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Abstract—In this paper a new approach to parametric change
detection and failure diagnosis for interconnected power units
is proposed. The method is based on a new nonlinear filtering
scheme under the name Derivative-free nonlinear Kalman Filter
and on statistical processing of the obtained state estimates,
according to the properties of the χ2 distribution. To apply
this fault diagnosis method, first it is shown that the dynamic
model of the distributed interconnected power generators is a
differentially flat one. Next, by exploiting differential fl atness
properties a change of variables (diffeomorphism) is applied to
the power system, which enables also to solve the associatedstate
estimation (filtering) problem. Additionally, statistical processing
is performed for the obtained residuals, that is for the differences
between the state vector of the monitored power system and
the state vector provided by the aforementioned filter when the
latter makes use of a fault-free model. It is shown, that the
suitably weighted square of the residuals’ vector follows the χ2

statistical distribution. This property allows to use confidence
intervals and to define thresholds that demonstrate whetherthe
distributed power system functions as its fault-free modelor
whether parametric changes have taken place in it and thus a
fault indication should be given. It is also shown that the proposed
statistical criterion enables fault isolation to be performed, that
is to find out the specific power generators within the distributed
power system which have exhibited a failure. The efficiency of the
proposed filtering method for condition monitoring in distr ibuted
power systems is confirmed through simulation experiments.

Index Terms—distributed power systems, multi-machine power
systems, condition monitoring, fault diagnosis, Derivative-free
nonlinear Kalman Filter, χ2 statistical change detection test.

I. I NTRODUCTION

Energy needs grow in relentless manner worldwide. As
new power generation units are installed and as distributed
power generation sources get interconnected, the dynamicsof
the electric power generation, transmission and distribution
grid becomes more complicated [1-3]. The monitoring
of its condition becomes an elaborated task that can be
accomplished only with the use of advanced fault diagnosis
tools and methods [4-7]. To this end, in this article a new
statistical fault diagnosis method is proposed for detecting
and isolating failures in distributed and interconnected power
generators. As it has been shown in several studies, by
applying fault detection tests based on theχ2 distribution it
can be concluded if the structure remains healthy and if the

nominal parameter values for its model still hold. Otherwise,
a failure can be detected [8-10]. Moreover by applying the
χ2 tests in subsections of the monitored system, the faulty
components of it can be also isolated [11-12].

The proposed fault diagnosis method makes use of the
differential flatness properties of the distributed power
generation system, that is of the ability to express its
dynamics in compact form through a key subset of its
state variables, named as flat output of the system [13-16].
Actually, differential flatness theory enables to perform a
global linearization on the dynamic model of the monitored
system and to transform it to the so-called canonical form
[14-17]. By proving that the model of the distributed power
generators is a differentially flat one, the solution of the
associated filtering (state estimation problem) becomes
possible, using a new nonlinear filtering method known as
Derivative-free nonlinear Kalman Filter. The method consists
of (i) a nonlinear transformation that enables to rewrite the
system’s dynamics into the canonical (Brunovsky) form, (ii)
application of the Kalman Filter recursion on the linearized
equivalent model, (iii) an inverse transformation, based again
on differential flatness theory that allows to obtain estimates
of the state variables of the initial nonlinear model [18-19].
Using a dynamic model of the fault-free power system (that
is a model that retains the nominal values of the generators’
parameters), the filter provides finally estimates of state
vector elements of the distributed power units which cannot
be directly measured.

The dynamic behavior of the distributed power generators is
recorded through suitable sensors (in the form of a sensors
network deployed at specific measurement points) and is
compared against the response generated by the aforemen-
tioned Kalman Filter under the assumption of a damage-free
model. By comparing the two signals, residuals sequences
are generated. The processing of the residuals with the use
of statistical decision making criteria provides an indication
about the existence of parametric changes (damages) in the
power system, which otherwise could not have been detected.
It is shown, that the suitably weighted square of the residuals’



vector follows theχ2 statistical distribution [20-22]. This
property allows to use confidence intervals and to define
thresholds that demonstrate whether the distributed power
system functions as its fault-free model or whether parametric
changes have taken place in it and thus a fault indication
should be given [23-24]. It is also shown that the proposed
statistical criterion enables fault isolation to be performed,
that is to find out the specific power generators within the
distributed power system which have exhibited a failure.

II. DYNAMICS OF THE INTERCONNECTED POWER

GENERATORS

A multi-machine power system withn machines (Fig. 1), in
which the first machine is chosen as the reference machine
can be described by the following nonlinear dynamic model
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In this model δi is the turn angle of the i-th generator’s
rotor,ωi is the rotation speed of the i-th rotor with respect to
synchronous reference frame,ω0 is the synchronous speed of
the generator,Ji is the moment of inertia of the i-th rotor,Pei

is the active power of the i-th generator,Pmi
is the mechanical

input torque to the i-th generator which is associated with the
mechanical input power,Di is the damping constant of the i-
th generator,Tei is the electrical torque which is associated to
the generated active power andGij are coefficients denoting
coupling (power exchange) between thei-th and thej-th
generator. VariableE

′

qi
is the quadrature-axis transient voltage

of the i-th generator (actually expressing magnetic flux),and
Efi is the field’s exhitation voltage. Moreover, the following
variables are defined:∆δi = δi − δ0 and∆ωi = ωi −ω0 with
ω0 denoting the synchronous speed. Additionally, the electric
torquePei which is associated with the active power at the
i-th generator is now given by
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for i = 1, 2 · · · , n. For a power grid that consists ofn
generators the aggregate state vector comprises the state
vectors of the local machines, i.e.x = [x1, x2, · · · , xn]T ,
wherexi = [xi

1, x
i
2, x

i
3]

T , with xi
1 = ∆δi, xi

2 = ∆ωi and
xi
3 = E

′

qi are the state variables for thei − th machine and
i = 1, 2, · · · , n.

III. D IFFERENTIAL FLATNESS OF THE DISTRIBUTED

SYNCHRONOUS GENERATORS’ MODEL

A. Differential flatness of the distributed power generators

It will be proven that the multi-machine power generation
system is also a differentially flat one. As flat output of the

Fig. 1. A multi-machine (3-area) distributed power generation model

distributed power generation system, consisting ofn PMSGs,
the following vector is definedy = [y11 , y

2
1 , · · · , y

n
1 ] or y =

∆δ1,∆δ2, · · · ,∆δn. For the n-machines power generation
system it holdsx1

1 = y1, x2
1 = y2, x3

1 = y3, · · · , xn
1 = yn

andx1
2 = ∆ω1 = ẏ1, x2

2 = ∆ω2 = ẏ2, x3
2 = ∆ω3 = ẏ3, · · · ,

xn
2 = ∆ωn = ẏn. Moreover, it holds
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or, using the flat output variables
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The external mechanical torquePmi is considered to
be a piecewise constant variable. Fori = 1, 2, · · · , n
one obtainsn equations of the form of Eq. (4), with
unknowns the state variablesxi

3, i = 1, 2, · · · , n. By
solving this system of equations with respect toxi

3,
i = 1, 2, · · · , n one arrives at defining the state variables
xi
3 as functions of the elements of the flat outputs vector

yi, i = 1, 2, · · · , n and of their derivatives. Thus one has
xi
3 = fx3

(y1, y2, · · · , yn). Additionally, from the relation
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knowing that the state variablesxi
1, xi

2, xi
3, i = 1, 2, · · · , n

can be written as functions of the flat output and its
derivatives, one can solve with respect to the control input
ui thus showing that all control inputsui, i = 1, 2, · · · , n
can be written as function of the flat output and its derivatives.



B. Linearized model of the multi-generator system

By deriving the expression abouẗyi once more with respect
to time one obtains

y(3)
i
= ai(x) + bi1(x)g1u1 + bi2(x)g2u2 + bi3(x)g3u3 (5)

By defining zi1 = y, zi2 = ẏ and zi3 = ÿ and by considering
additive disturbances one arrives at a description of the form
żi3 = ai(x)+ bi1(x)g1u1+ bi2(x)g2u2+ bi3(x)g3u3+ d̃i, where
for a power generation withn = 3 machines, and considering
for instancei = 1, j = 2, 3 one has
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Finally for the additional input term one has̃di = −Diω0

2Ji
2 P i

m+
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2Ji
Ṗ i
m. In this term d̃i one can one also include external

disturbance inputs which are exerted on each generator’s
model and which stand for faults. Thus, one has the following
description of the dynamics of thei-th power generator

żi1 = zi2
żi2 = zi3
żi3 = ai(x) + b1

ig1u1 + b2
ig2u2 + b3

ig3u3 + d̃i
(6)

For the complete system of the3 generators one has
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or in matrix form
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Setting v = fa(x) + Mu + d̃, one obtains again the linear
canonical form for thei-th generator given by
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In this manner the initial nonlinear power system is trans-
formed into three decoupled linear subsystems which are in the
canonical Brunovksy form. For each one of these subsystems
the appropriate control law is

vi = z
(3)
d

i

− k3(z̈
i − z̈id)− k2(ż

i − żid)− k1(z
i − zid)− d̃i

(11)

IV. STATISTICAL FAULT DETECTION

A. Fault detection

For the linearized equivalent model of the power system that
was described above Kalman Filtering is applied. This is
known as Derivative-free nonlinear Kalman Filter because it
solves the problem of nonlinear state estimation without the
need to compute Jacobian matrices and partial derivatives [19].
The residuals’ sequence, that is the differences between the
real output of the monitored multi-machine power system
and the one estimated by the Kalman Filter (Fig. 2) is a
discrete error processek with dimensionm×1 (herem = N ).
Actually, it is a zero-mean Gaussian white-noise process with
covariance given byEk. A conclusion can be stated based
on a measure of certainty that the parameters of the dynamic
model of the multi-machine power system remain unchanged.
To this end, the followingnormalized error square(NES) is
defined [19]
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0
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neee ,....,2,1
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power system’s dynamics 

Kalman Filter

representing the

fault-free power system

Fig. 2. Residuals’ generation for the distributed power system, with the use
of the Kalman Filtering

ǫk = eTkE
−1
k ek (12)



The normalized error square follows aχ2 distribution. An
appropriate test for the normalized error sum is to numerically
show that the following condition is met within a level of
confidence (according to the properties of theχ2 distribution)

E{ǫk} = m (13)

This can be succeeded using statistical hypothesis tests, which
are associated with confidence intervals. A95% confidence
interval is frequently applied, which is specified using100(1−
a) with a = 0.05. Actually, a two-sided probability region is
considered cutting-off two end tails of 2.5% each. ForM runs
the normalized error square that is obtained is given by

ǭk =
1

M

M
∑

i=1

ǫk(i) =
1

M

M
∑

i=1

eTk (i)E
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where ǫi stands for thei-th run at timetk. ThenMǭk will
follow a χ2 density with Mm degrees of freedom. This
condition can be checked using aχ2 test. The hypothesis
holds, if the condition̄ǫk∈[ζ1, ζ2] is satisfied, whereζ1 and
ζ2 are derived from the tail probabilities of theχ2 den-
sity. For example, form = 20 and M = 100 one has
χ2
Mm(0.025) = 1878 and χ2

Mm(0.975) = 2126. Using that
M = 100 one obtainsζ1 = χ2

Mm(0.025)/M = 18.78 and
ζ2 = χ2

Mm(0.975)/M = 21.26.

B. Fault isolation

By applying the statistical test into then individual generators
of the multi-machine power system it is also possible to
find out the specific generators within the distributed power
generation model that has been subjected to a fault [19],[24].
In the case of a single fault one has to carry outn χ2 statistical
change detection tests, where each test is applied to the subset
that comprises generatorsi − 1, i and i + 1, i = 1, 2, · · · , n.
Actually, out of then χ2 statistical change detection tests, the
one that exhibit the highest score (or equivalently indicates the
largest parameter deviation from the nominal value) are those
that identify the generator that has been subjected to failure
(the faulty components for this generator are the parameters
of its mechanical or electrical model). In the case of multiple
faults one can identify the subset of generators that have been
subjected to parametric change by applying theχ2 statistical
change detection test according to a combinatorial sequence.
This means that

(

n
k

)

= n
k!(n−k)! (15)

tests have to take place, for all generators’ clusters in the
monitored power system, that finally comprisen, n−1, n−2,
· · · , 2, 1 generators. Again theχ2 tests that give the highest
scores indicate the generators which are most likely to have
been subjected to damage.

V. D ISTURBANCES ESTIMATION WITH THE

DERIVATIVE -FREE NONLINEARKALMAN FILTER

Kalman Filtering applied on the previously described lin-
earized equivalent model of the distributed power system, is
known as Derivative-free nonlinear Kalman Filter [18-19].
This form of the Kalman Filter is not only a method for
performing fault diagnosis in the distributed power system,
but is also a tool for estimating the perturbation terms that
affect this power system. It is considered that the multi-
machine power system’s dynamics is affected by additive input
disturbances:

ẋ1,1 = x1,2 ẋ1,2 = x1,3 ẋ1,3 = v1 + d̃1
ẋ2,1 = x2,2 ẋ2,2 = x2,3 ẋ2,3 = v2 + d̃2
· · · · · ·

ẋi,1 = xi,2 ẋi,2 = xi,3 ẋi,3 = vi + d̃i
ẋi+1,1 = xi+1,2 ẋi+1,2 = xi+1,3 ẋi+1,3 = vi+1 + d̃i+1

· · · · · ·

ẋn−1,1 = xn−1,2 ẋn−1,2 = xn−1,3 ẋn−1,3 = vn−1 + d̃n−1

ẋn,1 = xn,2 ẋn,2 = xn,3 ẋn,3 = vn + d̃n
(16)

It is considered that the dynamics of each perturbation term
is described by itsn-th order derivative, that is̃d(n) = fd(t),
and of the associated initial conditions. However, the recon-
struction of the signals̃di i = 1, · · · , n will be performed
with the use of Kalman Filtering, and the convergence of the
latter estimation method does not depend on initial conditions.
Therefore, initial conditions are finally unnecessary for esti-
mating the disturbance terms’ evolution in time. Accordingto
the above and without loss of generality it is assumed that
d̃(n) = fd(t) with n = 3. Next, the state vector of the system
is extended by introducing as additional state variables the
disturbance terms and their derivatives

z1,1 = x1,1 z1,2 = x1,2 z1,3 = x1,3

z2,1 = x2,1 z2,2 = x2,2 z2,3 = x2,3

· · · · · · · · · · · ·
zi,1 = xi,1 zi,2 = xi,2 zi,3 = xi,2

zi+1,1 = xi+1,1 zi+1,2 = xi+1,2 zi+1,3 = xi+1,3

· · · · · · · · · · · ·
zn−1,1 = xn−1,1 zn−1,2 = xn−1,2 zn−1,3 = xn−1,3
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(17)



For the extended state-space description of the system new
matricesA, B and C are formulated, comprising a double
number of rows comparing to its initial description. However,
even in this extended state-space form the system remains
observable. For example, in the case of a model of three
interconnected power generators of Fig. 1, the extended state-
space description of the system and the system’s extended state
vector are

ze = [z1,1, z1,2, z1,3, z2,1, z2,2, z2,3, z3,1, z3,2, z3,3,
[z4,1, z4,2, z4,3, z5,1, z5,2, z5,3, z6,1, z6,2, z6,3]

T

The measurable state variables arez1,1, z2,1 and z3,1. By
denoting the extended state vector asze∈R

18×1 (and after
omitting the disturbance functionsfd,i, i = 1, · · · , 3 from the
control vector) one has the linear state-space equation in the
form

że = Aeze +Bev
zmeas
e = Ceze

(18)
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
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
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

(19)

Ce =







1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0






(20)

A state estimator for the system of Eq. (18) has the form

˙̂z = Aeẑ +Bev +K(zmeas − ẑmeas)
ẑmeas = Ceẑ

(21)

The computation of the estimator’s gainK can be performed
with the use of the Kalman Filter recursion, which consists
of two stages: themeasurement updateand thetime update

measurement update:

K = P−CT
e,d[Ce,dP

−CT
e,d +R]−1

ẑe = ẑ−e +Kf (z
meas − ẑmeas)

P (k) = P−(k)−K(k)Ce,dP
−(k)

(22)

time update:

P−(k + 1) = Ae,dP (k)AT
e,d +Q

ẑ(k + 1) = Ae,dẑe(k) +Be,dv(k)
(23)

VI. SIMULATION TESTS

The performance of the proposed fault diagnosis scheme for
distributed power generators was tested through simulation
experiments. For the case of faults appearing in the individual
power generators the obtained results are depicted in Fig. 3to
Fig. 5. It can be noticed that the proposed diagnosis test that
is based on Kalman Filtering and on the statistical properties
of the χ2 distribution, achieved detection and isolation of
failures taking place at the individual generators. It is noted
that comparing to the RMSE (root mean sqaure error) index,
the proposed fault diagnosis method which is based on the
statistical properties of theχ2 distribution is much more
efficient. Actually, for the additive faults described above,
the RMSE index was of the order of10−5. This RMSE
indication misleads to the conclusion that the generators
function properly, although faults have affected them.
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Fig. 3. Fault at power Generator 3: (a) consecutiveχ
2 tests performed

at Generator 1, (b) the mean value (green line) of theχ
2 tests performed

at Generator 1 remains within the thresholds (red lines) indicating healthy
condition

VII. C ONCLUSIONS

A method for fault diagnosis in distributed and interconnected
power generators has been developed. The method is based
on Kalman Filtering and on the statistical properties of the
χ2 distribution. To apply this fault diagnosis method, first
it was shown that the dynamic model of the distributed
interconnected power generators is a differentially flat one.
Next, by exploiting differential flatness properties a change of
variables (diffeomorphism) was applied to the power system,
which enabled also to solve the associated state estimation
(filtering) problem. The new filtering technique consists
of (i) a change variables (diffeomorphism) which results
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Fig. 4. Fault at power Generator 3: (a) consecutiveχ
2 tests performed at

Generator 3, (b) the mean value (green line) of theχ
2 tests performed at

Generator 3 exceeds the thresholds (red lines) indicating healthy condition
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Fig. 5. Fault at power Generator 3: (a) consecutiveχ
2 tests performed at

Generator 3, (b) the mean value (green line) of theχ
2 tests performed at

Generator 3 exceeds the thresholds (red lines) indicating healthy condition

into a linearized equivalent model for the power system,
(ii) application of the Kalman Filter recursion, and (iii) an
inverse transformation based again on differential flatness
theory which permits to obtain state estimates for the initial
nonlinear model.

Next, statistical processing was performed for the obtained
residuals, that is for the differences between the state vector
of the monitored power system and the state vector provided
by the aforementioned filter when the latter makes use of a
fault-free model. It was shown, that the suitably weighted
square of the residuals’ vector follows theχ2 statistical
distribution. This property allows to use confidence intervals
and to define thresholds that demonstrate whether the
distributed power system functions as its fault-free modelor
whether parametric changes have taken place in it and thus
a fault indication should be given. It was also shown that
the proposed statistical criterion enables fault isolation to be
performed, that is to find out the specific power generators
within the distributed power system which have exhibited a
failure.
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