Fault diagnosis in multi-machine power systems
using the Derivative-free nonlinear Kalman Filter
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Abstract—In this paper a new approach to parametric change
detection and failure diagnosis for interconnected power nits

is proposed. The method is based on a new nonlinear filtering

scheme under the name Derivative-free nonlinear Kalman Fier

and on statistical processing of the obtained state estimes,
according to the properties of the x? distribution. To apply

this fault diagnosis method, first it is shown that the dynam¢
model of the distributed interconnected power generatorss a
differentially flat one. Next, by exploiting differential fl athess
properties a change of variables (diffeomorphism) is appéd to
the power system, which enables also to solve the associastdte
estimation (filtering) problem. Additionally, statistical processing
is performed for the obtained residuals, that is for the differences
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nominal parameter values for its model still hold. Otheryis

a failure can be detected [8-10]. Moreover by applying the
x? tests in subsections of the monitored system, the faulty
components of it can be also isolated [11-12].

The proposed fault diagnosis method makes use of the
differential flathess properties of the distributed power
generation system, that is of the ability to express its
dynamics in compact form through a key subset of its
state variables, named as flat output of the system [13-16].
Actually, differential flathess theory enables to perform a

between the state vector of the monitored power system and global linearization on the dynamic model of the monitored

the state vector provided by the aforementioned filter when he
latter makes use of a fault-free model. It is shown, that the
suitably weighted square of the residuals’ vector follows tie x?2
statistical distribution. This property allows to use confdence
intervals and to define thresholds that demonstrate whethethe
distributed power system functions as its fault-free modelor
whether parametric changes have taken place in it and thus a
fault indication should be given. It is also shown that the poposed
statistical criterion enables fault isolation to be performed, that
is to find out the specific power generators within the distriluted
power system which have exhibited a failure. The efficiencyfdhe
proposed filtering method for condition monitoring in distr ibuted
power systems is confirmed through simulation experiments.
Index Terms—distributed power systems, multi-machine power
systems, condition monitoring, fault diagnosis, Derivatie-free
nonlinear Kalman Filter, x? statistical change detection test.

I. INTRODUCTION

system and to transform it to the so-called canonical form
[14-17]. By proving that the model of the distributed power
generators is a differentially flat one, the solution of the
associated filtering (state estimation problem) becomes
possible, using a new nonlinear filtering method known as
Derivative-free nonlinear Kalman Filter. The method cetssi

of (i) a nonlinear transformation that enables to rewrite th
system’s dynamics into the canonical (Brunovsky) form, (ii
application of the Kalman Filter recursion on the lineatize
equivalent model, (iii) an inverse transformation, basgdima

on differential flatness theory that allows to obtain estasa

of the state variables of the initial nonlinear model [1§-19
Using a dynamic model of the fault-free power system (that
is a model that retains the nominal values of the generators’
parameters), the filter provides finally estimates of state
vector elements of the distributed power units which cannot

Energy needs grow in relentless manner worldwide. Awe directly measured.

new power generation units are installed and as distributed

power generation sources get interconnected, the dynarhic§he dynamic behavior of the distributed power generators is
the electric power generation, transmission and disiobut recorded through suitable sensors (in the form of a sensors
grid becomes more complicated [1-3]. The monitoringetwork deployed at specific measurement points) and is
of its condition becomes an elaborated task that can bempared against the response generated by the aforemen-
accomplished only with the use of advanced fault diagnogisned Kalman Filter under the assumption of a damage-free
tools and methods [4-7]. To this end, in this article a nemodel. By comparing the two signals, residuals sequences
statistical fault diagnosis method is proposed for detecti are generated. The processing of the residuals with the use
and isolating failures in distributed and interconnectedigr of statistical decision making criteria provides an intiima
generators. As it has been shown in several studies, &lyout the existence of parametric changes (damages) in the
applying fault detection tests based on the distribution it power system, which otherwise could not have been detected.
can be concluded if the structure remains healthy and if thds shown, that the suitably weighted square of the redgdua



vector follows the y? statistical distribution [20-22]. This
property allows to use confidence intervals and to defit
thresholds that demonstrate whether the distributed pov
system functions as its fault-free model or whether paremet
changes have taken place in it and thus a fault indicati
should be given [23-24]. It is also shown that the propost
statistical criterion enables fault isolation to be penied,

that is to find out the specific power generators within th
distributed power system which have exhibited a failure.

II. DYNAMICS OF THE INTERCONNECTED POWER
GENERATORS

A multi-machine power system with machines (Fig. 1), in
which the first machine is chosen as the reference mach
can be described by the following nonlinear dynamic mode
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In this model §; is the turn angle of the i-th generator’s
rotor, w; is the rotation speed of the i-th rotor with respect tgistributed power generation system, consisting. ?MSGs,

synchronous reference frame, is the synchronous speed oﬁhelfollo;/vlng vector is defined = [y1,47, - ,yi] ory =
the generator/; is the moment of inertia of the i-th rotop,, Ad~, Ad WAVS FOV then machmes power generation
is the active power of the i-th generatét,,, is the mechanical system it h0|d5f1 = y = 9> Tq =y 931 =y"

input torque to the i-th generator which is associated with tandzs = Aw' = g', 23 = Aw =9 23 = A’ = 9%, -,
mechanical input powet); is the damping constant of the i-%7 = Aw™ = g". Moreover, it holds
th generator]e, is the electrical torque which is associated to
the generated active power aad; are coefficients denoting iy =—Digl y wop

i . . T 2J; 2Ji miq
coupling (power exchange) between th¢h and thej-th

Gzt + o » .:chi-sin:cif:cjfai-
generator. VarlabI(E is the quadrature-axis transient voltage 2‘] i 3 3ZJ 1”’“[ 3Gy sin(ay ! 2 3)

of the i-th generator (actually expressing magnetic flux), arBjr using the flat output variables
Ey, is the field’s exhitation voltage. Moreover, the following
variables are defined\d; = §; — §p and Aw; = w; — wgy with

wo denoting the synchronous speed. Additionally, the electri it = =2+ 55 P,
torque P,, which is associated with the active power at the —37 Giia” +asy 1#1[3036'”8“1(?/ — ) — )]
i-th generator is now given by (4)
The external mechanical torqué’,; is considered to
be a piecewise constant variable. For = 1,2,--- n
P, =GBy + By Yoy 2B Giysin(8i — 85 — o) one obtainsn equations of the form of Eq. (4), with
_ - (2 unknowns the state variablesi, i = 1,2,---,n. By
for i = 1,2---,n. For a power grid that consists of splving this system of equations with respect td,
generators the aggregate state vector comprises the sfate | 9 ... ,,"one arrives at defining the state variables
vectors of the local machines, i.e. = [z',2% .- a"]T, i ag functions of the elements of the flat outputs vector
wherez’ = [z, 29, 28]", with 27 = A5i' ry = Aw; and iy — 12... pn and of their derivatives. Thus one has
zy = E,; are the state variables for thie- th machine and zi = o (yty2, 7yn). Additionally, from the relation
P=L2e,n. E, = —T%qE:h + lem 7‘/;1005(A6) E . and
knowing that the state varlablezél xh, x4, i = 1 2 ,n

I1l. DIFFERENTIAL FLATNESS OF THE DISTRIBUTED .
can be written as functions of the flat output and its
SYNCHRONOUS GENERATORSMODEL
derivatives, one can solve with respect to the control input
A. Differential flatness of the distributed power generator ;. thus showing that all control inputs;, i = 1,2,--- ,n
It will be proven that the multi-machine power generationan be written as function of the flat output and |ts demextiv
system is also a differentially flat one. As flat output of the



B. Linearized model of the multi-generator system Settingv = fo(x) + Mu + d, one obtains again the linear

By deriving the expression aboit once more with respect canonical form for the-th generator given by

to time one obtains

4 0 1 0\ [z 0 N
; 4 4 4 . #21=10 0 1 2+ (0] (vi+d) (10)
Y3 = a'(2) + b} (2)g1ur + by(x)gaus + bi(x)gsus  (5) i 00 0) \4 1

By definingzi = y, zi = y andzi = 4 and by considering In this manner the initial nonlinear power system is trans-
additive disturbances one arrives at a description of the foformed into three decoupled linear subsystems which atesin t
3t = a'(x) + b (2)gruy + by(x)gaus + bi(x)gsus 4+ d', where canonical Brunovksy form. For each one of these subsystems
for a power generation with = 3 machines, and consideringthe appropriate control law is

for instancei = 1, j = 2,3 one has

vl = ZC(IS) — ka(3t — 55 — k(20 — 2) — k1 (2% — 2%) —

i D; D;
at_ = (2] )?xh + ﬁ[Gzﬂ% + x32] 1 ];ézx3GU sin(r] — (11)
¥ - )] — 2”—;’[67”:55 + Zj_l#ix:jG”sm(xl -
i L | o, V. STATISTICAL FAULT DETECTION
S aij)(_ﬁ% + (m wam, Vs cos(ai))] A. Fault detection
$3ZJ 1 J#Gwsm(% - = ay)(— TZ 5  +  For the linearized equivalent model of the power system that
L T4, w45 i ' ; was described above Kalman Filtering is applied. This is
2 0 . . . . .
(Tdm Tan LV, cos(x)) — 933ZJ 1J¢ixaGijCOS(x1 — known as Derivative-free nonlinear Kalman Filter because i
) — Oéu)% sk j#fﬂgGuCOS(% — 2] — )T solves the problem of nonlinear state estimation withoet th

need to compute Jacobian matrices and partial derivath8s [
while for functions bi, b, and b, it holds The residuals’ sequence, that is the differences between th
bi = 2J [2G1213+Z] 1k fﬂgGusm(% x{'*aij)]%, real output of the monitored multi-machine power system
g do;

bi _ @ Gpsin(e} — - S W and @and the one estimated by the Kalman Filter (Fig. 2) is a
b? _ _wg ’ 3 . 1 ! oz discrete error process, with dimensionmx1 (herem = N).
372 stm(xl - ), Actually, it is a zero-mean Gaussian white-noise proce$is wi

covariance given byF,. A conclusion can be stated based
Finallv for the additional i ha— _ Diws pi | on a measure of certainty that the parameters of the dynamic
inally for the additional input term one =272 Fm™  model of the multi-machine power system remain unchanged.

£ Pl In this termd’ one can one also include externafrg this end, the followingnormalized error squaréNES) is
dlsturbance inputs which are exerted on each generatQfeined [19]

model and which stand for faults. Thus, one has the following
description of the dynamics of thieth power generator

- o ! Exact model of the 00 0
Z% - Zé ) ) ) - (6) el power system’s dynamics 152
23 = a'(z) + b1'grur + b2'gaua + b3'gzuz + d’ ]
9
For the complete system of ti3egenerators one has residual
+ €],€)5me05€p
21 _ 1 1 1 1 71 z
Z3 =a (x) + b1 grur + ba gouz + by gsus +d A
. 2 2 2 7
22 = a?(x) + bi°grur + b2 gaus + b3®gsusz + C‘l~2 (7)
Zg =a3 (a;‘) —+ b13glu1 + bQSQQUQ + b33g3U3 + d? Kalman Filter
T2V representing the R
or in matrix form — | fault-free power system
0
23 = fo(z) + Mu+d (8)
where z3 = [21,22,23]7, u = [u1,uz,us]” and d =
. /
[d1,d2,ds]" while Fig. 2. Residuals’ generation for the distributed powerteys with the use
of the Kalman Filtering
1 1
l(m) bi"g1 b2 g2 bs' g3

a
fa@) = | a®(@) |, M= b g1 b’g2 bs’gs | (9)
a3(x) bilgr balga b3igs € = e{Ek_ ek (12)



V. DISTURBANCES ESTIMATION WITH THE
DERIVATIVE -FREE NONLINEARKALMAN FILTER

The normalized error square follows @ distribution. An
appropriate test for the normalized error sum is to numbyica
show that the following condition is met within a level of

confidence (according to the properties of ffedistribution) Kalman Filtering applied on the previously described lin-

earized equivalent model of the distributed power systam, i
known as Derivative-free nonlinear Kalman Filter [18-19].
This form of the Kalman Filter is not only a method for
performing fault diagnosis in the distributed power system
This can be succeeded using statistical hypothesis tesishw pyt s also a tool for estimating the perturbation terms that
are associated with confidence intervals.98% confidence gaffect this power system. It is considered that the multi-
interval is frequently applied, which is specified usifi(1—  machine power system’s dynamics is affected by additivatinp
a) with a = 0.05. Actually, a two-sided probability region is gisturbances:

considered cutting-off two end tails of 2.5% each. Béruns

the normalized error square that is obtained is given by

E{ex}=m (13)

F11 =212 d12 =213 d13 =01 +d
_ 1 ) 1 Tl ) 2,1 22 12,2 23 @23 5 N
€ = M;Gk(l) = M;ek (z)Ek (i)ex (i) (14) o

Ti1 =Tio Tio = Ti3 Tz = v +d;

wheree; stands for the-th run at time¢,. Then Me, will
follow a x? density with Mm degrees of freedom. This
condition can be checked using & test. The hypothesis
holds, if the conditione,€[(3, (2] is satisfied, where&; and

Tit11 = Tit1,2 Tit1,2 = Tig1,3 Ti41,3 = Vig1 +diq1

Tpn-11= Tn-1,2 Tn-12 = Tp-13 Tn-1,3 = Un-1 T dn—1
Tpnl = Tn2 Tn2 =2Tp3 Tp3 =0+ dn

¢, are derived from the tail probabilities of thg? den- ) ) ) (,16)
sity. For example, form = 20 and M = 100 one has !t 1S considered that the dynamics of each perturbation term

%y, (0.025) = 1878 and x2,,.(0.975) = 2126. Using that IS described by its:-th order derivative, that ig") = fa(t),

M = 100 one obtains(; = x2,, (0.025)/M = 18.78 and and o_f the assom_ated |~n|t|‘al conditions. However, the meco

Co = X2, (0.975) /M = 21.26. st.ruct|on of the signalsgl; i = 1,---,n will be performed
with the use of Kalman Filtering, and the convergence of the

latter estimation method does not depend on initial cooilti

Therefore, initial conditions are finally unnecessary feti-e

By applying the statistical test into theindividual generators mating the disturbance terms’ evolution in time. Accordiag

of the multi-machine power system it is also possible tfe above and without loss of generality it is assumed that

find out the specific generators within the distributed powef™ = fa(t) with n = 3. Next, the state vector of the system

generation model that has been subjected to a fault [19],[246 extended by introducing as additional state variables th

In the case of a single fault one has to carry oyt statistical disturbance terms and their derivatives

change detection tests, where each test is applied to tlsetsub

that comprises generatois- 1,7 andi + 1,7 =1,2,--- | n.

B. Fault isolation

Actually, out of then x? statistical change detection tests, the 1! — “11 #1227 21,2 21,3 = T13
one that exhibit the highest score (or equivalently indisahe 721 = T2,1 22,2 = 32,2 223 =123
largest parameter deviation from the nominal value) arseho

Zi1 = i1 Zi2 = Ti2 Zi3 = Ti2

that identify the generator that has been subjected toréailu
(the faulty components for this generator are the parameter
of its mechanical or electrical model). In the case of midtip
faults one can identify the subset of generators that hagae be
subjected to parametric change by applying fffestatistical
change detection test according to a combinatorial seguenc

This means that
< > = k!(v—f—k)!

tests have to take place, for all generators’ clusters in the
monitored power system, that finally comprisen —1, n—2, ~ . .
.-+, 2, 1 generators. Again thg? tests that give the highest  22n-1,1 =dn-1 Z2n-12 =dn-1 22n-1,3 = dn—1
scores indicate the generators which are most likely to have :,, | =d, zyu0=4d, zns3=dy

been subjected to damage.

Zi+1,1 = Ti41,1 2Zi41,2 = Ti+1,2 2i+1,3 = Li+1,3
Zn—1,1 = Tn—-1,1 2Zn—-12 = Tp-1,2 2Zn—1,3 = Tn-1,3
Zn,1 = Tn,1 2Zn2 = Tn2 2Zn3 = Tn,3

Zn+1,1 = di Zn+1,2 = di Zn+1,3 = dy
Znt2,1 =d2 Znqo2 =da Zpy23 = do

. (15)

Zntit1l =i Zntit12 = di Znyiv1s =di

Zn+i+2,1 = di+1 Zn+i+2,2 = di+1 Zn+i+2,3 = di+1

(17)



For the extended state-space description of the system new

matricesA, B and C are formulated, comprising a double K= chgd[ce,dP_QZdA‘i‘ R]w_l
number of rows comparing to its initial description. Howeve Ze = Z; + Ky(zmes —zmees) (22)
even in this extended state-space form the system remains P(k) = P~ (k) — K(k)Ce,aP~ (k)

observable. For example, in the case of a model of thrgge update
interconnected power generators of Fig. 1, the extendeel sta

space description of the system and the system’s extenalied st P~ (k+1)= AeydP(k)AZd +Q (23)
vector are 2(k+1) = Ac gZe(k) + Be,au(k)
VI. SIMULATION TESTS
Ze = [217172172’2173’2271’22727227372371’2372’2373% The performance of the proposed fault diagnosis scheme for
20 20,2, 20,3, 25,1, 25,2, 25,8, 26,1, 26,2, 26.3] distributed power generators was tested through simulatio

The measurable state variables afe;, z»1 and z3;. By experiments. For the case of faults appearing in the indalid
denoting the extended state vector agR'$*! (and after Ppower generators the obtained results are depicted in Rm. 3

omitting the disturbance function ;, i = 1,--- ,3 from the Fig. 5. It can be noticed that the proposed diagnosis test tha
control vector) one has the linear state-space equatiohen S based on Kalman Filtering and on the statistical progerti
form of the x? distribution, achieved detection and isolation of

failures taking place at the individual generators. It igelo

Ze = Acze + Bev that comparing to the RMSE (root mean sqgaure error) index,

21 = Cleze (18) the proposed fault diagnosis method which is based on the
where sta}ti_stical properties of the? .d.istribution is mgch more
efficient. Actually, for the additive faults described abov
the RMSE index was of the order dfo—>. This RMSE
010000000010000000 0 0 0\ indication misleads to the conclusion that the generators
001000000010000000 000 | function properly, although faults have affected them.
000000000O0O0O0OOOOOOO 100
000100000000100000O0 000
000010000000100O00O00O 000 ‘ ’ : 4
000000000000000OOO0O 010 * *
000001000000001000 000 . 0
000000100000001000O0 000 e . “Z«z
4 |000000000000000000] - fo01
000000000100000000 000 .
000000000000000O0O0O 000 2 24
000000000000000000 000 R S S S
000000000000100000 000 ’ U owepeia ' T e
000000000O0O0O0OOOOOOO 000
000000000O0O0O0OOOOOOO 000 (@) (b)
000000000000000100 000
000000000000000000 000 [ Fig. 3. Fault at power Generator 3: (a) consecuti® tests performed
000000000000000000O 000/ at Generator 1, (b) the mean value (green line) of ifetests performed
(19)" at Generator 1 remains within the thresholds (red linesjcaiohg healthy
condition
100000000000000000
Ce=1000100000000000000 (20) VII. CONCLUSIONS
000000100000000000 A method for fault diagnosis in distributed and intercortedc

power generators has been developed. The method is based
on Kalman Filtering and on the statistical properties of the
x? distribution. To apply this fault diagnosis method, first
(21) it was shown that the dynamic model of the distributed
interconnected power generators is a differentially flag.on
The computation of the estimator’s gafti can be performed Next, by exploiting differential flatness properties a oparof
with the use of the Kalman Filter recursion, which consistaariables (diffeomorphism) was applied to the power system
of two stages: theneasurement updasnd thetime update which enabled also to solve the associated state estimation
(filtering) problem. The new filtering technique consists
measurement update of (i) a change variables (diffeomorphism) which results

A state estimator for the system of Eqg. (18) has the form

2= A2+ Bev + K(2mens — zmeas)
27”6(118 — Ceé
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Fig. 5. Fault at power Generator 3: (a) consecutifetests performed at 14
Generator 3, (b) the mean value (green line) of jfetests performed at (14]
Generator 3 exceeds the thresholds (red lines) indicatiadtty condition
[15]
[16]

into a linearized equivalent model for the power system,
(i) application of the Kalman Filter recursion, and (iina
inverse transformation based again on differential flatneg17
theory which permits to obtain state estimates for theabhiti
nonlinear model.

(18]
Next, statistical processing was performed for the obthine
residuals, that is for the differences between the statéowrec [19]
of the monitored power system and the state vector provided
by the aforementioned filter when the latter makes use of 140!
fault-free model. It was shown, that the suitably weighted21]
square of the residuals’ vector follows thg? statistical
distribution. This property allows to use confidence ingsv [22]
and to define thresholds that demonstrate whether the
distributed power system functions as its fault-free mastel [23]
whether parametric changes have taken place in it and thus
a fault indication should be given. It was also shown that
the proposed statistical criterion enables fault isotatio be ~ [24]
performed, that is to find out the specific power generators
within the distributed power system which have exhibited a
failure.
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