 0 -10.32 to 65.64ߠ 2
 ଷ 0 165.0 −90 -42.01 to 21.43ߠ 3
 ସ -212.0 44.45 90 -63.94 to 114.97ߠ 4
ହߠ 5 − 90 0 184.0 −90 -81.52 to -4.16 
଺ߠ 6 − 90 284.8 0 0 -260.00 to 260.00 

3. KINEMATICS 
The above research relies heavily upon the use of arm type 
robots. Forward and inverse kinematics, and the associated 
trajectory planning, underpin all the movement of these types 
of robot and so are major topics of interest. 
3.1 Forward Kinematics 
Forward kinematics (FK) is the process of finding the position 
and orientation ࢙ of a point in a kinematic chain, called the end 
effector, given a known joint configuration ࣂ. Here, ࢙ is a 
column vector containing the position of the end-effector ሾݔ, ,ݕ  ሿ and optionally its orientation. An example of this isݖ
the Cartesian coordinate system ሾݔ, ,ݕ ,ݖ ߶, ,ߠ ߰ሿ், where ߶,  ,ߠ
and ߰ are yaw, pitch and roll respectively. Also, ࣂ is a vector 
of n joint configurations, ሾߠଵ, ଶߠ … ,  ௜ can be theߠ ௡ሿ், whereߠ
extension of a prismatic joint or the angular position of a 
revolute joint. In general, the relationship between ࢙ and ࣂ is 
a nonlinear function:  

࢙  =  (1) (ࣂ)݂
FK equations are relatively straightforward to derive as they 
are merely a sequence of transformations from the origin to the 
end-effector. As is well-known, Denavit and Hartenberg 
suggested a means of representing a kinematic chain as a series 
of homogenous transformation matrices that each represent 



 
 

 
 

 

one link and one joint. The matrices are built by finding 4 
parameters that describe a transformation of a coordinate 
system from one joint to the next (Table I). The 4 parameters 
for the ith joint are: ݀௜ , ,௜ߠ  ܽ௜  and ߙ௜. For a revolute joint,  ߠ௜ is 
variable while ݀௜ is fixed, while for a prismatic joint the 
reverse holds. In both cases there may be a constant offset 
depending on the zero positions of the joints. These parameters 
build up a transformation matrix ࢀ௜ from the 1st to the ith joint: 

௜ࢀ = ൦
(௜ߠ )ݏ݋ܿ (௜ߠ )݊݅ݏ− 0 ܽ௜ିଵ݊݅ݏ( ߠ௜) cos(ߙ௜ିଵ) (௜ିଵߙ)cos (௜ߠ )ݏ݋ܿ −sin(ߙ௜ିଵ) sin(ߙ௜ିଵ)݀௜݊݅ݏ( ߠ௜) sin(ߙ௜ିଵ) (௜ିଵߙ)sin (௜ߠ )ݏ݋ܿ cos(ߙ௜ିଵ) cos(ߙ௜ିଵ)݀௜0 0 0 1

൪ (2)

For a n-link kinematic chain, the transformation ࢀ௡ from the 
base coordinate system to the end-effector coordinate system 
is determined from the product of all the individual 
transformations ࢀ௜, for the current joint configuration ࣂ: 

௡ࢀ  = ෑ (௜ߠ )௜ࢀ
௡

௜ୀଵ
             (3) 

 
௡ࢀ = ቎

ଵଵݎ ଵଶݎ ଵଷݎ ଶଵݎݔ ଶଶݎ ଶଷݎ yݎଷଵ ଷଶݎ ଷଷݎ z
0 0 0 1

቏ (4) 

The transformation of coordinate systems ࢀ௡ can be 
decomposed into a single 3x3 rotation matrix and a single 3x1 
translation. The translation is equal to the vector for the 
position of the end-effector (ݔ, ,ݕ  is ࢘ The rotation matrix .்(ݖ
equivalent to a single 3-dimensional rotation representing the 
orientation of the end-effector. Euler proved that any single 
rotation can be decomposed into 3 individual rotations. One 
representation of this is yaw-pitch-roll, which are rotations 
about the original x, y, and z axes respectively. This completes 
the vector ࢙ to describe the state of the end effector. There are 
other ways to find a FK solution, however the above D-H 
notation is a common standard for a general kinematic chain.   
3.2 Inverse Kinematics 
Inverse Kinematics (IK) is the opposite process to FK in that 
the joint configuration is unknown and the objective is to reach 
a target position and orientation ࢙ො. By inverting (1), this can be 
described as:  

ࣂ  = ݂ିଵ(࢙) (5) 
As ݂ is nonlinear it is often difficult to find a closed-form 
solution to the above IK problem. Furthermore, for 
kinematically redundant chains, i.e. a robot arm with seven or 
more DOF, there can be multiple solutions for any ࢙௧. 
Analytical methods do not work for all kinematic chains and 
they become increasingly difficult to scale with increasing 
numbers of links. For this reason, a number of numerical 
methods have been developed. These methods most often use 
multiple iterations to converge on a solution, hence they are 
considerably slower than analytical methods. 
Jacobian Methods 
Jacobian methods are defined by their use of the Jacobian 
Matrix to solve the IK problem. The Jacobian Matrix is a linear 
approximation of how small changes in the joint 

configurations change the position and orientation of the end 
effector. It is defined as: 

௜௝(ࣂ)ܬ  = ቆ߲࢙௜
௝ࣂ߲

ቇ
௜௝

 (6) 

The Jacobian matrix is a function of the ‘present’ joint 
configuration. The number of rows is the length of ࢙, i.e. 3 if 
only the position of the end-effector is required and 6 if both 
the position and orientation are used. The number of columns 
is equal to the number of joints that are being observed. Orin 
and Schrader (1984), for example, describe how to efficiently 
calculate the Jacobian for both revolute and prismatic joints. 
The Jacobian can be used to calculate the FK as, by definition, 
it is instantaneously equal to a mapping of changes in the joint 
configurations to the position of the end-effector. 

ሶ࢙  = ሶࣂ(ࣂ)ܬ  (7) 
The IK problem is equivalent to finding a change in the joint 
configuration Δࣂ that generates a desired change in the 
position Δ࢙. Evaluating the Jacobian for the current joint 
configurations, ܬ =  and using equation (7), it is possible ,(ࣂ)ܬ
to estimate the effect of any change in the joint configuration 
on the position.  

 Δ࢙ ≈  (8) ࣂΔܬ
The desired change in ࢙ is the difference, or error, between the 
current position and the target ࢙ො. This error can be found as ࢋ = ො࢙ −  an ,࢙for Δ ࢋ By inverting (8) and substituting .࢙
equation for estimating IK is obtained, where the solution joint 
configuration ࣂ = ࣂ + Δࣂ.  

 Δࣂ ≈  (9) ࢋଵିܬ
Therefore, the IK problem seems to be solvable through 
inversion of the Jacobian matrix. However, the Jacobian has 
dimensions related to the number of degrees of freedom of the 
kinematic chain. In most cases this will mean the Jacobian is 
not square, hence it is not invertible. Another problem with this 
method is that even when the Jacobian is invertible, it may still 
be close to singular (Nakamura & Hanafusa, 1986). Under 
some joint configurations and target positions, a singularity 
(Gosselin & Angeles, 1990) would occur and a solution would 
not be found. For these reasons, other methods that use the 
Jacobian matrix have been developed. Such Jacobian methods 
have been reviewed by Buss (2004) and an example follows. 
The Jacobian Transpose method, ்ܬ is discussed by, for 
example, Wolovich & Elliott (1984). The inverse of the 
Jacobian is replaced by its transpose, with the addition of a 
linear scaling factor ܭ. Wolovich and Elliott justify this using 
an observation by Paul (1981) that relates the joint torques and 
the force vectors using the Jacobian matrix transpose: 

࣎  =  (10) ࡲ்ܬ
where ࣎ is a vector of torques for each joint (߬ଵ, … , ߬௡)், and ࡲ is a vector of Cartesian forces (ܨ௫, ௬ܨ , … )். If the Cartesian 
force is treated as the force of a spring that is pulling the end 



 
 

 
 

 

effector towards the goal, then it can be related to ࢋ by the 
equivalent of a spring constant ߙ, as follows,  

 Δࣂ =  (11) ࢋ்ܬߙ

where, ߙ =  ቆ |ࢋ்ܬ|
ቇ|ࢋ்ܬܬ|

૛
 (12) 

Evaluating (11) for the joint configuration ࣂ will produce a 
small Δࣂ, such that the new joint configuration ࣂ = ࣂ + Δࣂ 
will move the end-effector closer to the target location. 
Multiple iterations draw the end effector closer to the target. 
Fig. 2 represents this approach in the form of a feedback loop. 
Note that Wolovich & Elliott (1984) provide additional 
justification for why the transpose of the Jacobian is a valid 
replacement for the inverse. 

 
Fig. 2. Jacobian transpose algorithm represented in feedback 
control block diagram form. 
The Jacobian Matrix can be evaluated symbolically from the 
forward kinematics function by software such as MATLAB 
and its symbolic toolbox. However the matrix determined in 
this way contains elements with multiple sine and cosine 
functions. This makes it relatively slow to evaluate the 
Jacobian and this step must be repeated for every iteration of 
the algorithm. This creates a computational bottleneck where 
it becomes difficult to improve the speed of the solution.  
Cyclic Coordinate Decent 
The CCD algorithm attempts to minimise the distance between 
the end effector and the target position by moving each joint 
in turn down the kinematic chain (Olsen & Petersen, 2011). 
After multiple loops through all joints, the position of the end 
effector will often converge onto the goal position. For a 
kinematic chain working in two dimensions this is 
straightforward, as each joint is rotated until the end effector 
lies on the line from the joint to the goal. Three dimensional 
space is more difficult: a minimal point must be generated 
within the plane of rotation. This point will be on a line that is 
both perpendicular to the plane and intersects the goal. This 
shadow of the goal allows CCD to be applied.  
Unfortunately, CCD cannot be used to find a solution for the 
orientation of the end effector. Furthermore, it is necessary to 
partially calculate the FK multiple times per iteration so that 
the minimum distance between the end effector and goal can 
be determined. While the FK function is not as complex as the 
Jacobian matrix, it still contains multiple sine and cosine 
functions and can be slow to evaluate in some applications. 

4. IK–PID ALGORITHM 
The proposed IK–PID algorithm for solving the IK problem 
shares a similar structure to the CCD method. In this case, the 
joint positions are altered one at a time starting from the one 

closest to the end effector and looping through until a solution 
is found. However unlike CCD the movement of each joint 
does not minimise the error between the end effector and the 
goal. Instead the magnitude of the movement is calculated 
using a PID algorithm (13): 

௜ߠ∆  = ௣ܭ ∗ |(݇)ࢋ| + ௜ܭ ∗ Σ(݇) + ௗܭ ∗ Δ(13) ࢋ 
 Σ(݇) =  Σ(݇ − 1) +   |(݇)ࢋ|
 Δࢋ = |(݇)ࢋ | − ݇)ࢋ | − 1)|  

where ݇ increments after each joint is moved and the error is 
re-evaluated. In this case, ܭ௣, ܭ௜, and ܭௗ are user defined 
gains. Unlike the Jacobian or CCD approaches, the IK–PID 
method of finding ∆ߠ௜ does not inherently return the direction 
of rotation. It is possible to find the preferred direction 
analytically but this would subsequently reintroduce most of 
the mathematics used to solve CCD. Alternatively, it is 
straightforward to solve the forward kinematics for both +∆ߠ௜  and +∆ߠ௜ to generate 3 sets of errors, i.e. no movement, 
rotation clockwise and rotation anticlockwise. The final angle 
is whichever of these yields the smallest error 
For a practical robot each joint can only operate within a range. 
These limits are implemented as saturations, i.e. if the value ߠ௜ surpasses either limit then it is set equal to that limit. The 
algorithm is considered to have failed to find a solution if the 
iteration limit is reached or if a full iteration passes with no 
movement. If at any point the error falls below an acceptable 
threshold then the algorithm should be stopped and a 
successful solution has been found. The approach is 
summarised as Algorithm I below. 
IK–PID can be used to find a solution for just position or 
position and orientation of the end-effector. In the latter case 
the orientation must be scaled so that any orientation error is 
small compared to the position error. In this way the error will 
initially comprise mostly of the position error causing the end 
effector to move towards the goal. Once it is close to this goal, 
the error will comprise mostly of the orientation error and so 
the end effector will undergo small movements to align it. 
The success and speed of the IK–PID algorithm relies upon the 
tuning of the gains ܭ௣, ܭ௜, and ܭௗ. These three gains replace 
the need to calculate the Jacobian matrix or the need to find 
the minimal position on each iteration. 
Of course, each robot will require a different set of gains for it 
to function optimally. For the examples considered by the 
authors, a poorly tuned algorithm may successfully find say 
20% of reachable points, while improved tuning can improve 
this to close to 100%. However, since there are only three 
tuning gains, it is possible to optimise the algorithm by trial 
and error, each time testing a suitable number of test goals that 
are distributed through the reachable space. 
This straightforward formulation and implementation could be 
of particular value in some application domains. To illustrate, 
animation has a much larger set of armature designers than 
robotics per se, and animators may find this algorithm simpler 
to use (e.g. when attempting to create natural systems using an 
underlying skeleton). 

 ௡∫ ߙ (ࣂ)ܶܬ
݂(⋅) 

 ො࢙
 ࢙
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ሶࣂ  

 − + ࣂ



 
 

 
 

 

Algorithm I IK–PID 
 0: Input- Desired position ࢙ො, tolerance 
 1: Define maximum number of iterations 
 2: Define gains: ܭ௣ , ௜ܭ ,  ௗܭ
 3: Calculate initial error, ࢋଵ = ො࢙ −  ଵ࢙
 4: Loop For max iterations 
 5:  Loop For all i joints 
 6:   Count: ݇ =  ݇ + 1 
 7:   Evaluate ∆ߠ௜,   8:   ߠ௜ = ௜ߠ  +  ௜ > maximum limitߠ ௜   9:   Ifߠ∆ 
 ௜ = maximum limitߠ    :10 
 11:   End If  12:   Evaluate ࢙ଶ = ࣂ)݂ +  ௜), (1)ߠ
 13:   Evaluate ࢋଶ = ො࢙ −  ଶ࢙
௜ߠ   :14  = ௜ߠ  −  ௜ > minimum limitߠ ௜   15:   Ifߠ∆2 
 ௜ = minimum limitߠ    :16 
 17:   End If  18:   Evaluate ࢙ଷ = ࣂ)݂ −  ௜), (1)ߠ
 19:   Evaluate ࢋଷ = ො࢙ −  ଷ࢙
 20:   Choose lowest |error|, update ࣂ 
 21:  End Loop  22: End Loop  23: Output- Joint angles ࣂ, Any errors that occurred 

5. STATE SPACE BASED SOLVER 
The feedback control analogy is taken further to develop a new 
discrete-time state space approach to IK. This (potentially) 
more rigorous approach is similarly an attempt to break the 
computational bottleneck that arises from updating the 
Jacobian matrix for each incremental robot configuration. The 
Jacobian transpose method in Fig. 2 uses the transpose of the 
Jacobian to map the position error ࢋ into a vector of joint rates ∆ࣂ. These are integrated to determine incremental joint angles, 
with the error and the Jacobian updated for each iteration. 
By contrast, the hypothesis investigated below is that a static 
mapping can be used in the place of the Jacobian, to guide the 
end effector to its desired position. Such IK mapping is made 
difficult by two main factors. Firstly, the effect of a rotation or 
extension of any joint in the chain will have a different effect 
upon the position of the end effector, depending on the 
configuration of both preceding and subsequent joints. 
Secondly, the mapping is between a 3 or 6–dimension vector 
representing coordinate errors in end effector position, and an 
n vector with length equal to the number of joints. Moving any 
single joint may or may not have an effect parallel to any 
individual error dimension. These issues define the 
requirements of the proposed mapping system, i.e. it must map 
both the error input and the current state of the chain into a new 
joint configuration at each iteration. 
To fulfil these demands, a discrete time feedback controller is 
introduced, as shown in Fig. 3 and the following equations: 

݇)࢞  :(ݖ)ࡳ  + 1) = (݇)࢞࡭ + (݇)ࢋ࡮
Δࣂ(݇) = (݇)࢞࡯  (14) 

(݇)ࣂ  = ݇)ࣂ  − 1) +  Δ(15) (݇)ࣂ 

where the transfer matrix (ݖ)ࡳ is represented in state space 
form in which ࢞ is the state vector and ࡮ ,࡭ and ࡯ are matrices 
that form the mapping. Note that ࡭ ∈ ℝ௡ ௫ ௡ and ࡮ ∈ ℝ௡ ௫ ଷ 
when the error only includes position, while ࡮ ∈ ℝ௡ ௫ ଺ when 
the error contains position and orientation, and ࡯ ∈ ℝ௡ ௫ ௡. 
In this formulation each of the states in ࢞ corresponds to a 
single joint. Although these state variables are not direct 
representations of a physical property of the joints, the state 
vector represents the configuration of the manipulator. Note 
that  ࡮ in equation (14) adds each error component that is input 
to one or more of the states at each iteration, i.e. it maps the 
input to the state. Finally, ࡭ maps the state to the next state, 
satisfying the cross-dependence between joint configurations. 

 
Fig. 3. Proposed Inverse Kinematics Control System. 
Because (ݖ)ࡳ forms a mapping from error to joint velocities, 
the problem becomes a matter of finding values for the 
matrices ࡮ ,࡭ and ࡯, such that all desired positions ࢙ො can be 
reached by the end-effector (see later). There are some 
examples of similar control systems being used to solve the IK 
problem in the literature. Examples include Sciavicco & 
Siciliano (1987) and Pechev (2008). However, most existing 
approaches still involve an evaluation of the Jacobian matrix. 
At the implementation stage, the new approach is summarised 
as Algorithm II. The main loop, lines 3-17, represents the 
feedback shown in Fig. 3. This is limited to a maximum 
number of iterations. Much like existing Jacobian methods, 
convergence is not guaranteed for all inputs, due to phenomena 
such as singularities. An iteration limit stops the program from 
entering an infinite loop. This value is arbitrary and, therefore, 
it can be set as high as is practical. 
Algorithm II State space IK solver 
 0: Input- Desired position ࢙ො, tolerance 
 1: Define maximum number of iterations (k) 
 2: Loop For max k iterations 
 3:  Evaluate the error ࢋ = ො࢙ −  ࢙
 4:  If |error| is < tolerance 
 5:   Break Loop  6:  End If  7:  Evaluate (14) ,(ݖ)ࡳ  
 8:  Evaluate (15) ,(݇)ࣂ 
 9:  For all i joints 
 10:   If ߠ௜ > maximum limit 
 ௜ = maximum limitߠ    :11 
 12:   Else If ߠ௜ < minimum limit 
 ௜ = minimum limitߠ    :13 
 14:   End If  15:  End Loop  16:  Evaluate ࢙ =  (1) ,(ࣂ)݂
 17: End Loop  18: Output- Joint angles ࣂ, Any errors that occurred 

1 (ݖ)ܩ
1 −  ଵିݖ

݂(⋅) 

 ො࢙
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Lines 4-6 of Algorithm II check the magnitude of the error at 
each iteration. If the error falls below a given tolerance then 
the algorithm will stop. In some cases fine positioning is 
required and, if the tolerance is low, the algorithm would take 
a long time to reach a result. In other cases, more general 
coarse positioning is adequate, and a larger tolerance is used 
to reduce the number of iterations. Finally, the joints on most 
robots are unable to rotate through a full 360° or extend 
indefinitely. In reality they operate within a range with an 
upper and lower limit. There are multiple ways to apply these 
limits although perhaps the most straightforward is saturation. 
Hence, in a similar manner to Algorithm I, if the calculated 
joint position passes either of its limits then it is instead set 
equal to that limit. 
At this juncture, it should be pointed out that Algorithms I 
and II both take a desired position and return a single joint 
configuration that will place the end effector there. Further 
control systems are clearly required to move the robot and its 
actuators in a suitable manner. A starting joint configuration 
can be picked arbitrarily or the arm might be placed in a known 
position close to the goal. 
The present article includes only limited discussion on the 
‘tuning’ of (ݖ)ܩ (see section 6). In part for space limitations 
and in part because it is the subject of the authors’ ongoing 
research, algorithmic methods of tuning, and an analysis of the 
convergence and stability properties of the approach using 
control theoretic methods are omitted. These results will be 
reported in future articles. Instead, the present article focuses 
on a simulation study relating to the nuclear decommissioning 
robot, with the algorithm tuned numerically using a particle 
swarm method (Montazeri et al. 2008). 

6. CASE STUDY 
To demonstrate the efficacy of both approaches, they are 
applied to the right hand side HydroLek manipulator.  
6.1 IK-PID Tuning 
First the IK-PID algorithm is applied to the arm. Initial basic 
tuning of the algorithm is achieved by altering the gain ܭ௣ 
while ܭ௜ and ܭௗ are set to 0. This is tested against a single goal 
position of (-10 50 -20), with the error shown in Fig. 4. Under 
these conditions, ܭ௣ is initially set high, which results in the 
joints moving to their limits and the arm stalling. As the gain 
is gradually lowered, the goal is successfully achieved when 
௣ܭ = 0.0847. Lowering ܭ௣ further means that more iterations 
are required to reach the same goal.  
The second stage of tuning requires the algorithm to reach all 
points in the workspace. To evaluate this, 1000 randomly 
distributed points within the workspace are used. The 
algorithm is tested against each in turn, with the result being it 
either succeeds or fails to reach the point. With ܭ௣ = 0.02 as 
above, for example, the algorithm is successful on 960 out of 
1000 points. 
A trial and error approach was used to optimise all three gains 
for the maximum number of successes, for which ܭ௣ = 0.012, 
௜ܭ =  0.0000001 and ܭௗ=0.08. With these values the 
algorithm is successful on 994 out of 1000 goals. The 6 points 

that fail are on the periphery of the workspace and, in fact, 
three existing Jacobian methods have been tested with the 
same 1000 points and these fail on between 1 and 8 points 
depending on the method used. 

 
Fig. 4.  End–effector errors with 0I dK K   and 
KP = 0.0848 (dashed), 0.0847 (thin) and 0.02 (thick). 
6.2 State Space Solver Tuning 
Following a similar approach to the above, the state space 
based algorithm is tuned initially using a single reference point 
of (-10 50 -20). In this case, however, there are many more 
than three parameters to tune. In fact, the ࡮ ,࡭, and ࡯ matrices 
for a 6-DoF kinematic chain result in a total of 90 elements to 
tune. For the purposes of the present article, user experience 
and trial and error experimentation is again utilised, and yields 
the following matrices: 

࡭ = ࡮   ,଺௫଺ࡵ0.5− =  
ێۏ
ێێ
ۍێ

0 0 10 −1 0−1 −1 00 0 10 1 00 0 ۑے0
ۑۑ
, ېۑ ࡯ =  ଺௫଺ࡵ0.05−

 
Fig. 5. The error response of the state space solver for a goal 
position of (-10, 50, -20), showing the initial trial and error 
tuning (upper subplot) and optimised (lower) systems. 
Using these values it is possible to find the goal position of 
(-10, 50, -20) in ~100 iterations, as illustrated by Fig. 5. 
However, for the same 1000 distributed points as in 
section 6.1, this system can only reach 665 configurations. In 
order to reach more positions the matrices are subsequently 



 
 

 
 

 

optimised using Particle Swarm Optimisation. Such 
optimisation is the subject of on-going research by the authors 
and, for brevity, details of the approach are omitted. 
Nonetheless, using standard software tools in MATLAB, the 
optimised system is able to reach 993 out of 1000 positions, 
albeit over a longer timeframe of ~350 iterations, as illustrated 
by Fig. 5 (for an illustrative single realisation) and Fig. 6. 

 
Fig. 6. Reachable workspace for the manipulator, with O 
indicating positions for which the state space solver failed. 
6.3 Evaluation of Timing  
One of the most important measures for any IK algorithm is 
the time it takes to find a solution. As IK is usually just a 
precursor to a more sophisticated control algorithm for 
actuating the robot, it is desirable to minimise the amount of 
processing time. In order to compare various IK methods, a 
random sample of 1000 points without orientation is created, 
all within the workspace of the HydroLek right hand side 
manipulator. Each algorithm is timed to produce a solution for 
the 1000 points. In this study, the two algorithms introduced 
above are compared to the Jacobian Pseudo-Inverse  ܬற, 
Jacobian transpose  ்ܬ and Damped Least Squares (DLS) 
approaches (Meldrum et al., 1991a,b; Wolovich & Elliott, 
1984). All five tested algorithms failed to reach at least one 
goal position, hence these positions were removed from the 
comparative tests. 
Note that the same kinematics function is used for each of the 
algorithms and this has been optimised to run as quickly as 
possible. The same process was used to optimise the 
evaluation of the Jacobian to facilitate a fair comparison. The 
time for each algorithm is measured three times in MATLAB 
on a desktop PC with minimal background applications. The 
results shown in Table II show the average time for each 
algorithm to reach all 1000 points, with the tests repeated using 
4 different tolerances.  
Table II Comparison of the speed of different IK algorithms. 

 Average time per tolerance (ms) 
Method 5mm 2mm 1mm 0.1mm 

 ற 0.823 1.115 1.368 1.727ܬ
 2.391 1.602 1.327 0.951 ்ܬ

DLS 1.091 1.524 1.780 2.538 
IKPID 16.258 16.231 16.147 N/A 

State Space 0.604 0.763 0.875 1.310 

Table II shows that the IK-PID performs poorly in speed tests, 
which is to be expected as it must perform the FK function 12 
times per iteration. However, the new state space based 

algorithm is significantly faster than any of the Jacobian based 
methods that it has been tested against to date. In particular, its 
average solution time is approximately 65% of the time of the 
Jacobian Pseudo-Inverse method, the next fastest method. 
6.4 Evaluation of Singularities 
A singularity is a position in which the Jacobian matrix loses 
rank and it becomes impossible to find an IK solution using 
the Jacobian methods. This often happens when one or more 
joints are aligned. For an initial evaluation of this issue, 
consider an arm in the x-y plane with 3 links each of length 2 
units (Fig. 7). The first joint connects the first link to the origin, 
while the next two joints connect the next link to the end of the 
last. The end effector is at the end of the third link. Each joint 
can rotate ±60° with the 0° positions when all joints are aligned 
with the x axis. The D-H parameters are shown in Table III. 

 Fig. 7  Illustrative 3DoF Planar arm reaching the coordinate 
(5, 0). Grey dots represent the extent of the reachable space. 
Table III D-H Parameters for 3 DoF planar arm.  

Joint θ (°) d  a α (°) Joint Range (°) 
 ଵ 0 2 0 -60 to 60ߠ 1
 ଶ 0 2 0 -60 to 60ߠ 2
 ଷ 0 2 0 -60 to 60ߠ 3

Using equation (10), Δࣂ is evaluated for the first iteration of 
the Jacobian Pseudo-Inverse method. The end effector is 
initially at the position (6, 0) and a desired position of (5, 0) is 
required, which is in line with the manipulator.  
Evaluate the Jacobian:  

 ۸ =  ቂ0 0 06 4 2ቃ  
Evaluate ߙ:  

ߙ  =  
ۉ
ۈۈ
ۇ อ ൥0 60 40 2

൩ ቂ−૚૙ ቃ อ

อቂ0 0 06 4 2ቃ ൥0 60 40 2
൩ ቂ−૚૙ ቃอی

ۋۋ
ۊ

૛

= 0  

Therefore:   
 Δࣂ = 0 ∗ ்ܬ ∗  ቂ−10 ቃ = ሾ0 0 0ሿ்  



 
 

 
 

 

As there is no change in the joint angles after the first iteration, 
the subsequent iterations will have the same result. In this case 
the Jacobian transpose method has failed to find a solution. 
However, it is clear that a solution is possible as the position 
(5, 0) is within the workspace. Applying the state space 
algorithm to this robot and tuning it accordingly, it is possible 
to determine a solution, i.e. the joint angles are equal to 47.6°, 
-60.0°, and -18.8° respectively. This configuration is shown in  
Fig. 7 where it can clearly be seen that the end effector has 
arrived at the correct position.  

7. CONCLUSIONS 
This article has developed two algorithms for solving the 
Inverse Kinematics (IK) problem, one based on a 
straightforward PID control algorithm and the other using a 
discrete-time state space based framework. The IK–PID 
algorithm is extremely straightforward to tune and implement, 
making it an ideal choice for non-experts who may be daunted 
by the complexity of Jacobian based methods. While it is 
unable to match the speed of performance of other approaches, 
the simulation study in this article suggests that it could match 
the success rate of other algorithms, i.e. in finding the solution. 
In this article, the state space based algorithm is presented in 
its preliminary state. This algorithm is more complex than IK–
PID and requires longer and more sophisticated tools to tune. 
However, simulation results to date suggest that it is 
demonstrably quicker than other commonly used IK methods, 
and has improved robustness against singularities. However, 
further study into singularity robustness is required before 
generalised conclusions can be made. Other future work 
includes the formalisation of a tuning strategy for the new state 
space algorithm and consideration of additional case studies, 
i.e. using different robots. 
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