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Abstract

We consider a symmetric two-player common-value setting where each player

gets a private signal about the object value. We show that for some parameter

values the equilibrium revenue can be higher in a Tullock contest than in the

standard auctions.
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1 Introduction

Economics literature often considers the problem of allocating an indivisible object

among individuals. Typical mechanisms for such an allocation are (deterministic)

auctions, but an object can also be allocated using a stochastic mechanism. One of

the most common stochastic mechanisms is a Tullock contest (Tullock, 1980).

It is often the case in a symmetric setting that the seller’s revenue is higher in

the standard auctions than in a contest. For example, if an object with a common

and known value is allocated between two players, the seller’s revenue is equal to

the object’s value in a standard auction, while it is only one-half of the value in the

simplest Tullock contest (“lottery”, where the probability of winning the object for a

player is the ratio of her bid to the sum of all bids).1 On the other hand, Fang (2002)

and Epstein et al. (2013) have shown that a contest can achieve a higher revenue than

an all-pay auction in asymmetric settings; Franke et al. (2014) further argue that

the presence of more than two players increases the chances of contests to achieve a

higher revenue. In this paper, we show that a Tullock contest can generate a higher

expected revenue even in an ex-ante symmetric setting with two players.

We consider a common-value setting where each player gets a private signal about

the object value. Very little is known about revenue comparison of auctions and

contests in situations where players have private information, because these situations

are typically intractable for contests. In this paper we analyze the Tullock contest and

the standard (first-price, second-price and all-pay) auction mechanisms in a symmetric

two-player common-value setting where both contest and auction equilibria could be

explicitly derived and compared. In our setting, each player receives an independent

signal and the common value of the object is an increasing function of both players’

signals. The setting is similar to Klemperer’s (1998) “wallet game”, in which the

common value is the sum of the signals of the two players.2

In this setting, we derive the equilibrium for the Tullock contest. For the stan-

dard auctions, we use, with minor modifications, the available results from the liter-

1Although in a different setting, Wärneryd (2012, p. 278) also writes that “[f]rom the standpoint

of a seller offering a good in an auction a perfectly discriminating mechanism is optimal ...”.
2Klemperer considers only the second-price auction in his paper.
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ature. Although generally there is no clear ranking of auctions in terms of revenue in

common-value settings (see Milgrom and Weber, 1982 and Malueg and Orzach, 2009,

2012), in our setting with independent signals the seller’s revenue is the same in all

three auction mechanisms. Comparing this revenue with the one from the contest,

we identify parameter values for which the expected revenue in the contest is higher

than in any of the auctions.

2 Setting: Private Signals and Common Value

There is an object for sale and there are two risk-neutral buyers. Each of the two

buyers gets a private signal about the value of the object: Buyer 1 receives signal

s1 and Buyer 2 gets signal s2. Suppose that the signals have the following structure:

each signal is either H (high) with probability p ∈ [0, 1], or L (low, L < H) with

probability 1− p, independently of the other signal. That is,

si =

{
H, with probability p,

L, with probability 1− p.

The common value of the object is a function of the two private signals, v = g(s1, s2).

This function satisfies g(L,L) = 0, g(L,H) = g(H,L) = V > 0 and g(H,H) = (1 +

α)V , for α ≥ 0. The parameter α captures possible nonlinearity or complementarity

in the signals.

Two risk-neutral buyers make bids and the object is allocated to one of them

according to some mechanism. We first consider the mechanism where the object is

allocated according to the Tullock contest and then the standard (all-pay, first-price,

and second-price) auction mechanisms.

2.1 Tullock contest

In the contest, if the bids of the two buyers are xi and xj, then buyer i wins the

object with probability xi/(xi + xj), j 6= i. A pure strategy xi = (xiL, x
i
H) of buyer

i consists of two bids, xiL if her signal is L and xiH if her signal is H. The expected
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payoff of buyer i, conditional on the received signal, is

ui(x
i
L, x

j|si = L) = (1− p) xiL
xiL + xjL

× 0 + p
xiL

xiL + xjH
× V − xiL; (1)

ui(x
i
H , x

j|si = H) = (1− p) xiH
xiH + xjL

× V + p
xiH

xiH + xjH
× (1 + α)V − xiH . (2)

We denote this game by L.

Proposition 1 In the unique symmetric pure-strategy equilibrium of the contest game

L, equilibrium bids xiL = xjL = xL and xiH = xjH = xH are

xL =

{
1
4
pV (1− p+D(p, α)) (1 + p−D(p, α)) , if 0 ≤ α ≤ 3,

0, if α > 3,
(3)

and

xH =

{
1
4
pV (1− p+D(p, α))2 , if 0 ≤ α ≤ 3,

1
4
p(1 + α)V, if α > 3,

(4)

where

D(p, α) =
√

1− p+ p2 + αp.

Proof. Buyer i maximizes her expected payoffs (1) − (2). Then, the first order

conditions are

p
xjH

(xiL + xjH)2
V − 1 = 0 (5)

(1− p) xjL
(xiH + xjL)2

V + p
xjH

(xiH + xjH)2
(1 + α)V − 1 = 0. (6)

The second order conditions are satisfied as the left-hand sides of the above expres-

sions are decreasing in xiL and xiH respectively.

In a symmetric equilibrium, xjL = xiL = xL and xjH = xiH = xH . From equation

(5), xL =
√
pV xH − xH . Equation (6) becomes

−4xH + 4(1− p)
√
pV
√
xH + (1 + α)p2V = 0.
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The unique positive solution of this quadratic equation is

xH =
1

4
pV (1− p+D(p, α))2,

where D(p, α) =
√

1− p+ p2 + αp. Then,

xL =
1

4
pV (1− p+D(p, α)) (1 + p−D(p, α)) .

This last expression becomes negative for α > 3. Thus, the previous derivations hold

for α ≤ 3. For α > 3, xiL = xjL = xL = 0 and xiH = xjH = xH = p(1 + α)V/4. �

The ex-ante expected revenue in the equilibrium of the contest game is

πL (p, α) = (1− p)2·2xL+2 (1− p) p·(xL + xH)+p2·2xH = 2 ((1− p)xL + pxH) . (7)

From Proposition 1, we get

Proposition 2 In the equilibrium of the contest game L, the ex-ante expected revenue

is

πL (p, α) =

{
1
2
pV (1− p+D(p, α)) (1 + p− 2p2 + (2p− 1)D(p, α)) , if 0 ≤ α ≤ 3,

1
2
p2(1 + α)V, if α > 3.

(8)

2.2 Standard auctions

In an auction, the highest bid wins the object for sure. We denote by A any standard

(all-pay, first-price, second-price) auction. In general, the revenue equivalence does

not hold in common-value auctions (Milgrom and Weber, 1982). However, in our

setting with independent signals it does. We present the equilibrium derivations for

completeness since they illustrate the reason why the auction revenue may be lower

than the contest revenue.

Proposition 3 The ex-ante expected revenue in the symmetric equilibria of the all-

pay, first-price, and second-price auctions is the same and equal to

πA (p, α) = p2(1 + α)V. (9)
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Proof. We consider the three auctions in turn. As in the contest, buyer i’s auction

strategy consists of two (distributions of) bids (biL, b
i
H), depending on her signal. In

a symmetric equilibrium both buyers use the same strategy thus we denote by bL, bH

the symmetric equilibrium bids and use the superscript to refer to the auction type

being considered.

All-pay auction. Siegel (2014) derives the equilibrium for all-pay auctions with

several discrete signals.3 Applied to our setting, bids bAll
L = 0 and bAll

H distributed on

the interval [0, p(1 + α)V ] according to the cumulative distribution function FAll(x) =

x/(p(1+α)V ) constitute the unique symmetric equilibrium of the all-pay auctionAAll.

The expected bid of a high-signal bidder in the all-pay auction is E[bAll
H ] = p(1+α)V/2.

Hence, the ex-ante expected revenue is

πAll (p, α) = (1− p)2
(
2bAll

L

)
+ 2 (1− p) p

(
bAll
L + E[bAll

H ]
)

+ p2
(
2E[bAll

H ]
)

= p2(1 + α)V.

First-price auction. Wang (1991) considers first-price auctions with an arbitrary

finite number of conditionally independent signals. Adapting his arguments to our

setting, bids bFL = 0 and bFH distributed on the interval [0, p(1 + α)V ] according to the

cumulative distribution function FF (x) = (1− p)x/(p((1 + α)V − x)) constitute the

unique symmetric equilibrium of the first-price auction AF . Since the object is sold

with probability one, the ex-ante expected revenue can be calculated as

πF (p, α) = E[V ]− E[u1]− E[u2],

where u1 and u2 are buyer 1’s and 2’s equilibrium payoffs. In our case

E[V ] = (1− p)2 · 0 + 2p(1− p) · V + p2 · (1 + α)V

and

E[ui] = (1− p) · 0 + p(1− p) · V.

Therefore, the ex-ante expected revenue is

πF (p, α) = 2p(1− p)V + p2(1 + α)V − 2p(1− p)V = p2(1 + α)V.

3Siegel’s model has strictly positive values while our model has zero value if both signals are low.

Nevertheless, his arguments are straightforward to adapt for our case.
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Second-price auction. Klemperer (1998) derives a symmetric equilibrium in a

setting similar to ours. Adapting his arguments, bids bSL = 0 and bSH = (1 + α)V

constitute the unique symmetric equilibrium of the second-price auction AS. The

ex-ante expected revenue in this equilibrium is

πS (p, α) = (1− p)2 · 0 + 2p (1− p) · 0 + p2 · (1 + α)V = p2(1 + α)V. �

3 Revenue Comparison

We show that there is no clear revenue ranking between the Tullock contest and the

standard auctions in our setting: for some values of p and α, the expected revenue is

higher in the auctions but for others it is higher in the contest.

Theorem 1 If p ∈ [p̂, 1], then

πA (p, α) > πL (p, α) for any α ≥ 0.

If p ∈ (0, p̂), then

πA (p, α) > πL (p, α) , for any α > α (p) ,

πA (p, α) < πL (p, α) , for any α < α (p) ,

where p̂ = 0.1
(
9−
√

6
)
≈ 0.65505 and α (p) = (20p2 − 36p+ 15)/(4p2 − 12p+ 9).

Proof. Note that πA (p, α) > πL (p, α) for α ≤ 3, if and only if

3α− 1− 2pα + 6p− 4p2 > 4 (1− p)
√

1− p+ p2 + αp. (10)

The right-hand side of this inequality is always non-negative. The left-hand side is

negative if α < (1 − 6p + 4p2)/(3 − 2p), in which case πA (p, α) < πL (p, α). If the

left-hand side of (10) is positive, then πA (p, α) > πL (p, α) if and only if

h(α) =
(
3α− 1− 2pα + 6p− 4p2

)2 − 16 (1− p)2
(
pα− p+ p2 + 1

)
> 0.

The quadratic equation h(α) = 0 has two solutions, α = −1 and

α =
20p2 − 36p+ 15

−12p+ 4p2 + 9
= α(p). (11)
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Note that h(α) > 0 if α < −1 and α > α(p). Therefore, πA (p, α) > πL (p, α) if and

only if α > α(p) for non-negative α. Note also that α(p) > (1 − 6p + 4p2)/(3 − 2p)

for p ∈ (0, 1). Hence, πA (p, α) < πL (p, α) is covered by α < α(p) even if α <

(1− 6p+ 4p2)/(3− 2p). If 20p2 − 36p+ 15 < 0, then expression (11) is negative and

thus, πA (p, α) > πL (p, α) for any non-negative α. Note that 20p2 − 36p + 15 < 0 if

p ∈ (0.1(9−
√

6), 0.1(9+
√

6)) ≈ (0.65505, 1.1449). Therefore, for p > p̂ = 0.1(9−
√

6)

and p ≤ 1 for any α ≥ 0 it holds that πA (p, α) > πL (p, α).

For α > 3 (and thus α > α(p)), the revenue expressions in (8)− (9) clearly show

that πA (p, α) > πL (p, α). �

Figure 1 illustrates the values of p and α discussed in Theorem 1. For small values

of p and α, the ex-ante expected revenue in the contest is higher than the ex-ante

expected auction revenue. This is a surprising result because an auction is typically

considered as a mechanism leading to the highest expected revenue, especially in

a symmetric setting. The reason for the higher expected revenue in the contest is

that the low-signal buyer drops out of the bidding for any values of p and α in a

common-value auction in our setting. In the Tullock contest, however, such a buyer

has a positive chance of winning by submitting a small positive bid. Although the

high-signal buyer bids less in the contest than in an auction, if the probability p that

a buyer has a high signal and the complementarity α between the signals are small,

then the ex-ante expected revenue from low-signal buyers outweighs the losses from

high-signal buyers in the contest. On the other hand, if p and/or α are large enough,

then the ex-ante expected revenue is higher in an auction.
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