

Feedback Control–Based Inverse Kinematics Solvers for a
Nuclear Decommissioning Robot

Thomas Burrell* Allahyar Montazeri*1 Stephen Monk* C. James Taylor*


* Engineering Department, Lancaster University, LA1 4YR, UK

1Corresponding author: e-mail: a.montazeri@lancaster.ac.uk

Abstract: The article develops two novel feedback control–based Inverse Kinematics (IK) solvers. They
are evaluated for a dual–manipulator mobile robotic system with application to nuclear decommissioning.
The first algorithm has similarities to other feedback control based solvers, and borrows ideas from the
Cyclic Coordinate Decent and the Jacobian Transpose methods. This yields a particularly straightforward
algorithm with tunable Proportional–Integral–Derivative (PID) gains to determine performance. The
second approach utilises a discrete–time state space modelling framework to solve the IK problem.
Although the second solver is more complex to implement, preliminary simulation results for the case study
example, show that it can converge quicker, and has improved immunity to the kinematic singularities that
can occur in Jacobian based methods.
Keywords: Robot arms, Robot programming, Robotic equipment, Automation


1. INTRODUCTION

The global nuclear industry is expanding with new
constructions, while many existing installations are
approaching the end of their operating life. Hence, the need for
nuclear decommissioning is increasing everywhere. Following
the Fukushima disaster in 2011, Japan has chosen to close most
of its 54 reactors. In Europe, more than 50 reactors are being
closed down before 2025. Nuclear installations are built with
resistant materials that have specific mechanical properties,
and present various radioactive and chemical hazards. Their
architecture is often complex and they were not necessarily
designed with the decommissioning problem in mind.
In areas of significant contamination where the use of people
is not always possible, remote–controlled robots provide an
invaluable option for the safe retrieval of contaminated
materials, whilst safeguarding the environment and
minimizing radiation exposure to operators. Hence, in the last
four decades, robots have already been used for many tasks in
the nuclear industry, such as performing tests, inspections and
repairs (e.g. Bogue, 2011; Bloss, 2011).
For research into decommissioning using increased levels of
autonomy, such as cutting and welding, Lancaster University
has developed a dual–arm mobile robotic platform, namely a
Brokk–40 demolition robot with caterpillar tracks, to which
two seven–function hydraulically–actuated HydroLek–7W
robotic manipulators have been attached (Bakari et al., 2007,
Taylor & Seward, 2010). The resulting dexterous dual–arm
system illustrated in Fig. 1 is potentially capable of achieving
many manipulation tasks, by combining the strength of the
hydraulic actuators with the cooperative work of dual grippers

or other tools. However, with six degrees–of–freedom (DOF)
determining the position and orientation of the end–effector,
and the actuation of a tool nominally representing a 7th DOF,
these manipulators are kinematically redundant. Furthermore,
they have particularities in their geometry that exclude a
closed–form analytic solution to the Inverse Kinematics (IK).
Hence, earlier studies into control of the device have used a
reduced number of joints (Taylor & Robertson, 2013), or have
applied the Jacobian transpose method (Buss, 2004) to solve
the IK (Besset & Taylor, 2014). By contrast, the present article
concerns the development of novel iterative IK algorithms that
do not use the Jacobian matrix. Building on existing concepts
in feedback control–based IK methods (see later citations), the
first solver, called IK–PID, utilises a Proportional–Integral–
Derivative algorithm. By contrast, the second approach uses a
discrete–time state space modelling framework. These two
complementary solvers have wide applicability but in this
article they are evaluated for the HydroLek manipulator.

Fig. 1. Brokk–HydroLek Robotic platform.

Section 2 provides a brief overview of the nuclear robotics
work currently being undertaken by the authors and thereby
gives motivation for the case study. Section 3 describes
conventional kinematic analysis, while section 4 develops the
IK–PID algorithm with a focus on simplicity. Section 5
describes preliminary research into the second approach that
focuses on speed. This is followed in section 6 by application
of these two methods to the HydroLek, and comparison with
the Jacobian approach, with the conclusions in section 7.

2. RESEARCH CONTEXT & CASE STUDY
With rapid start and stop, fast responses in general, and large
torque–to–weight ratios, hydraulic robots are suitable for
many applications. They are commonly employed by the
construction and mining industries, in addition to the nuclear
sector, where semi–automatic control systems are being
adopted as a means of improving the efficiency, quality and
safety of operations. In contrast to a typical machine driven by
electric motors, however, hydraulic actuators generally have
higher loop gains, wider bandwidths and lightly–damped,
nonlinear dynamics (Merritt, 1976).
Particular challenges associated with such hydraulic systems
include their friction characteristics, asymmetric actuation
(Taylor & Robertson, 2013), hydraulic fluid compressibility
(Sirouspour & Salcudean, 2001), valve saturations and dead-
bands (Mohanty & Yao, 2011). Model uncertainties
encompass the accumulation of oil contamination, potential
leakages in the hydraulic circuit (Mohanty & Yao, 2011) and
the changing viscosity of hydraulic fluid due to temperature
variations (Kotzev et al., 1992). In the construction industry,
automated prototypes include hydraulic manipulators for
excavation and ground compaction (Shaban et al., 2008). For
nuclear decommissioning, it is also necessary to take into
account the large variety of items that have to be dismantled
and the geometric changes that occur during the dismantling
process (Taylor & Seward, 2010).
Although relatively few articles concentrate on control design
specifically for hydraulic manipulators, selected examples
consider generalized predictive control (Kotzev et al., 1992),
backstepping (Sirouspour & Salcudean, 2001), adaptive robust
(Mohanty & Yao, 2011) and state–dependent parameter (SDP)
design. In the latter regard, the present final author has utilised
a true digital control approach, in which data–based model
identification is followed by non–minimal state space control
system design, using a digital, sampled–data standpoint
throughout (Taylor et al., 2013). In the nonlinear case, the
approach yields SDP control systems (Taylor et al., 2011), in
which the model parameters are functionally dependent on
measured variables, such as joint angles and velocities.
Practical examples of this approach have included vibro–lance
ground compaction (Shaban et al., 2008) and, more recently,
SDP control of the Brokk–HydroLek system (Taylor &
Robertson, 2013). Present research by the authors using this
robotic platform falls into four main categories: (i) computer
vision systems; (ii) improved dynamic modelling so as to
better address system nonlinearities; (iii) autonomous cutting
and wielding case studies; and (iv) co-ordination between
aerial robots and ground based nuclear robots.

The broad goal is to provide improved data collection and
decision making. The demolition environment inside a nuclear
reactor provides many obstacles for ground based robots trying
to collect data. The environment is cluttered, there is little
room to manoeuvre and off-the-shelf robots are generally large
and lack mobility. Secondly, the reactors are tall, with heights
that cannot be surveyed by ground based robots. Finally the
environment is dynamic and information must be updated
quickly. This is difficult for robots such as the BROKK, which
are often stationary during work.
Hence, an important recent aspect of the research is the use of
aerial vehicles such as multirotors. These aim to bypass some
of the problems alluded to above and provide a richer
information stream to the ground based robots. Although
outside of the scope of the present article, this provides many
research challenges including Simultaneous Localisation and
Mapping (SLAM), SLAM in dynamic environments and
multiple viewpoint vision systems, among other areas.
However, the present article focuses on improved IK solutions
for robotic manipulators. For later reference, the kinematics of
each HydroLek manipulator are described with the ubiquitous
‘D-H’ parameters, as shown in Table I. The joints 1–6 are
known as the the azimuth yaw, shoulder pitch, elbow pitch,
forearm role, wrist pitch and wrist role.
Table I D-H Parameters for HydroLek–7W manipulator.

Joint θ (°) d (mm) a (mm) α (°) Joint Range (°)
 ଵ 0 70.0 90 -27.07 to 40.60ߠ 1
 ଶ 0 523.4 0 -10.32 to 65.64ߠ 2
 ଷ 0 165.0 −90 -42.01 to 21.43ߠ 3
 ସ -212.0 44.45 90 -63.94 to 114.97ߠ 4
ହߠ 5 − 90 0 184.0 −90 -81.52 to -4.16
଺ߠ 6 − 90 284.8 0 0 -260.00 to 260.00

3. KINEMATICS
The above research relies heavily upon the use of arm type
robots. Forward and inverse kinematics, and the associated
trajectory planning, underpin all the movement of these types
of robot and so are major topics of interest.
3.1 Forward Kinematics
Forward kinematics (FK) is the process of finding the position
and orientation ࢙ of a point in a kinematic chain, called the end
effector, given a known joint configuration ࣂ. Here, ࢙ is a
column vector containing the position of the end-effector ሾݔ, ,ݕ ሿ and optionally its orientation. An example of this isݖ
the Cartesian coordinate system ሾݔ, ,ݕ ,ݖ ߶, ,ߠ ߰ሿ், where ߶, ,ߠ
and ߰ are yaw, pitch and roll respectively. Also, ࣂ is a vector
of n joint configurations, ሾߠଵ, ଶߠ … , ௜ can be theߠ ௡ሿ், whereߠ
extension of a prismatic joint or the angular position of a
revolute joint. In general, the relationship between ࢙ and ࣂ is
a nonlinear function:

࢙ = (1) (ࣂ)݂
FK equations are relatively straightforward to derive as they
are merely a sequence of transformations from the origin to the
end-effector. As is well-known, Denavit and Hartenberg
suggested a means of representing a kinematic chain as a series
of homogenous transformation matrices that each represent

one link and one joint. The matrices are built by finding 4
parameters that describe a transformation of a coordinate
system from one joint to the next (Table I). The 4 parameters
for the ith joint are: ݀௜ , ,௜ߠ ܽ௜ and ߙ௜. For a revolute joint, ߠ௜ is
variable while ݀௜ is fixed, while for a prismatic joint the
reverse holds. In both cases there may be a constant offset
depending on the zero positions of the joints. These parameters
build up a transformation matrix ࢀ௜ from the 1st to the ith joint:

௜ࢀ = ൦
(௜ߠ)ݏ݋ܿ (௜ߠ)݊݅ݏ− 0 ܽ௜ିଵ݊݅ݏ(ߠ௜) cos(ߙ௜ିଵ) (௜ିଵߙ)cos (௜ߠ)ݏ݋ܿ −sin(ߙ௜ିଵ) sin(ߙ௜ିଵ)݀௜݊݅ݏ(ߠ௜) sin(ߙ௜ିଵ) (௜ିଵߙ)sin (௜ߠ)ݏ݋ܿ cos(ߙ௜ିଵ) cos(ߙ௜ିଵ)݀௜0 0 0 1

൪ (2)

For a n-link kinematic chain, the transformation ࢀ௡ from the
base coordinate system to the end-effector coordinate system
is determined from the product of all the individual
transformations ࢀ௜, for the current joint configuration ࣂ:

௡ࢀ = ෑ (௜ߠ)௜ࢀ
௡

௜ୀଵ
 (3)

௡ࢀ = ቎

ଵଵݎ ଵଶݎ ଵଷݎ ଶଵݎݔ ଶଶݎ ଶଷݎ yݎଷଵ ଷଶݎ ଷଷݎ z
0 0 0 1

቏ (4)

The transformation of coordinate systems ࢀ௡ can be
decomposed into a single 3x3 rotation matrix and a single 3x1
translation. The translation is equal to the vector for the
position of the end-effector (ݔ, ,ݕ is ࢘ The rotation matrix .்(ݖ
equivalent to a single 3-dimensional rotation representing the
orientation of the end-effector. Euler proved that any single
rotation can be decomposed into 3 individual rotations. One
representation of this is yaw-pitch-roll, which are rotations
about the original x, y, and z axes respectively. This completes
the vector ࢙ to describe the state of the end effector. There are
other ways to find a FK solution, however the above D-H
notation is a common standard for a general kinematic chain.
3.2 Inverse Kinematics
Inverse Kinematics (IK) is the opposite process to FK in that
the joint configuration is unknown and the objective is to reach
a target position and orientation ࢙ො. By inverting (1), this can be
described as:

ࣂ = ݂ିଵ(࢙) (5)
As ݂ is nonlinear it is often difficult to find a closed-form
solution to the above IK problem. Furthermore, for
kinematically redundant chains, i.e. a robot arm with seven or
more DOF, there can be multiple solutions for any ࢙௧.
Analytical methods do not work for all kinematic chains and
they become increasingly difficult to scale with increasing
numbers of links. For this reason, a number of numerical
methods have been developed. These methods most often use
multiple iterations to converge on a solution, hence they are
considerably slower than analytical methods.
Jacobian Methods
Jacobian methods are defined by their use of the Jacobian
Matrix to solve the IK problem. The Jacobian Matrix is a linear
approximation of how small changes in the joint

configurations change the position and orientation of the end
effector. It is defined as:

௜௝(ࣂ)ܬ = ቆ߲࢙௜
௝ࣂ߲

ቇ
௜௝

 (6)

The Jacobian matrix is a function of the ‘present’ joint
configuration. The number of rows is the length of ࢙, i.e. 3 if
only the position of the end-effector is required and 6 if both
the position and orientation are used. The number of columns
is equal to the number of joints that are being observed. Orin
and Schrader (1984), for example, describe how to efficiently
calculate the Jacobian for both revolute and prismatic joints.
The Jacobian can be used to calculate the FK as, by definition,
it is instantaneously equal to a mapping of changes in the joint
configurations to the position of the end-effector.

ሶ࢙ = ሶࣂ(ࣂ)ܬ (7)
The IK problem is equivalent to finding a change in the joint
configuration Δࣂ that generates a desired change in the
position Δ࢙. Evaluating the Jacobian for the current joint
configurations, ܬ = and using equation (7), it is possible ,(ࣂ)ܬ
to estimate the effect of any change in the joint configuration
on the position.

 Δ࢙ ≈ (8) ࣂΔܬ
The desired change in ࢙ is the difference, or error, between the
current position and the target ࢙ො. This error can be found as ࢋ = ො࢙ − an ,࢙for Δ ࢋ By inverting (8) and substituting .࢙
equation for estimating IK is obtained, where the solution joint
configuration ࣂ = ࣂ + Δࣂ.

 Δࣂ ≈ (9) ࢋଵିܬ
Therefore, the IK problem seems to be solvable through
inversion of the Jacobian matrix. However, the Jacobian has
dimensions related to the number of degrees of freedom of the
kinematic chain. In most cases this will mean the Jacobian is
not square, hence it is not invertible. Another problem with this
method is that even when the Jacobian is invertible, it may still
be close to singular (Nakamura & Hanafusa, 1986). Under
some joint configurations and target positions, a singularity
(Gosselin & Angeles, 1990) would occur and a solution would
not be found. For these reasons, other methods that use the
Jacobian matrix have been developed. Such Jacobian methods
have been reviewed by Buss (2004) and an example follows.
The Jacobian Transpose method, ்ܬ is discussed by, for
example, Wolovich & Elliott (1984). The inverse of the
Jacobian is replaced by its transpose, with the addition of a
linear scaling factor ܭ. Wolovich and Elliott justify this using
an observation by Paul (1981) that relates the joint torques and
the force vectors using the Jacobian matrix transpose:

࣎ = (10) ࡲ்ܬ
where ࣎ is a vector of torques for each joint (߬ଵ, … , ߬௡)், and ࡲ is a vector of Cartesian forces (ܨ௫, ௬ܨ , …)். If the Cartesian
force is treated as the force of a spring that is pulling the end

effector towards the goal, then it can be related to ࢋ by the
equivalent of a spring constant ߙ, as follows,

 Δࣂ = (11) ࢋ்ܬߙ

where, ߙ = ቆ |ࢋ்ܬ|
ቇ|ࢋ்ܬܬ|

૛
 (12)

Evaluating (11) for the joint configuration ࣂ will produce a
small Δࣂ, such that the new joint configuration ࣂ = ࣂ + Δࣂ
will move the end-effector closer to the target location.
Multiple iterations draw the end effector closer to the target.
Fig. 2 represents this approach in the form of a feedback loop.
Note that Wolovich & Elliott (1984) provide additional
justification for why the transpose of the Jacobian is a valid
replacement for the inverse.

Fig. 2. Jacobian transpose algorithm represented in feedback
control block diagram form.
The Jacobian Matrix can be evaluated symbolically from the
forward kinematics function by software such as MATLAB
and its symbolic toolbox. However the matrix determined in
this way contains elements with multiple sine and cosine
functions. This makes it relatively slow to evaluate the
Jacobian and this step must be repeated for every iteration of
the algorithm. This creates a computational bottleneck where
it becomes difficult to improve the speed of the solution.
Cyclic Coordinate Decent
The CCD algorithm attempts to minimise the distance between
the end effector and the target position by moving each joint
in turn down the kinematic chain (Olsen & Petersen, 2011).
After multiple loops through all joints, the position of the end
effector will often converge onto the goal position. For a
kinematic chain working in two dimensions this is
straightforward, as each joint is rotated until the end effector
lies on the line from the joint to the goal. Three dimensional
space is more difficult: a minimal point must be generated
within the plane of rotation. This point will be on a line that is
both perpendicular to the plane and intersects the goal. This
shadow of the goal allows CCD to be applied.
Unfortunately, CCD cannot be used to find a solution for the
orientation of the end effector. Furthermore, it is necessary to
partially calculate the FK multiple times per iteration so that
the minimum distance between the end effector and goal can
be determined. While the FK function is not as complex as the
Jacobian matrix, it still contains multiple sine and cosine
functions and can be slow to evaluate in some applications.

4. IK–PID ALGORITHM
The proposed IK–PID algorithm for solving the IK problem
shares a similar structure to the CCD method. In this case, the
joint positions are altered one at a time starting from the one

closest to the end effector and looping through until a solution
is found. However unlike CCD the movement of each joint
does not minimise the error between the end effector and the
goal. Instead the magnitude of the movement is calculated
using a PID algorithm (13):

௜ߠ∆ = ௣ܭ ∗ |(݇)ࢋ| + ௜ܭ ∗ Σ(݇) + ௗܭ ∗ Δ(13) ࢋ
 Σ(݇) = Σ(݇ − 1) + |(݇)ࢋ|
 Δࢋ = |(݇)ࢋ | − ݇)ࢋ | − 1)|

where ݇ increments after each joint is moved and the error is
re-evaluated. In this case, ܭ௣, ܭ௜, and ܭௗ are user defined
gains. Unlike the Jacobian or CCD approaches, the IK–PID
method of finding ∆ߠ௜ does not inherently return the direction
of rotation. It is possible to find the preferred direction
analytically but this would subsequently reintroduce most of
the mathematics used to solve CCD. Alternatively, it is
straightforward to solve the forward kinematics for both +∆ߠ௜ and +∆ߠ௜ to generate 3 sets of errors, i.e. no movement,
rotation clockwise and rotation anticlockwise. The final angle
is whichever of these yields the smallest error
For a practical robot each joint can only operate within a range.
These limits are implemented as saturations, i.e. if the value ߠ௜ surpasses either limit then it is set equal to that limit. The
algorithm is considered to have failed to find a solution if the
iteration limit is reached or if a full iteration passes with no
movement. If at any point the error falls below an acceptable
threshold then the algorithm should be stopped and a
successful solution has been found. The approach is
summarised as Algorithm I below.
IK–PID can be used to find a solution for just position or
position and orientation of the end-effector. In the latter case
the orientation must be scaled so that any orientation error is
small compared to the position error. In this way the error will
initially comprise mostly of the position error causing the end
effector to move towards the goal. Once it is close to this goal,
the error will comprise mostly of the orientation error and so
the end effector will undergo small movements to align it.
The success and speed of the IK–PID algorithm relies upon the
tuning of the gains ܭ௣, ܭ௜, and ܭௗ. These three gains replace
the need to calculate the Jacobian matrix or the need to find
the minimal position on each iteration.
Of course, each robot will require a different set of gains for it
to function optimally. For the examples considered by the
authors, a poorly tuned algorithm may successfully find say
20% of reachable points, while improved tuning can improve
this to close to 100%. However, since there are only three
tuning gains, it is possible to optimise the algorithm by trial
and error, each time testing a suitable number of test goals that
are distributed through the reachable space.
This straightforward formulation and implementation could be
of particular value in some application domains. To illustrate,
animation has a much larger set of armature designers than
robotics per se, and animators may find this algorithm simpler
to use (e.g. when attempting to create natural systems using an
underlying skeleton).

 ௡∫ ߙ (ࣂ)ܶܬ
݂(⋅)

 ො࢙
 ࢙

 ࢋ
ሶࣂ

 − + ࣂ

Algorithm I IK–PID
 0: Input- Desired position ࢙ො, tolerance
 1: Define maximum number of iterations
 2: Define gains: ܭ௣ , ௜ܭ , ௗܭ
 3: Calculate initial error, ࢋଵ = ො࢙ − ଵ࢙
 4: Loop For max iterations
 5: Loop For all i joints
 6: Count: ݇ = ݇ + 1
 7: Evaluate ∆ߠ௜, 8: ߠ௜ = ௜ߠ + ௜ > maximum limitߠ ௜ 9: Ifߠ∆
 ௜ = maximum limitߠ :10
 11: End If 12: Evaluate ࢙ଶ = ࣂ)݂ + ௜), (1)ߠ
 13: Evaluate ࢋଶ = ො࢙ − ଶ࢙
௜ߠ :14 = ௜ߠ − ௜ > minimum limitߠ ௜ 15: Ifߠ∆2
 ௜ = minimum limitߠ :16
 17: End If 18: Evaluate ࢙ଷ = ࣂ)݂ − ௜), (1)ߠ
 19: Evaluate ࢋଷ = ො࢙ − ଷ࢙
 20: Choose lowest |error|, update ࣂ
 21: End Loop 22: End Loop 23: Output- Joint angles ࣂ, Any errors that occurred

5. STATE SPACE BASED SOLVER
The feedback control analogy is taken further to develop a new
discrete-time state space approach to IK. This (potentially)
more rigorous approach is similarly an attempt to break the
computational bottleneck that arises from updating the
Jacobian matrix for each incremental robot configuration. The
Jacobian transpose method in Fig. 2 uses the transpose of the
Jacobian to map the position error ࢋ into a vector of joint rates ∆ࣂ. These are integrated to determine incremental joint angles,
with the error and the Jacobian updated for each iteration.
By contrast, the hypothesis investigated below is that a static
mapping can be used in the place of the Jacobian, to guide the
end effector to its desired position. Such IK mapping is made
difficult by two main factors. Firstly, the effect of a rotation or
extension of any joint in the chain will have a different effect
upon the position of the end effector, depending on the
configuration of both preceding and subsequent joints.
Secondly, the mapping is between a 3 or 6–dimension vector
representing coordinate errors in end effector position, and an
n vector with length equal to the number of joints. Moving any
single joint may or may not have an effect parallel to any
individual error dimension. These issues define the
requirements of the proposed mapping system, i.e. it must map
both the error input and the current state of the chain into a new
joint configuration at each iteration.
To fulfil these demands, a discrete time feedback controller is
introduced, as shown in Fig. 3 and the following equations:

݇)࢞ :(ݖ)ࡳ + 1) = (݇)࢞࡭ + (݇)ࢋ࡮
Δࣂ(݇) = (݇)࢞࡯ (14)

(݇)ࣂ = ݇)ࣂ − 1) + Δ(15) (݇)ࣂ

where the transfer matrix (ݖ)ࡳ is represented in state space
form in which ࢞ is the state vector and ࡮ ,࡭ and ࡯ are matrices
that form the mapping. Note that ࡭ ∈ ℝ௡ ௫ ௡ and ࡮ ∈ ℝ௡ ௫ ଷ
when the error only includes position, while ࡮ ∈ ℝ௡ ௫ ଺ when
the error contains position and orientation, and ࡯ ∈ ℝ௡ ௫ ௡.
In this formulation each of the states in ࢞ corresponds to a
single joint. Although these state variables are not direct
representations of a physical property of the joints, the state
vector represents the configuration of the manipulator. Note
that ࡮ in equation (14) adds each error component that is input
to one or more of the states at each iteration, i.e. it maps the
input to the state. Finally, ࡭ maps the state to the next state,
satisfying the cross-dependence between joint configurations.

Fig. 3. Proposed Inverse Kinematics Control System.
Because (ݖ)ࡳ forms a mapping from error to joint velocities,
the problem becomes a matter of finding values for the
matrices ࡮ ,࡭ and ࡯, such that all desired positions ࢙ො can be
reached by the end-effector (see later). There are some
examples of similar control systems being used to solve the IK
problem in the literature. Examples include Sciavicco &
Siciliano (1987) and Pechev (2008). However, most existing
approaches still involve an evaluation of the Jacobian matrix.
At the implementation stage, the new approach is summarised
as Algorithm II. The main loop, lines 3-17, represents the
feedback shown in Fig. 3. This is limited to a maximum
number of iterations. Much like existing Jacobian methods,
convergence is not guaranteed for all inputs, due to phenomena
such as singularities. An iteration limit stops the program from
entering an infinite loop. This value is arbitrary and, therefore,
it can be set as high as is practical.
Algorithm II State space IK solver
 0: Input- Desired position ࢙ො, tolerance
 1: Define maximum number of iterations (k)
 2: Loop For max k iterations
 3: Evaluate the error ࢋ = ො࢙ − ࢙
 4: If |error| is < tolerance
 5: Break Loop 6: End If 7: Evaluate (14) ,(ݖ)ࡳ
 8: Evaluate (15) ,(݇)ࣂ
 9: For all i joints
 10: If ߠ௜ > maximum limit
 ௜ = maximum limitߠ :11
 12: Else If ߠ௜ < minimum limit
 ௜ = minimum limitߠ :13
 14: End If 15: End Loop 16: Evaluate ࢙ = (1) ,(ࣂ)݂
 17: End Loop 18: Output- Joint angles ࣂ, Any errors that occurred

1 (ݖ)ܩ
1 − ଵିݖ

݂(⋅)

 ො࢙
 ࢙

 ࣂΔ ࢋ
 − + ࣂ

Lines 4-6 of Algorithm II check the magnitude of the error at
each iteration. If the error falls below a given tolerance then
the algorithm will stop. In some cases fine positioning is
required and, if the tolerance is low, the algorithm would take
a long time to reach a result. In other cases, more general
coarse positioning is adequate, and a larger tolerance is used
to reduce the number of iterations. Finally, the joints on most
robots are unable to rotate through a full 360° or extend
indefinitely. In reality they operate within a range with an
upper and lower limit. There are multiple ways to apply these
limits although perhaps the most straightforward is saturation.
Hence, in a similar manner to Algorithm I, if the calculated
joint position passes either of its limits then it is instead set
equal to that limit.
At this juncture, it should be pointed out that Algorithms I
and II both take a desired position and return a single joint
configuration that will place the end effector there. Further
control systems are clearly required to move the robot and its
actuators in a suitable manner. A starting joint configuration
can be picked arbitrarily or the arm might be placed in a known
position close to the goal.
The present article includes only limited discussion on the
‘tuning’ of (ݖ)ܩ (see section 6). In part for space limitations
and in part because it is the subject of the authors’ ongoing
research, algorithmic methods of tuning, and an analysis of the
convergence and stability properties of the approach using
control theoretic methods are omitted. These results will be
reported in future articles. Instead, the present article focuses
on a simulation study relating to the nuclear decommissioning
robot, with the algorithm tuned numerically using a particle
swarm method (Montazeri et al. 2008).

6. CASE STUDY
To demonstrate the efficacy of both approaches, they are
applied to the right hand side HydroLek manipulator.
6.1 IK-PID Tuning
First the IK-PID algorithm is applied to the arm. Initial basic
tuning of the algorithm is achieved by altering the gain ܭ௣
while ܭ௜ and ܭௗ are set to 0. This is tested against a single goal
position of (-10 50 -20), with the error shown in Fig. 4. Under
these conditions, ܭ௣ is initially set high, which results in the
joints moving to their limits and the arm stalling. As the gain
is gradually lowered, the goal is successfully achieved when
௣ܭ = 0.0847. Lowering ܭ௣ further means that more iterations
are required to reach the same goal.
The second stage of tuning requires the algorithm to reach all
points in the workspace. To evaluate this, 1000 randomly
distributed points within the workspace are used. The
algorithm is tested against each in turn, with the result being it
either succeeds or fails to reach the point. With ܭ௣ = 0.02 as
above, for example, the algorithm is successful on 960 out of
1000 points.
A trial and error approach was used to optimise all three gains
for the maximum number of successes, for which ܭ௣ = 0.012,
௜ܭ = 0.0000001 and ܭௗ=0.08. With these values the
algorithm is successful on 994 out of 1000 goals. The 6 points

that fail are on the periphery of the workspace and, in fact,
three existing Jacobian methods have been tested with the
same 1000 points and these fail on between 1 and 8 points
depending on the method used.

Fig. 4. End–effector errors with 0I dK K  and
KP = 0.0848 (dashed), 0.0847 (thin) and 0.02 (thick).
6.2 State Space Solver Tuning
Following a similar approach to the above, the state space
based algorithm is tuned initially using a single reference point
of (-10 50 -20). In this case, however, there are many more
than three parameters to tune. In fact, the ࡮ ,࡭, and ࡯ matrices
for a 6-DoF kinematic chain result in a total of 90 elements to
tune. For the purposes of the present article, user experience
and trial and error experimentation is again utilised, and yields
the following matrices:

࡭ = ࡮ ,଺௫଺ࡵ0.5− =
ێۏ
ێێ
ۍێ

0 0 10 −1 0−1 −1 00 0 10 1 00 0 ۑے0
ۑۑ
, ېۑ ࡯ = ଺௫଺ࡵ0.05−

Fig. 5. The error response of the state space solver for a goal
position of (-10, 50, -20), showing the initial trial and error
tuning (upper subplot) and optimised (lower) systems.
Using these values it is possible to find the goal position of
(-10, 50, -20) in ~100 iterations, as illustrated by Fig. 5.
However, for the same 1000 distributed points as in
section 6.1, this system can only reach 665 configurations. In
order to reach more positions the matrices are subsequently

optimised using Particle Swarm Optimisation. Such
optimisation is the subject of on-going research by the authors
and, for brevity, details of the approach are omitted.
Nonetheless, using standard software tools in MATLAB, the
optimised system is able to reach 993 out of 1000 positions,
albeit over a longer timeframe of ~350 iterations, as illustrated
by Fig. 5 (for an illustrative single realisation) and Fig. 6.

Fig. 6. Reachable workspace for the manipulator, with O
indicating positions for which the state space solver failed.
6.3 Evaluation of Timing
One of the most important measures for any IK algorithm is
the time it takes to find a solution. As IK is usually just a
precursor to a more sophisticated control algorithm for
actuating the robot, it is desirable to minimise the amount of
processing time. In order to compare various IK methods, a
random sample of 1000 points without orientation is created,
all within the workspace of the HydroLek right hand side
manipulator. Each algorithm is timed to produce a solution for
the 1000 points. In this study, the two algorithms introduced
above are compared to the Jacobian Pseudo-Inverse ܬற,
Jacobian transpose ்ܬ and Damped Least Squares (DLS)
approaches (Meldrum et al., 1991a,b; Wolovich & Elliott,
1984). All five tested algorithms failed to reach at least one
goal position, hence these positions were removed from the
comparative tests.
Note that the same kinematics function is used for each of the
algorithms and this has been optimised to run as quickly as
possible. The same process was used to optimise the
evaluation of the Jacobian to facilitate a fair comparison. The
time for each algorithm is measured three times in MATLAB
on a desktop PC with minimal background applications. The
results shown in Table II show the average time for each
algorithm to reach all 1000 points, with the tests repeated using
4 different tolerances.
Table II Comparison of the speed of different IK algorithms.

 Average time per tolerance (ms)
Method 5mm 2mm 1mm 0.1mm

 ற 0.823 1.115 1.368 1.727ܬ
 2.391 1.602 1.327 0.951 ்ܬ

DLS 1.091 1.524 1.780 2.538
IKPID 16.258 16.231 16.147 N/A

State Space 0.604 0.763 0.875 1.310

Table II shows that the IK-PID performs poorly in speed tests,
which is to be expected as it must perform the FK function 12
times per iteration. However, the new state space based

algorithm is significantly faster than any of the Jacobian based
methods that it has been tested against to date. In particular, its
average solution time is approximately 65% of the time of the
Jacobian Pseudo-Inverse method, the next fastest method.
6.4 Evaluation of Singularities
A singularity is a position in which the Jacobian matrix loses
rank and it becomes impossible to find an IK solution using
the Jacobian methods. This often happens when one or more
joints are aligned. For an initial evaluation of this issue,
consider an arm in the x-y plane with 3 links each of length 2
units (Fig. 7). The first joint connects the first link to the origin,
while the next two joints connect the next link to the end of the
last. The end effector is at the end of the third link. Each joint
can rotate ±60° with the 0° positions when all joints are aligned
with the x axis. The D-H parameters are shown in Table III.

 Fig. 7 Illustrative 3DoF Planar arm reaching the coordinate
(5, 0). Grey dots represent the extent of the reachable space.
Table III D-H Parameters for 3 DoF planar arm.

Joint θ (°) d a α (°) Joint Range (°)
 ଵ 0 2 0 -60 to 60ߠ 1
 ଶ 0 2 0 -60 to 60ߠ 2
 ଷ 0 2 0 -60 to 60ߠ 3

Using equation (10), Δࣂ is evaluated for the first iteration of
the Jacobian Pseudo-Inverse method. The end effector is
initially at the position (6, 0) and a desired position of (5, 0) is
required, which is in line with the manipulator.
Evaluate the Jacobian:

 ۸ = ቂ0 0 06 4 2ቃ
Evaluate ߙ:

ߙ =
ۉ
ۈۈ
ۇ อ ൥0 60 40 2

൩ ቂ−૚૙ ቃ อ

อቂ0 0 06 4 2ቃ ൥0 60 40 2
൩ ቂ−૚૙ ቃอی

ۋۋ
ۊ

૛

= 0

Therefore:
 Δࣂ = 0 ∗ ்ܬ ∗ ቂ−10 ቃ = ሾ0 0 0ሿ்

As there is no change in the joint angles after the first iteration,
the subsequent iterations will have the same result. In this case
the Jacobian transpose method has failed to find a solution.
However, it is clear that a solution is possible as the position
(5, 0) is within the workspace. Applying the state space
algorithm to this robot and tuning it accordingly, it is possible
to determine a solution, i.e. the joint angles are equal to 47.6°,
-60.0°, and -18.8° respectively. This configuration is shown in
Fig. 7 where it can clearly be seen that the end effector has
arrived at the correct position.

7. CONCLUSIONS
This article has developed two algorithms for solving the
Inverse Kinematics (IK) problem, one based on a
straightforward PID control algorithm and the other using a
discrete-time state space based framework. The IK–PID
algorithm is extremely straightforward to tune and implement,
making it an ideal choice for non-experts who may be daunted
by the complexity of Jacobian based methods. While it is
unable to match the speed of performance of other approaches,
the simulation study in this article suggests that it could match
the success rate of other algorithms, i.e. in finding the solution.
In this article, the state space based algorithm is presented in
its preliminary state. This algorithm is more complex than IK–
PID and requires longer and more sophisticated tools to tune.
However, simulation results to date suggest that it is
demonstrably quicker than other commonly used IK methods,
and has improved robustness against singularities. However,
further study into singularity robustness is required before
generalised conclusions can be made. Other future work
includes the formalisation of a tuning strategy for the new state
space algorithm and consideration of additional case studies,
i.e. using different robots.

ACKNOWLEDGEMENTS
The authors are grateful to the National Nuclear Laboratory
and Nuclear Decommissioning Authority.

REFERENCES
Bakari, M., Zeid, L. & Seward, D.W., 2007. Development of a multi-arm robot for nuclear decommissioning tasks. International Journal of Advanced Robotic Systems, 4, pp. 387-406. Besset, P. & Taylor, C.J., 2014. Inverse kinematics for a redundant robotic manipulator used for nuclear decommissioning. UKACC International Conference Control, Loughborough, UK. Paper ID: 31. Bloss, R., 2011. How do you decommission a nuclear installation? Call in the robots. Industrial Robot: An International Journal, 37, pp. 133-136. Bogue, R., 2011. Robots in the nuclear industry: a review. Industrial Robot: An International Journal, 38, pp. 113-118. Buss S. R., 2004. Introduction to inverse kinematics with jacobian transpose, pseudoinverse and damped least squares methods. IEEE Journal of Robotics and Automation, vol. 17, p. 16. Gosselin C. & Angeles J., 1990. Singularity analysis of closed-loop kinematic chains. IEEE Transactions on Robotics and Automation, 6, pp. 281-290.

Kotzev, A., Cherchas, D., Lawrencet, P. & Sepehrit, N., 1992. Generalized predictive control of a robotic manipulator with hydraulic actuators. Robotica, 10, pp. 447-495. Meldrum D., Rodriguez G., & Franklin G., 1991a. An order (N) recursive inversion of the Jacobian for an N-link serial manipulator. Proceedings IEEE International Conference on Robotics and Automation, pp. 1175-1180. Meldrum D., Rodriguez G., and Franklin G., 1991b. Efficient control with an order (n) recursive inversion of the jacobian for an n-link serial manipulator. American Control Conference, pp. 2039-2044. Merritt, E., 1976. Hydraulic Control Systems. New York: John Wiley. Mohanty, A. & Yao, B., 2011. Indirect adaptive robust control of hydraulic manipulators with accurate parameter estimates. IEEE Transactions on Control Systems Technology, 9, pp. 567-575. Montazeri A., Poshtan J., Yousefi-Koma A., 2008. The use of particle swarm to optimize the control system in a PZT laminated plate. Smart Materials and Structures, 17(4). Nakamura, Y. & Hanafusa H., 1986. Inverse kinematic solutions with singularity robustness for robot manipulator control. Journal of dynamic systems, measurement, and control, 108, pp. 163-171. Olsen, A. & Petersen, H., 2011. Inverse kinematics by numerical and analytical cyclic coordinate descent. Robotica, 29(4), pp. 619-626. Orin D. E. & Schrader W. W., 1984. Efficient computation of the Jacobian for robot manipulators. The International Journal of Robotics Research, 3, pp. 66-75. Paul R. P., 1981. Robot manipulators: mathematics, programming, and control: the computer control of robot manipulators. MIT Press. Pechev A. N., 2008. Inverse kinematics without matrix inversion. IEEE International Conference on Robotics and Automation, pp. 2005-2012. Sciavicco L. & Siciliano B., 1987. A dynamic solution to the inverse kinematic problem for redundant manipulators. Proceedings IEEE International Conference on Robotics and Automation, pp. 1081-1087. Shaban, E., Ako, S., Taylor, C. & Seward, D., 2008. Development of an automated verticality align ment system for a vibro-lance. Automation in Construction, 17(5), pp. 645-655. Sirouspour, M. & Salcudean, S., 2001. Nonlinear control of hydraulic robots. IEEE Transactions on Robotics and Automation, 17(2), pp. 173-182. Taylor, C.J., Chotai, A. & Burnham, K., 2011. Controllable forms for stabilising pole assignment design of generalised bilinear systems. Electronics Letters, 47(7), pp. 437-439. Taylor, C.J. & Robertson, D., 2013. State-dependent control of a hydraulically-actuated nuclear decommissioning robot. Control Engineering Practice, 21(12), pp. 1716-1725. Taylor, C.J. & Seward, D., 2010. Control of a dual-arm robotic manipulator. Nuclear Engineering International, August, 55, pp. 24-26. Taylor, C.J., Young, P. & Chotai, A., 2013. True Digital Control: Statistical Modelling and Non-Minimal State Space Design. s.l.:John Wiley and Sons. Wolovich W. A. & Elliott H., 1984. A computational technique for inverse kinematics. 23rd IEEE Conference on Decision and Control, 1984, pp. 1359-1363.

