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Abstract

A subalgebra B of a Lie algebra L is c-supplemented in L if there

is a subalgebra C' of L with L = B+ C and BN C < By, where By,
is the core of B in L. This is analogous to the corresponding concept
of a c-supplemented subgroup in a finite group. We say that L is c-
supplemented if every subalgebra of L is c-supplemented in L. We give
here a complete characterisation of c-supplemented Lie algebras over
a general field.
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1 Introduction

The concept of a c-supplemented subgroup of a finite group was introduced
by Ballester-Bolinches, Wang and Xiuyun in [2] and has since been studied
by a number of authors. The purpose of this paper is study the correspond-
ing idea for Lie algebras. As we shall see, stronger results can be obtained
in this context.

Throughout L will denote a finite-dimensional Lie algebra over a field F'.
If B is a subalgebra of L we define By, the core (with respect to L) of B to
be the largest ideal of L contained in B. We say that B is core-free in L if
Br, = 0. A subalgebra B of L is c-supplemented in L if there is a subalgebra
Cof L with L =B+ C and BNC < By. We say that L is c-supplemented



if every subalgebra of L is c-supplemented in L. We shall give a complete
characterisation of c-supplemented Lie algebras over a general field.

Following [4] we will say that L is completely factorisable if for every
subalgebra B of L there is a subalgebra C' such that L = B+C and BNC =
0. It turns out that c-supplemented Lie algebras are intimately related to
the completely factorisable ones, and our results generalise some of those
obtained in [4]. Incidentally, it is claimed in [4] that if F' has characteristic
zero then L is completely factorisable if and only if the Frattini subalgebra
of every subalgebra of L is trivial. We shall see that this is false.

If A and B are subalgebras of L for which L = A+ B and ANB =0
we will write L = A+4B; if, furthermore, A, B are ideals of L we write
L = A& B. The notation A < B will indicate that A is a subalgebra of B,
and A < B will mean that A is a proper subalgebra of B.

2 Preliminary results

First we give some basic properties of c-supplemented subalgebras

Lemma 2.1 (i) If B is c-supplemented in L and B < K < L then B is
c-supplemented in K.

(ii) If I is an ideal of L and I < B then B is c-supplemented in L if and
only if B/I is c-supplemented in L/I.

(iii) If X is the class of all c-supplemented Lie algebras then X is subalgebra
and factor algebra closed.

Proof.

(i) Suppose that B is c-supplemented in L and B < K < L. Then there
is a subalgebra C of L with L = B+ C and BN C < By. It follows
that K = (B+C)NK =B+CNK and BNCNK < B;NK < Bg,
and so B is c-supplemented in K.

(ii) Suppose first that B/I is c-supplemented in L/I. Then there is a
subalgebra C/I of L/I such that L/I = B/I + C/I and (B/I) N
(C/T) <(B/I)r;r = Br/I. Tt follows that L = B+C and BNC < By,

whence B is c-supplemented in L.



Suppose conversely that I is an ideal of L with I < B such that B
is c-supplemented in L. Then there is a subalgebra C' of L such that
L =B+Cand BNC < Br. Now L/I = B/I + (C + I)/I and
(B/I)n(C+1)/I =(BNn(C+1)/I=I+BnC)/I <BL/I =
(B/I)/1, and so B/I is c-supplemented in L/I.

(iii) This follows immediately from (i) and (ii).

The Frattini ideal of L, ¢(L), is the largest ideal of L contained in all
maximal subalgebras of L. We say that L is ¢-free if ¢(L) = 0. The next
result shows that subalgebras of the Frattini ideal of a c-supplemented Lie
algebra L are necessarily ideals of L.

Proposition 2.2 Let B, D be subalgebras of L with B < ¢(D). If B is
c-supplemented in L then B is an ideal of L and B < ¢(L).

Proof. Suppose that L = B+ C and BNC < Bp. Then D =DNL =
DN(B+C)=B+DNC =DNC since B < (D). Hence B < D < C,
giving B = BN C < Bp and B is an ideal of L. It then follows from [6,
Lemma 4.1] that B < ¢(L).

The Lie algebra L is called elementary if ¢(B) = 0 for every subalgebra
B of L; it is an E-algebra if ¢(B) < ¢(L) for all subalgebras B of L. Then
we have the following useful corollary.

Corollary 2.3 If L is c-supplemented then L is an E-algebra.

Proof. Simply put B = ¢(D) in Proposition 2.2.

It is clear that if L is completely factorisable then it is c-supplemented.
However, the converse is false. Every completely factorisable Lie algebra
must be ¢-free, whereas the same is not true for c-supplemented algebras.
For example, the three-dimensional Heisenberg algebra is c-supplemented,
as will be clear from the next result which gives the true relationship between
these two classes of algebras.

Proposition 2.4 Let L be a Lie algebra. Then the following are equivalent:



(i) L is c-supplemented.

(i) L/p(L) is completely factorisable and every subalgebra of ¢(L) is an
ideal of L.

Proof. (i) = (ii): Suppose first that L is ¢-free and c-supplemented, and
let B be a subalgebra of L. Then there is a subalgebra C of L such that
L = B+ C. Choose D to be a subalgebra of L minimal with respect to
L =B+ D. Then BND < ¢(D), by [6, Lemma 7.1], whence BN D =0
since L is elementary, by Corollary 2.3. Hence L is completely factorisable,
and (ii) follows from Lemma 2.1(iii) and Proposition 2.2.

(ii) = (i): Suppose that (ii) holds and let B be a subalgebra of L.
Then there is a subalgebra C/¢(L) of L/¢(L) such that L/¢(L) = ((B +
B(L))/(L)) +(C/(L)) and 0 = (B +6(L))/6(L)) N (C/6(L)) = (BNC+
¢(L))/o(L). Hence L =B+ C and BNC < ¢(L), so BN C is an ideal of
L and BN C < By; that is, L is c-supplemented.

Note that if L is the three-dimensional Heisenberg algebra, then condi-
tion (ii) in the above result holds, since ¢(L) = L? is one dimensional and
L/¢(L) is abelian. Finally we shall need the following result concerning
direct sums of of completely factorisable Lie algebras.

Lemma 2.5 If A and B are completely factorisable, then so is L= A® B.

Proof. Suppose that A, B are completely factorisable and put L = A ® B.
Let U be a subalgebra of L. If A < U, then U = A& (BNU). Since B is
completely factorisable there is a subalgebra C' of B such that B = BNU+C
and UNC =BNUNC =0. Hence L = U+C.

Now A < A+ U so, by the above, there is a subalgebra C' of B with
L=A+U+C and (A+U)NC = 0. Moreover, since A is completely
factorisable, there is a subalgebra D of A such that A = ANU + D and
UND =ANUND =0. It follows that L =U+(D®C) and UN(D+C) <
UNn[A+U0)Nn(D+0O)=UnD+(A+U)NC]=UND =0. It follows
that L is completely factorisable.

Note that the corresponding result for c-supplemented Lie algebras is
false. For, let L1 = Fo + Fy + Fz with [z,y] = —[y, 2] = y + 2, [z, 2] =
—|[z,z] = z and all others products equal to zero. Then it is straightforward
to check that ¢(L1) = Fz and that L; is c-supplemented. Now take L to be



a direct sum of two copies of Ly: say, L = A® B where A= Fz+ Fy+ Fz,
B = Fa+ Fb+ Fe, [z,y] = —|y,x] = y+ z,[x, 2] = —[z2,2] = z, [a,b] =
—[b,a] = b+ ¢, la,c] = —[c,a] = c and all others products equal to zero.
Suppose that F'(z + ¢) is c-supplemented in L. Then there is a subalgebra
M of L with L = F(z4+c¢)+ M and F(z+c¢)NM < (F(z+c¢))r. If
z+4+c¢ ¢ M then M is a maximal subalgebra of L, contradicting the fact
that z + ¢ € (¢(A4) ® ¢(B)) = ¢(L), by [6, Theorem 4.8]. It follows that
z+c € M, whence F(z + ¢) is an ideal of L. But [z,z2+c] =2 ¢ F(z + ¢),
a contradiction. Thus L is not c-supplemented in L.

3 The structure theorems

We can now give the main structure theorems for c-supplemented Lie alge-
bras. First we determine the solvable ones.

Theorem 3.1 Let L be a solvable Lie algebra. Then the following are equiv-
alent:

(i) L is c-supplemented.

(ii) L is supersolvable and every subalgebra of ¢(L) is an ideal of L.

Proof. (i) = (ii): We have that every subalgebra of ¢(L) is an ideal of L
by Proposition 2.4, so we have only to show that L is supersolvable. Let
L be a minimal counter-example. Then all proper subalgebras and factor
algebras of L are supersolvable, by Lemma 2.1(iii). If we can show that all
maximal subalgebras have codimension one in L, we shall have the desired
contradiction, by [3, Theorem 7]; so let M be any maximal subalgebra of L.
Since the result is clear if My # 0, we may assume that My = 0.

Pick a minimal ideal A of L. Then L = A+M and A is the unique min-
imal ideal of L, by [7, Lemma 1.4]. Let a € A. Then Fa is c-supplemented
in L, and so there is a subalgebra B of L such that L = Fa 4+ B and
FanB < (Fa)r. If a € B then Fa is an ideal of L, whence A = Fa and M
has codimension one in L.

So suppose that L = Fa+B. Since A £ B we have By, = 0. But then
L = A+B by [7, Lemma 1.4] again. It follows that dim A = 1 and M has
codimension one in L.



(ii) = (i): By Proposition 2.4, it suffices to show that if L is supersolvable
and ¢-free then it is completely factorisable. Let L be a minimal counter-
example. Then L is elementary, by [5, Theorem 1], and so every proper
subalgebra of L is completely factorisable. Also L = A+B where A =
Fa; @ ...® Fa, is the abelian socle of L and B is abelian, by [7, Theorem
7.3]. Let U be a subalgebra of L. If A < U it is clear that there is a
subalgebra C' of L such that L. = U 4+ C and U N C = 0. So suppose
that a; ¢ U for some 1 < i < n; we may as well assume that ¢ = 1.
Then L/Fa; = (Fas @ ... ® Fa,)+B, which is a proper subalgebra of L
and so is completely factorisable. Hence there is a subalgebra C' of L such
that L/Fa; = (U + Fay)/Fay) + (C/Fay) and Fa; = (U + Fa;) N C =
UNC + Fay. Tt follows that L=U+C and UNC < Fa;. But a; ¢ UNC
so UNC =0 and L is completely factorisable, a contradiction.

We shall need the following classification of Lie algebras with core-free
subalgebras of codimension one which is given by Amayo in [1].

Theorem 3.2 ([1, Theorem 3.1]) Let L have a core-free subalgebra of codi-
mension one. Then either (i) dim L < 2, or else (ii) L = L,,(T") for some
m and T satisfying certain conditions (see [1] for details).

We shall also need the following properties of L,,(I") which are given by
Amayo in [1].

Theorem 3.3 ([1, Theorem 3.2])

(i) If m > 1 and m is odd, then L,,(T") is simple and has only one subal-
gebra of codimension one.

(i) If m > 1 and m is even, then L.,,(T') has a unique proper ideal of
codimension one, which is simple, and precisely one other subalgebra
of codimension one.

(iii) L1(T') has a basis {u_1,ug,u1} with multiplication [u—_1,ug] = u_1 +
Your (Yo € Fiyo =04 I'={0}), [u_1,u1] = uo, [uo, 1] = u1.

(iv) If F has characteristic different from two then Li(I') = L1(0) =
sla(F).



(v) If F has characteristic two then Li(T') = L1(0) if and only if vo is a
square in F.

The above properties enable us to determine which of the algebras L,, (T")
are c-supplemented.

Proposition 3.4 If L = L,,(I") then L is c-supplemented if and only L =
Li(0) and F has characteristic different from two.

Proof. Suppose that L = L,,(T") and L is c-supplemented, and let = € L.
Then there is a subalgebra M; of L such that L = Fxz+ M;, and FxNM; <
(Fz), = 0, since L,,(T") has no one-dimensional ideals. Choose y € M;.
Then, similarly, there is a subalgebra Ms of codimension one in L such that
L = Fy+ Ms and My # Ms. Since L = M+ Ms we have that MyNMs # 0.
Let z € My N Ms. Then there is a subalgebra Mj of codimension one in L
such that L = Fz + M3, so L has at least three subalgebras of codimension
one in L. It follows from Theorem 3.3 that m = 1.

Suppose that L 2 L1(0). Then F has characteristic two and =y is not a
square in F'. Since L is completely factorisable there is a two-dimensional
subalgebra M of L such that L = Fuj + M. It follows that M = F(u_; +
auy) + F(ug + fuy) for some a, B € F. But then [u_j + aui,up + fu1] € M
shows that vo = 32, a contradiction. A further straightforward calculation
shows that if L = L1(0) and F' has characteristic two, then F'u; is contained
in every maximal subalgebra of L, and so has no c-supplement in L.

Conversely, suppose that L = L;(0) and F has characteristic different
from two. Then L = sly(F'), by Theorem 3.3 (iv) and it is easy to check
that L is c-supplemented.

We can now determine the simple and semisimple c-supplemented Lie
algebras.

Corollary 3.5 If L is simple then L is c-supplemented if and only L =
L1(0) and F has characteristic different from two.

Proof. Let L be simple and c-supplemented. Then L has a core-free maximal
subalgebra of codimension one in L and so L = L, (I"), by Theorem 3.2. The
result now follows from Proposition 3.4.



Notice, in particular, that sly(F') is the only simple completely factoris-
able Lie algebra over any field. However, this is not the only simple ele-
mentary Lie algebra, even over a field of characteristic zero: over the real
field every compact simple Lie algebra, and so(n, 1) for n > 3, for example,
are elementary, as is shown in [8, Theorem 5.1]. This justifies the assertion
made at the end of the third paragraph of the introduction.

Proposition 3.6 Let L be a semisimple Lie algebra over a field F. Then
the following are equivalent:

(i) L is c-supplemented.

(ii)) L = S1 & ... 8 S, where S; = sla(F) for 1 < i < n and F has
characteristic different from two.

Proof. (i) = (ii): Let L be semisimple and c-supplemented and suppose
the result holds for all such algebras of dimension less than dim L. Then
¢(L) = 0, since ¢(L) is nilpotent, and so L is completely factorisable. Let
A be a minimal ideal of L and pick a € A. Let M be a subalgebra of L such
that L = Fa+M and put B = A+ M. Then M < B and AN My =0,
since a ¢ Mp. If dim L/M; < 2 then A is abelian, contradicting the fact
that L is semisimple. It follows from Theorem 3.2 and Proposition 3.4 that
L/Mp, = L1(0), whence B = L and L = A® M. Since A, M|, are semisimple
and c-supplemented the result follows.
(ii) = (i):The converse follows from Corollary 3.5 and Lemma 2.5.

Finally we have the main classification theorem.

Theorem 3.7 Let L be Lie algebra. Then the following are equivalent:
(i) L is c-supplemented.

(ii)) L/¢p(L) = R @& S where R is supersolvable and ¢-free, S is given by
Proposition 3.6, and every subalgebra of ¢(L) is an ideal of L.

Proof. (i) = (ii): Factor out ¢(L) so that L is ¢-free and c-supplemented and
hence completely factorisable, by Proposition 2.4. Then L = R+S where R
is the radical of L and S is semisimple. It suffices to show that SR = 0;
the rest follows from Lemma 2.1, Corollary 2.3, Proposition 2.4, Theorem



3.1 and Proposition 3.6. Suppose there is 0 # 2 € L(3) N R. Then there is a
subalgebra M of L such that L = Fx+M and L/M, is given by Theorem
3.2. If L/Mp, = L,,(T") then L/M7p, is simple, by Proposition 3.4, and M, <
R+ My, so L = R+ My. But then L/Mj is solvable, a contradiction. It
follows that dim L/Mj < 2, whence x € LONR<LO <M, <M, a
contradiction. Hence L3 N R = 0. But SR = S?R < S(SR) = S*(SR) <
LB) N R =0, as required.

(ii) = (i): This follows from Proposition 2.4, Lemma 2.5, Theorem 3.1
and Proposition 3.6.
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