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Abstract

Error control coding is frequently used to minimise the eswhich occur naturally in
the transmission and storage of digital data. Many methodddcoding such codes
already exist. The choice falls mainly into two areas: hdedision algebraic decod-
ing, a computationally-efficient method, and soft-deciscmmbinatorial decoding,
which although more complex offers better error-corractio

The work presented in this Thesis is intended to providetjmaalecoding algo-
rithms which can be implemented in real systems.

Soft-decision maximum-likelihood decoding of Reed-Sabontodes can be ob-
tained by using the Viterbi algorithm over a suitable teelliTwo-stage decoding of
Reed-Solomon codes is presented. It is an algorithm by wieetn-optimum perfor-
mance may be achieved with a complexity lower than the Vitdworithm.

The soft-output Viterbi algorithm (SOVA) has been inveatgd as a means of
providing soft-decision information for subsequent desmsd Considerations of how
to apply SOVA to multi-level codes are given. The use of SOWA satellite downlink
channel is discussed. The results of a computer simulatrbich showed a BdB

improvement in coding gain for only a 20% increase in decpdiomplexity, are

Xix



ABSTRACT XX

presented.

SOVA was also used to improve the decoding performance wbglea to an RS
product code. Several different decoding methods weraiated, including cascade
decoding, and a method where the row and columns were deetigeciately.

A complexity measurement was developed which allows atewamparisons of
decoding complexity for trellis-based and algebraic decedWith this technique the
decoding complexity of all the algorithms implemented asmpared. Also included

in the comparison are the Euclidean and Berlekamp-Masgeyitiims.
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Chapter 1

Introduction

The twentieth century has seen an explosion in the use arldlzlity of commu-
nication systems. They are now placed in and on many devibehwere not even
invented one hundred years ago. Such widespread use hasl pliggh demands on
engineers. Mobile telephones are expected to operaterigrderiods and with clear
reception. Digital television and weather images from s@ae expected to be clear of
speckles. Music from compact discs must be free of clickspaus which frequently
troubled the vinyl records which they are now quickly repigc As the storage size of
computer memories and disks increase the access times giumAmthese technolo-
gies are reliant upon computer hardware, which is stiloiwlhg Moore’s ‘law’! the
rapid increase in technology looks set to continue. Thanmiictor in all of these
diverse applications is that they use error control codmgrbtect valuable digital

data and enhance the service they provide.

Moore, founder of Intel, suggested that the number of tstos on integrated circuits for comput-
ers doubles approximately every 18—24 months [Moore, 1965]
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In its early days error control coding could only be afforddthe ‘super-rich'—
the military and organisations such as NASA. Even so, thesated then (often
Reed-Muller codes) are considered by today’s standardsals &and simple to decode.
Today, error control coding is widespread and cheap. Piglmbst popular are the
Reed-Solomon codes. They are, however, a two-edged swaonddmg greater error
protection but are also many orders of magnitude more diffioudecode. Although
efficient hard-decision RS decoders exist the holy grailnisticient soft-decision
algorithm, which will provide optimum performance with gficity.

The twenty-first century will surely see an increase in the oerror control
coding as current technologies are miniaturised furthred,reew ones invented. Thus
the demand for fast and efficient decoding algorithms wilyoncrease. This Thesis
presents new work which is aimed at both improving upon licision decoding
performance while reducing complexity from the soft-dexicase.

Chapter two introduces the background topics used in thik.wincluded are
the theory and important properties of linear and cyclicckloodes. Attributes of
convolutional codes are discussed. The concept of corataigicodes and important
definitions regarding trellis diagrams and trellis decgdane introduced. The channel
models used in the computer simulations are also described.

Algebraic decoding of RS codes is examined in Chapter thfée. Berlekamp-
Massey, Euclidean and high-speed step-by-step algoriéinenexplained, both math-
ematically and with the aid of examples. Chapter four detadllis construction tech-
niques, for both syndrome (BCJR/Wolf) and coset trellisSEse Viterbi algorithm is

described and an example decoding used to illustrate threegooe. A novel low-
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complexity, near-optimum decoding algorithm, two-stageatling, is presented and
a worked example given.

In Chapter five concatenated decoding is used as a means bfréogngood er-
ror control performance with low complexity. The soft-outp/iterbi algorithm is
demonstrated as a method by which the outer decoder is alplerform better by
taking advantage of soft-decision information. The Vitelecoding example shown
in Chapter four is extended to give a clear demonstratioroaf BOVA operates. The
application of SOVA over non-binary trellises is discuss&ttoduct codes may be
thought of as a form of concatenated coding. Various algaritfor decoding product
codes are described, and the application of SOVA to eacmisidered.

Chapter six presents results on both decoding complexitypamformance. As
this Thesis includes both algebraic and combinatoriali@yelecoders a unified prac-
tical method, by which all the decoders implemented may lepaved, was sought.
How this was achieved is explained. Results of all the sitedlzystems are given,
including a weather satellite image distribution systenellis decoding complexity
for the Viterbi algorithm was analysed in a mathematical ngnapplicable to all
linear codes (and also separable non-linear codes). Aigoanalysis is expanded
for the soft-output Viterbi algorithm. Following this, deding complexity for all the
simulated codes is given, using the same set of benchmasaoding performance
is not forgotten, and Chapter six also includes decodinfppeance curves for all
the decoding algorithms demonstrated. Where possibleatine €hannel model was
used.

Concluding remarks are made in Chapter seven. The unifiecagip to decod-
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ing complexity allows comparisons to be made regarding ¢tingadexity of the various
systems. Where appropriate, comparisons of the decodif@ypence are also made.
The improved performance of the weather satellite imageiloigion system is dis-
cussed, and commercial benefits of increased coding gamgirigghted. Finally, the
References, and for the benefit of the reader, a citatiorxiadd general index are

located at the back of this work.



Chapter 2

Background



Chapter 2

Background

2.1 Block Codes

2.1.1 Linear Block Codes

In a block code the message symbols are sectioned into btdcksed length,k,
before being passed to the encoder. The input blociadaword containsk data
symbols over an alphabet of sige The encoder output is @dewordcontainingn
code symbols, also over an alphabet of §jzEor the casg = 2 the code is described
ashinary. Block codes may be divided into two categorilsear block codes and
non-linearblock codes. Only linear block codes are considered.

For a useful code the datawordsmust form a one-to-one mapping with the set
of g possible input sequences. For ank) linear code’ the codewords must form
a k-dimensional subspace of timedimensionakodespac®ver the field GFg) [Lin

and Costello, 1983, p. 52], i.e., tilémensionof the code ik. Since the codewords
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are restricted to &-dimensional subspace of the codespace the linear sum dhany
codewords is also restricted to tkelimensional subspace and must therefore also be

a codeword.

The Generator Matrix

For a codeC there existk linearly independent codewords, 9,, ..., g, ; SO that

every codeword in C is a linear combination of these codewords, i.e.,
V= UG, + U0 + ...+ U 10, , (2.1)

where (o, Uy, ..., U._1) are symbolsin the input sequencespresented by elements
in GF(Q). Thek linearly independent codewords can be arranged as rowk ik a

matrix:

% Goo Go1 .-+ Gon

G— 0, _ Qo G112 .-+ Oina (2.2)

Ok—1 Ok—10 Ok-11 --+ Ok—1n-1
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whereg, = (G0, 91, ---, On1)andk=0, 1, ..., k. A datawordu can be mapped

to its corresponding codewoxdby [Lin and Costello, 1983, p. 53]

v=u-G
o
g
= (Upy Uty ooy Uea) - | (2.3)
I Ok—1 |

= UpJp + G + ... + U104

From (2.3) it can be seen that the mat@Gxgenerates codewords 6fgiven a data-
word, and is known as thgenerator matrix If the encoding procedure of a linear
block code preserves the input sequenceithin the output sequence ofthe code
is systematicSystematic codes enable simplifications to the decodipgrighm, and
are especially important for array codes. This useful prtypEan be identified in the
generator matrix, ik consecutive columns db form thek x k identity matrix the

code is systematic. By column reordering the generatorixnfair systematic codes
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can always be arranged teduced-echeloform

100... 0
010..0:

G=|001 0! P (2.4)
000 1

whereP represents the parity checks. An important point to notéas évery valid
codeword is a multiple of the generator matrix. The impartaaf this will become
apparent when the decoding of a received codeword whiclacenérrors is consid-

ered.

The Parity-check Matrix

It is useful to be able to express the code in a manner whichliglgs the parity
checks. For & x n generator matrixc there is antf — k) x n parity-check matrixH.

The relationship of the parity-check matrix to the generatatrix, G, is given by

GH™ =0 (2.5)

whereHT is the transpose dfl andO is an all-zeros matrix. For any codewokdin

the code the parity checks sum to zero and thus

VHT = 0 (2.6)
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2.1.2 Syndrome Vector

Consider the case of the parity checks when the receivedvavder, is in error. The

parity check values, ssyndromesare non-zero. Theyndrome vectorS, is defined

by

S=rHT
(2.7)

whereS = [Sl? SZ? sy SZt]

For the case when the received codeword is correct(iz.y) Equation 2.7 reduces
to Equation 2.6. However, when the received codeword isror eris given byr =

VvV + e, whereeis the error vector. Substituting into Equation 2.7 gives

S=rHT
=(v+eH"
(2.8)
=VH" + eH'

=eH’

sincevH™ = 0 (Equation 2.6). From Equation (2.8) it is clear that the spntk is
dependent only upon the error pattegnand not the transmitted codeworxd,

There is a one-to-one mapping from correctable error pedter the syndromes.
For simple codes error correction can be achieved by a tableip of the syndromes
and a GFq) subtraction of the corresponding error value. This metibaubt practical
for useful codes as the table size is too large to store [@RS(255223 33) the

table would contain 256 — 1 = 1.16 x 10" entries!).
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2.1.3 The Singleton Bound

The Singleton bound [Singleton, 1964] provides an uppeit lom the minimum dis-
tance,d.,, between codewords in a linear block code. It thus providesngportant
goal good codes should attain. Codes which satisfy the &mgbound with equality

are termednaximum distance separabl€he bound is given by

dmin S n-— k+ 1 (29)

2.1.4 Array Codes

Array codes were introduced by Elias [Elias, 1954]. Theyamestructed from lin-
ear component codes in two or more dimensions. The simplest aode is a two-
dimensional code with am(, k;, d;) vertical codeC,, and an £, k;, d,) horizontal

code,C,. The resulting code?, is an (.n,, k.k,, d,d,) code (Figure 2.1). The term

product codas sometimes applied @rray codesthe two terms are interchangeable.

General Properties of Array Codes

Theorem 2.1 The minimum weight for the product of two codes is the prodiiche

minimum weights of the codes.

Proof 2.1 [Elias, 1954]. The minimum weights of the component codeandC, are

d; andd,. Each column containing a non-zero element must have dtdeasn-zero
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K
n,
Ky Information matrix Row
checks
n;
Column checks Checks on
checks

Figure 2.1: Array code.

elements, and each row containing a non-zero element musitdeast, non-zero
elements. Therefore if the product co@econtains any non-zero elements it must
contain at leastl, non-zero rows and, non-zero columns. The minimum number of

non-zero elements is therefaled, and thus the minimum weight @fis d,d,. [ |

Encoding and decoding are greatly simplified when the corapbcodes are sys-
tematic. For a two-dimensional product code with systecnadimponent codes the
generator matrix can be shown to be the Kronecker produciofdd by®) of the
generator matrices [Slepian, 1960]. For the case when th@anent codes are single
parity-check codes (i.ek; = n, — 1, k, = n, — 1) the generator matrix reduces to

the simpler case as the Tensor product of the component fadidis 1965]. Higher
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dimensions are possible. As both row and column codes ararlihis not important

whether the row or column encoding is performed first, theek&@n-checks will be

identical in either case [Peterson and Weldon, 1972, p..1SiRjilarly, the decoding

order is not important.

If serial transmission of the codeword symbols is assumedctwis the normal

case) the two-dimensional codewovd,

<
I

Vh—1,0

Vin—1,1

Vi—1m-1

(2.10)

must be converted to a one-dimensional vector before trisssmn over the channel.

The mapping of; ; where 0< i < n;and 0< j < k;tov, where 0< | < mn, — 1

may be accomplished by a number of methods. ddm@onical orderings achieved

by choosing and | as the quotient and remainder wHes divided byn, [Berlekamp,

1968, p. 338]. Canonical ordering gives the array

Vo

Vi

2

Vin—1)n,

\i

Vn2+l

V(nlfl)n2+l

Vnzfl

Von,—1

Vho1

(2.11)

For the case when, andn, are relatively prime there is (by the Chinese remainder

theorem) a unique integéin the range 6< | < n;n, — 1 for the pair {, j) such that
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| =i modn, andl = j modn, [Burton and Weldon, 1965]. This mappingio&nd |
to | is known ascyclic ordering The reasoning behind the name is clearly seen from

the example below whemg = 3 andn, =5

Vo V& Vo Vi3 Vg

V=1 Vvieo i Vv Vi3 (2.12)

Vs Vi1 Vo Vg Vi

If C, and(C, are cyclic codes and, andn, are relatively prime then the product
C = C, ®C, is also cyclic, however not all cyclic codes are array cotéasdWilliams

and Sloane, 1978, p. 570].

Decoding Array Codes

Many decoding algorithms for array codes exist, both algeband trellis-oriented.
The simplest method for decoding a canonically-orderealyacode is tacascade de-
codethe component codes one at a time, decoding the row c@dand then the col-
umn codeC;. Particularly for memoryless channels, the cascade degadgorithm

is inefficient. There exist error patterns for which the csdeapable of correcting but
the algorithm fails to correct. If the minimum distancdsandd,, of the component
codes are odd then there are error patterns of weijh-(1)(d, + 1)/4 which are

incorrectly decoded, although the code is capable of cnggerrors up to weight

(d;d, — 1)/2 [Berlekamp, 1968, p. 340].
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2.1.5 Generalised Array Codes

As the name suggests GACs are a generalisation of the aro®s éotroduced by
Elias. Unlike standard array codes GACs may have differemtponent codes along
a given dimension, with the restriction of the code lengtimipenvariant. The total
number of code symbols is given loy= n;n,, wheren, andn, are the number of
rows and columns, respectively. The total number of infaromesymbols is given by
k=" k, wherek, is the number of information symbols mth row [Honary and
Markarian, 1997, p. 11].

The technique provides a simple design procedure for asctstg many differ-
ent block codes, BCH, Hamming, Golay, RM etc. [Honary and kdaan, 1993a,b;
Honaryet al,, 1995a]. It is important as it allows minimal trellises todsigned in a

straightforward manner.

2.1.6 Cyclic codes

Cyclic codes are an important subclass of linear block caugisonly because many
prominent codes are cyclic e.g., BCH, RS, but also becawseatte used in the con-
struction of other error-correcting codes e.g., KerdoakRreparata codes. The inher-
ent algebraic structure of cyclic codes allows the fornmaibmany practical decod-
ing methods; Euclidean (Section 3.3), Berlekamp-Masseygt{& 3.4), step-by-step

(Section 3.5) and others.
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General Properties of Cyclic Codes

A code( is cyclicif it is linear and every cyclic shift of every codewovdis also a
codeword. i.e., if (s, Vi, ..., V,_1) is a codeword irC then {,_1, Vo, ..., Vo2)

is also a codeword i@ [MacWilliams and Sloane, 1978, p. 188]. Cyclic codes are
commonly defined in terms of polynomials, where the coeffitsef the polynomial
are the symbols im. The notatiorv(x) will be used to denote a code polynomial. The

relationship between a codewordnd the polynomial is

V=V Vi, -+, Vo_1) (2.13)

V(X) = Vo + ViX + VX2 + . .. + VX' (2.14)

It can be seen that the maximum degree&(@j is n— 1. Algebraically,v(x) is defined

to be a polynomial modulX" — 1. This leads to the important identity

>
Il
=

(2.15)

From (2.15) it can be shown that a multiplicationwgk) by x is a cyclic shift

XV = VoX + Vi VX L Vo X o VX! (2.16)

= Vy 1+ VXF VXV ... vV, X1

It can be shown [Wicker, 1994, p. 101; Wilson, 1996, pp. 443H4hat there

exists a unique polynomiad(x), such that every code polynomial can be expressed as
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a product of the generator polynomial

V(x) = u(x) g(x) (2.17)

whereu(x) is a polynomial of degrek — 1 or less and is known as the message
polynomial. Equation (2.17) indicates a method by which asage polynomial(x),
can be encoded to its corresponding codeword polynomialalfemnative approach
Is based on matrices. It is shown in equation (2.2) that argémrematrix can be
constructed fronk linearly independent codewords. Since the generator pohyal
is itself a codeword polynomial (corresponding to the ags¢ = 1) thek codewords

can be arranged &scyclic shifts ofg(x).

| g(x) ] -go g ... g 0 ... O 0-
Xg(X) 0O % & ... g O ... O
G=| xgx |= (2.18)
O ... 0 g 9 ... g O
I X<~1g(x) | |00 ... 0 %% 9 ... g

The encoding procedure given in (2.17) does not producetarsgsic codeword.
Normally, systematic codewords are preferred as they siynjble decoding proce-
dure. The normal method by which systematic codewords arerged is [Michelson

and Levesque, 1985, p. 133]

v(x) = [X"*u(x) modg(x)] + x"*u(x) (2.19)
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It can be seen that this does result in a valid codeword, tmaireder whens(x) is

divided byg(x) is zero, and the maximum degreevgX) isn — 1.

Syndrome Polynomial

For cyclic codes (e.g., BCH and RS) the calculation of thedsymes can be per-
formed more efficiently by using the cyclic properties of ttuele. Though the syn-

drome vector can be calculated By= rHT (2.7) this calculation can also be per-

formed as
r(x)
S0 = =
9(x) (2.20)
= r(x) modg(x)
whereS(x) = S, + SX+ S+ ...+ St (2.21)

whereS(x) is thesyndrome polynomialThus the syndrome polynomial may be de-
fined as the remainder when an erroneous codeword is divigd#dtelgenerator poly-
nomial, g(x). The proof is given in [Peterson and Weldon, 1972, p. 234r the
case of the received codeword being equal to the transnuittgelword yv(x), the syn-
drome polynomial is zero since valid codewords are exadtigithle by the generator
polynomial (2.17).

It can be shown that the syndrome polynomial is dependennt tigoerror polyno-

mial, e(x), and not the transmitted codewoxdx), by substituting (x) = v(x) + &(x)
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into (2.20)

S(x) = r(x) modg(x)
= [V(x) + e(x)] modg(x)
(2.22)
= V(X) modg(x) + e(x) modg(x)

= €(x) modg(x)

sincev(x) modg(x) = 0 (from (2.17)).

2.1.7 Bose-Chaudhuri-Hocquenghem Codes

Bose-Chaudhuri-Hocquenghem codes were discovered indeply by Hocqueng-
hem [Hocquenghem, 1959] in 1959 and Bose and Ray-ChaudBosie] and Ray-
Chaudhuri, 1960a,b] in 1960. BCH codes are a generalisafitre cyclic Hamming
codes for correcting multiple errors. Peterson [Peters®60] proved that BCH codes
are cyclic. Gorenstein and Zierler [Gorenstein and Ziele61] generalised the BCH
codes for non-binary alphabets of sig& Their wide choice of block lengths, code
rates and symbol alphabets, coupled with efficient decodlggrithms, has made

BCH codes a popular choice for many communication systems.

General Properties of BCH Codes

When constructing an arbitrary cyclic code there is no guae of the minimum
distance of the code produced [Wicker, 1994, p. 176]. It isessary to conduct a

computer search of all the non-zero codewords to find thermim-weight codeword
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and thus the minimum distance of the code. For BCH codes toisedure is not
required, the BCH bound places lower limit on the minimuntatise of the code. An
understanding of these codes requires a knowledge of fieltedtithmetic [McEliece,

1987].

Theorem 2.2 The BCH Bound [Wicker, 1994]

Let C be ag-ary (n, k) cyclic code with generator polynomig(x). Let m be the
multiplicative order ofg modn. (GF(@™) is thus the smallest extension field of G (
which contains a primitive-th root of unity.) Leta be a primitiven-th root of unity.
Selectg(x) to be a minimal-degree polynomial in GH(x], where GFq)[x| de-
notes the collection of all polynomia#g + a;x + a,x® + - - - + X" of arbitrary degree

with coefficients{a;} in the finite field GFq) [Wicker, 1994, p. 40], such that

g(a”) = g(a*!) =g(a”?) =---=g(a""’?) =0 (2.23)

for some integerd > 0 andd > 1. The roots of the generator polynomggk) are
0 — 1 consecutive powers af. The codeC defined byg(x) has minimum distance

d> 4.

Proof of Theorem 2.2 can be found in [MacWilliams and Slodr$g,8; Peterson and
Weldon, 1972; Wicker, 1994]. The BCH bound can be used toyreé BCH code
with a given design distance. However, since the weightitdigions of most BCH

codes are not known the actual minimum distance may be griete the design

distance.
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Generator Polynomial

The generator polynomial for a BCH code hasdbts, which are consecutive powers

of a (from Theorem 2.2). Therefore

mm:l]u—amu (2.24)

For the case wheh = 1 the code is termedarrow sensgMacWilliams and Sloane,

1978, p. 203].

2.1.8 Reed-Solomon Codes

Reed-Solomon codes were discovered by Reed and Solomorbhalfl are a spe-
cial subclass of non-binary BCH codes [Reed and SolomorQ]1$65 codes exhibit
additional properties to BCH codes which make them very mmoke powerful than
BCH codes. Their powerful error-correcting abilities hawade them possibly the
most important codes. RS codes are multi-level, therefagggl binary bits are com-
monly mapped to one RS symbol. This process provides sonsé-&upr correction.
They have many and widespread applications which inclueledimpact disc, satellite

communications and digital video broadcasting.

General Properties of RS Codes

Reed-Solomon codes are cyclic and so profit from the manyulsbaracteristics

cyclic codes offer. They are normally generated in systenfiatm using (2.19).

Theorem 2.3 An (n, k) RS code has minimum distanae k + 1).



2.1. BLOCK CODES 23

Proof 2.2 Let C be an (,k) RS code. The Singleton bound (Section 2.1.3) gives an
upper bound ofl < n— k+ 1 to all (h, k) codes. The BCH bound provides a lower
bound. The generator polynomig(x) is of degreen — k, so it containgh — k =

0 — 1 consecutive powers of a primitiveth root of unity. Thereforal > n— k + 1.

Combining these two results gives

d=n-k+1 (2.25)

Theorem 2.3 and its proof are important for two reasonstliitsshows that RS
codes can be designed such that their designed minimunmdésisalwaysthe actual
minimum distance (unlike BCH codes). Secondly, RS codéasfgahe Singleton

bound with equality, so they are maximum distance separable

Theorem 2.4 RS codes are invertible.

A code is said to benvertibleif any k symbols can be used as information symbols
in a systematic representation. This follows from the MD8pgarty, proof is given

in [Wicker, 1994, p. 189].
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2.2 Convolutional Codes

2.2.1 Overview

The nameconvolutional codevas coined by Elias [Elias, 1955] to describe a code
which is the output sequence of a linear mapping of an inpyuesece with a discrete-
time, finite-alphabet convolution of the input and encaslaripulse response [Wilson,
1996, p. 551]. Such codes are sometimes termed trellis codéhis name is mis-
leading because block codes may also be represented bgesellThe concept of
encoding an input sequence without segmenting it is verferdift to that used by

block codes (Section 2.1).

( T \ First code symbol
Input bit \h,_, Output branch
word
K ;) Second code symbol

Figure 2.2: Encoder for (4, 3) convolutional code.

2.2.2 General Properties

A convolutional code over Gij is usually described by the parametensk(K),
wherek is the number off-ary symbols (simultaneously) input to the decoder and

is the number ofj-ary symbols (simultaneously) output from the decoder. Ak w&
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block code, the rate is given lmyk. Theconstraint lengttof the codeK, is defined as
the number of consecutive symbols in the output streamtefiidzy any input symbol.

It is also thememoryof the code.

2.3 Concatenated Codes

2.3.1 Overview

Concatenated coding was introduced in 1966 by Forney [Fodr866]. It is a pow-
erful technique for creating error-correcting codes by bommg two (or more) codes
sequentially. The primary reason for using concatenatelg@sds to achieve a low
error rate with an overall implementation complexity whishess than that which
would be required by a single decoding operation [Sklar,8198 365]. Figure 2.3
shows a concatenated coding scheme. The data stream infiostesl with theouter
code(in this case an RS block code). The output of the outer cotteeisre-encoded
with theinner code (here a convolutional code) before transmission. At tleeiker
the decoding order must be reversed, and so the inner codeasied first. Any errors
from the output of the inner decoder are likely to appear astbuhence it is usual
to include aninterleaverandde-interleaveibetween the inner and outer codes. The
purpose of the interleaver is to rearrange the symbols gcethars do not occur in
bursts but are spread through several outer codewordsote edirrect decoding.
Convolutional codes are a natural choice for the inner ctligh a suitable Vit-
erbi decoder SD information can be used for maximum perfaoea RS codes are

frequently used for the outer code. They are powerful andwdwnbined with a



AN\ XX

I -

Y

RS trellis encoder

Block interleaver

Gaussian channel,
coherent BPSK
demodulator

N\ XXS

\(;

Convolutional| encoder

/T

D -

RS trellis decoder

XXX

Block deinterleaver

Figure 2.3: Concatenated coding example.

Convolutional decoder

S3d0D d31VNFLVONOD ‘€¢

9¢



2.4. TRELLISES 27

binary convolutional code the burst-error performancénefRS code helps minimise
errors. There are, however, many possible configurationa fancatenated coding
scheme and flexibility is one of its many advantages. For @k@amthme compact disc
coding system uses a concatenated system based upon RE&2and RS(2824, 5)

shortened RS codes.

2.3.2 General Properties of Concatenated Codes

The rate of a concatenated code is the product of the ratds obmponent codes.
Consider a concatenated codevith an (h, ky, d;) inner codeC; and an 6, k,, d,)
outer code&’,. An input sequence ik, symbols is passed to the outer encoder. The
output isk;n, symbols. This new block is sent to the inner decoder whichltes
n,n, output symbols. The rate is th%%.

The minimum distance of a concatenated code, @ fLin and Costello, 1983,
p. 279].

The proof is the same as for an array code, see Proof 2.1.

2.4 Trellises

2.4.1 Introduction

A trellis diagram (commonly called atrellis) is an acyclic edge-labelled directed
graph [Muder, 1988], with one start point (th@ot) and one end point (thgoal).

The horizontal axis of a trellis diagram indicates the pgesa time. The trellis can
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be viewed as a two-dimensional representation ofgheodewords through the-
dimensional codespace. To enable an accurate descrifptioa properties of a trellis

it is first necessary to introduce some common definitions.

2.4.2 Definitions

Nodes of the graph represent possible enceties S ;, wherei is the state number
andt is the time index. The nodes are decomposed into a union pimisubsets,
calledverticesor levels The levels are numerated @, ..., N, (N, < n+ 1) and the
t-th level consists oN, nodes, §,;), (S), ---, (Sui)-

Between states in adjacent levels, andS ., there may be directebranches

(also callecedge$, B(S: — S;;1), which indicate possible changes in state. Branches
are only permitted to connect adjacent levels. The set ofdires between level- 1
andt is called thet-th depth. In some texts the set of branches at a given depth is
termed astage[Wicker, 1994, p. 292]. To prevent confusion (e.g., with thstage
decoding”) such terminology is avoided in this work. Assbed with every branch is
alabel denoting the output (or code) symbol(s) given when thatdras taken, and
a branch metri¢ B,,,, which indicates the likelihood of a given branch being sié.
For certain trellises an additional input (or data) labeyms&ist. Its purpose is to allow
the same trellis structure to be used for both encoding anddiieg operations. The
code label is &-dimensional vector of-ary symbols,lg, |,, ..., I). The code label
associated with the bran®(S; — S;;,1) is denoted by.(S;, S;111)-

Using the notation introduced above the root can be moregelgaefined a$§, o,

and the goal a§ .. A pathis a continuous sequence of branches, and is denoted
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by P(S: = S = Stz = ... = Suis). The termpartial path is sometimes
used to denote a sequence of branches for which decodingampilete, thus the
sequence starts from the root but does not reach the goateRain codes (generally
convolutional codes) it is necessaryttancatethe trellis to lessen decoding delay.
Frequently these trellises are shown with multiple rootd goals (see Figure 4.7
for an example). Though this does not strictly match the defimof a trellis, the
truncated section is often considered to be a trellis inwts oght.

A trellis is called acode trellisof the codeC if there is a one-to-one mapping
between the codewords of the codeand all paths betwee8 , and S, (i.e., all
P(So— ... = Sn))-

Let N(t) = [Ny, Ny, ..., Ny, ] be thestate profileof the trellisT andB(t) = [B,,
B,, ..., By] be thebranch profile whereN, is the number of states at th¢h level
andB; is the number of branches at tireh depth [Forney and Trott, 1993; Honary
and Markarian, 1997, p. 161]. L&ft) = [L,, L,, ..., Ly ] be thelabel size profile
of the trellis wherél,; is the number of symbols used for labelling thth depth.

Figure 2.4 shows a trellis for the (4, 3) Hamming code annotated with the defi-

nitions described above. The state profile, branch profitecaxe label size profile of



branch label path{bold)
-
00/00 0/00 0/00 /00 ,/ -— goal

\&'\/

0/01 0/01
level: 0 1 2 3 4

depth: 1 2 3 4

Figure 2.4: Trellis for RM(84, 4) with definitions.
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this trellis are

N(t) = [NO, Nl’ NZ’ NB, N4]

(2.26)
=1[1,4,4,4,1]
B(t) = [B,, B,, B;, B,]
(2.27)
=[4,8,8,4]
L(t) = [Ly, Ly, Ls, ILy]
(2.28)

=1[2,2,2,1]

2.4.3 Properties

Proper Atrellis where all the branches (edges) leaving any staeadx) have distinct
labels. Unless otherwise stated all references to a tmlliamply a proper

trellis.

Observable A trellis with a one-to-one mapping between all codewordthefcode”

and all paths betwees , andS,, (i.e., all P(So — ... = Sin))-

Since an unobservable trellis contains more than one patludh the trellis
for at least one codeword this may cause difficulties for dec® and for sub-
optimum decoders operating with a reduced-search Vitégbrighm, or similar

methods.

Minimal trellis Many definitions of a minimal trellis exist due to varying enpre-

tations of minimality. The definition used within this textlMbe that given by
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Muder [Muder, 1988]. The trelli¥ is a minimal trellis of the codé if for every

other trellisT' of C, N, < N [Honary and Markarian, 1997, p. 61].

State-Oriented form The trellis state number is directly correlated with theaster

State.

2.5 Channel Models

2.5.1 Discrete Memoryless Channel

A discrete memoryless chanrfehtures discrete input and output alphabets. The set

of conditional probabilities relating the output to theunhis given byp(j | i) wherei

(1 <i < M) is a modulatoM-ary input symbol and (1 < j < q) is a demodulator

g-ary output symbol. Thup(]j | i) is the probability of receiving if i was transmitted.
The output symbol depends only on the input symbol, not oexitencre of any

previous errors (hence the channel hagmamory. For an input sequendg = u;,

U, ..., Uy the conditional probability of the output sequente= z, z, ..., z

is [Sklar, 1988, p. 261]

PZ | U) =[] p@n | tn) (2.29)
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2.5.2 Binary Symmetric Channel

A binary symmetric channés a special case of the discrete memoryless channel. The
input alphabet size is 2, containing the binary elementsaiid “1”. In addition, the

conditional probabilities are symmetric:

p(0]1) =p(1]0) =p (2.30)

p(0]0) =p(1]1) =1-p (2.31)

The channetransition probabilitie(2.30, 2.31) give the probability that a trans-
mitted symbol is received incorrectly. The demodulator esako attempt to indicate
how well a symbol is received, it merely outputs a “0” or “1”hi$ type of output is

termedhard decision

p(1]1)

Figure 2.5: Binary symmetric channel model.

An upper bound for the probability of an incorrect decodingéablinear error-
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correcting code operating over a BSC can be obtained by @emsg the probability

that> t symbol errors occur [Lin and Costello, 1983]

r<> (Mea-ry 232)

i=t+1

2.5.3 Binary Symmetric Erasure Channel

Thebinary symmetric erasure chanmalay be viewed as a special case of the DMC,
or as an extension of the BSC. Like the BSC the input alphabetis 2, containing
the binary elements. However the output alphabet size re@sed to 3, and contains
“0”, “1” and an erasure(denoted by “?”). For times when the demodulator is not able
to clearly identify a “0” or “1” it may signal its uncertaintyy outputting an erasure.
The decoder is then aware that the symbol is unreliable. ¥hmeetric conditional

probabilities are

pO[1)=p1|0)=p (2.33)
p(0|?)=p([?)=q (2.34)

pO[0)=p(1|1l)=1-p—q (2.35)
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0 0
?
1 1

Figure 2.6: Binary symmetric erasure channel model.

2.5.4 Additive White Gaussian Noise Channel

In many cases channels are not discrete but feature a consrautput alphabet over
the range 0o — +00). An AWGN channel is an example of such a case. The output
is the input with broadband Gaussian noise added. The cheon&ins no memory
(as defined in Section 2.5.1). This type of channel is an atewwhannel model of
many communication systems, such as satellite, deep-spad@e-of-sight links.
White Gaussian noise is a random process, with a zero meaa @adssian PDF
with variances?. The power spectral density is flat over all frequenciesq < f <
+00). The channel corrupts the transmitted signal with noige robability density
function,y, of the noise valuex, is Gaussian and in the frequency domain the noise is

wideband (or white).

1 L1 /x=p\’
y—amexp{ 2< - >} (2.36)
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2.5.5 Quantised AWGN Channel

While channels with continuous output alphabets are a algplnenomenon they are
impossible to use with SD decoding (due to requiring infiitecision to store the
soft value). AWGN channels are frequently ‘approximatedatchannel with a fixed
number of noise values. Such a channel is termeguakatised additive white Gaussian
noise channelLike the standard AWGN channel it contains no memory. Thangqu
tised AWGN channel is discussed further in Section 5.1.Zmelhe relative merits
(or metric9 of each quantisation level are calculated and their vanatith E, /N, for

BPSK modulation is plotted.



Chapter 3

Algebraic Decoding of Reed-Solomon

Codes

37



Chapter 3

Algebraic Decoding of Reed-Solomon

Codes

3.1 Introduction

While RS codes are constructed by a few well-defined metHdelstion 2.1.8) a large
variety of decoding methods have been proposed. An impwdistinction is between
those which aralgebraicand those which areombinatorialin origin. Algebraic de-
coders attempt to correct errors and/or erasures by (amally) solving an equation
to find the lowest weight error word. The fundamental methpavhich most RS al-
gebraic decoders operate is by attempting to solvéégeequationHowever, not all
algorithms use this approach, notable exceptions beirgr$tet's direct method [Pe-
terson, 1960] and Massey’s step-by-step algorithm [Mass8§5]. In contrast to

algebraic decoders, combinatorial decoders operate oa probabilistic methods to

38
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find the codeword which most closely matches the received wathilst many alge-
braic decoders can be adapted for error-and-erasuresidgad true to say that they
are unable to make maximum use of soft-decision informatidhe way that combi-
natorial decoders can. Most combinatorial decoding algars are trellis-based (e.g.,
the Fano algorithm and the Viterbi algorithm). Combinaibdecoders are discussed
in Chapter 4.

Some important algebraic decoding algorithms includeiBaah decoding, based
on Euclid’s algorithm and the Berlekamp-Massey algorithm1967 Berlekamp in-
troduced an iterative method for decoding binary BCH co@sslgkamp, 1967]. In
Peterson’s method the decoding complexity is proportitmé#ie square of the errors
corrected while for Berlekamp’s algorithm the decoding ptewity increases linearly
with the number of errors corrected [Wicker, 1994, p. 211hud Berlekamp’s al-
gorithm is much more suited for decoding long block codesre/imeany errors may
be corrected. In 1969 Massey described a “shift-registanttesis of the Berlekamp
algorithm [Massey, 1969]. The algorithm is now commonlyledlthe Berlekamp-
Massey algorithm in joint commemoration of their findings.1975 Sugiyamat al.
showed how Euclid’s algorithm, for finding the greatest camnrdivisor of two inte-
gers or polynomials, can be used to solve the key equationlecade BCH and RS
codes [Sugiyamat al., 1975].

This Chapter begins with a discussion of the key equationt({@e3.2). The syn-
drome, error-locator and error-evaluator polynomialstafined. A method by which
the error values can be calculated is given, along with il®@prEuclidean decoding

is described in Section 3.3, and illustrated with an exampéetion 3.4 describes the
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Berlekamp-Massey algorithm. The same decoding exampépesated for the case of
BM decoding. Finally, high-speed step-by-step decodirgh®sw~yn. Again, the same
decoding example is used to illustrate the algorithm. Adl éitgorithms are described
using the same form of the key equation, and have been geeer&br the case when

the BCH sense is not narrow (Section 2.1.7).

3.2 The Key Equation

3.2.1 Syndrome Calculation

Many common algebraic decoding algorithms for parity-éhkelock codes start by
testing if the syndromes (Section 2.1.2) of the receivectamdd are non-zero (i.e., if
the parity checks fail). If the syndrome vector or polynolhsanon-zero the received
codeword is in error and error-correction is begun.

Let the received codeword be represented by the polynartipl= rq + rx +
...+ r,_ X1 Let the error word corrupting the received word be represkiy
the polynomiale(x) = & + ex+ ... + e, ;x*. The syndrome valuésy, (j = 1,
2, ..., 2t) is the value of the received polynomial evaluated at theo@ts used to
define the RS (or BCH) code [Wilson, 1996, p. 471]. Thus, foaaw sense BCH

code b = 1) the j-th syndrome is calculated by substitutingfor x in r(x). For the

INote that these syndromes are not the same as the syndroonibeédsén Section 2.1.6
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more general case

Sj = r(ai+b_l)

n—1

= (r)(@y
i=0
n—1

=> (v +e)(a (3.1)
i=0
n—1

— Z(e)a“”b*”
i=0

wherej =1, 2, ..., 2t

3.2.2 Error-locator Polynomial

Let the received codeword contain(v < t) correctable errors. Let the locations of
the errors be given by time indices i, ..., i,. For each symbol in error define an

error-locator, X such that
X =a (3.2)

Noting that only symbols received in error contribute to #ymdrome values it is

possible to rewrite (3.1) in terms of the error-locators

S=> XY (3.3)

Theerror-locator polynomial A(x), is defined as a polynomial whose inverse roots

are the error locators [Wicker, 1994, p. 205] i.e., the isesrof the error locations are
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the roots ofA(x).
A = [T~ xx) (3.4)

From (3.4) it can be seen that d&{x) = v, and that for no errorsy( = 0) then
A(x) = 0. For binary codes it is sufficient to find the location of arogersince the
error value is always 1. However for RS and other multi-leaales it is necessary
to find the value of each error in addition to the location aftearror. It is therefore

necessary to define an additional polynomial to find the vafuke error(s).

3.2.3 Error-evaluator Polynomial

Theerror-evaluator polynomiais a polynomial which when evaluated at an error lo-
cation gives the value of the error. It is defined as folldW$e syndrome polynomial

is an infinite degree polynomial, however only the first@efficients ofx are known
1+8x) =1+ Sx
i=1

14y (Z e. x“’*“”) X (3.5)
=1+> &) (X")

1=1 j=1

The summatiory_ 7, X'""* "I can be simplified to a rational expression by noting it

is a geometric series of the foraw ar' + ar? + . . ., for which the simplified form is

2This is similar to [Wicker, 1994, p. 221], but has been geliwzd for the case wheim# 1.
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_ a
Soo_l—r

(o]

Z X|(i+b—1)xj — XOO: XIb_l (X|X)j
j=1

=1

_ _xibfl + Z xibfl (X|X)j

= (3.6)
B le—l + XIbX le—l
- 1-Xx +1—x.x
XPX
1 XX
Therefore (3.5) becomes
1+S(x)_1+Ze,l Yo (3.7)

Multiplying both sides of (3.7) by (x) (Equation 3.4) produces the definition of

the error-evaluator polynomial

A(X) [1+S(X)] = A(X)

L+§:]_ KXI

:A(x)+z WX H(l XX)]

(3.8)

=AM+ [eXx] @ - Xx)

i#l
i=1

= Q(x)

As the decoder is only able to calculate the first@efficients ofS(x) then §(x) is

unknown, though the decoder does know the valu§(®f modx*+1. Thus thekey
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equationwhich the decoder must solve is

A(X) [1+ S(X)] = 2(x) modx*+* (3.9)

An alternative definition of the key equation sometimes tb[@lark and Cain, 1981]

is

A(X)Su(X) = Qar(x) modx*+* (3.10)

While the error-locator polynomial is defined in the same &) it is important
to note that the syndrome polynomi&,;(x), in (3.10) is not the same as defined
in (3.5); they are related b§(x) = xS(X). As the error-evaluator is also defined in a
different manner the initial conditions for Euclidean anefBkamp-Massey decoding
also differ, as does the equation for calculating the eratwes fromA (x) andQ,(X).
After the solution to the key equation has been found the &yoations and values

must still be found. Future references to the key equatidirbeito (3.9) only.

3.2.4 Locating the Errors

The error-locator polynomialA(x), containsy, (0 < v < t) unique roots{X; ™,
Xt ..., X,7'}, corresponding to error locatiod$,, i,, ..., i,}. The roots may
be found by exhaustive substitution or Chien search [CHiB864]. The roots must be
unigue since an error can only occur in one position once.@wition of A(x) (3.4),

X X5 ..., X,71} € GF(g). This implies deg\(x) = v. If any of these con-
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ditions are not met the decoder should abort error-cooeand declare decoder
failure to indicate that the codeword contains an uncorrectableoeuof errors. The
reason why the decoder is able to identify a codeword conigix t errors is that
BCH and RS codes are not perfect [Wicker, 1994, p. 76] anctterist words in the

codespace which are greater thdttamming distance from the nearest codeword.

3.2.5 Calculation of the Error Values

Theorem 3.1 The Forney algorithm.

From the Forney algorithm [Forney, 1965] the error valges: {e,, &, ..., &}
are given by
—XEP04)
& = —T v (3.11)
A'(X)

whereX, = o' is the error-locator (Section 3.2.2).

Proof 3.1 The proof given here is similar to [Wicker, 1994, p. 222], bas been ex-
tended for the cade # 1. Take the formal derivative of the error-locator polynami

A(x), noting the identityjuv]’ = u'v 4 uv.

N (x) = [H(l - xx)]
- (3.12)

= > IX][@—%»

1=1 j#!
=1

At the error locatior¥; the error-locator polynomial i&(x) = 0, with the rootx = X?.
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Therefore substitut® * for xin (3.12).

N =
A== {x [Ja- XW)]
=1 i#
= X [T@-%x"

i
j=1

Similarly, substituteX,~* for x in the error-evaluator polynomial (3.8).

Q™) =e XX J(@—X%X™)

il
i=1

Dividing (3.14) by (3.13) gives

e X% (- %X

Q%) A
A(X) _X H(l _ XX
u
— _elxlbxlil
X
o _ X
| AT

46

(3.13)

(3.14)

(3.15)

(3.16)
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For narrow sense RS or BCH codes the error values are giveiVimkér, 1994,

p. 222]

=X

€ = W (3.17)

It can be seen (3.17) is equivalent to (3.11) for the dasel.

3.3 Euclidean Decoding

3.3.1 Euclid’'s Algorithm

Euclid’s algorithm is a recursive method for finding the gesa common divisor of
two elements in a Euclidean domain [Wicker, 1994, p. 50]. repkes of Euclidean
domains include integer numbers and polynomials whosdicmeits are elements in

the same Galois field.

1. Leta andb represent two integers or polynomials, where> b if they are

integers or deg > degb if they are polynomials.
2. Initialise the time-indexed variabt€® with the values—? = aandr© = b.

3. If r@=1 =£ 0, or for polynomials if deg-?(x) > degb(x), then defing® by

r0 = ri-2 _ gOpi- (3.18)

Repeat untit® = 0. The greatest common divisor is giveniyy?.
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Example 3.1 Calculate the greatest common divisor &+ 93 andb = 33.
The values for® andq® for each iteration are given in Table 3.1. The algorithm

terminates with = 4, therefore gcd(9383) =r® = 3.

Q@ 0 (02— g0 D10

33 —

27 93=2 x 33+ 27
6 33=1x27+6
3 27=4x6+3
0 6=2x3+0

i
-1
0

1

2
3
4

N A RN

Table 3.1: Solution to Example 3.1.

3.3.2 Extended Version of Euclid’s Algorithm

The extended version of Euclid’s algorithm is used to find Wates in the Euclidean

domain such that

gcd@, b) =sa+tb (3.19)



3.3. EUCLIDEAN DECODING 49

Since they are linearly related the same recursive algoritin be used to fingl’ and

t®. That is

0 = -2 _ gD (3.20)

{0 = t0-2 _ gOyE- (3.21)

At each step of the algorithm) = st 4 t®b. The initial conditions are found as

follows

re — g = Ya 4+ t-Yp (3.22)
-1 (3.23)
tcD — 0 (3.24)
(0 — = 93+ tOp (3.25)
9 —0 (3.26)

t9 =1 (3.27)
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When the algorithm terminatesandt are given bys'—? andt(— respectively.

Example 3.2 Calculate the values sfandt for a = 93 andb = 33.
The values for®, q®, s andt® for each iteration are given in Table 3.2. The

algorithm terminates with= 4, therefores = 5 andt = —14.

i g0 0 g (0
-1 — 93 1 0
0 — 33 0 1
1 2 27 1 -2
2 1 6 -1 3
3 4 3 5 -14
4 2 0 -11 31

Table 3.2: Solution to Example 3.2.

3.3.3 Euclid’s Algorithm for Solving the Key Equation

The applicability of Euclid’s algorithm for solving the kegquation can be shown

most clearly by re-expressing the key equation (3.9) as

AX) [1+ S(X)] = Q(x) modx2+ (3.28)

= Q)X + A(X) [1+ SX)] = QKX) (3.29)
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Comparing (3.29) with (3.19) it can be seen that

a =) (3.30)
b= [1+ SKX)] (3.31)
s= 0O(x) (3.32)
t = A(X) (3.33)
ged@@, b) = Q(x) (3.34)

Therefore the extended form of Euclid’s algorithm can bedusesolve the key
equation. AsO(x) is not useful the iterations fas” are ignored. The Euclidean

decoding algorithm is presented below:

1. Calculate the syndrome polynomi&(x).

2. Initialise the algorithm variables, let

reh(x) = X+ (3.35)
rOx) =1 (3.36)
t-9(x) = 0 (3.37)
tO(x) = 1 (3.38)

3. If r®1(x) # 0 then define

rO(x) = rt-2(x) — g (ri-(x) (3.39)
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4. Define

tO(x) =t 2(x) — g X)r Y (x) (3.40)

5. If degr®(x) >t go to step 3.

6. A(X) = tO(x) andQ(x) = r®(x). Find the roots of\(x) and determine the error

locations.

7. Find the error magnitudes using the Forney algorithm1(3ahd correct the

errors.

Example 3.3 To correct an erroneous codeword from RS@5).
The code RS(1®, 7) is a triple error-correcting code over GF(16). Let thepri
itive polynomial for GF(16) be ¥ a + a*. Table 3.3 gives the elements of the field

in polynomial representation. The identity element mayp &ks represented by

=1 (3.41)

Let the sense of the code be= 3. The generator polynomiaj(x), of the code

is (2.24)

gx) = (x— ®)(x — a’)(x — &®)(x — a®)(x — a’)(x — a®)
(3.42)
= a®+ o™X+ o™ + a1 + o + o + XO
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Element| Polynomial
representation
o> a 1 0
0 0O 0 0 O
1 0O 0 0 1
a 0O 01 O
a? 0O 1 0 O
a? 1 0 0 O
ot 0O 0 1 1
a® 0 1.1 0
ab 1 1 0 O
a’ 1 0 1 1
a® 0 1 0 1
a’® 1 0 1 O
al® 0 1 1 1
att 1 1 1 0
at? 1 1 1 1
al? 1 1 0 1
ot 1 0 0 1

Table 3.3: Galois field elements for GF(16).

Let the data polynomial be

u(x) = a®x® (3.43)

The systematic codeword is calculated from Equation 2.18¢gives

V(X) = a” + a’X+ a®¢ + o’ + a'™X* + a®¢ + a’x? (3.44)

After transmission the received codewor(k), is corrupted with errorg(x), where

r(x) = v(x) + e(x) (3.45)
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Let

e(x) = a®+ aM'x + o*x*? (3.46)

therefore

r(x) — a® + o™+ a® + ahC + a™ + o (3_47)

The syndromes are calculated as

S = L(a&)+ o' (&) + a.(&)) + o () + o (a)) (3.48)

wherej=1,2, ..., 6

and are shown in Table 3.4. From (2.21) and Table 3.4

[1+9X)] =1+ a™x+ a'% + a®* + % + a®X® (3.49)

The initial conditions for Euclid’'s algorithm ar@-1(x) = x2 = x’, QO(x) =

S | Value
1 all
210

3 alO

4 | o

5| a°

6 | a?

Table 3.4: Syndrome values.
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14+ S(X)] = 1+ o™+ o’ + a®* + % + a®¢, ACY(X) = 0 andAO(x) = 1.
The error-locator polynomialA®(x), the error-evaluator polynomia®(x), and the
quotient,q” are given in Table 3.5 for each iteratianof the algorithm.

The solution to the key equation is found after 3 iteratidhs, error-locator and

error-evaluator are

AX) = o® + at'x + a®% (3.50)

QX) = a® + a® + a’ + o™X (3.51)

The roots of the error-locator polynomial can be found bliezitexhaustive substitu-
tion or by a Chien search [Chien, 1964]. The roots are*BBnda*, or in their inverse
form, from (3.41),a°, a=*? anda~t. ThusX = {1, a, a*?}, corresponding to errors
located afx°, x, x'?}.

All that remains is to calculate the value of the errors ateher locations and
subtract the error polynomial from the received codeworsltife code is not narrow

sense the error values must be found from (3.11). The foreratative ofA(x) is

N(X) = [@®+ a"x+ asxe‘]’
= a + 3(a®¥) (3.52)

— all+ aSXZ



i AV (x) 29(x) q“(x)
-1 0 X’ —
0 1 S(x) —
1 a® + a3X a® + a¥®X+ a®% + ¢ + a’x® a® + a3x
2 a® + o a® + a®x+ o + a'?x a® + a®x + o + a'?x
3 a®+ax+ acé a® + a®X+ a’™ + ot al%x

Table 3.5: Solution of the Key Equation using Euclid’s algon.

ONIdOO3d NY3AI1oN4g €€

9%
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The error values are calculated thus

XX )
A (X7)
X oo+ 0% (%) + o7 (X7) + 0 (X )]
all 1+ a3(x|—1)2

( (3.53)
a® forX =1,

€ =

=43 at forX = a,

a® forX = o2

\

Therefore the error polynomial is
e(X) = a®®+ a'x + a®x*? (3.54)

The transmitted codeword was

V(x) = r(x) — e(x)
(3.55)
= a' + a’x+ a™¢ + a™® + a™X + o + X"

3.4 Berlekamp-Massey Decoding

3.4.1 Introduction

Massey [Massey, 1969] recognised that the problem of finthegninimum-degree

solution to the key equation is the same as finding the minisfength feedback shift-
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register which generates the firdt t2rms of the syndrome polynomigi(x). The
Berlekamp-Massey algorithm may be used for decoding biaadymulti-level codes.

An overview of the algorithm is given below:

1. Find the shortest FSR which will predigtfrom S,.

2. Testthe FSR to see if it will also predigf.

If the test is successful (i.e., there islscrepancyof 0) continue until the test

fails (or all 2 syndromes have been generated).

If the test fails use the discrepancy to modify the connestio the FSR so that

() the next syndrome is correctly predicted,
(i) previous (correct) predictions are not changed,

(i) the FSR is increased by the smallest possible amountfifd the

minimum weight error).

3. Continue until all 2syndromes can be predicted correctly.

The connections to the FSR produce the error-locator potyalp A(x). SinceA(x)

can be found from2(x) [1 + S(x)] it follows that Q¥ (x) obeys the same recursive
relationship as\®(x). Therefore a second FSR can be simultaneously constructed
to find ©2(x). Both A(X) and Q2(x) share the same discrepancy but need their own

correction polynomialsX(x) andw(x) respectively).
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3.4.2 The Berlekamp-Massey decoding algorithm

The steps below show the procedure for Berlekamp-Masseydides [Berlekamp,
1967; Massey, 1969] of an arbitrary BCH or RS code. This fedldrom [Wicker,
1994, p. 219], but with adaptations to work for any valudpand to generate both

the error-locator and error-evaluator polynomials.
1. Calculate the syndrome valu&, S,, ..., Sy for the received word.

2. Initialise the algorithm variables, let

i =0 (3.56)
L=0 (3.57)
AOX) =1 (3.58)
A(X) = x (3.59)
QOX) =1 (3.60)
w(X) =0 (3.61)

3. Increment the iteration countér= i + 1. Compute the discrepand/’ by sub-

tracting thei-th output of the FSR defined b\W—?(x) from thei-th syndrome.
L

AV =8 -3 AYg (3.62)
j=1

4. Test the new discrepancy.Af” = 0, then go to step 8.
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5. Modify the connection polynomials to remove the discrepa

AO(X) = AD(X) — AOA(X) (3.63)

QO(x) = Q-D(x) — ADw(x) (3.64)

6. Testthe FSR length. Ifi2> i, then go to step 8.

7. Change the FSR length and update the correction polyfm@mia

L=i—L (3.65)
(i-1)

A(X) = AT)(X) (3.66)
Qi1

w(X) = T(X) (3.67)

8. Take into account the new length of the FSR.

A(X) = XA(X) (3.68)

w(X) = Xw(X) (3.69)

9. Check if all the syndrome values have been used<I®t, then go to step 3.

10. Determine the roots df(x) = A@)(x).

11. If the roots are distinct and lie in Gd)(then calculate the error magnitudes

(using Equation 3.11) for each error locatiox) = r(x) — e(x). STOP.
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12. If the roots are not distinct, or do not lie in Gfy(then the calculated error-

locator does not agree with its definition (3.4), declare@oder failure. STOP.

Note that it is trivial to implement a decoder which can cottgerrors and detect
an extraty errors, where 2 + t; = d — 1. The syndromes are reduced in number
to 2. and the condition in step 9 becomes 2t.. It is also a simple matter to add

error-and-erasure decoding to the BM algorithm [Wicke©4]9

Example 3.4 To correct an erroneous codeword from RS@5).

Let the code and received codeword be as defined in Exampl&8cll that the
code hash = 3, and the received codewordri&) = a® + a®®x + o' + a* +
a'x* + a®¢. The values of the algorithm variables for each iteratiane given in
Table 3.6.

The values ofA(x) and2(x) are identical to those found by Euclidean decoding
(within a common constant factor, as found by [Clark and Ca881, pp. 207-208]).
The common constant factor is removed in the evaluation .4fl{3 Hence the error

polynomial is identical to (3.54). O



i S AO(x) A L A0(x) Q0(x) w(X)

0 — 1 — 0 X 1 0

1 ot 1+ o™X att 1 a*X 1 a*X

2 0 1 a1 a*x? 1+ a*x a*x?

3 a'® 1+ a2 al® 2 a®X 1+ aMx+ o a®X + ax?

4 o 1+ a®x+a¥ o® 2 a’x? 1+ a'x+ a®% X + ax®

5 o 1+a¥%+ax o' 3 a™xX+a®>+a® 1+ a'x+ o>+ a®»E  a*x+ o™ + ot
6 a? 1+a%%+a®B®E a® 3 o™+ o>+ o’ 14+ ax+ o>+ a®¢  a*® + o' + o3¢

Table 3.6: Solution of the Key Equation using BM algorithm.

ONIdOO3Id AFSSYN-dWVMFTH39 7€
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3.5 High-speed Step-by-step Decoding

3.5.1 Introduction

The step-by-step algorithm differs considerably in itsrapgh from that of the Eu-
clidean and Berlekamp-Massey algorithms, which both sibledey equation to com-
pute the error values and their locations. Step-by-stepakevery possible error
location for the correct error value individually and witticsolving the key equa-
tion. The original step-by-step algorithm was introducgdvassey [Massey, 1965]
in 1965. However, in this section the modification proposgtei and Wei [Wei and
Wei, 1993] is discussed as it is more efficient than the oaigin

The basic algorithm is as follows. Suppose a method existaltulate the error
weight of a received codeword without decoding it. Firstitligal error weight of the
received word is calculated. A symbol is temporarily chahged the error-weight of
the temporarily-changed word calculated. If the errorgheis increased the original
symbol is correct. If the error weight has decreased theméwesymbol is correct.
Otherwise the symbol is in error but the new symbol is inatifrand another value
should be tried until the correct one is found. The processgeated for all informa-
tion symbols. It is not necessary to correct the parity syisjibough if desired they
can be corrected in the same way.

For the case where the received codeword containd or less errors, it is nec-
essary to distinguish up toerrors since it is likely a correct symbol will be replaced
with an incorrect one while searching for the first error lbma However, if the full

error-correction capability of the code is to be utilisedrtht is necessary to correct a
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codeword containing exacttyerrors. Therefore it is necessary to distinguish between

t — 1 andt + 1 errors.

3.5.2 Calculating the Error Weight

Of great importance to the step-by-step algorithm is thétalbo efficiently calculate
the error-weight of a received codeword. This can be acHiéwen the interdepen-
dence of the syndromes of RS codes using Theorem 9.9 of feetand Weldon,

1972]. This states that for any RS code the matrix

S
N, = o Sn (3.70)
S Su .- S
wherej=1,2, ..., n

is singulat if the weight ofe(x) is j — 1 or less, and is non-singular if the weight is
j. If the weight ofe(x) is greater tharj, the result is not determinable. The proof is
given in [Peterson and Weldon, 1972].

It was previously stated that an error weight of up 61 must be distinguishable
by the decoder. From forming the matih,, it can be seen that the syndrome value
2t + 1 is required, which is not calculable fortaerror-correcting code. However,

in the calculation of dely,, ) the cofactor ofS,,; is detN,). Therefore if detl,) is

3A matrix is said to be singular if its determinant is zero.
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zero, then dei\,,) is independent db,, ; and can be calculated. Thus the problem of
requiringSy., can be overcome by defining a modified syndrome malitix, where
S is replaced by zero. Note that the result of 8&f() is only valid when dety,)
IS zero.

For the purpose of calculating the error weight only the slagty of the syndrome
matrix is important, the actual value if non-zero is diseatdConsequently the results

may be expressed as a sequence of binary decision bits

1 ifdet(N;) =0,
h, = (3.71)
0 ifdet(N;) #0.
wherej =0, 1, ..., t

l If det(Nt+l) = O,
h[+1 = (372)

0 ifdet®,,,) # O.

As the error weight is dependent on all the 1 binary decision bits it is useful to

combine them into a decision vectdD,

D=(hy, hy, ..., hH—l) (3.73)
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From (3.70)

Weight ofe(x)
0 D € ¢o = {(1")} (3.74)
1 D € ¢, = {(0,1)} (3.75)
w D € ¢ = {(X"1,0, 1-"+1)} (3.76)
wherew=2, 3, ..., t—1
t D € ¢ = {(X"%,0,X)} (3.77)
t+1 D € o = {(X*,0,X), (X%, 1,0)} (3.78)

where{(1**!)} indicates + 1 consecutive “1”s an& indicates “0” or “1”.
The conditions above show thiat- 1 errors are distinguishable from- 1 errors.
It is not possible to distinguishandt + 1 errors in all cases. To account for this it is

necessary to make a small modification to the basic algoritbsaribed previously.

3.5.3 Calculating the Syndrome Values

Wei and Wei use a concept of updated syndrome values. Siecehémges to the
received codeword are known it is possible to only fully cédte the syndrome val-
ues once and from there on keep a running total. This conseptportant in re-
ducing the complexity of the algorithm. For a code with sehse- 1 the syn-

dromes for a trial codeword with a trial error val@eat locationx’ can be computed
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from [Wei and Weli, 1993]

§=5+0
where 5 = o (3.79)

jc{0,1,...,n-1}

The above equation will now be generalised for codes otham trarrow sense

(b > 1), and for trial locations other thaf. Let the received codeword be represented

by
Fr(X)° =r X" 41, X2 X+ T (3.80)
The syndromes for a BCH code are given by (from 3.1)
n—1
S =) nalty (3.81)
i=0
The original syndrome values are

Sl) = rn,laf(nfl)b + rnfza(niz)b —+‘ cee + rzaZb + I’lab —+‘ ro (382)

$ — rnila(n_l)(bﬁ‘l) + rniza(n_z)(bﬁ‘l) 4+ 4 rzaz(b+1) + rla(b+l) + Io (383)

% — rn_la(n—l)(b+1) + rn_za(n—z)(b+2t) 4+ 4 rzaz(b+2t) + rla(b+2t) + 1o (384)

The implementation described in [Wei and Wei, 1993] cydhcshifts the codeword
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before correcting each symbol at tkfelocation. As RS codes are cyclic, any cyclic
shift of a valid codeword is also a valid codeword. Henceicysthifts do not alter the
error weight of the received word. To calculate the errorghetyclic shifts may be

ignored, instead modifying the symbol at a variable posipoThis gives

r(x)* = r(x)°

= X X 2 X T+ OXP

where 8 = o (3.85)
]=0,1,...,n=-2
p=01 ..., n-1

The modified syndrome values are

S=r, ™" 4r, a4t ra® 410" + 1o+ o’ (3.86)

$ — rn,]_a(n_l)(b+1) + rniza(n_z)(b*‘l) 4+ 4 rzaz(bJFJ-) + rlap(b+l) + rO (387)

S Y e I L A L I (3.88)
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Therefore the updated syndromes are generated by

S = + Barito-D

where3 = o/
i=1,2 ..., 2 (3.89)
je{0,1, ..., n-1}
pe{0, 1, ..., n—1}

For the casg = 0 (3.89) reduces to (3.79).

3.5.4 The Algorithm

The algorithm described below is a slightly modified versafrthat given in [Wei
and Wei, 1993]. In particular, the received codeword is iyatically shifted, instead
the position of the symbol under test moves. For the higbtlienplementation tested

(Section 6.3.2) this approach was more efficient. Annatatim the algorithm are

shownthus
1. Calculate the initial syndrome valu& wherei = 0, 1, ..., 2t and then
obtainD®.
2. Letp=n—k

Only the information symbols require correction; the pasitmbols occupy the least significant

2t symbol positions in the received codeword.

3. Letj=0.
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10.

LetS = o’ then obtair® + fa'P.

Keep a running total of the temporarily-changed syndronhesesa

If D° € ¢, andD?* € ¢,.,1, where 0< w < t, then go to step 10.

The number of errors has increased, therefore the origgmabel value is correct.

If D° € ¢, andD?! € {(X'*%, 1,0)}, then go to step 10.
The temporarily-changed received codeword containg errors. Therefore the original code-

word must have containdderrors. Hence the original symbol value is correct.

If D° € ¢, andD! € ¢,_,, where 1< w < t, then add?x® to the received word.
Replaces’ by S' andD° by D*. Go to step 10.
The number of errors has decreased by one. Therefore thetargwalue of3 is correct so

update the algorithm variables.

. 1fD° & {@o, ¢, ..., h_1} andD*! € ¢ _,, then add3x® to the received word.

ReplaceS’ by S' andD° by D*. Go to step 10.

The original codeword containédbrrorst — 1 errors remain.

If j <g— 1thensef = j+ 1andgo to step 4.

The symbol being tested may be incorrect and the correct glyhds not yet been found, try
another value. Alternativelp* € {X'=1,0,X}, hence it is not possible to ascertain whether
the received codeword contaihert + 1 errors. For the case whét € {X'=1,0, X} the only

course of action is to try different symbol values until eitb* € {X'=1,1,0} orD! € ¢_1.

If p<n—1thensep= p+ 1andgo to step 3.

The current symbol has been tested, move onto the next symbol
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11. All thek symbols have been checked and corrected. The decoded atform

symbols are in the most significaktocations of the received codeword.

Example 3.5 To correct an erroneous codeword from RS(1,9).

Let the code and received codeword be as defined in Exampl&'Be3code has
b = 3, and the received codewordrix) = a® + a®®x + a®¢ + a*x® + a''x* + a®C.

For the key decoding stages, Table 3.5 shows the active oecpdsition,p, the
trial error value,, and the before and after error weigh¥, and D* respectively.
Also shown is the trial codeword. In this Example errors ia garity symbols are
not corrected, so the first decoding positiorpis= 6, i.e.,x®. The decoder has cor-
rectly established that three symbols are in erfof|(= 3). At locationx® successive
elements from GF(16) are tried in turn as the possible emtuey For3 = a3 the
trial codeword has increased to distance 4 from the neamestat codeword, thus the
decoder is able to identify that the original symbol valueswarrect. This pattern is
repeated up t@ = 11. Note that forp = 9 the decoder cannot detect an increase in
the error-weight. This means for every possible error patielocation® the distance
to the nearest valid codeword is only, hereas for other locations the distancetis 2
or 2 + 1. As the decoder has not detected any decrease in errortvileebriginal
symbol must be correct, provided the original error weighsw 2t.

At locationx*? the decoder has found and corrected an error—the error igadife
and is signalled by the decrease in error weight. Two mog®remain, the decoder
searches the remaining two locations but the errors areonatifsince they are in the
parity symbols. The algorithm required 52 attempts to atriiee single error in the

information symbols. OJ
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Table 3.7: High-speed step-by-step decoding of RH15H).
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Chapter 4

Trellis Decoding

4.1 Trellis Construction Methods

4.1.1 Introduction

Techniques for designing block code trellises have beessiiyated ever since they
were first proposed for error-correction in 1974 [Bahéal,, 1974]. Wolf [Wolf, 1978]
has shown that such a trellis, known asyadrome trelligalso called a\Volf or BCJR
trellis), can be used for maximume-likelihood decoding ofabitrary linear block
code. McEliece [McEliece, 1994] proved syndrome trellises minimal and pro-
posed a technique to obtain an optimal reordering of thergémematrix of the code.
In 1988 Forney [Forney, 1988b] introduced the concept cbset codeand its
coset trellis These trellises have a regular structure, composed of dauaf identi-
cal subtrellises which differ only in the labelling of thellis branches. This impor-

tant advancement in trellis design allows a reduction irnlibé decoder complexity

74
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and storage requirements of a corresponding Viterbi dedbttnary et al., 1995b].
Muder [Muder, 1988] proved that coset trellises are miniaral that the number of
states in the trellis diagram can be minimised by an appapreordering of the sym-
bols in the codeword. A vast amount of literature has accatadlon the design of a
minimal trellis for a given block code [Berger and Be’ery 9B9 Honary and Markar-
ian, 1993a,b; Honargt al., 1993; Kasamet al,, 1993a,b; Kschischang and Sorokine,
1995; Wuet al.,, 1994; Zyablov and Sidorenko, 1993]. Optimal reorderinggehbeen
found for certain binary codes [Berger and Be’ery, 1993 negr 1988b; Honargt
al., 1995b; Kasamet al., 1993a,b]. The general solution to this problem, and its
extension for non-binary block codes, is however unsolvedi )l @mains a complex
analytical task.

Trellises are usually constructed in their state-oriefdenh (Section 2.4.3). Itis
a simplification used for trellis construction, but it is reotequirement. Indeed, for
some codes (e.g., non-linear codes) state-oriented fanot gossible. Both syndrome

and coset trellises are based upon their state-oriented for

4.1.2 Shannon Product of Trellises

Shannon [Shannon, 1956] described a product of two chamvieth “corresponds
to a situation where both channels are used each unit of timeSimilar product
exists for two (or more) trellises which are combined in sachanner that they
share the same time indexes. This product is known aStia@non produadf trel-

lises [Sidorenkaet al,, 1995, 1996]. It is denoted by,
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Proposition 4.1 Consider two codeg’ andC” with the same label profile (and it
follows, the same code lengtt). Let T’ be a trellis of the cod€’ andT” be a trellis

of the codeC”. The Shannon product

T=Tx*T" (4.1)

of these trellises is the trellis of the co@e= C’' + C".

Proof 4.1 It is necessary to prove a one-to-one mapping between cadswbcode
C and the paths if.

The sum of’’ 4+ C” produces the set of all possible sums-v”. Letv' + Vv’ € C.

Associated withv' is a pathP’ with labels (;, I}, ..., I!), while associated with” is

a pathP” with labels (7, I, ..., ). By definition, inT there is a path with labels

i+ L+, o 1)y =3, G, o 1)+ 1, 4.2)
:VI+V” E CI+CII

for any pathP in the trellisT. By definition, there exists ifi’ a pathP’ with labels
(I3, 15, ..., 1) which is the path for codewond (v' € C'). Likewise, there exists in
T" a pathP” with labels (7, I, ..., 1") which is the path for codewond' (V" € C").

For trellises which are labelled with both data and code sy}mthe Shannon
product can be extended, and performed on each set of |alledse code labels are

summed and data labels concatenated. [ |

A code(C having a sum structure can be constructed from the (lineen) &f its

subcodes. There are many codes having the property of a suctuse, e.g., RS, RM
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and the Nordstrom-Robinson code. Alternatively, theigddir any such code can be

deconstructed into the trellises of its subcodes.

4.1.3 Syndrome Trellises

In proving syndrome trellises are minimal McEliece [MclEke 1994] showed that
the maximum number of states in a syndrome trellis can benastid using Wolf's

bound.

Ninax < min{q*, g™} (4.3)

The minimum number of states at th¢h level of the minimal trellis can be ob-

tained as [Forney, 1988b; Zyablov and Sidorenko, 1993]:

qk
= qkpastqkfuture (44)
i=0,1,...,n
where
kpast: dim(cpast) (45)
kfuture = dim(cfuture) (46)
Cpast = (l, kpasb d) (47)

Cfuture = (n - i, kfuture, d) (48)
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Theorem 4.1 The maximum number of states in the minimal syndrome treflian

RS code is defined as:

Niax = min {df, "} (4.9)

Proof 4.2 To prove Theorem 4.1 consider théh and ( + 1)-th vertices of the trellis
such that = (n— 1)/2 andi + 1 = (n+ 1)/2. Consider also the two different types
of code:

() Low-rate RS coden — k > k

It is easy to show since for RS codes- n — d + 1 (Equation (2.25))

5 <d-1 (4.10)
and
%1 <d (4.11)
henCd(future = kpast: 0, and
q _
Nmax - w =(q (412)

(i) High-rate RS coden — k < k

Similar to (i) it follows thatN,,., = g™ .
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To obtain a syndrome trellis for an Rk, d) code over GH{). Letu = (uy,
U, ..., U) be a vector of information symbols anmd= (vi, V,, ..., V,) be the
encoded vector wheng € GF(q) andv, € GF(q). Let G be the generator matrix of

the RS code in cyclic form [Vardy and Be’ery, 1998.is given in the format:

01
g
G=| " (4.13)
Ok
whereg;, (i =1, 2, ..., K) is thei-th row of the generator matri&. The desired RS

code can be constructed as a surk obdes:

k
c=> ¢ (4.14)
=1

where thej-th code C;, is an @, 1,d) code over GF{) generated bys; = [g;]. Itis

apparent that) codewordsy;, in C; can be obtained as

vi = u; [g] (4.15)

j=0,1,...,q-1 (4.16)

sinceu; is able to take any af values. The corresponding trellisds,j =1, 2, ...,

k start from the root$ ), and finish at the goaly ;). The trellises havae + 1
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vertices and the number of states in thih vertex is defined as follows [McEliece,

1994]:
No=N, =1 (4.17)
q ifg #0andg™ #0
N = (4.18)
1 for all other cases
wheret =0, 1, ..., nandg; is thet-th element ofy;.

Proposition 4.2 Let T; be a syndrome trellis of an elementary catiegenerated by
0;, wherej =1, 2, ..., k. ThenT =T, x T, ... x Ty is the syndrome trellis of the

codeC, generated bys.

k
Proof 4.3 SinceC = >_ C;, proof follows from Proposition 4.1. The state profile of

=1
the designed syndrome trellis can be obtained as follows:

(4.19)
wherem is a number of non-zero elements in thth column ofG followed by any
other non-zero element. [ |

Theorem 4.2 The designed trellis is a minimal syndrome trellis.

Proof 4.4 In order to prove Theorem 4.2 it is necessary to show the maximumber
of states in the designed trellis is given according to Taeo4.1. Thus calculate the

parametem for two different cases.



4.1. TRELLIS CONSTRUCTION METHODS 81

Consider a row of5. It hasd consecutive non-zero elements from whidh« 1)

elements are followed by a non-zero element.

(i) Low-rate RS code:n{— k > k)

the maximum number of non-zero elements which are followedrty

other non-zero element is given by, = k.

(i) High-rate RS code:n{— k < k)

the maximum number of non-zero elements which are followedrty

other non-zero element is given by,,, = n — k.

Thus the maximum number of states in the designed trellisfined as

N™ = min {qf, g"~*} (4.20)

and from Theorem 4.1 it follows that the designed trellis inimal. [

Example 4.1 To design the syndrome trellis for the narrow-sense R5@E) code
with symbols taken from GF(8).
The generator polynomial is

g(x) = (x— a)(x— a?)
(4.21)

=X+ a’x+ a®
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from which the generator matrix can be obtained as follows:

O1 o> a* 1 0 0 0 O
0> 0 & a* 1 0 0 O
G=]g|=|0 0 a a* 1 0 0 (4.22)
Os 0 0 0 a® a* 1 O
| Os | | 0 0 0 0 & o 1]

The overall code(, is represented as
c=> ¢ (4.23)

whereC; is a (7, 1, 3) code generated ly:

Cl = ul[gl] = (agulv a4ul’ ul? Ov Ov O? O) (424)
CZ = Uz[gz] = (O’ O[3U2, O[4U2, UZ’ O’ O’ O) (425)
C5 = US[QS] = (O’ O, O, O, C¥3U5, G.’4U5, U5) (426)

The component trellises have a very simple structure (asrsioFigure 4.1) with the
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Figure 4.1: Component Syndrome Trellises for RS(3).
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state profiles defined according to (4.19):

Ny(t) = (1, 8,8 1,1,1,1,1) (4.27)
Ny(t) = (1, 1,8,8 1,1, 1, 1) (4.28)
No(t)=(1, 1,1, 8,8, 1, 1,1) (4.29)
Nit)=(1, 1,1, 1,88 1,1) (4.30)
Ns(t) = (1,1, 1,1, 1, 8, 8 1) (4.31)

Applying the procedure outlined above, the Shannon prodtthte trellises, T =

T, x T, x T; x T, x Ts has the following state profile:

N(t) = (1, 8, 64, 64, 64, 64, 64, 8, 1) (4.32)

and the overall syndrome trellis for the R$%73) code is shown in Figure 4.2. Simi-
lar trellises can be obtained using the techniques destig@\Volf, 1978]. However,
the technique described here allows one to label the desigelés with both informa-
tion and encoded symbols and is easier to implement. Usmgethnique proposed
in [Forney, 1988b; Zyablov and Sidorenko, 1993] it is easghow that the minimal
trellises for RS(75, 3) must have 64 states and the designed trellis is isomotphic
the minimal trellis of the code. Therefore the designedisred a minimal trellis.

The isomorphism of the trellis is demonstrated in Figure &Bich is instead
constructed from the Shannon prodtict (T, x T,) x ((T, x Ts) x Ts) and clearly shows

the cosets of the underlying RS code. Il
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Figure 4.2: Syndrome trellis for RS(3, 3).
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Figure 4.3: A trellis isomorphic to the RS®, 3) syndrome trellis.
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4.1.4 Coset Trellises

A coset trellis contains a set of parallel subtrelliseshigly regular structure enables
the storage requirements to be reduced since each sugisé@lentical in structure and
only the branch labels differ. Moreover, the labels diffgradfixed offset which is the
value of the coset leader. Decoding algorithms which are tblake advantage of its
regular structure (e.g., two-stage decoding) are of lowengdexity than the Viterbi
algorithm (Section 6.4.2). Alternatively, a suitable déeocan take advantage of the
parallel subtrellises to perform most of the decoding ojp@mna in parallel and thus
operate at a higher throughput than a decoder over an ieetyallis.

The Shannon product of trellises (Section 4.1.2) can beieppd the design of
minimal coset trellises of RS codes. To design a cosetdritlis first necessary to

calculate the state profile of the minimal syndrome tretlisthe RS, k, d) code:

Nsynd: [No, Nl, ceey Nn] (433)

The state profile can be obtained from the calculation of temal number of states
for every splitting point of the trellis (4.4). From the calatedN, 4 choose splitting
points which have the same number of states and define tleesstdtiabel profiles of

the desired trellis:

Ncoset: [l’ Nl, NZ’ sty NNc—l’ 1] (434)

Lcoset: [ll, IZ’ ey INc—l] (435)
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whereN. is the number of columns (vertices) in the desired cosdigreSince all

vertices have the same number of states:

Ni == nj (436)
hbj=212 ..., N—-1 (4.37)
and in general
i # 1 (4.38)
hbj=212 ..., N—-1 (4.39)

At the next stage represent the generator m&irin the following format:

01
9z
G=| |=|G G ... Gus (4.40)
Ok
whereG,,i = 1, 2, ..., N. — 1, hasl; columns anck rows. Each row ofs is used

to design the trellis diagram of tha, (1, d) code over GH{) with the label size profile
given as in (4.35), and the overall trellis diagram can beioled as the Shannon
product ofk designed component trellises. The designed trellis is anmaincoset

trellis [Honary and Markarian, 1997].

Example 4.2 To design a coset trellis for RS§(3, 5) with symbols taken from GF(8).
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The generator polynomial is

9(x) = (x— a)(x — a’)(x — a”)(x — a?)

(4.412)
= a®+ ax+ X+ o+ x*
from which the generator matrix can be obtained as follows:
o2 a 1 o2 1 0 O
G=]100a®a 1 & 1 0 (4.42)
0 0 @ a 1 a1

Following the procedure outlined above, the state profiltheftrellis is obtained as

Nsynd: [No, N]_, ceey N7], Where

3

)= ng3 —1 (4.43)
q3

N = o =8 (4.44)
q3

N = cor = 64 (4.45)
q3

Ns = o = 512 (4.46)
q3

No = oo = 512 (4.47)
q3

N = oo = 64 (4.48)
q3

N = o =8 (4.49)
q3

N, = " =1 (4.50)

andNyng = [1, 8, 64, 512, 512, 64, 8, 1]. It is apparent that for a given RS@, 5)
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code it is possible to design a number of different (but isgphi) minimal trellises.

Three possible solutions, each with different state anell lpiofiles, are given below:

(i)

N=[18, 8,1 (4.51)

L=11,5,1] (4.52)
(ii)

N = [1, 64, 64, 1] (4.53)

L=1[23 2 (4.54)
(iii)

N = [1, 512 512, 1] (4.55)

L=13 1,3 (4.56)

Choosing solution (ii) the generator matrix of the code is:

a® « E 1 ao® 1 i 00
GZ[Gl G, Gg]z 0 &' a 1 & 1 0 (4.57)
0O O E o a 1 i o 1

The overall trellis diagramT, can be obtained as the Shannon product of three trel-
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lises, T = T, x T, x T3, each one corresponding to a {75) code, generated by its
respective row ofs. These trellises are presented in Figure 4.4 and the oveztik
diagram is shown in Figure 4.5. As follows from Figure 4.% thinimal coset trellis
for RS(7,3,5) consists of 8 identical, parallel subtrellises whicHeatifonly in their

labelling. Each such subtrellis has 4 vertices, and a maxii®gtates. O

4.2 Decoding Algorithms

4.2.1 Introduction

The aim of a trellis decoder is to choose thestpath through the trellis, either by
maximizing the similarity or minimizing the difference beten the received sequence
and one of the codewords. Depending upon which metrics areghestmay mean
the largest or smallest path metric. If the trellis is labelivith both data and code
symbols the decoding algorithm can usually be configuredutpud either data or
code symbols. This is true for the Viterbi and soft-outpug¥hi algorithms, and two-
stage decoding (Section 4.2.3). While the dataword is nityrtfee required output
some product code decoding algorithms may require the nkety codeword (Sec-
tion 5.3.4).

Trellises for block codes are fixed in length, while the léngt a convolutional
trellis is related to the message length. Since this caritnesexceedingly long trel-
lises convolutional decoding algorithms normally trurectte trellis early to reduce

the decoding delay and memory to a finite, known value. Farrtrason convolutional
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code trellises are frequently seen with multiple start amti@oints, reflecting the fact
that the decoding sequence may begin and end at any statier &ledl Jacobs have
shown that the length of the truncated trellis should be 4tonBs the code constraint
length, by which time it can be assumed that all survivingnpdiave merged with the
ML path [Heller and Jacobs, 1971]. Forney’s more consergatsult [Forney, 1970]

sets the minimum decoding length a8k.

4.2.2 Viterbi Decoding

An asymptotically-optimum decoding algorithm was progbsy Viterbi [Viterbi,
1967] in 1967. It was later shown [Omura, 1969] that the VAvides a ML de-
coding solution for convolutional codes, and has since lsed for ML decoding of
block codes also. It reduces the computational load by ggkdvantage of the trellis
structure. It calculates a seriespdth metricswhich are a measure of the similarity
(or difference) between the received sequence and thehp@ssinsmitted sequences.
The VA eliminates paths which cannot possibly form part & ML path. This is
performed when two or more branches enter a node; the ppdihlhaving the best
metric is chosen to become tlsarviving path This continues until the end of the
trellis is reached and a surviving path selected. The VAumlig implemented in one
of two methods, eitheregister-exchange mode trace-back mode

The Viterbi algorithm is mostly easily explained with thel af an example de-
coding.
Example 4.3 Viterbi decoding of a (21, 3) convolutional code.

An encoder for this code is given in Figure 2.2. The trellee(Eigure 4.7) contains
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four states at each level. Suppose the uncoded data sequasice

u=1[..,0,1,0,01,11,0,...] (4.58)

and that the encoder shown in Figure 2.2 was in s$atd he encoded sequence was

thus

v=/[...,01,00,10,11,11,01,10,01, ...] (4.59)

After transmission over a discrete symmetric channel awshio Figure 4.6 the re-
ceiver assigns one of four values to each received symbel:0'land ‘1’ indicate the

reception of a good signal, while ‘0’ and ‘1’ indicate redeptof a weaker signal. For
the channel shown in Figure 4.6 log likelihood functions ¢Wér, 1994, p. 294] are
used to compute the set of bit metrics used in the decodingepso The bit metrics

are given in Table 4.1. Assume that the received sequence is

r=1..,01,10,10,11,01,01 10,01, ...] (4.60)

In (4.60) overlining is used to highlight which symbols ameerror.

received

symbol

(0011

requred 0|5 4 2 0
symbol 1/0 2 4 5

Table 4.1: Channel metrics for the Viterbi decoding example
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0 p(0 | 0) 0
0
Transmitted Received
symbols symbols
1
1 1

Figure 4.6: A discrete symmetric channel model.

Figure 4.7 shows the (truncated) trellis diagram for theec(@]1, 3). At each
level there are'2! = 4 states. Each state has two branches leading in and out. The
branches are labelled with their data and code symhids/codg. The value in
parentheses is the SD metric for that particular branch.vahes above or below each
node is the state metric, which is a measure of the likelinmfaghy state being part
of the transmitted sequence. The state metrics can be feandsively from the sum
of an input branch and its preceding state metric. In thisnipla the metrics are a
measure of similarity, therefore the best metric is thedatgne.

Trellis decoding starts at staf;, that is state O at time = 1. The best path
back tot = 0isP(S1 — S) and is indicated by a solid black line. The decoding
metric for stateS,; is 8. This process is repeated for all other states at timel.
Moving ontot = 2, stateS,, has a choice of two pathf(S, — Si1 — Sp)

or P(S. — S1 — Sp) with metrics of 17 and 14 respectively. The best path is
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P(S2 — Si1— Sip)- The process is repeated uptte: 8. If any two paths have the
same metric one is chosen arbitrarily. Note that if eaclestares its own metric it is
never necessary to trace back more than one level.

The ML path, denoted by thick, solid lines, can be seen byistpat the state at
timet = 8 with the best metric (i.e$;g) and tracing back along the best path. The
data symbol output from the decoder is the data label on ttiestzoranch of the ML
path, i.e.,.B(S;; — S$). Therefore the decoder output is ‘0’, and is in agreement
with the first data symbol of. Subsequent decoding attempts will output more recent
symbols in the trellis. The trace-back can be avoided by ikgegpack of the output
label each state would give if it is on the ML path.

It is important that the path metrics for the states at tirsel are not lost. These
states will become the earliest states in the next decodteghpt. Only the relative
difference in metrics is important, a feature which can bgl@sed to avoid numeric
overflow. Therefore on the next decoding attempt the stateicador S,5, S0, S0
andS;, will be 1, 0, 4 and 2 respectively.

Note that the surviving path from each state at ttrae8 has merged with the ML
path byt = 1. Therefore, regardless of which node had been chosen thextdata
fort = 0 would have resulted. This indicates that the truncateiistveas (just!) long
enough so that all possible paths had merged with the ML pafbractice a trellis of
depth 8 for a code of constraint length 3 is not sufficientlygao reliably ensure all
possible paths merge with the ML path. A flowchart showingdbeoding stages is

given in Figure 4.8. OJ



4.2. DECODING ALGORITHMS

START

-
L

(b)

Calculate path metric for branch 0, 1
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[
()Output data label
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Figure 4.8: Flowchart of the Viterbi decoding algorithm.
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4.2.3 Two-stage Trellis Decoding

It has been shown [Omura, 1969] that SDMLD of RS codes can lieasd by use of
the Viterbi algorithm [Viterbi, 1967] over a suitable tiigll For short RS codes Viterbi
decoding provides a practical and optimum (SDMLD) errarecting performance.
The designed coset trellises are isomorphic to the minireflig, and are thus them-
selves minimal (Section 4.1.4). However, for long RS codésrbi decoding becomes
infeasible due to its considerable decoding complexitysincage requirements. It is
therefore necessary to use a different decoding methodalfe®raic techniques de-
scribed in Chapter 3 are well-known but unlike trellis deogdare unable to take
advantage of any SD information the channel may provide.

The Shannon product of trellises (Section 4.1.2) indicat@sanner in which a
trellis for a code with an inherent sum structure may be dexasad into its compo-
nent trellises;T’ andT”. It should be noted that the technique is not constrained to a
maximum of two component trellises. If the decoding comipyeaf the component
trellisesT' andT” is &’ andx” respectively, then the decoding complexity of the trel-
lis T is (approximately)’s”. However, if the decoding operation can be performed
on the two component trellises the complexity is reducest te’ + x”. The storage
requirement is reduced in much the same way. Hence both rhajdies to trellis
decoding for long RS codes have been reduced.

The decoding procedure consists of two major steps:
1. Identify in which subtrellis the maximume-likelihood jdies.

2. Apply the Viterbi decoding algorithm only to the subtieihdicated at step 1.
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If the overall trellis is viewed as the Shannon product of trvedlises, T’ andT"”,
with corresponding code% andC”, then codewords fror@” can be viewed as coset
leaders which generate the cosetg of

Two-stage decoding is a type of reduced search Viterbi glgor However, un-
like most reduced search algorithms the paths to be decodatbaidedeforetrellis
decoding (proper) begins, i.e., at the end of stage one, Wieemost likely subtrel-
lis(es) have been identified. The usual behaviour of redseadch algorithms (e.g.,
[Shin and Sweeney, 1994] or [Aguado and Farrell, 1998]) isdiect the candidate

paths as trellis decoding progresses.

4.2.4 Two-stage Decoding of Reed-Muller Codes

Reed-Muller codes are highly regular, a feature which candsal to good effect in
their construction [Wilson, 1996, p. 429]. Two-stage dengdf RM codes is also
able to make good use of their regular structure, and wasfingployed by Wet al.
who found the decoding performance was on8-@5 dB away from SDMLD [Wu
et al, 1994]. For two-stage decoding of Reed-Muller codes aigrelin be used to
identify which subtrellis(es) to decode. However, RM coldage few subtrellises and
in many instances it is more efficient to select the subg(@st) by algebraic means,
(using ‘soft’ Galois field algebra (Section 4.3) if soft imfieation is available). A

simple example is presented to demonstrate the TSD teakniqu

Example 4.4 Two-stage decoding of the RM/(8, 4) code.
Consider the code generated from a generalised array cedéds 2.1.5). The

construction of the code can be found in [Honatyal, 1995a]. The cod€ is the
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linear sum of two component array codésandcC,, i.e.,C = C; + C, where

U Po

u
o i (4.61)

Us Ps

Us Pa

0 u,

O u
C, = ) (4.62)

0 u,

0 u,

U U @ Uy Vi V2

U ULOU (VARRVA
C= - (4.63)

Us U3 D Uy Vs Ve

P2 Ps® Uy V7 Vg
where p; = u;
j = {1’ 2’ 3}

p4:U1+U2+U3

(4.64)

Addition over GF(2) is denoted by’. The trellis for this code is shown in Figure 4.9.
From 4.63 it can be seen that the cosets of the RM code areajeddyyC; and the
coset leaders are generateddy

The first stage of the decoding process is to identify in wisichtrellis the code-
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word lies. This is achieved by decodigg to find the value ofy,. At this stage the
values of the other data symbals, u, andu; are not known. However four indepen-
dent predictions of the value af can be made from the four rowséh If u, = 0 then
the left and right columns of a row should have the same value jfu, = 1 then the

columns should have opposite values. This can be shown byanggng (4.63).

( )

(V1 ® Vo),

(V3 @ VA)’

(Vs ® Ve),

(V7 D V) )

wherel, is the set of symbol predictors fog. If hard-decision values of the received
symbolsvy, v,, ..., vg were usedi, should be evaluated with a majority-vatdf
soft-decision information is available a better methoaisge ‘soft’ Galois field arith-
metic (Section 4.3) to preserve as much information as pblesdtaving foundy, the
corresponding subtrellis of Figure 4.9 (top for= 0, bottom foru, = 1) is decoded,

using the Viterbi algorithm. O

4.2.5 Two-stage Decoding of Reed-Solomon Codes

Although the coset leader is the direct output of THetrellis it is not possible in the
case of RS codes to simply pass the received codeword thiigyghe received code-

word contains encoded information frof which appears as errors 1d. Therefore

1For a result of 2 : 2 an arbitrary decision must be made.
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an algebraic method is used to predict which subtrellis tmde. The subtrellis pre-
diction can be improved with the inclusion of SD informatignch as by using ‘soft’

Galois field arithmetic (Section 4.3).

Stage 1—To Find the Most Likely Subtrellis

To decod&” each information symbol; (wherej =1, 2, ..., k), inC" is predicted
independently by a set sfymbol predictorsu;. In generak symbols are required to
predictu; since there ark unknowns (thé information symbols). Ank symbols can
be used as RS codes are invertible (Section 2.1.8).

Form a unique s&$ from (almost) anyk out of n symbols. There ar(a[:) sets. For

the setS = {vy, v,, ..., V} take a weighted sum of every symbol in the set.
C]_jV]_ + CQjVZ + e + ijVk == fli Ul + fzi Ug + e + fkj Uk (466)
To find the coefficients, , c,, ..., ¢ note that
0 fori#j
fi, = (4.67)
1 fori=]

From the generator matri@ form ak x k matrix, 3, from thek columns which relate

to the encoded symbols in s&t That is, for symbolgs,, s,, ..., &} form 3 from



4.2. DECODING ALGORITHMS 106

columns1?2, ..., kofG.

Bu B ... P Ci f,
Bor B2 --. PBx C _ f, (4.68)

Ba Be B Ck fy,

Solve (4.68) by Gaussian elimination.

Earlier it was stated that almost akysymbols could be used. It is important
that only theminimum setbf received symbols is used to predict a given information
symbol. A minimum setS,,, is defined such that no subsetSy, exists from which
it is possible to prediat;. The inclusion of unnecessary symbols degrades the quality
of the prediction, since for smal, the probability of a prediction using an incorrect
symbol is proportional to botR, and the number of symbols used. It should be noted
that the calculation of the coefficients, c,, ..., ¢, (Equation 4.68) is a design
operation, while the evaluation of the weighted sums (4i$@) decoding operation.

From the requirement of minimum sets it can be shown thatuheber of predictions,

N,,, available for an information symbal, j =1, 2, ..., kis given by
=1
" +1 where
Ny, = j=k (4.69)
-1 k=]
M |1-TI= -T1<|+2 wherej=2,3, ..., k-1
\ i=0 i=0

The number of predictions of is maximised when = (k+ 1) /2. Thus performance
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Is maximised by ensuring’ is composed from the most centril-{ 1) /2 component

codes, i.e.,

)

Cl+62++cl%3

+ Cass + Caso + ...+ G where’* odd
C' = (4.70)

Cl+62++cl%l

+ Cass + Casr + ... + Gy where"izl even

Cur +Cun + ... 4 Cans Where%l is odd
c" = (4.71)

Cus +Cus + ...+ Ca where'%1 is even

Stage 2—Finding the ML Path Through a Given Subtrellis

Having identified the subtrellis to decode it can be gendraie-the-fly if necessary,
by adding the appropriate codeword fraih (i.e., coset leader af) to the coset of
C containing the all-zeros codeword. The subtrellis is thecodled with the Viterbi
algorithm. A substantial improvement in the performancénaf-stage decoding can
be obtained by decoding more than one subtrellis. The dlibtedecoded are chosen
on the basis of the highest confidences from the output oésiag. The final output

is the one with highest confidence from the output of stage two

Example 4.5 Design the symbol predictors for two-stage decoding of tB€/A3, 5)
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code.

Let the trellis be designed according to Example 4.2. Thag#nerator matrix is

O @ a1 1 o®* 1 00
G=|g,|=] 0 & a1 ! 10 (4.72)
O, 0O O i o a 1 E o 1

The component trellises are shown in Figure 4.4, and the enpellis in Figure 4.5.
From (4.70) and (4.71) it is apparent that the selection efsibtrellises should be
based upon the ‘central’ code (i.€,) to maximise the number of predictions avail-
able (and thus ensure the best possible performance). Wjthin is possible to use
isomorphic trellises where the subtrellis decision is dagsonC; or C; this will result

in less subtrellis predictions.

Calculation of the Symbol Predictors

The symbols of’, are dependent upam alone, therefore only a single symbol pre-
dictor, Uy, is required. Whilst in general the minimum number of reedigymbols
required to predict’; is k = 3 there exists two minimum sets requiring only 2 re-
ceived symbols{v,, v,} and{vg, v, }.

For the minimum se$ = {vi, v,} the calculation of the symbol predictor proceeds

as follows. The weighted sum of the received symbols is (fEmuation 4.66)

Clvl + 02V2 == flul —+‘ foz —+‘ f3U3
(4.73)

:uz
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The coefficients, andc, can be found by taking columns 1 and 2 from the generator

matrix (4.72), as in accordance with (4.68). It follows that

o « 0
C

0 ad =1 (4.74)
C

0O O 0

c = a’ (4.75)

c =a (4.76)

Therefore the first independent calculation for the value, & given bya?v; + a*v,.
However, the transmitted symbofs;, v,, ..., v,} are not known by the receiver.
Instead the received symbdls, r,, ..., r,} must be used. As they may be subject
to errors the calculation is weakened tpradictionof the value ofu,. However as 27
independent predictions are available the overall prexstias much less sensitive to
errors. The full set of 27 symbol predictors are given in €&hR. Having calculated
the symbol predictors all the design stages are complete.

O

Example 4.6 Decode a received codeword of RS8/5) using two-stage decoding.

Consider that the dataword,= [ 0 0 0], was transmitted. The transmitted
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Number

Symbol predictor

OwWoo~NOOOhA~WNEPE

NNNNNNRPRRRPRRRRERRRRR
ORWNRFRPOOONOOUOMWNLR

26
27

o’r, + a’r,

re + a°ry

a’ry + ary + adry
r,+ a?r; + ars
ar, + ar; + a’rg
a’ry + abry + ary
abry 4+ a?r, + ars
a’ry + ar, + arg
r+r,+ ary

a’r, + ars + a’rg
ar, + a’rs + a’ry
r, + a*r; + abry
ar, + ary + ars
ar, + a’r; + a®rg
a’r, + o’z + abry
a’r, + a’r, + ars
Q%r, 41,4+ a’rg
ar, + a’r, + a’ry
abry, + rs + a’rg
ar, + ars + a®ry
abry 41,4+ a’rs
r;+ ar, + abrg
ars 4+ a’r, +r15
a’ry + ars + arg
rs+rs+ ary

abr, 4+ a?rs + arg
ar, + ars + a°ry

Table 4.2: Symbol predictors for Two-stage decoding of RS,(%).

110
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codeword is given by

v=u.G

=[000]/|] 0 a® a 1 & 1 O (4.77)

=[0 0000 0 O]

For simplicity consider only hard-decision decoding’ef Let the received codeword

ber=v+ewheree=[0 o°* 0 0 0 0 O]

r=10r, ry, rs r, rs rg ry |
(4.78)

=[0 a®* 0 0 0 0 0]

The prediction of the value af,, and thus of which subtrellis to decode, is obtained
by substituting (4.78) into the symbol predictors (Tabl2)4and choosing the most
likely value. The results of evaluating the symbol predistare given in Table 4.3.

It can be seen that the most likely valuewfis zero, and therefore the subtrellis to
decode is the one generated lpy= 0. If multiple subtrellises are to be decoded,
then the subtrellises generated lpy= 1, u, = o andu, = a* are the next most
likely candidates. The chosen subtrellis(es) are decodbcharmal Viterbi decoding

(Section 4.2.2).
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Value

\otes cast

Symbol predictor number(s

o b

Q L QKL R

17

PR NRERPNDN

{2,3,4,5,6,7,8,9,10, 11

21,22, 23,24, 25, 26, 27
{14, 20,

{15, 17

{16}

{1}

{13, 18

{19}

{12}

Table 4.3: Symbol predictor results.

4.3 ‘Soft’ Galois Field Arithmetic
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Reference has been made to ‘soft’ Galois field arithmeti¢hisSection an explana-

tion is given as to how soft GF arithmetic may be implemented.

Traditional GF arithmetic operates on GF variables whosgevenust be defined

precisely. This is often accomplished by using a HD outputfthe demodulator. In

reaching a precise definition the useful soft informatiogissarded. By including the

soft information better error-correction can be achieved.

For the binary GF(q) operationsd, © and® all g> combinations must be evalu-

ated. There arqdifferent results (01, a, ...

, a%2) and each result occuegimes.

Therefore, each of thg output values has an associated probability which is the sum

of q probabilities. A similar approach can also be useddomlthough there is also

an error state due to division by zero.

%i.e., taking two arguments.
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Example 4.7 The addition of two GF(4) values using soft GF arithmetic.

For the element$0, 1, a, a?} let the confidences af be {0.75,0.10,0.10, 0.05}
respectively, and fdp {0.25, 0.25, 0.50, 0.00} respectively. Consider the resatbb =
0. There are four ways by which this outcome may be achieved001® 1, a & o

anda? @ a?. The probability thag @ b = 0 is given by

p@adb=0)=p(a=0,b=0)+pla=1, b=1)
+p@a=a, b=a)+pl@a=a? b= a?
(4.79)
= p(@=0).p(b=0)+ p(a=1).pb=1)

+ pa= a).p(b = a) + p(a= a?).p(b = a?)

Table 4.4 illustrates how the output confidences for all ootes are computed. The

sum of the output probabilities is one. O
Confidence
Element Computation Total

0 0.1875 | 0.0250 | 0.0500 0.0000 | 0.2625
000) | 1e1) | (eda) | (a®’® )

1 0.1875 | 0.0250 | 0.0000 0.0250 | 0.2375
Oe1l) | 1e0) |(a®a’) | (¢’® a)

a 0.3750 | 0.0250 | 0.0000 0.0125 | 0.4125
O@®a) | (e00) | 1ea’) | (’®1)

a? 0.0000 | 0.0125 | 0.0500 0.0250 | 0.0875
O®e?) | (e?80)] 1®a) | (e®1)

Table 4.4: Soft GF arithmetic for GF(4).
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4.4 Discussion

In this Chapter techniques for constructing minimal tegli have been demonstrated.
For low-rate codes this is served by the coset trellisesleviir high-rate codes syn-
drome trellises should be used. The Shannon product aseslis important not only
for trellis construction but also for the decomposition i&lises into simpler forms.
Two-stage decoding of RS codes is a new method which can thikentage of sim-
pler, regular trellises to provide low-complexity sub+4opim decoding. To improve
the decoding performance of TSD a new procedure for inctydoft information in
the evaluation of Galois field algebra was presented. Thedieg performance and
complexity of both Viterbi and two-stage decoding has beeasured by computer

simulation. Results are presented in Chapter 6.
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Chapter 5

Improved Decoding of Concatenated

Codes

5.1 Concatenated Codes

5.1.1 Introduction

Concatenated codes are frequently used to implement adawplexity, low error-rate
channel. The basic concepts of concatenated coding weoeuted in Section 2.3. In
such a system the inner decoder is able to take advantagy 8Camformation from
the channel. For maximum performance the outer decodeiresg8D information
from the inner decoder. Traditional decoders are unablelfitl this requirement.

A number of decoding algorithms which provide soft-deaistmutputs exist, e.g.,

SOVA [Hagenauer and Hoeher, 1989] and MAP [Bahal, 1974]. SOVA was iden-

116
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tified as a useful method as it is a generalisation of the Mit@gorithm, thede facto
trellis decoding algorithm. Only SOVA is considered in thisrk.

Massey stated that convolutional codes should be used asstrstage of decoding
because they can easily accept soft decisions and chaatelrgormation [Massey,
1984]. Many concatenated coding schemes exist which ddhasfor the very rea-
sons stated. However, a decoding failure in a convolutioodé normally produces a
burst of errors [Hagenauet al., 1994, p. 243]. Reed-Solomon codes are well known
for their burst error correction capability when lag, binary bits are mapped into one
RS symbol (Section 2.1.8). A concatenated system comgraiconvolutional inner
code and an RS outer code with an interleaver/de-intentegarating on RS symbols
provides very good performance and is used by NASA and ESAgace communi-
cations [Dai, 1995; Wicker, 1994]. While the binary to miétvel mapping provides
burst error correction it is a mixed blessing, as the bitregprobabilities must some-
how be transformed into symbol error probabilities. For &itfellis decoder this can
be avoided if the trellis is labelled with binary bits.

Section 5.2 of this Chapter describes the soft output Mitgidorithm. The Vit-
erbi decoding example (4.3) is extended to incorporate S@wAputting reliability
information in addition to the most likely symbol(s). Pradcodes can be viewed as
a type of concatenated code, with the row and column codesirigrthe inner and
outer codes. Section 5.3 describes various decoding #igwifor decoding product

codes constructed with RS subcodes.
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5.1.2 Calculation of the Log Likelihood Metrics

It can be shown [Gallager, 1968; Wozencraft and Jacobs,]XB&6for any channel
if all input sequences are equally likely the decoder whighimises the error prob-
ability is one which compares the conditional probabist(er likelihood functions),
p(r | v), of the received sequenaeg,and all possible transmitted sequencesind se-
lects the maximumy’ [Viterbi, 1971]. Such a decoder is termedhximum likelihood

For

=", My, Mo (5-1)

V =V, V.,V (5.2)

tr Tt41 Tt42

the decoder must calculate the probability

pir [ V') = p(re [ V) - p(rigs | Vigd') - Pz | Vig2') (5.3)

For most channels the inputs to the receiver are real vahetshas require infinite
precision. This is not possible and some loss of precisiostiine accepted by quan-
tising the received signal to a finite number of values. Satiah studies [Heller and
Jacobs, 1971] have shown that 8-level quantisation resuitenly 0.25dB reduc-
tion in coding gain with respect to the unquantised case,hntegs than the gains
made possible by using SD decoding, typically 2 dB [Hagenatal. 1994; Marple,
1998]. See also Chapter 6.

The transition probabilities may then be computed by carsig the area under



5.1. CONCATENATED CODES 119

the PDF for each quantisation level. In (5.3) it can be seanttte conditional prob-
ability that sequence was received is dependent upon multiplication operatibos.
almost all implementations summations are preferred tdiptigcations. This can be
achieved by using logarithms. Equation (5.3) may then beitten without multipli-

cation as théog likelihood function

logp(r | V') = log p(r, | V) + log p(re.a | Vi, ;) + 109 p(reiz | Vi, ,) (5.4)

Since logp(r | v') increases monotonically witp(r | v') the decoder is able to max-
imise logp(r | V') instead ofp(r | v') with the same result. Logarithms of any base
may be used, the only difference is a scaling factor. Unlested otherwise natural
logarithms are used.

Integer arithmetic is typically several times faster thaafiing point arithmetic and
is often preferred for reasons of both speed and reduced legitypof the hardware
required. The log likelihood functions can be transform&d integerog likelihood

metrics £ [Wicker, 1994, p. 294]

£(ri [ vi) = (aflog p(ri | v)) + bI) (5.5)

wherea andb are real numbers chosen to scale the LL functions into aldaitange,
and(x) denotes the closest integentdrounding errors can be minimised by choosing
appropriate values foa andb. Whena is positive the decoder should seletto

maximisel(r; | v/) and whera is negative/ is selected to minimisér; | V).
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Example 5.1 Calculate the set of metrics to be used for a coherently-demated
BPSK system over an AWGN channel operatindgegtN, = —3 dB with 8 quantisa-
tion levelst!

Let the received bit energy in noiseless conditiong&pand let the levels have an
equal spacing og\/E For simplicity assume unity bit energy; let a “0” be reprasel
by —1 and a “1” by+1. Thus the 7 transition points ar€l.5, —1.0, —0.5, 0.0, 0.5,
+1.0 and+1.5. If “0” was transmitted it could be received in any one of &levels,
and the probability of each level being received is (geh@rdifferent and dependent
uponE,/N,, the signalling scheme used and the noise PDF. Figure 5usstie 7
transition levels, and the signalling values with the supposed Gaussian PDF (2.36)

atE,/N, = —3dB. The area under the PDF is given by

B 1 RYESIAN
A_/Umexp{ 2( 5 )}dx (5.6)

Thus the probability of receiving “0” in any region is givep évaluating the integral in

(5.6) between the limits of the quantisation level. For cehdy demodulated BPSK

over an AWGN channel the standard deviationis given by

| B
o= 2N (5.7)

For E,/N, = —3dB, ¢ = 0.9988. The logarithmic transition probabilities can be

scaled into the range 9> 15 by choosind = 5.08 anda = 15/(—1.18 + 5.08) =

A similar example appears in [Wilson, 1996, p. 307].
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3.8642. The transition probabilities and LL metrics for “1’eazomputed in the same
way. The transition probabilities are given in Table 5.1 evehthe symmetry of the
channel is reflected in the symmetry of the LL metrics. Therimeare shown graph-
ically in Figure 5.2. In the area of indecision (receivedsilgz 0) the metrics are ap-
proximately equal while further from zero the metrics dégpan increasingly strong
bias to “0” or “1”. In Figure 5.1 it can be seen that there is spdoportionately large
probability of receiving signals in theco — —1.5 and+1.5 — 400 regions, which

leads to the apparent discontinuities at the boundariesgoir& 5.2. This is due to
the poor SNR of the channel as the probability of receivingga bonfidence value is

larger than over a good channel. O

Variation of the Log Likelihood Metrics with Ey/No

The LL metrics are dependent up&y/N,, but the receiver can only estimate this
ratio, its measurement is subject to error. It is therefaeessary to consider the
sensitivity of the metrics with variation iB,/N,. Figure 5.3 shows the LL metrics for
symbol “0” againste,/N, over the range-6dB — +6 dB. The metrics are scaled

to fit the range 0— 15 using the method outlined above. The dotted lines show the
metrics truncated to integer values as would be used in aMaaedimplementation

of SOVA. For the region where the noise dominates the sigaaIN, < 0dB) the
metrics are sensitive to changessgyN,. In such noisy conditions coding would not
be used because uncoded operation results in fewer error&, AN, > 2dB there

is very little change in the scaled LL values, indeed, forititeger metrics there is

no change. This shows that for the area of interest the rsedrie not particularly



level | lower | upper| transition log of transition scaled LL LL

limit | limit probability probability value metric
p(r|0) | p(r 1) [Togp(r [0) [logp(r [1)| 0" [ “1" [“0" [T’

0| —oo| —15| 0.3083| 0.0062 -1.18 —-5.09 1500 0.00| 15| O
1| -15| -1.0| 0.1917| 0.0165 -1.65 —-4.111318| 3.77| 13| 4
2| -1.0| —-05] 0.1917| 0.0440 —1.65 -3.12|1318| 753| 13 8
3| -0.5] +0.0| 0.1500| 0.0918 —-1.90 —-239|1224|1036| 12| 10
4| 40.0| +05| 0.0918| 0.1500 —-2.39 —190| 1036|1224 | 10| 12
5| +05| +1.0| 0.0440| 0.1917 -3.12 -165| 7.53| 1318 8| 13
6| +1.0| +15| 0.0165| 0.1917 -4.11 -165| 3.77|1318| 4| 13
7| +15| 400 | 0.0062| 0.3083 -5.09 —1.18| 0.00|1500| O] 15

Table 5.1: Transition probabilities and LL metrics for a eadmtly-demodulated BPSK channeEgfN, = 3 dB.
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sensitive tdE,/N, and may remain constant with no impact on performance.

5.2 Soft Output Viterbi Algorithm

5.2.1 Introduction

As its name suggests the soft output Viterbi algorithm [Hegeer and Hoeher, 1989;
Hagenaueet al,, 1994, 1996] is a modification to the ‘standard’ Viterbi aifigfom [Vit-
erbi, 1967]. It can decode using soft or hard decision iniram and provides a
single reliability measure for its output sequence, whgcthe closest codeword. Al-
ternatively, if the trellis is labelled with both data anddeosymbols then the output
sequence can be the dataword corresponding to the closkEsvoa.

One of the main areas in which SOVA has been used is for iteratiturbo decod-
ing.2 An immense amount of literature has recently been writtetudmo decoding,
but the work involving SOVA described in this Chapter is mded for the purpose of

concatenated decoding and therefore iterative methodsrehbeen applied.

5.2.2 Differences Between the Standard and Soft-Output \&rbi

Algorithms

The soft output Viterbi algorithm differs from the standamddel by keeping track
of the reliability of its decisions. However, only decisgpowhich affect the outcome

are considered, that is decisions which lie along the sungipath. Decisions which

2Turbo decoding is also known as turbo coding, this is misteagince the ‘turbo’ (feedback)
analogy applies to the decoding, not the codes themsehagethueet al, 1996].
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affect other paths are discarded at the same time the patbcarded. Consider the

trellis segment for a binary code shown in Figure 5.4. Fohedsdllis state S, the

S
S
S o )
\Statesz,g
S °
t=0 t=1 t=2 t=3 t=4

—  Surviving path
——— Discarded path

Figure 5.4: Example trellis with metric differences fordedvack SOVA.

Viterbi algorithm chooses the bran®(S;_; — S;) to select the best partial path
metric, Pn(S—1 + Bn(Si-1 — Sp))-

At time indext the partial path® = P(... - Sy 1 — S andP' = P(... =
S -1 — S;) merge, with metricé! andM’ respectively. LeP be the surviving path.

Define the metric difference as [Hagenaaeal., 1996]

Ar=M-—M (5.8)
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The probability that the decision made at this point wasewiris given by [Hage-

naueret al., 1996]

p(P)
p(correct)= —————— (5.9)
p(P) + p(P')

eM
= 5.10
eM 4 ev ( )

ehit
= 5.11
1+ e ( )

Therefore the log likelihood ratio of this binary path démmsis A ;; because

|09M — Aj,t (512)

1 — p(correct)

This shows that when two paths merge and either would giwetdshe same
output the LL reliability of the decision iso, since no mistake would be made at
that point in the trellis. If the data output would not be tlaeng then the reliability
is given by the difference in the partial path metrics of thevaving and discarded
paths. The reliability of the output sequence is given bydpob of the reliabilities
for the decisions affecting the output (equivalent to tha sdilog likelihood metrics).
Hagenauer shows that the sum can be approximated to theesiiad likelihood de-
cision reliability of the terms [Hagenauer, 1995]. While thannel information gives
some indication as to the most likely transmitted sequeheeatditional reliability
information gleaned from the decoding process is termeexb@nsic information

It is important to note at this point that the behaviour of &tgorithm differs be-

tween convolutional and block trellises. This is due to tifeedng ways in which
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each are decoded. A convolutionally-encoded data strepitetly imposes an intol-
erable delay in the decoding process. For this reason adiechtrellis (typically 4 to
6 times the constraint length) is decoded oncekpautput symbols, whereas a block
code trellis is decoded once for the entire codeword. Thectd the algorithm in two
ways. Firstly, for convolutional decoding independentgeasthrough the trellis are
made for eactk output symbols. Usuallik = 1 and thus each symbol has a unique
metric. This cannot be done for the fixed length block codédr&’he ML sequence
is the codeword, and thus all output symbols in the codeword shere the same
reliability metric. While the MAP algorithm [Hagenauet al., 1996] is able to pro-
vide reliability metrics for each encoded symbol this is helpful for concatenated
schemes where metrics for the reliability of outplata symbols is sought. (MAP is
also much more complex.) The second point to note is that Wheading over a trun-
cated convolutional trellis the output is the data labedfs)he first branch, whereas
for the block code trellises described in Chapter 4 the dugpthe sequence of data
labels (or occasionally code labels) found on all brancbasihg the ML path. This
means all decisions along the ML path of a block code tretksmportant since they
all will affect the outcome. Conversely, for convolutiortdcoding fewer decisions
will be important as decoding progresses—the length of rilnecaited convolutional
trellis is chosen with the assumption that all survivingysatave merged with the ML
path by the time decoding is terminated.

The differences between the standard and soft output Visdgbrithms are most
easily seen with the aid of a decoding example. They are lstrated in Figure 5.5,

where the flowchart given in Chapter 4 (Figure 4.8) is expdridanclude the addi-
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@ =1
START 0

-
L

(b)

Calculate path metric for branch 0, 1 Calculate |
Pm = Bm(S,t — Sj,t—l) + Pm(sjt - 1) Ai,t = |Pmo - Pm1| :
______________ |

(c) 1

Store best metric If o/p data same, stors :

Pm(Sit) else minQi¢, Aj1—1) |

®
Store o/p data
fromSji_1

(e
étore o/p data for
selected branch

A

1

(k)

Choose
Pm(s,é)
with best metric
O t=t41
i=0 1

[
()Output data label

STOP

Figure 5.5: Flowchart of the soft output Viterbi decodingaithm.
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tional steps for SOVA.

Example 5.2 Soft-output Viterbi decoding of a (2, 3) convolutional code.

Example 4.3 will now be extended to include SD outputs. Fegu6 shows the
annotated trellis. Every decision-making state i.e., ¢ifos which timet > 0, is now
annotated with two values, the partial path metric to ttmae O (as in Example 4.3)
and the new LL reliability of the decision made at that nodep@rentheses).

Trellis decoding starts at stafg;. The best path fromh= 0isP(S;, — S1) and
Is indicated by a solid black line. The decoding metric fatsg,; is 8. Since both
paths give the same output data, “1”, it is clear that no baravould have occurred
had the discarded path been selected. Therefore the Llbitalieof this decision
is 00. This process is repeated for all other states at timet K< 8.

At state$, ; the decision of which path to discard will influence the deraalitput
should that node be on the ML path. The reliability metriche tlifference between
the metrics of the selected path and the discarded pathi24.e. 19 = 5. Should the
decision metric be zero this shows that the choice of bekt\as tied; therefore the
value of the data output was dependent upon an arbitrargidacand should not be
relied upon.

The reliability is found by tracing back along the ML path dakiing the minimum
of all the decision metrics on the ML path. Thus the data au§3i@” with reliability 7
(from stateS, ;). Trace-back can be avoided if each state keeps track ofrtimenjum)
reliability metric.

It was noted in Example 4.3 that the trellis was just long golor the surviving

paths to merge with the ML path. This is seen by tracing thegpback in time, and
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also by noting the reliability of all the decisions madd at 8 is oo, indicating no

difference in output data. Il

In Section 6.5 SOVA is used to improve the performance of ellgatlink using a
standard concatenated coding system. Unlike the iterddeeding described in [Ha-
genaueet al,, 1996] where the extrinsic information is used asalpgiori information
to the nextiteration, the extrinsic information is used as thepriori information to

the nextdecoder

5.2.3 SOVA and Non-binary Trellises

SOVA considers only the weakest decision made, and thusdsyssonly the ML
path and the best discarded path. Thus SOVA is analogous tAR d¢coder with
2 codewords [Bahkt al, 1974]. The SOVA algorithm described above has been
extended to work over non-binary convolutional code tsebi (and also binary code
trellises wherek # 1).

At each node in the trellis the reliability of the decisiomgigen by considering the
best and next-best paths, ignoring the metrics on the otbeaudled paths. As before,
if the output data would be identical the reliability of theaision isco, otherwise it is
the difference in metrics of the best and next-best pattmjldran arbitrary decision
be made the decision metric is zero. Thus at the least reliatdle on the ML path
the extended SOVA algorithm decides between two codewdkdslst in principle it

is possible to consider multiple codewords the complesityarrespondingly higher.
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5.3 Reed-Solomon Product Codes

5.3.1 Introduction

Product codes can be considered a form of concatenated, cotlese the row and
column codes form the inner and outer codes. If construciédlimear codes then
the encoding and decoding order is not important (Sectib@pand may be reversed
if desired. The decoding of row and column codewords can beeailternated [Bate
et al, 1986; Farrellet al, 1986]. This is in contrast with a true concatenated coding
scheme (Section 2.3) where decoding order must be the esvktise encoding order.
For optimal performance it is desirable to use soft-denisiecoding. Many pos-
sible methods exist; the Fano [Fano, 1963], stack [Jelih®B9; Zigangirov, 1966],
Chase [Chase, 1972], and Viterbi [Viterbi, 1967] algoriirand also MAP [Bahét
al., 1974; Hagenauer and Hoeher, 1989]. Equally desirabledt®stputs, so that
the second decoder of the concatenated system can perfoinmatyp It is of course
important to balance optimality with complexity, so thataliseable solution may be
implemented, either in hardware or software. For this nedkse extended SOVA de-
scribed in Section 5.2.3 was selected. The MAP algorithrh wstsymbol-by-symbol
reliability metrics is also applicable but the complexifyS®VA is considerably lower
for only minor degradation in performance [Hagenaeteal., 1996]. Any appropriate
block code trellis may be used. The block code trellises usdHlagenaueet al,
1996] are based upon the parity-check matH} &nd are thus irregular in structure.
Regular trellises allow reductions in decoder complexitg atorage requirements,

thus the GAC construction methods based upon the generataxitG) described in
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Chapter 4 are used here. RS codes were chosen as the bloskteyeare MDS and
so provide the greatest possible distance for a givandk. This is important for a

product code as the overall distance is the product of thames of the subcodes.

5.3.2 Creation of Systematic Trellises Using GAC Constru@n

For some product code decoding algorithms it is requiretittieasubcode codewords
are systematic. One such algorithm is the alternating m@w/ien method described
in Section 5.3.7 or other algorithms which may terminatdyeahen all codewords
containing data symbols have been decoded. More predikelgata symbols should
have a one-to-one correspondence Wwitode symbols—the actual order of the sym-
bols is not important nor do they need to be consecutive (awsymbol reordering is
trivial) provided the data symbols are identifiable.

Consider the RS(B, 3) trellis constructed in Example 4.1. The generator ma-
trix (4.22) is not systematic as it is not in reduced-echdtom, nor can it be rear-
ranged to be. Onlys is unchanged after the data wards multiplied by the generator
matrix. Table 5.2 shows a few of the 32768 codewords from ®E&F, 3) trellis. For
clarity the symbols are given in decimal form. It clearly gisathe lack of a one-to-
one correspondence between the data symbols and the cotbelsym excepted).
RS codes are invertible (Section 2.1.8) and thereforekasymbols can be chosen as
data symbols, the remaining— k symbols form the parity checks. Since the trel-
lis is labelled with independent data and code labels it ssiide to re-map the data
symbols on the trellis to match the filstcode symbols. Table 5.3 shows the same

datawords with the new systematic mapping.
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Table 5.2: Sample data and codewords of the non-system&fic R 3) trellis.

codeword

V3

Vs Ve Vy

\Z!

Vo

A1

2

1

7 7 3 4

0O 0 O

1
4

1
1

0 0 1

0

5 6 3 0
5 7 0 6
6 0 2 4

7
7
7

dataword

U,

U, Us

Us

U

O 000 0 0 0 0 O O

0
0

0
0
0

0
0
0

0

110 0 O O

2/0 0 0 0 2 3 6

7 7,0 0 7
0O 00

7
0

1

6|7 7

5
5
6

7
7

7T\ 7 7

o7 7

Table 5.3: Sample data and codewords of the systematic, B)rtrellis.
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5.3.3 Cascade Decoding

Many different methods for decoding product codes exisis liseful to define the
simplest as a standard against which the performance of intettigent’ algorithms
are compared. For this purpose cascade decoding (Sectigh R. 15) is used as the
reference method. It is expected that the channel can sapfilglecision information
to the row decoder, hence the first decoding stage is sofsidac However the stan-
dard decoder does not make use of advanced techniques sBEWAYSection 5.2),
so it is unable to supply soft information to the column desro@econd stage). The

block diagram of the decoder is shown in Figure 5.7.

5.3.4 Modification of the Channel Metrics with the SOVA Metric

The SOVA decoder detailed in Section 5.2 was configured tdyme two outputs,
a codeword and a metric indicating the reliability of the s& codeword. For non-
cascade decoding algorithms the full codeword symbols eqaired. For cascade
decoding only the dataword is strictly required, howevés th easily obtained from
the firstk symbols of the systematic codeword. In order for the SOVAriméd influ-
ence later decodings its value must be somehow incorponatiedhe buffer storing
the received channel metrics. The method used for this wasnmm to both prod-
uct code decoding schemes using SOVA (Sections 5.3.5 and) @8d so will be
described separately below.

Remembering that SOVA on a block code trellis outputs onlg oretric (Sec-

tion 5.2.2) necessitates the assumption that the metricegggmually to all symbols.
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Nor does SOVA indicate the next most likely value for a symipoin a non-binary
alphabet. Therefore it must be assumed that the discardieesvimr each symbol are
equally improbable. Plainly this is not the case but withoote information no better
assumptions can be drawn.

In all cases the received symbol metrics (channel metriesgwtored in a buffer
of the same dimensions as the transmitted codeward (,). When decoding a row/
column the corresponding row/column metrics were passatlddSOVA decoder.
After decoding it is not desirable to completely replacedhannel information with
the SOVA metric as it applies to only a subset of all possilghatsol values. SOVA
may also have incorrectly decoded the received codewostiedd, the SOVA metric
is accumulated to th®! buffered metrics for the symbol values which correspond to
those selected by SOVA (wheké = n, for rows andVl = n, for columns). Thus the
extrinsic information derived by SOVA is accumulated to &hesting channel state

information. An example will help demonstrate the methoeldus

Example 5.3 Consider a (94,4) product code, whose subcodes arg2(2) parity
check codes over GF(4). Using SOVA decode the first row codknaadify the

symbol metrics.
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Let the received metrics be

column

1 2 3

0: 19 0: 23 0: 23

1: 28 1: 28 1: 25
row 1 (5.13)

SOVA indicates that the best codeword is “110”, with a raligbof 3. Therefore

add 3 to the metrics corresponding to a row 1 codeword “110e Mew metrics

(emboldened) are

column

1: 31 1: 31 1: 25
row 1 (5.14)
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It can be seen that if the reliability of the decision made BDWA is zero, i.e., the
decision was arbitrary, then no change is made to the mettioaversely, a positive
decision by SOVA will result in a large modification in the LLetnics. Summing the
same value to all symbols obeys the assumption stated th&trabols are equally
reliable; not modifying the discarded symbol values maitgt#he second assumption
that the discarded symbol values are equally improbablenoAtoint is thea priori
channel information discarded, but is modified with the iesic information from

each nonarbitrary decoding.

5.3.5 Cascade Decoding Algorithm with SOVA

A logical extension of the cascade decoder is to apply SOWodmg to the first
decoding stage. The second stage is therefore able to usef@mation. In other
studies [Hagenauest al., 1994; Marple, 1998] SOVA provided a performance im-
provement of about 2 dB over an AWGN channel for a true comedesl system.

The received symbol metrics are stored in a buffer of the sdimensions as the
transmitted codewordh( x n,). The rows are decoded using the extended SOVA al-
gorithm detailed in Section 5.2.3, taking the soft inforioatfrom the buffer. After
decoding each row the SOVA metric is used to modify the mestored in the buffer
(Section 5.3.4). The second stage, decoding columns, tilews. The Viterbi de-
coder is able to make use of SD information from the first stadeng with thea

priori channel information which preceded the first decoding stage
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5.3.6 Alternative Decoding Strategies

Alternative decoding strategies exist which aim to mineniee number of errors.
Bateet al. considered various methods based upon decoding rows amaheslalter-
natively [Bateet al., 1986]. The row/column subcodes were decoded in decreasing
order of confidence. The algorithms investigated for subatetoding were hard de-
cision decoding, soft decision decoding using successasuees decoding [Chase,
1972] and combined soft/hard decision decoding. In [Bxtal., 1986] the method

used to compute the row/column confidences was

Mlog, q
p(ri | 0)
C= 0g (5.15)
; p(ri | 1)
where
n, for rows

M=

n, for columns

By rearranging (5.15) it can be shown how LL metrics can belusstead of

conditional probabilities.

Mlog, q
C= Z log p(ri | 0) — logp(r; | 1) (5.16)
Mlljglzq
C=> lbo—4 (5.17)
i=1

where/, is the LL metric for symbol “0” for the-th bit and/, is the metric for symbol
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“1” for the i-th bit. In other words, the confidences can be computed byrsogithe
difference between the LL metrics for “0” and “1”. In the casfeLL ratios which
have been mapped to integer val@svill be related toC by C' ~ aC (allowing for

rounding errors) whera s a scaling factor (Equation 5.5).

5.3.7 Alternating Row-Column Decoding Using SOVA

The alternating row-column decoder in [Bateal., 1986] was adapted to use SOVA.
The channel modelled was binary, though only symbol metiese available to the
decoders (Section 6.6.1). This required a small changeetanigthod used for cal-
culating the received codeword confidence. The symbolesepted by the best and

worst LL metrics are bit inverses of each other. Therefor&{pmay be rewritten as

M
C = Z wbest - gNorstl (518)
i=1

wheret,. is the metric corresponding to the most likely value forithle symbol and
Luorst 1S the least likely.

The received symbol metrics are stored in a buffer of the sdimensions as the
transmitted codewordn( by n,). From these buffered values the row and column
codeword confidences are computed with (5.18) and sortedonater of decreasing
confidence. The row codeword with the highest probabilityeihg correct is decoded
first.

After decoding one row codeword the next most likely colunodeword is de-

coded. This process is repeated until all row and columnworis containing data
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symbols are decoded. By this method each data symbol is dd¢adce, once with a
row decoding and once with a column decoding. The decodiraysoucur in either
order. However after both decodings the data symbol's ogetannot be changed.
Therefore after the second decoding the value of the synasalécided by the SOVA
decoder) is transferred to the output buffer.

Decoding may terminate early if the remaining row and coluwodewords do
not contain data symbols, their decoding will not affect theput data. With this
procedure the average decoding delay and computation dueee. If the product
code is not approximately square, i.B,,>> n, or n; < n,, it may be desirable to
decode row and column codewords in some ratio other than b tlas the row and
column decodings complete in approximately the same nuwofhmicles.

Bateet al.[Bateet al., 1986] recomputed the row and column subcode confidences
after each row and column iteration. Re-sorting the contidercan be numerically ex-
pensive, even the best sorting algorithms require of theratiseveral timesl log, N
operations [Presst al, 1992, p. 329]. The performance of the algorithm described

above was tested with and without the re-sorting of codewordidences.

Example 5.4 The decoding of an arbitrary product code with the altenmatiow/
algorithm.

Figure 5.8 shows the initial decoding stages. Hatching tdsncodewords which
have been decoded, whilst shading indicates informatiombsys which have been

copied to the output buffer. Each step is explained below.

(@) In this case the best row codeword is within the infororasection of
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Information matrix Row
checks
Column checks Checks on
checks
(a) 1st row decoding. (b) 1st column decoding.
o o
(c) 2nd row decoding. (d) 2nd column decoding.

=

-
L5

(e) 3rd row decoding.

Figure 5.8: Alternating row/column decoding example.
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the product code, but no symbols have been decoded twice.

(b) The best column decoding is also within the informatiect®n of the
product code. One data symbol has been decoded twice andiesido

the output buffer.

(c) The second best row decoding does not affect any datadgnob
the product code. However by modifying the confidence meticthe

remaining column codewords it may still affect the final desu

(d) The second best column decoding intersects two contpleie de-

codings. Only the intersecting data symbol is copied to titput buffer.

(e) The third row decoding intersects two previously decodelumns.

Two data symbols are copied to the output buffer.

This process continues until all data symbols have beerdaeldwice and copied into

the output buffer. O

5.3.8 lterative Decoding of Product Codes

Although it was stated earlier that SOVA was applied for @anated coding tech-
niques it was noticed how readily iterative decoding may jngliad to the decoder
described in Section 5.3.7. After decoding the channel imétrffer contains the
channel metrics plus the extrinsic information from SO\Vady to be tha priori in-
formation for the next iteration. Hence repeated decodimgie same channel metric

buffer results in an iterative decoding process.
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Research is a product of an inquisitive mind (arde versd, given the ease
with which iterative decoding may be applied and the addélancrease in coding
gain possible ¥ 1.5dB for just 4 iterations with a BCH(§%1, 6) x BCH(64,51, 6)
code [Pyndiah, 1998]) the temptation to test this decodaniierative fashion could

not be resisted. Some encouraging introductory resultgieea in Section 6.6.4.
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Results and Computer Simulations

6.1 Decoding Complexity Measurements

6.1.1 Implementation Overview

All the decoders discussed in detail in this Thesis were @mgnted in C++ [Strous-
trup, 1997], a high-level, object-oriented programmingglaage. C++ classes allowed
rapid development and code reuse of important componeaksagIGF and polyno-
mial arithmetic, channel models and trellis decoders. Tékides themselves were
constructed at run-time from a net list contained iffirallis Description Language
file. The trellis diagrams in this Thesis were computer-gateel from the trellis de-
scription files. A high-level implementation allowed a grdagree of flexibility in the
number and type of codes which could be implemented.

It should be noted that all the simulations described in @igpter have been

performed in full, using random data and random errors. Feallig decoding full

149
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implementations of the trellis were used. This is importinte it allows real im-
plementations of the decoders described. Simulationshwtonsist of transmitting
the all-zeros codeword and/or matched-filters over a lidnsiebset of codewords are
useful performance tools but cannot be used in real systenesenthe full set of
codewords may be transmitted, for which the trellis diagiamsed to exploit the

redundancy in the tree diagram.

6.1.2 Algebraic Decoding Complexity Measurements

Various measurements of complexity exist. One method iotmtcthe number of
codewords decoded in a given time. This is only accuratelith&l decoders in
the trial are implemented equally well. Subsequent corspasd can only be made
by using the same hardware, which may not be appropriatellfafgorithms, and
which may not always be available. A more formal method isube ofO-notation?
While O-notation is a helpful tool for algorithm designers its us@ot without prob-
lems [Sedgewick, 1988, pp. 71-76]. It is a worst-case botlredgonstants, andN,
are unknown and may be large. Without knowledge of the cotsta andN, only
the asymptotic performance may be compared.

A more practical method was chosen instead, that of coutii@gnumber of im-
portant mathematical operations. For high-level simataithis is a comparatively
easy task. The relative execution time of algebraic opmnatis dependent upon the

hardware selected, but, by choosing the appropriate paeasitbe method can be ap-

A functiong(N) is said to beD(f(n)) if there exist constantsy andNg such thag(N) < ¢y f(N)
forall N > Ny [Sedgewick, 1988, p. 72].
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plied to any implementation. To enable valid comparisongas assumed that each
decoder could be implemented on an AT & T DSP32C digital dignacessor. Each
mathematical operation (add-), subtract {), multiply (x), divide (=) and com-
pare &)) was assigned a cost in terms of the number of CPU cyclesreshtor
its execution. Table 6.1 shows the cost of integer, floapiaot (real) and Galois
field arithmetic, taken from a DSP32C implementation of aimum-weight RS de-
coder? The DSP32C does not contain instructions for integer miyljtipteger divide
or floating-point divide. However, these instructions waot needed by any of the
decoders implemented.

It was assumed that the GF arithmetic would be implemented tise same poly-
nomial basis as used by the minimum-weight decoder. Forsfielccharacteristic 2
addition and subtraction are identical and can be performiéd an exclusive-OR
logical operation. For the polynomial basis multiplicatiand division are most eas-
ily implemented by table look-up, which is the method usedable 6.1. To enable
comparisons between different codes the decoding contplexconverted to dit
complexity s, which is the total decoding complexity divided by the numdiebits

output from one decoding.

2From I. Martin, private communication.
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data Operation
type|+ | —| x | = | =
int | 1|1 |n/aljn/a|] 3
float| 2 | 2| 2 |nfa| 6
GF|({1|1|5 |5 |3

Table 6.1: Relative complexity of algebraic operations &®SP32C).

6.2 Trellis Decoding Complexity

6.2.1 Introduction

The complexity of a trellis has previously been measureddnous means, number
of states [Muder, 1988], number of vertices [Kasahal., 1993a,b] and number of
edges [McEliece, 1996]. However, none of these methodw atkdlis decoding com-
plexity to be compared against algebraic decoding comigleko do so, one method
is to calculate the number of arithmetic operations regujHonary, Markarian, and
Marple, 1995c, 1996, 1997]. Therefore, the trellis decgadiamplexity can be com-
pared directly with algebraic decoding using the methoddesd in Section 6.1.2.
It should be noted that for integer and floating-point nurelibe termcomparison
includes the tests, <, > and< in addition to equality£) and their logical inverses.
For compactness comparison is denoted by simgfy “

It is first assumed that trellis decoding will be performedhathe Viterbi algo-
rithm, and then later extended to include SOVA. In the anslpsesented here it
is also assumed that log likelihood metrics are used to awvaitfiplication opera-
tions (p. 119); a similar analysis is possible for Euclide#igtance metrics, which

were used in [Honary, Markarian, and Marple, 1995c, 1996,/19Following these
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assumptions the complexity can be calculated with the stiepan below. Note that
only algebraic operations involving the log likelihood mes are counted, other oper-
ations are designatexverheadsThe overheads, which are very dependent on the ac-
tual hardware or software implementation, are not usualtjuded in considerations

of complexity. One important consequence is that memorgss=s to the stored met-
rics can be made for free. However, no assumption as to tleedfyiie log likelihood

metric (i.e., integer or floating-point) is made.

6.2.2 Complexity of the Viterbi Algorithm
Branch Labels

Consider a trellis with a state profil(t) = [Ny, Ny, ..., Ny], branch profile
B(t) = [By, B,, ..., By] and a (code) label profilg(t) = [L;, L,, ..., Ly]
To calculate the metric associated with one branch at depgquires the addition of
L; log likelihood metrics, a process which nedgds- 1 additions. This is repeated for
all branches at depth and for all depthg = 1, 2, ..., N.. Therefore, in calculating

the branch metrics the total number of additidNs, is given by
Nc
Nt =) B —1) (6.1)
i=1

Note that trellises for simpler codes, such as RM and singte-eorrecting Ham-
ming codes, may ‘share’ branch labels. At a given depthmore than one branch
may be labelled with the same code symbols, L&, Si11) = L(St, Sy 141) Where

L. > 1 and at least one of the inequalitieg i’, j # ]’ holds (i.e., the start and/or end
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vertices must differ). An example of such a trellis is Figdrd, where for instance
L(Si1,S2) = L(S1,S2) = [0,0]. The branch metrics associated with such branches
will always be identical so it is possible to optimise decapby saving the tempo-
rary result to memory after the first calculation. Note tlngs saving is irrelevant for
branches with a code label size of 1; from (6.1) the compfexitevaluating such a
branch is zero. This optimisation is not possible with RSesodnd so will not be

considered further.

State metrics

The state metric is the metric for the best partial path frown oot to the state in
question. Consider the trellis section given in Figure &€t.the number of branches
entering stat&,; beN,. The first partial path metric can be calculated as the sum of
the state metric from the preceding lev8l, ;, and the metric of the branch linking
the two states. This requires one addition. The procespeated for the remaining

N, — 1 branches. The best metric is stored as the state metrimditite best metrics
requiresN, — 1 comparisons. For a linear trellis the number of branchesrieig each

stateS;; isthe same foral] =1, 2, ..., N, states at depth ThereforeN, is given

by

N, = — (6.2)
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Si1 branchB(S;_1 — S;1)

Sit

Figure 6.1: Calculating the state metric.
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The total number of comparisons for all states is given by

N¢
N"=> (N- 1N
t=1

- (R-1)n 6.9

For rectangular non-linear codes the same technique cap@ed, except thah,
may not be constant over all vertices at a given depth, reguan extra summation
over all vertices at depth
In some cases it is possible to optimise the state metricikedion. For trellises

which are never truncated the state metric of the root is ywaero, therefore no
addition is required in the calculation of the state mettidepth 1. Generally this is
not true for convolutional code trellises (see Example 4iB¢e the first states in the
trellis will not have a zero metric. The number of additiorguired to calculate the

state metrics is given by
i~ (6.4)

wherets = 2 for block code trellises anig = 1 for truncated (convolutional) trellises.
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Total Complexity

The total complexity for trellis decoding using the VA is alsted by combining (6.1),

(6.3) and (6.4).

m:iﬁj(Li_l)+iB (6.5)
N =D B - M) 6.6)

6.2.3 Complexity of SOVA

Using the same technique as above it is possible to caldhiadditional complexity
for SOVA decoding. The calculation of the branch metricsrishanged. During the
calculation of the state metric the reliability metric masio be determined. After
finding the best partial path from tié possible choices the next best path must be
found, i.e., the best out of the remainiNig — 1 possibilities. However, by arranging
the selection as a binary tree, less thiag, N,] comparisons are needed [Knuth, 1973,
pp. 142-143]. Restrictinly, to be an integer power of 2, only Iply, — 1 additional
comparisons are needed at each decision-making3statdecision-making state is
defined byN, > 1.

Finally, SOVA must store the difference between the best@ext best paths,
requiring one subtraction per decision-making state. S@W&t also test if the output

data from the best and next best paths is the same. If notjffeeedce between the

3For linear codes wherg is an integer power of 2Ny is always an integer power of 2. This
restriction is met for the majority of all useful codes.
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best and next best paths must be calculated and stored, vgjgines one subtraction
per decision-making state. For the case that both pathwesililt in the same output
oo is stored. The comparison of output data is declared to lieptre overheads for
two reasons. Firstly, it is an integer comparison, not nemdly the same type of
comparison as may be used for comparing two log likelihoottioee Secondly, for

block code trellises the output data is always differentistthe comparison always
fails and can be eliminated. Therefore the additional nundfecomparisons and

subtractions is given by

)

Ne O If Nt :B[

“' | N (log,N, — 1) otherwise
) (6.7)

.

N | O if N, =B,

=N (IogZ% - 1> otherwise
t

\
.

|0 ifN =B
N" =) < (6.8)

=t |N, otherwise
\

The total complexity of decoding a trellis using SOVA is tifare given by combining
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(6.5), (6.6), (6.7) and (6.8)

Ne Ne
Now = > By(L 1)+ >_B (6:)
=1 t=ts
.
Ne 0 if N, =B
Y o . (6.10)
t=1 B + N, <|ng — — 2> otherwise
\ N,
.
N O |f Nt == ]B[
Nsowa = Z \ (6.11)
t=1

N, otherwise
\

Example 6.1 The RS(73,5) trellis decoding complexity using VA and SOVA are
compared for the case of an AT & T DSP32C digital signal preces
The trellis (Figure 4.5) is decoded using integer LL metri¢zoperties of the

trellis are as below:

Ne =3 (6.12)
N(t) = [1,64,64, 1] (6.13)
B(t) = [64,512, 64 (6.14)
L(t) = [2,3,2] (6.15)

ty=2 (6.16)

Using the operation cost as given in Table 6.1 the relativepdexities are shown

in Table 6.2.
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algorithm| + — | x| x| = total_ bit .
’ complexity | complexity

VA | 1728 0| 0| 0511 3261 36233
SOVA | 1728| 65| 0| 0| 644 3725 41389

160

Table 6.2: Comparison of VA and SOVA decoding complexityRS(7, 3, 5).

Example 6.2 Similar to Example 6.1, calculate the VA and SOVA decodingptex-

ity for the RS(75, 3) trellis (Figure 4.2). Properties of the trellis are asobel

N, =7
N(t) = [1, 8,64, 64, 64,64, 8, 1]
B(t) = [8,64,512 512,512 64, 8]
L(t) = [1,1,1,1,1,1, 1]

ts=2

The decoding complexities are shown in Table 6.3.

algorithm| + — | x| =] = total_ bit .
’ complexity | complexity

VA | 1672 0] 0| 0| 1407 5893 39287
SOVA | 1672|201| 0| 0| 1809 7300 486.67

(6.17)
(6.18)
(6.19)
(6.20)

(6.21)

Table 6.3: Comparison of VA and SOVA decoding complexityRS(7, 5, 3).
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6.3 A Comparison of Algebraic Decoders

6.3.1 Error-correction Performance

The algebraic decoders implemented were Euclidean, BeripkMassey and high-
speed step-by-step. All are HDMLD, their performance isef@e upper-bounded
by (2.32). The probability of bit error can be converted frima probability of sym-
bol error over arM-ary orthogonal signal set by (adapted from [Sklar, 1988)d&=q

tion 3.127, p. 180))

M

= mps (6.22)

R

Figure 6.2 compares the error-correction performance @fatgebraic decoders
for the RS(75, 3) code over a coherently-demodulated BPSK channel. The BER B
is about half the bound. (The bound assumes that an incatesctding will result
in all bits erroneous, whereas on average half are corrétte) Euclidean decoding
implementation behaved slightly differently to that of B&amp-Massey and HSSBS
in the case of decoder failures. The performance is sligitigse but still within the

HDMLD bound.

6.3.2 Decoding Complexity

The decoder complexity was measured by using the C++ Gadtisdiass to count the
number of+, —, x, + and= (compare) operations. The decoders were presented with

the samé + 1 sets of codewords, where each set containet O.. , t errors. The
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average decoding complexity for one codeword is shown fqf7R%5) (Table 6.4),
RS(7,5,3) (Table 6.5), RS(6%5,9) (Table 6.6) and RS(25323 33) (Table 6.7}.
For the case of no errors there is no difference in compleXitys is to be expected
since they are all syndrome-based algorithms where thestiegt is the syndrome
calculation, for which they share a common method (3.1). @diriig no errors no
further work is necessary.

It can be seen that HSSBS decoding is the least efficient ahtlke algebraic de-
coders implemented. For codes over small alphabets (Tébleand 6.5) the perfor-
mance is tolerable. With the chosen complexity criteria BS$ particularly heavily
penalised for its high use of multiplications. With a ditat choice of basis for the
GF arithmetic (e.g., logarithmic), where GF multiplicatgocan be implemented more
simply than a table look-up, its complexity performance ldamprove. Whatever
basis is chosen, the implementation complexity of addiéiod subtraction are likely
to be approximately equal to each othexs are multiplication and division. How-
ever, combining the number of additions with subtractiond multiplications with
divisions reveals that HSSBS will always be more complexthigher Euclidean or
Berlekamp-Massey decoding.

For codes over large alphabets the situation worsens dicaiha(see Table 6.6);
there are an exponentially increasing number of possilote galues for a trial-and-
error method to search. It was not possible to include coxitgleesults for HSSBS

in Table 6.7. Though HSSBS is an improvement over the origiteg-by-step algo-

“4In the tables the values are printed with limited precisinrt,the complexity is based upon the full
numerical precision.
SExactly equal for fields of characteristic 2.
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number total bit
_+_ — X — = . .
of errors complexity | complexity
0|24.53| 0.00|21.03| 0.00| 0.00 129.69 14.41
1]33.21] 9.69|28.66| 5.00| 8.41 236.44 26.27
2|58.87| 21.46| 49.12| 12.21| 25.66 463.91 51.55
(a) Berlekamp-Massey.
number total bit
_+_ — X — = . .
of errors complexity | complexity
0|24.53| 0.00|21.03| 0.00| 0.01 129.72 14.41
1| 40.52| 23.00| 48.13| 8.00| 14.89 388.84 43.20
2| 72.21| 42.87| 73.91| 16.14| 51.03 718.42 79.82
(b) Euclidean.
number total bit
_+_ — X — = . .
of errors complexity | complexity
0|24.53| 0.00| 21.03|0.00| 0.01 129.72 14.41
1]50.44| 19.60| 90.64| 0.00| 15.11 568.57 63.17
2192.14| 47.32| 194.38| 0.00| 51.32 1265.33 140.59

(c) High-speed step-by-step.

Table 6.4: Complexity for decoding RS@, 5).
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number total bit
_+_ — X —_ = . .
of errors complexity | complexity
0| 12.22| 0.00| 10.48| 0.00| 0.00 64.61 4.31
1|18.84| 7.73| 16.10| 5.00| 8.47 157.47 10.50
(a) Berlekamp-Massey.
number total bit
+ — X —_ = . .
of errors complexity | complexity
0|12.22| 0.00| 10.48| 0.00| 0.00 64.61 4.31
1|22.11| 15.00| 25.51| 8.00| 8.88 231.28 15.42
(b) Euclidean.
number total bit
+ — X —_ = . .
of errors complexity | complexity
0|12.22| 0.00|10.48| 0.00| 0.00 64.61 4.31
1]41.28|15.21| 69.34| 0.00| 31.05 496.34 33.09

(c) High-speed step-by-step.

Table 6.5: Complexity for decoding RS, 3).
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number total bit

+ — X = = . .

of errors complexity | complexity

0/498| 0|490| O 6 2962 8.98

1|506|14|498| 5| 13 3072 9.31

2/609|26|572| 13| 62 3743 11.34

3/685|45|634| 24 | 142 4445 13.47

41866 70| 774| 38| 287 5855 17.74

(a) Berlekamp-Massey.
number total bit

+ — X - = . .

of errors complexity | complexity

01498 0]490| O 6 2962 8.98

1522 39|537| 8| 32 3385 10.26

2|653| 8763917132 4414 13.38

3| 759|132 | 732 | 27| 292 5562 16.85

41961|173| 893| 38| 536 7393 22.40

(b) Euclidean.

number . total bit
—+ — X - = : H
of errors complexity | complexity
0 498 0 490| O 6 2962 8.98
1| 2912| 4204|11474| 0| 276 65314 197.92
2| 4467| 6895| 18513| 0| 719 106084 321.47
3| 6219| 9929| 26449| 0| 1358 152470 462.03
4 | 20149| 34070| 89589| 0 | 3546 512802 1553.95

(c) High-speed step-by-step.

Table 6.6: Complexity for decoding RS (&b, 9).
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number total bit
+ — X - = . .
of errors complexity | complexity
0| 8115 0| 8086| O 50 48696 27.30
1| 8159| 38| 8126 5 58 49022 27.48
2| 8475 51| 8354| 13 166 50858 28.51
3| 8875| 70| 8653| 24 394 53508 29.99
4| 9417| 95| 9074| 38 766 57368 32.16
5|10303| 126| 9782| 55| 1344 63647 35.68
6| 11096| 163 | 10441| 75| 2088 70103 39.30
7| 12260| 205 | 11425| 98| 3049 79227 44.41
8| 12912| 254 | 12005| 124 | 4127 86189 48.31
9| 13740| 309 | 12728| 153 | 5358 94526 52.99
10| 13877| 369 | 12879| 184 | 6626 99441 55.74
11| 16338| 435| 15012| 218 | 8279 117763 66.01
12| 17019| 509 | 15657| 257 | 10033 127199 71.30
13| 18689| 585 | 17150| 296 | 12029 142591 79.93
14| 19479| 670 | 17872| 341 | 14164 153709 86.16
15| 21750| 760 | 19934 | 387 | 16587 173877 97.46
16| 23987| 855 | 21966| 435 | 19294 194727 109.15

(a) Berlekamp-Massey.

Table 6.7: Complexity for decoding RS(2523 33).
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number total bit

+ — X - = . .

of errors complexity | complexity
0| 8115 0| 8086| O 50 48696 27.30

1| 8222 135| 8285| 8 149 50265 28.18

2| 8687| 328| 8663| 17 524 53985 30.26

3| 9234| 492| 9110| 27| 1190 58979 33.06

4|1 9920| 655| 9674| 38| 2165 65632 36.79

5] 10937| 810 10514| 50| 3496 75054 42.07

6| 11857| 966 | 11302| 63| 5139 85064 47.68

7| 13148| 1126| 12413| 77| 7143 98154 55.02

8| 13915| 1279| 13108| 92| 9393 109375 61.31

9| 14851 1427| 13940| 108 | 11915 122260 68.53

10| 15097| 1580 14200| 125 | 14594 132083 74.04

11| 17656| 1722 | 16429| 143 | 17762 155523 87.18

12| 18403| 1850| 17144| 161 | 21104 170090 95.34

13| 20184| 2011| 18747| 181 | 24804 191251 107.20

14| 21064 | 2157 | 19559| 203 | 28736 208238 116.73

15| 23401| 2291 | 21689 224 | 33021 234320 131.35

16 | 25699 2417 | 23781| 247 | 37649 261204 146.41

(b) Euclidean.

Table 6.7: Complexity for decoding RS(2523 33).
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rithm [Massey, 1965] it is not well suited to decoding muétel codes over large
alphabets. For these reasons further work on HSSBS was rsatqull

The average decoding complexity is a function of the prdisgloif symbol errors,
which in turn is dependent on the modulation scheme, the ¢ypwise and the ra-
tio E,/N,. Figure 6.3 compares the decoding complexities as a funofi&,/N, for
the RS(75, 3) code over a coherently-demodulated BPSK channel in tbsepice of
AWGN. At high values ofg,/N,, where received symbol errors are uncommon, the
complexity is almost constant and is dominated by the coli@tyndrome calcula-

tion.

6.4 Two-Stage Decoding

6.4.1 Decoder Performance

The decoding performance of TSD has been evaluated by cemgintulation for
RS(7,3,5) and RS(75, 3) codes. For each case the performance of both HD and
SD subtrellis prediction was measured. The simulated nadidul scheme was non-
coherently demodulated 8FSK, over an AWGN channel. Unhleeather simulations
Euclidean distance metrics were used, represented bynigpptint values.

Figure 6.4 shows the performance of RS§;5) with HD choice of subtrellis. The
goal of this near-optimal decoder is to improve upon theqrerance of HDMLD,
but with a complexity lower than SDMLD. To obtain an apprédgacoding gain the
majority of the subtrellises must be decodetl ) so that the complexity saving is

reduced. (It should be noted however that a less noisy chemegjuired for HDMLD
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to give any coding gain.) Figure 6.5 shows the performance when SD nmdtion
is incorporated into the subtrellis selection, by usingft'€eF" algebra. The error-
correction performance is much improved, solely as a resuttore reliable subtrellis
predictions. Decoding just 3 of the 8 subtrellises resuita performance very close
to optimum.

Similarly Figures 6.6 and 6.7 show the performance of R(J) for HD and
SD choice of subtrellis respectively. For this code subsétie trellis are selected
based on the prediction of two information symbols, so itfiditle surprise that
> g symbols are required for good performance. (Withg symbols there may not
be the opportunity to try a second symbol value for the mordident prediction.)
Again, evaluation of the subtrellis predictors with soft @ithmetic considerably

improves the result.

6.4.2 Decoder Complexity

Two-stage decoding has both algebraic and combinatorelatipns. The first stage
uses GF arithmetic. By inspection of the subtrellis symbebctors the number of
addition and multiplication operations is easily obtain&ihce the subtrellis predic-
tors are known at design time, the prediction process caly basoptimised to remove
unnecessary multiplications when the coefficient is 1. Bypattion of Table 4.2 the
first decoding stage for RS(3,5) needs 52 GF additions and 67 GF multiplications.
Thus the complexity for stage 1 is 521 + 67 x 5 = 387 CPU cycles.

The second decoding stage is the Viterbi decoding,afubtrellises. It is assumed

that the trellis will be decoded using the log likelihoodwed, which may be expressed
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either in floating-point numbers or converted to integerriogt(Section 5.1.2). For
a coset trellis, such as Figure 4.5, the decoding implertientand calculation of its
complexity is relatively straightforward. Each subtri independent of the others
so they can be decoded in isolation (in parallel even, if iregi).

Although the two-stage decoding simulations did not use ldtrios, the complex-
ity analysis presented below is for the case of LL metricss €hables the complexity
measurements to be compared with the other decoders seduethis Chapter.

Table 6.8 shows the complexity to decode the RS(3) coset trellis (Figure 4.5),
for the case of HD subtrellis prediction. Note that selagtimre best subtrellis from the
N decoded subtrellises requids— 1 comparisons. Table 6.8 includes the additional
N — 1 comparisons. The bit complexity to decode the full miniR8K7, 3, 5) trellis
is 36233 (Table 6.2); folNs, < 7 decoding is simplified.

For a syndrome trellis, such as Figure 4.2, the decoding matp is more dif-
ficult to analyse because the trellis does not contain inudga subtrellises. Prior
knowledge (or prediction) of information symbols can, heere be used to limit de-
coding to only a subset of the trellis. The trellis verticesl@pth 3 can be thought of
as storing the values of andu;. From the generator matrix (4.22) it can be seen that

the brancheB8(S;; — S, ;) are labelled with

Vy, = U, + a4U3 + O!3U4 (623)

The new information, responsible for the trellis branchisg,, while the information

from past subcodesi{ andus) was effectively stored in the vertex number. When the
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N P IO NV RO stage2 | TSD | TSD total
ot : complexity| total | per bit
1| 2721 0| 0| 0| 63 461| 848 94.22
2| 544 0| 0| 0] 127 925| 1312 14578
3| 816 0| 0| 0| 191 1389 1776 197.33
411088 0| O| 0| 255 1853| 2240 24889
5/1360| 0| 0| 0] 319 2317| 2704 30044
61632 0| 0| 0| 383 2781| 3168 35200
711904 0| 0| O] 447 3245 3632 40356
8|2176| 0| 0| 0| 511 3709 | 4096 45511

Table 6.8: Complexity versus number of subtrellises dedddeTSD of RS(73,5).

values foru, and u; are known (or can be predicted) only those paths which pass
through the relevant vertex at depth 3 need be decoded. @timigue is similar

to forced-state decodingr state pinning[Hagenauert al., 1994, p. 245], though
with the aim of reducing decoder complexity instead of imasiag the error-correction
performance of a feedback decoder.

Figure 6.8 shows the possible trellis paths for the case 0 andu; = 0, while the
possible paths for the casg = 1 andu; = 2 are shown in Figure 6.9. Some branches
are common whatever values of and u; are selected. This is true for branches
at depths 1, 6 and 7, which require decoding only once. Figur@ highlights the
common branches. In the worst case, as shown, no brancheptas® 3, ..., 5
are common. The complexity of decoding depth82. .. , 5 for one combination of
us, U, has been considered ?isof the total complexity of decoding depths 2, ... ,

5. When 8 or more combinations of, u, are decoded some of the central branches
are guaranteed to be common, so that the worst-case analysiemphasizes the

complexity. The number of GF additions required for the preoin of u, andu, are 36
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and 40, respectively, while the number of multiplications a9 and 44, respectively.

Table 6.9 shows the decoding complexity using the worst-eamlysis for selected

values ofi\.

. stage 2 TSD | TSD total

Ny | + — | x|+ = . .
complexity| total per bit

1 97| 0| 0| O 28.88 18362 | 67462 44.98
2| 122, 01 0| O 51.75 27725 | 76825 51.22
8| 272 0| 0| 0| 18900 839.00 | 133000 88.67
16| 472| 0| 0| O| 37200 158800 | 207900 13860
24| 672| 0| 0| 0| 55500 233700 | 282800 18853
32| 872 0| 0| O| 73800 308600 | 3577.00 23847
44| 1172) 0| 0| 0] 101250 420950 | 470050 31337
56| 14721 0| 0| 0| 128700 533300 | 582400 38827
64| 1672| 0| 0| 0| 147000 608200 | 657300 43820

Table 6.9: Complexity versus number of subtrellises dedddeTSD of RS(75, 3).
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6.5 SOVA Applied to the Meteosat Il Satellite System

6.5.1 Introduction

The European Space Agency is funding a replacement serggEoeynchronous satel-
lites, Meteosat Il, which will be used for meteorologicalposes. The satellites will
be responsible for transmission of weather images to a grstation. The processed
information is then transmitted back up to the satellitasr&ransmission to fee-
paying end users. In its simplest form the Meteosat Il — Batitansmission channel
can be viewed as a concatenated coding system, with an R&2%33) outer code
and a (21, 7) convolutional inner code as shown in Figure 2.3. An it@ver of depth
d = 4 is used between inner and outer codes. The proposed sylsieima&udes en-
cryption, compression, randomisation and synchronisatidone of these affect the
performance of the error control coding and can be ignorduds doncatenated code
is also used by NASA for the Planetary Data Standard.

Potential users are spread over a wide geographical areas bisthe edges of the
defined service area are those most likely to have most difficureception. There is
of course a trade-off between the cost of increasing thesmnétter power, increasing
the complexity of the users’ receiving equipment and theneefigeographical limits
for which satisfactory reception can be expected. If a meande found to improve
the channel error-rate for users in marginal locationstgresmmercial benefits exist,
either by enlarging the service area or reducing the traesnpiower. An investigation
was made into the benefits of applying SOVA to improve theesyisperformance.

Replacing the inner Viterbi decoder with a soft-output ¥hiedecoder allowed SD
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decoding of the outer (RS) code. The original system is aehby SD-HD and the

modified one bysSD-SD

6.5.2 Simulated System Details

The performance of SOVA in the Meteosat Il — Earth high/loteraser station link
was measured by computer simulation. An overview of the kited system is shown

in Figure 2.3 and the specifications are given in Table 6.1 differences between

the simulated and actual systems are discussed below.

Convolutional
code:

n

2 bits

k

1 bit

K

7

generator polynomial:
G:(x)
g2(x)

14+ X+X+X+ X8
1+ 4+ 4+ X4+

trellis length

28,350r42

RS code:

n

7 symbols

k

5 symbols

d

3 symbols

9(x)

1+ a*x+ a®¥?

GF size

8

GF primitive polynomial

1+x

symbol width

3 bits

Block interleaver:

depth

4

width

7 RS symbols (21 bits

Modulation/
demodulation:

type

BPSK

channel

AWGN

demodulation

coherent

guantisation resolutiol

n 3 bits

Table 6.10: Specifications of simulated Meteosat Il system.
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Modulation/Demodulation

The simulated system modelled the transmission of eqikyy random data over a
BSC with AWGN and coherent BPSK demodulation. The systerpgsed by ESA
is switchable between BPSK and QPSK modulation. HoweveGK8RNnd QPSK
have identical BER performance [Sklar, 1988, p. 172] so &K modulation was

modelled. The simulated demodulator output was quantigedilevels.

Synchronisation

The simulated system assumed synchronisation. This assumgan be made since
without synchronisation no error control coding can be gobIWhilst the error con-
trol decoders are important for ensuring and maintainimgkyonisation, introduction

of SOVA will not worsen the synchronisation behaviour.

Data randomisation

Data randomisation is recommended for the following reagbmai, 1995, p. 3.2-18]:

e adequate symbol transition density in the data stream

smooth spectrum shaping

with QPSK modulation: standard 1/Q demultiplexing scherosgible

does not introduce degradation

reliable demodulator/synchroniser performance



6.5. SOVA APPLIED TO THE METEOSAT Il SATELLITE SYSTEM 185

Data randomisation was not included in the simulated sysiege synchronisa-
tion was assumed. The reasons for including data randdomsate for synchronisa-

tion purposes only, it has no effect on the error control sode

Convolutional Code and Decoder

The convolutional code used for the computer simulationtvag?2 1, 7) code spec-
ified by the CCSDS. The decoder used was either a SOVA deamdeiconventional
VA trellis decoder, both operated in the trace-back impletaton. Decoding was per-
formed over trellises of depths 28K, 35 (XK) and 42 (&). A single section of the
trellis is shown in Figure 6.11. The quantisation resoluticodelled was 8 levels, the
maximum resolution given by the frame synchroniser outpai,[ 1995, p. 3.2-13].
Greater resolution would provide little extra performangienulation studies [Heller
and Jacobs, 1971] have shown that 8 level quantisationteelsnlonly 025 dB reduc-

tion in coding gain with respect to the unquantised case.

Reed-Solomon Code and Decoder

To measure the coding gain SOVA can produce it is necessairthth RS decoder used
is capable of SDMLD. Failing to use such a decoder will nodpice an independent
measure of the coding gain possible by introducing SOVAistead a combination
of the gain by SOVA and the loss from the sub-optimal decoder.

For the simulation the RS(25823 33) code over GF(256) was replaced by the
RS(7,5,3) code over GF(8). This code was chosen because it is a siratka to

RS(255223 33) and readily decoded with VA over the trellis shown in Feyd.2.
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Figure 6.11: One section of the,(® 7) convolutional code trellis.
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The trellis was labelled with the binary mapping of the RS bgia (using polyno-
mial representation), thus avoiding the need to map syndralssymbol reliabilities
from binary to GF(8). The RS Viterbi decoder operated ingrback mode. For HD

decoding of the outer code a Berlekamp-Massey decoder veas us

Interleaver and De-interleaver

The interleaver/de-interleaver specified by the CCSDS kasthdl = 4. The width
of the interleaver was reduced from 255 8-bit symbols to 7t 3ymmbols to conform
with the change of outer (RS) code. The interleaver was ge@o operate on the
RS symbols, not on individual bits, and thereby preservedotirst-error correction

capability of the RS code.

6.5.3 Simulation Results

Results from the simulated system are presented oveEjHé, range 0—7dB. The
CCSDS coding standard does not specify the path storageusdatfor a Viterbi de-
coder (nor even the decoding method to use!). It is assunagditd trellis length will
be in the rangek to 6K [Heller and Jacobs, 1971]. Results are given for convahatio
trellis lengths 28 (K), 35 (XK) and 42 (&).

The concatenated coding scheme provides extremely high-@rrection capa-
bility above 45 dB, requiring some results to be extrapolated. On the grdptted
lines indicate results obtained from extrapolated data Uircoded curve was calcu-
lated by theoretical means, and is in agreement with thelatediuncoded curve (not

shown). The probability of bit error for uncoded data trartsed with BPSK over a



whereQ(x) is the complementary error function.
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BSC containing AWGN is given by [Sklar, 1988, p. 166]

Additional coding gain (dB)
BER | depth= 28 | depth= 35 | depth= 42
10+ 0.7 0.9 1.0
10~ 0.9 11 1.4
10-° 11 15 18

188

(6.24)

Table 6.11: Additional coding gain achieved through use@¥A.

Figure 6.12 shows the performance of both SOVA and VA deapdiim a con-
volutional trellis of depth 28. At a BER of 10 SOVA decoding provides a coding
gain increase of approximatelydB. The “break-point” at which coding becomes
beneficial is reduced frork,/N, = 3.6dB toE,/N, = 3.1dB. The same results
for a convolutional trellis of depth 35 are shown in Figuré3®. At a BER of 10°
SOVA displays a coding gain over the VA ofl1dB, while the break-point is reduced
from E,/N, = 3.4dB toE,/N, = 2.8dB. For a trellis of depth 42 (Figure 6.14),
the difference in coding gain has risen td &iB at a BER of 10°. The break-point is

reduced fronkE,/N, = 3.3dB toE,/N, < 2.8dB.

6.5.4 Decoder Complexity

The total system complexity was calculated from the sume@tthmplexities for each

of the component decoders. Only operations directly aasetiwith decoding were
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included. Additional work, such as that performed by tharderleaver, was termed
overheads because the exact complexity is very dependeheaxact hardware or
software implementation.

The decoding complexity for the inner,(® 7) convolutional code was calculated
using the procedure given in Section 6.2. Table 6.12 detfads/A complexity for
trellises truncated to depths 28, 35 and 42. Similarly, #saeoding complexity using
SOVA is shown in Table 6.13. Each decoding operation prosljust one binary bit
of information.

The complexity for VA and decoding of the outer RS%/3) code was calculated
in Example 6.2. A BM decoder was used for HD decoding of R5(3), for which
the complexity is given in Figure 6.3. The complexity of thiel Becoder is dependent
uponE,/N,; the results are quoted for an output BER of 410

The complexity of decoding the outer R$%/3) code with the VA can be obtained
from Table 6.3, while the complexity for the original BM defsy can be calculated
from Figures 6.2 and 6.3. At a BER of 10the bit complexity of the BM decoder
is 4.52. Each outer decoding operation results in 15 binary lbitata. On average,
e = g inner decoding operations are required for every (binaaya tit output by the
concatenated system. The total complexity, for both thgirai system (SD-HD) and

the improved system (SD-SD) is shown in Table 6.14.
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trellis . bit

length| = [T | X |7 = total complexity
2813808| 0| 0| 0]1792| 9184 9184
3514760 O| 0| 0| 2240| 11480 11480
42 1 5712 0| 0| O | 2688| 13776 13776

Table 6.12: Complexity for VA decoding of the convolutioria) 1, 7) code.

trellis . bit

length| - | X || = | ol complexity
2813808| 1792 0| O | 1792| 10976 10976
35| 4760| 2240 0| O | 2240 13720 13720
42 1 5712|2688 0| O | 2688 | 16464 16464

Table 6.13: Complexity for SOVA decoding of the convolub(2, 1, 7) code.

trellis | bit complexity

length | SD-HD | SD-SD
28| 12862| 15759
35| 16077 19601
42| 19291| 23442

Table 6.14: Comparison of decoding complexity for the Ms&tdl concatenated
coding scheme.
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6.6 RS Product Code Decoding

6.6.1 The Transmission Channel

The transmission channel used in the simulated system waseaently-demodulated
binary phase-shift keying channel with additive white Gaais noise, transmitting
equally-likely data. At the demodulator the soft outputgavgquantised to 8 levels.
To simplify the implementation the RS, 3) x RS(7, 5, 3) product code operated on
RS symbols, not binary bits. Unlike the SOVA system desdibeSection 6.5 it was

therefore not possible to use a binary-mapped RS trellisveéver the same binary
mapping and combination of LL metrics which would have beerfggmed by the

trellis was instead performed at the output of the demoduldhis mapping is shown

in Table 6.15.

GF(8) bit LL metric

value | representation construction
0 000 bo, + b, + 4o,
1 001 b, + b, + 4,
a 010 b, + 4, + b,
a? 011 b, + b, + 4,
a? 100 b, + b, + b,
at 101 b, + 4, + 4,
a® 110 b, + 4, + b,
a® 111 b, + 4, + 4,

Table 6.15: Binary to GF(8) mapping for LL metrics.

The RS decoders were presented with symbols oveq)cFor each symbol there
wereq LL metrics. Other than for the implementation changes desdrabove this

channel is identical to that used by the SOVA system (Se@&ibr2), and later, com-
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parisons between the two systems will be made. Likewisesithelated system as-

sumed synchronisation.

6.6.2 Comparison of Cascade Decoding Algorithms
Decoding Performance

Four different variations on the cascade decoder were imgabéed. The first and most
basic is HD decoding of rows, followed by HD decoding of cohsyidenoted bgas-
cade HD-HD. As expected this decoder performed worst. A standardomgment
is to add SD decoding to the first decoding stage (cascade [SDBY considering
the channel state information an improvement of approetgdt5 dB over cascade
HD-HD was obtained (Figure 6.15).

By introducing advanced techniques such as SOVA (Sectidntbe column de-
coding stage may also use SD information and reap the behgfiesducing the BER
further still. Two variations of the cascade SD-SD decoderenmplemented. In the
first (cascade SD-SDa), the column decoding used only theosgfut from SOVA
(the extrinsic information) whilst the second used the sdrthe SOVA metric and
the channel state information (i.e., extringichannel state information). As cascade
SD-SDa does not make use of all the information availableitqggmed worse than
cascade SD-SDb, but it is shown in Figure 6.15 to indicatae¢leive gains due to
the extrinsic information and the channel state infornmatio

By taking advantage of the extrinsic information availafstem SOVA and the

channel state information the cascade SD-SDb decodereg@lperform best of all
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the cascade decoders implemented. It has a coding gainladB over cascade SD-
HD at a BER of 10° (Figure 6.15), and with respect to cascade HD-HD the coding

gain is approximately .2 dB.

Decoding Complexity

The cascade decoding complexity was measured by combihanglécoding com-
plexities of the BM, VA and SOVA decoders. The complexityued are quoted for

a BER of 104, because the complexity of the algebraic decoders (Se6tk) is a
function of the inpuk, /N, ratio. BM decoding was chosen because it is the least com-
plex HD decoder implemented in this work. Table 6.16 dethiéscomplexity for the
cascade decoders described above. Only operations peddyynthe row or column
decoders are included in Table 6.16, other operations amele overheads and are
not included. The complexity of SD-SDa and SD-SDb are alru#sitical, SD-SDb

is slightly more complex because it requires extra additions to sumiaene! state

and extrinsic information.

Decoder| Number of decodings

version | BM | VA SOVA total | bit total
HD-HD 12 0 0 812 10.83
SD-HD 5 7 0| 41589| 55453
SD-SDal 0 5 7 | 80565| 107420
SD-SDb 0 5 7 | 80600| 107467

Table 6.16: Comparison of complexity for cascade decodiggrahms.
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6.6.3 Comparison of Alternating Row-Column Algorithms
Decoding Performance

Two variants of the alternating row-column decoder (Sec§@.7) were implement-
ed and evaluated. Firstly, with just an initial sort of thevrand column codeword
confidences (i.e., no re-sort), and also with the row/colaooeword confidences re-
calculated and re-sorted after each row/column decodiogh Zariants used SOVA,
not the successive erasures decoding used in [Badk, 1986]. In Figure 6.16 the
error-correction performance is compared with uncodegastrassion and the ‘stan-
dard’ cascade SD-HD decoder. It can be seen that the ARC decprbvide an extra
0.8 dB coding gain relative to the standard cascade SD-HD agctterestingly, no

significant difference in performance of the two variantsliscernible. This shows
that recalculation and re-sorting of the row and column waxtd confidences is not

necessary.

Decoding Complexity

The decoding complexity may be computed by consideringwbesge number of row
and column decodings required. The average number of rovcalndhn decodings
is given by%“l and %“2 respectively. To decode a product code with RS(3)

row/column codes the bit complexity is 1168, not significantly different from that

of the cascade SD-SDb decodgg(= 107467).
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6.6.4 Results on Iterative Decoding of Product Codes

In Figure 6.17 the decoding performance of ARC decoding ispared for the cases
of one and four iterations. Again, no benefit is found fronsogting the row and
column codeword confidences after each decoding. It candretbat the effect of
four iterations is to provide an extralldB coding gain. The decoding complexity
is simplyi times greater, i.e., for the decoder in Figure 6.17 with datiens the bit

complexity is 4672.
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Chapter 7

Conclusions and Further Work

7.1 Original Contributions
| claim the following areas of research as original conttidous:

e Two-stage decoding of RS codes (Section 4.2.5).
e Soft Galois field arithmetic (Section 4.3).
¢ Alternating row-column decoding of product codes using 8Q@&kction 5.3.7).

e Trellis decoding complexity measured by the number of aolistand compar-

isons (Section 6.2).

While McEliece has also introduced a similar method [Mcégie1996] the re-
sults of my work were first published in 1995 (initially for Elidean metrics).
Subsequently the work was extended to LL metrics and predentthe form

of trellis parameters. This work was independent of [Mc&digl 996]. Further-

203
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more, Section 6.2 details both optimisations not given icBllece, 1996] and

also the decoding complexity for SOVA.

e The computer simulation of the new decoding algorithms tasnee both de-
coder performance and complexity. In addition, the compsitaulation of the

Meteosat Il — Earth retransmission channel using SOVA.

7.2 Decoding Complexity

In Section 6.1.2 a technique was introduced to measure angare decoding com-
plexity for algebraic decoders. It was successfully apblethe Berlekamp-Massey,
Euclidean and high-speed step-by-step decoders. Theaetiffe in complexity for
the Berlekamp-Massey and Euclidean decoders was smalh edrescting errors the
Berlekamp-Massey algorithm was typically 20-25% more ieifit Both [Wicker,
1994, p. 225] and [MacWilliams and Sloane, 1978, p. 369] ttigefact that the Ber-
lekamp algorithm is the slightly more efficient of the two.

Transforming trellis complexities into the number of algeb operations required
for its computation (Section 6.2) has been a very succesgipfoach for compar-
ing trellis and algebraic decoding techniques. In pardcuvithout such a method it
would not have been possible to ascertain what complexitgtits actually existed
in two-stage decoding. Nor would the comparisons betweerMéteosat Il system
and the product code algorithms, as they are consideratidyetit in their approach.
McEliece has used a similar approach to calculating trelisiplexity [McEliece,

1996]. However, his published results apply to the BCJRigrehly while the method



7.2. DECODING COMPLEXITY 205

described in Section 6.2 is applicable to any linear codkstr&Vith trivial modifica-
tion (as suggested) the work in this Thesis can also be ajpiplieectangular non-linear
codes. McEliece also applies equal weighting to the opmratiaddition” and “taking
the minimum”, whereas it was shown (Table 6.1) that suchatjmers are not neces-
sarily of equal complexity. Another significant differenisethe inclusion of certain

important optimisations, such as shared labels and degodin-truncated trellises.

7.2.1 Shared Labels and Trellis Complexity

It would appear from the literature that no work has beeni@adrmut on the subject
of reducing trellis (decoding) complexity by using the ceptof shared branch la-

bels (p. 153). McEliece states [McEliece, 1996, p. 1077]

It can happen that different codewords will produce comnubges, i.e.,
edges with the same values of iej( fin(e) and A(e).! Such “shared”
edges are only counted once in the trellis. It is this shaningdges that

makes the BCJR trellis an efficient graphical represemaifdhe code.

This is however a feature of applying separabilfigidorenkoet al., 1999] to a code
(be it linear or non-linear) to produce the optimum treliisis not the same as the
label sharing described on p. 153, where the start and/omedds differ. It was
stated that codes such as RM and single error-correctingiiagncodes could share

labels (which is apparent by inspection of their trellidasi that it is not possible for

IMCcEliece uses the notation ing, fin(e) andA(e) to refer to the start state, end state and labelling,
respectively, of a trellis branch (edge).
2Also termedrectangularity
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RS codes. No proof was offered for either statement andglas iarea where further

work is required.

7.3 High-speed Step-by-step Decoding

Example 3.5 highlights the tortuous route by which HSSBSdety sometimes op-
erates, particularly when compared with the efficiency incltboth Euclidean and
Berlekamp-Massey algorithms perform the same task (ExasrthB and 3.4 respec-
tively). HSSBS decoding is very inefficient at correcting tkth error because of its
dependence of finding a codeword at a distance ef 2from the received codeword.
It should be noted that if HSSBS had corrected all symboltlona only 40 attempts
would have been required to correct all errors (instead @f B@r sake of complete-
ness, further study into the trade-off between decodingyatibols and decoding only
the information symbols, as a function®f/N,, could be made. However, HSSBS is
not (and probably never will be) an efficient algorithm forcdding multi-level codes

over large alphabets, as the results in Section 6.3.1 glshdw.

7.4 Two-stage Decoding

The premise of two-stage decoding was that the decodinglesipcould be reduced
from x'k" to K’ + £”, with only minor loss of performance. For the case of RS cades
was shown that a trellis-based system for the selectionoofrgk stage subtrellises was
not possible. This unfortunately increased the compleditihe first decoding stage,

but complexity savings are still possible (Section 6.4F2y. the case of HD subtrellis
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prediction it also reduced the performance. A trellis-typethod would seem a more
natural method to use for the selection of which subtre$iy{o decode.

It is suggested that for two-stage decoding of RS codesduwiiark might be di-
rected towards the use of the max-sum algorithm [Forney7[L9Bhe subtrellis pre-
diction can therefore employ Tanner graphs [Tanner, 198H means of preserving
SD information. Investigation should be carried out to desich a scheme is any
more efficient that the ‘soft’ GF arithmetic implemented &c8on 4.3.

An alternative direction is to consider the possibility ebdding a variable number
of subtrellises, instead of the fixed but adjustable numbeeatly decoded. Such a
scheme would require a termination condition. Aguado amceR@mployed the Fano
metric [Fano, 1963] for their reduced search trellis deegdilgorithm while Shin and
Sweeney used their own reference path metric to discardidatedpaths. A third
option for deciding when to stop decoding subtrellises mioghthe SOVA reliability
metric. Whatever metric were to be employed the advantaiggesch a scheme could

be improved error control performance and reduced contglexi

7.5 Comparison of Decoders for Concatenated Codes

For the case of the modified Meteosat Il system it can be sed#rSAVA provides
a gain of 11-18 dB, dependent upon the depth of the trellis decoded for dhea:

lutional code (Figures 6.12—6.14). The commercial benefiis 1.8 dB increase in
coding gain are considerable. For example, the geostayicaellite can transmit

a signal 18 dB weaker, which requires less power and thus smaller selés and
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batteries. The weight saved translates to cheaper laursth fay the satellite. Al-
ternatively, the receiving dish be may reduced in area by 83%¢hat a B m dish
can be used where a 1 m dish was previously required). Anogtéan is to increase
the defined service area and accrue greater revenue fronteagezhnumber of users.
For the system simulated, the increase in decoding contplexachieve such a large
gain was very modest indeed, only 22%. An alternative comaparis that SD-SD
decoding over a convolutional trellis of length 28 has agpnately the same com-
plexity as SD-HD decoding over a trellis of length 35, butfpened better than the
most complex SD-HD decoder evaluated.

The simulated transmission channel for both the MeteosstHllite system and
the RS product code was coherently-demodulated BPSK. fdrertheir performance
may be compared directly. The best of the Meteosat I, andiB&at code decoders
have been included together in Figure 7.1.

Firstly, it can be seen that the performance increase iryagpS8OVA to the (mod-
ified) Meteosat Il system is.8 dB at a BER of 16°. For cascade decoding of a prod-
uct code the increase is only just over 1dB. This may be expthby two factors.
The inner code of the Meteosat Il system is stronger (but monaeplex to decode).
Also, the outer RS(/5, 3) code of the modified Meteosat Il system was allocated a
reliability metric for each input bit. For the cascade demratiwas necessary to make
the assumptions that the SOVA metric applied equally toyatisols, and that the
discarded values were equally unlikely (p. 137). This leadrily 7 SOVA reliability
metrics being available, which were ‘recycled’ for eachrad 6 column decodings.

It is interesting to note that the Meteosat Il decoder penbetter than the RS
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product code, for both SD-HD and SD-SD cases. Massey'stassé€p. 117) that
convolutional codes should be used as the first stage of derbds been shown to
be correct for the cases simulated. Such increase in pexfarencomes at a price
of higher complexity, which must not be forgotten. The Mai&d| SD-SD decoder
shown in Figure 7.1 isz 20 times more complex than one iteration of the ARC SD-SD

decoder.

7.6 Iterative Decoding of Product Codes

The brief foray into iterative decoding (Sections 5.3.8 ér8l4) has provided some
excellent results. Without any additional work the alteéimg row-column decoder
was instructed to execute four decodings instead of one.B&ER of 10-° the coding
gain increased by 1.1dB. While the complexity also increased by a factor of four
the bit complexity was still less than that of the modified Btetat Il system by a
factor ofx 5. Further work should be undertaken to ascertain the optimumber of
iterations.

The increase in coding gain was less than that found in [Ryndi998], where
a BCH(6451,6) x BCH(64,51, 6) code provided an increase uf1.5dB for just 4
iterations. There are several reasons for this, not justhiamge of code or increase
in code alphabet size. Pyndiah use@e@ighting factor «, to scale the amount of

extrinsic information included by each iteration, where

aM=|00 02 03 05 07 09 10 10 (7.1)
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With such a scheme it ensures the extrinsic information deddlowly, to help the
decoding process to converge upon the correct solutioningdadweighting factor to
the iterative decoding described in Section 5.3.8 wouldtoial extension. It should
also be remembered that the soft-output Viterbi algorittmpleyed is not entirely
optimum at generating its reliability metric. (Howevergtkelection of the output
codeword is optimum.) There is neither any indication asigortext-best symbol, nor
the relative reliabilities of the decoded symbols. Nonktbe SOVA is shown to be a
very useful and efficient decoding algorithm for this pumdsiteresting further work
on this topic would be to simulate the BCH(&4, 6) x BCH(64, 51, 6) code used by
Pyndiah with the iterative decoder described in Sectior85.3his is at the limit of

what is currently possible to decode with a trellis.
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