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Abstract 

 

Numerous recent studies have suggested that phenotypic effects of DNA sequence variants can 

be mediated or modulated by their epigenetic marks, such as allele-skewed DNA modification (ASM). 

We performed a comprehensive search of ASM effects in human post-mortem brain and sperm samples 

(total n=256) from individuals with major psychosis and controls using Affymetrix SNP microarray. 

Depending on the phenotypic category of the brain samples, 1.4-7.5% of interrogated SNPs exhibited 

ASM effects. Next we investigated ASM in the context of genetic studies of schizophrenia and detected 

that brain ASM-SNPs were significantly overrepresented among the schizophrenia GWAS sub-

threshold SNPs. Brain ASM-SNPs showed a much stronger enrichment in schizophrenia GWAS 

compared to 17 large GWAS of non-psychiatric diseases and traits arguing that ASM effects are at least 

partially tissue specific. Germline and control brain ASM-SNP studies supported a causal association 

between ASM and schizophrenia. Finally, significantly higher proportions of ASM-SNPs, relative to 

non-ASM-SNPs, were detected at the loci exhibiting epigenetic signatures of enhancers, promoters, and 

were overrepresented within transcription factor binding regions and DNase I hypersensitive sites. All 

these findings collectively indicate that ASM-SNPs should be prioritized in GWAS follow-up studies.  

 

Main Text 

 

Genome-wide association studies (GWAS) have become the key approach for identifying DNA 

variants that influence complex traits. As a rule, even well-powered GWAS detect only a small number 

of genome-wide significant SNPs (5 x 10-8 is the accepted p-value significance threshold in GWAS1), 

while thousands of SNPs fall into the grey zone of sub-threshold p-values. It has been demonstrated 
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that SNPs that do not reach GWAS significance (even those with p-values as high as 0.1) account for a 

considerable proportion of predisposition to disease and contribute to “missing” heritability.2 

Separation of biological signal from noise within this sub-threshold zone requires hundreds of 

thousands of additional individuals,3,4 but these are expensive to collect and may not even be feasible 

for rare phenotypes. Genetic - epigenetic interactions may provide new insights for prioritization of 

sub-threshold GWAS SNPs. SNPs that exhibit allele-skewed modification (ASM; “modification” is used 

to denote various types of epigenetic cytosine marks, not only methylation) are particularly 

interesting, because differential modifications may provide a mechanism for DNA polymorphisms to 

affect regulation of protein-coding genes and non-coding regions.5,6 ASM refers to differential DNA 

modification of alleles in the vicinity of the polymorphic DNA site. Systematic analysis of ASM-SNPs in 

GWAS has been proposed numerous times,5,6 but its testing has been hampered by lack of 

comprehensive lists of tissue-specific ASM-SNPs and poor overlap between platforms used for ASM 

detection (e.g. Illumina 27k or 450k microarrays) and for GWAS (e.g. Affymetrix SNP 6.0 microarrays). 

To explore the relationship between GWAS sub-threshold SNPs and ASM, we identified brain 

ASM-SNPs from control individuals and individuals affected by schizophrenia (SCZ) or bipolar disorder 

(BPD). Frozen prefrontal cortex (Brodmann area 10) tissues from post-mortem control subjects 

(n=76), BPD (n=67), and SCZ (n=65) individuals were obtained from the Stanley Medical Research 

Institute and the Harvard Brain Tissue Resource Center. The overwhelming majority of the individuals 

were of European origin: n=74 in the control group, n=65 in BPD and n=64 in SCZ (as verified by 

Principal Component Analysis). We also investigated sperm samples from BPD individuals (n=24) and 

controls (n=24). Germline samples were collected in accordance with the ethical standards at the 

Centre for Addiction and Mental Health (Toronto), and informed consent from each donor was 

obtained. Germ cells were isolated from the semen using two-layer discontinuous gradient separation 

protocol, ISolate® (Irvine Scientific). DNA samples from brain tissues and sperm were extracted using 
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standard phenol-chloroform method. Additional demographic data for all of the brain and sperm 

samples are summarized in Table S1.  

 To make our ASM-SNP analysis applicable to GWAS, we used Affymetrix SNP 6.0 microarrays - 

one of the most common GWAS platforms, which has also been thoroughly validated for ASM 

mapping.7–9 Each of the 256 DNA samples from brain and sperm was interrogated twice on this 

platform. First, we performed regular SNP genotyping following the manufacturer’s instructions. 

Second, we investigated allelic differences in DNA modification by enriching the unmodified DNA 

fraction using DNA modification- sensitive restriction enzymes.10 For each sample, 500 ng of genomic 

DNA was separately digested with three restriction enzymes: HpaII, HinP1I, and HpyCH4IV (New 

England Biolabs). The three digests per sample were then pooled in equal amounts, and adaptors were 

ligated onto the ends of DNA fragments. To eliminate the fragments containing modified cytosines 

between the restriction enzyme targets, ligation products were additionally digested with McrBC (New 

England Biolabs). Samples were then PCR-amplified using primers complementary to the adaptor 

sequences, fragmented with DNAseI (EpiCentre), labelled (GeneChip DNA labelling reagent, 

Affymetrix), and hybridized to Affymetrix SNP 6.0 microarrays. Since DNA fragments longer than 2 kbp 

cannot be efficiently amplified under standard PCR conditions, the interrogated ASM effects were 

limited to <2 kbp regions surrounding a SNP. We used R (v2.12.1)11 and the crlmm R package (v1.8.11) 

to background correct, normalize and summarize (via RMA) the SNP probes, and to make genotype 

calls. Datasets were normalized separately, as were genotyping and DNA modification arrays. For each 

SNP, we obtained a genotype call and a DNA modification level for each allele. 

Depending on the cohort being examined, we removed 260,900-365,830 (28.8-40.4%) SNPs 

that failed our quality control tests. Such SNPs were missing annotation information, not found on 

autosomes or sex chromosomes, diverged from Hardy-Weinberg equilibrium (HWE), exhibited low 

minor allele frequency (MAF) or limited genotype confidence call rates. There was no particular 
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sample with unusually low genotype call confidence rates, and therefore all samples were included in 

the analysis. A threshold of p < 10−10 was used to filter SNPs that failed HWE, and the vast majority of 

SNPs were in even stronger agreement with HWE: 97% of SNPs with p >10-10 also exhibited p > 10-7. 

Batch effects were examined using Principal Component Analysis, and no outliers were found based on 

visual inspection of the first two principal components.  

To identify ASM SNPs we investigate the relationship between modification and genotype. To 

optimize ASM-SNP detection, we performed a large-scale simulation study, testing five statistical 

models: Pearson’s correlation, Spearman’s rank-order correlation, mutual information (MI), piecewise 

linear regression (PWL), and analysis of variance (ANOVA). To compare these statistical methods, we 

generated a simulated dataset of 100 paired samples with 1,000,000 SNPs representative of our 

samples following the probability distribution of the genotype values and the mean plus standard 

deviation of the DNA modification levels to represent ternary and continuous variables, respectively. A 

row-wise dependency was added for 100,000 SNPs by adding a random signal-intensity offset 

uniformly sampled from the set {0.25, 0.5, 0.75}. We varied an adjusted p-value threshold and 

compared the number of dependencies found (Figure S1). 

We used receiver operation characteristic (ROC) curves (Figure S2) to visualize the overall 

performance of each measure across all FDR adjusted p-value thresholds.12 ANOVA and PWL were the 

top two performers in terms of sensitivity and specificity and showed nearly identical ROC curves with 

a true positive rate ∼50% when false positive rate was ∼10%. We chose PWL, which with the use of 

multiple CPU cores, is the ideal choice for large-scale data. Furthermore, PWL is a two-step linear 

regression model that provides a pattern of dependency between the genotypes AA to AB (slope 1) 

and AB to BB (slope 2). Statistically significant allelic DNA modification differences were identified as 

ASM-SNPs if they had at least one non-zero slope (i.e. either AA vs. AB or AB vs. BB) with q < 0.01.  
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We classified SNPs with FDR < 0.01 as ASM-SNPs and removed SNPs in linkage disequilibrium 

with one another (r2 > 0.25). We generated four ASM-SNP lists: 1,374 ASM-SNPs were detected in 

control brains (1.31% of all SNPs investigated); 2,921 in SCZ brains (2.79%); 1,313 in BPD brains 

(1.25%); and 7,744 in all brain samples (7.40%). Examples of an ASM-SNP and non-ASM-SNP are 

shown in Figure 1. All pairwise overlaps among the four ASM-SNP lists were significantly higher than 

expected by chance alone (p < 2.2 x 10-16, hypergeometric test; Fig. 2). 

Our primary goal was to evaluate whether brain ASM-SNPs could help prioritize sub-threshold 

GWAS SNPs in psychiatric diseases. To test this hypothesis we split the SCZ GWAS3 (n= 81,080 SCZ 

cases and controls; referred henceforth as the 81k SCZ GWAS) SNPs into ten bins by p-value (p ≤ 0.1; 

0.1 < p ≤ 0.2; 0.2 < p ≤ 0.3; … 0.9 < p ≤ 1). Enrichment of ASM-SNPs in GWAS p-value bins was assessed 

using the hypergeometric test relative to a background of interrogated SNPs lacking ASM effects (non-

ASM SNPs). Both GWAS and ASM-SNP lists were pruned to ensure our observations were not 

confounded by correlated SNPs. Pruning was implemented in PLINK13, and based on an r2 of 0.25, 

window size of 500kbp with a shift of 5 SNPs between windows. It was conducted using the LD 

structure from the HapMap Project CEU (European) samples (Phase 2, release 23)14 to reflect the 

European-derived ASM-SNP lists. (HapMap data files were downloaded from the PLINK website.)  

All four brain ASM-SNP lists showed significant enrichment in the GWAS p ≤ 0.1 bin, but not in 

any of the other nine bins (Fig. 3a; Table S2). The strongest evidence for ASM-SNP enrichment was 

detected for the “all brains-ASM-SNPs” (OR 1.31, 95% CI 1.23-1.38; p = 2.03 x 10-19, hypergeometric 

test; Fig. 3a). No enrichment was observed in random sets of SNPs (Table S2). This pattern held when 

the p ≤ 0.1 bin was further divided into five sub-bins between p-values of 0 and 0.05, where the 

strongest enrichment of ASM-SNPs in the SCZ GWAS SNPs with p ≤ 0.01 was detected (Fig. 3b; Table 

S3). For example, the number of observed SCZ ASM-SNPs with GWAS p ≤ 0.01 sub-bin was 76% larger 

than expected by chance (181 vs. 103; OR 1.55, 95% CI 1.2-2.1; p = 2.85 x 10-13, hypergeometric test). 
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By contrast, the number of ASM-SNPs with GWAS 0.04 < p ≤ 0.05 sub-bin was indistinguishable from 

that expected by chance alone (Table S3). 

The same trend applies to the lower than p ≤ 0.01 sub-bins: the more significant p-value sub-

bin, the higher the proportion of ASM-SNPs. For example, SCZ ASM-SNPs in the SCZ GWAS SNPs with 

p<10-7 exhibited an odds ratio of 7.3, while the odds ratio was 1.4 for 0.001≤p<0.01 (Fig. S3). 

To demonstrate that ASM-SNP analysis can identify sub-threshold GWAS SNPs more likely to be 

disease-associated, we analyzed a 52k-individual SCZ GWAS,15 which was a subset of the 81k-

individual SCZ GWAS. We categorized sub-threshold (5 x 10-8 < p < 0.1) GWAS SNPs in the 52k SCZ 

study as either ASM-SNPs or non-ASM-SNPs and tested how these two categories perform in the 81k 

SCZ GWAS. In the quantile-quantile plot of the p-values in the 81k SCZ GWAS, the ASM-SNPs showed a 

steeper slope compared to the non-ASM SNPs (observed p-values vs. expected p-values; Fig. 4). This 

demonstrates the potential of ASM-SNPs to prioritize GWAS candidates. 

Next, we assessed whether brain ASM-SNPs can also be useful for candidate prioritization in 

other GWA studies. We tested the same four brain ASM-SNP lists in 17 additional large GWAS(>15 

thousand individuals; range n = 15-170k individuals, with a mean of 89.7k, SD ± 45.7k; Table S4) 

conducted from 2010 onwards for non-psychiatric diseases and normal traits. Generally, if the same 

study conducted more than one GWAS on correlated traits, we selected the largest. After Bonferroni 

correction for multiple testing (720 tests were performed in total: 4 ASM-SNP lists, 10 GWAS p-value 

bins, and 18 GWAS), only three GWAS (in addition to SCZ) demonstrated p < 0.01 for at least one of the 

four ASM-SNP lists: high density lipoprotein, platelet count, and coronary heart disease (Fig. 5, Fig. 6 

and Fig. S4; Table S4; Table S5). SCZ and cardiovascular traits exhibit strong association,16 which 

partially may be determined by common genetic and epigenetic factors. 

As in all epigenetic studies, the association between epigenetic factors and phenotypes raises a 

question about the direction of effect. Brain ASM-SNPs may be predisposing to SCZ or may be induced 
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by pathological processes in the brain, by treatment, or by other disease-associated factors. Two lines 

of evidence supported (but did not prove) a causal relationship between ASM and SCZ. First, ASM-SNPs 

detected in psychiatric disease-free (control) brains were enriched in the SCZ GWAS p ≤ 0.1 bin (Fig. 

3a; Table S2), indicating that ASM effects are present before disease onset. Second, we performed an 

ASM-SNP analysis in sperm samples from BPD males (n = 24) and age-matched controls (n = 24) as 

outlined above. There was significant overlap between the sperm ASM-SNP lists and the all brain ASM-

SNP list. Forty one (56%) of the BPD-sperm ASM-SNPs were also all brain ASM-SNPs, and 134 (49%) 

of the control-sperm ASM-SNPs were also all brain ASM-SNPs (p<2.2 x 10-16 for both comparisons; 

hypergeometric test). Enrichments in the SCZ GWAS p ≤ 0.1 bin were detected for ASM-SNP from both 

control-sperm list (51 vs. 37; OR 1.49, 95% CI 1.08-2.02; p = 6.9 x 10-3; hypergeometric test) and BPD-

sperm list (20 vs. 10; OR 2.38, 95% CI 1.36-4.01; p = 7.7 x 10-4; hypergeometric test) but not in any 

other bin (Table S2). This finding, although not sufficiently robust to withstand multiple-testing 

correction, suggests a causal relationship between ASM-SNPs and SCZ. 

To further elucidate the roles of ASM-SNPs in disease, we explored functional features of the 

genomic regions in which they are located. Splice sites and nonsynonymous SNPs were taken from the 

UCSC Genome Browser.17 Splice site boundaries were defined as a window of 5 bp upstream and 5 bp 

downstream of a splice site. Nonsynonymous variants (coding SNPs that fall into one of the following 

categories: stop-gained/nonsense, missense, stop-lost, frameshift or in-frame indel) were defined as a 

single base pair. Cis eQTLs were defined as single base pairs from the GTEx18–21 and UK Brain 

Expression Consortium22. DNase hypersensitivity clusters, available through the ENCODE Project,23 

have been created from all available cell types by uniform processing and merging replicates; peaks 

were defined by an FDR 1% threshold. UCSC Genes was available from the UCSC Genome Browser.17 

Three histone marks (H3K4Me1, H3K4Me3, H3K27Ac) and transcription factor binding sites were 

based on regions identified by chromatin immunoprecipitation followed by sequencing (ChiP-seq). 
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The “peaks” data available on UCSC Genome Browser17 were used: regions of statistically significant 

signal enrichment, where scores associated with each enriched interval is the mean signal value across 

the interval. miRNA targets were identified by TargetScan.24 Transcription start sites were single base 

pairs as defined by Gencode.25 For all these annotations, we considered functional data available 

regardless of cell type, where applicable. Functional genomic characterization of ASM-SNPs was 

performed by comparing frequencies of functional elements within ASM-SNPs to the ones within SNPs 

that did not exhibit ASM, using the hypergeometric test.  

A higher proportion of ASM-SNPs in the SCZ GWAS p ≤ 0.1 bin, relative to non-ASM-SNPs in the 

same bin, was detected at the loci exhibiting epigenetic marks of enhancers (H3K4Me1 0.65 vs. 0.44, p 

= 3 x10-93; H3K27ac 0.61 vs. 0.39, p = 1 x10-103) and promoters (H3K4Me3 0.48 vs. 0.24, p = 7 x 10-134) 

as well as within transcription factor binding sites (0.23 vs. 0.08; p = 4.5 x 10-109) and DNase I 

hypersensitive sites (0.41 vs. 0.15; p = 2 x 10-205)(Table 1). It is important to note, however, that these 

epigenetic marks investigated were not brain-specific. Well characterized functional brain genome 

functional data, which is being generated through the psychENCODE project26 will be particularly 

useful in brain ASM-GWAS studies. 

Two recent articles also explored the additive value of ASM in SCZ GWAS and arrived at 

conclusions very similar to ours 27,28. Hannon et al. performed ASM (which they called mQTL - 

methylation quantitative trait loci) analysis on a fetal brain collection and detected significant 

enrichment of SCZ GWAS hits amongst fetal brain mQTLs. Jaffe et al. showed that about half of SCZ 

GWAS significant or sub-threshold (p<10-4) SNPs (or other SNPs in the LD block) exhibited mQTL 

effects in the prefrontal cortex. Since the two studies used a different platform (Illumina 

HumanMethylation450 microarray) and different design, direct comparison with our ASM findings is 

not straight-forward; however, the converging results of the three studies indicate that ASM effects are 

associated with disease risk. 
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In summary, we detected that brain ASM-SNPs show enrichment in the sub-threshold GWAS 

SNP bins and exhibit a gradient of the effect size: the smaller the p-value of sub-threshold SNPs, the 

larger the proportion of ASM-SNPs. If ASM was not associated with disease risk SNPs, the distribution 

of ASM-SNPs across different GWAS p value bins was not deviating from the one expected by chance 

only. Furthermore, brain ASM-SNP enrichment was the strongest in SCZ GWAS compared to the non-

brain phenotypes, and germline ASM-SNPs exhibited enrichment in the sub-threshold SCZ GWAS SNP 

bins suggesting a causal association between at least some ASM-SNPs and disease. Finally, SCZ ASM-

SNPs are overrepresented in the functional regions of the genome, such as promoters and enhancers. It 

can be hypothesized that epigenetic differences at regulatory elements are central to the 

etiopathogenic effects of SNPs, and this mechanism accounts for differential regulation of disease 

genes. The key element of this model is that both DNA sequence- and epigenetic-variation is necessary, 

and their synergistic effects at the gene regulatory regions generate a bona fide disease risk factor. 

Further ASM studies would benefit from high precision DNA modification mapping using bisulfite 

sequencing and differentiation between cytosine methylation, hydroxymethylation and other 

modifications.  
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Table 1. Overrepresentation of ASM-SNPs in the functional regions of the genome. ASM-SNPs in SCZ GWAS 
p ≤ 0.1 and are found in numerous functional regions of the genome more than expected by chance alone 
(uncorrected hypergeometric test p-values). In order to retain all group-specific ASM-SNPs, we investigated 
the union of the four brain ASM-SNP lists. There were 2,351 ASM-SNPs/122,186 non-ASM-SNPs in SCZ 
GWAS p ≤ 0.1. All SNPs are annotated in a binary fashion, indicating the presence or absence of a functional 
characteristic for the SNP itself. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 
FUNCTIONAL CHARACTERISTIC 

SNPS WITH GWAS  
P ≤ 0.1 

 
 

P  
ASM-SNPs 

non- 
ASM-SNPs 

Splice site 0.0021 0.0009 0.0249 

Non-synonymous variant 0.0030 0.0039 0.7032 

DNase HS Clusters 0.4122 0.1483 2.02 x 10-205 

GTEx Consortium eQTLs 0.02850 0.0109 4.51x 10-12 

UK Brain Consortium eQTLs 0.1268 0.0885 3.80x 10-10 

UCSC Genes 0.5070 0.4207 3.06 x 10-17 

H3K4Me1 0.6508 0.4392 3.00 x10-93 

H3K4Me3 0.4785 0.2419 7.22 x 10-134 

H3K27ac 0.6159 0.3931 1.27 x 10-103 

Txn Factor ChIP 0.2344 0.0821 4.54 x 10-109 

miRNA targets predicted by TargetScan 0 0 N/A 

Gencode-Transcription start sites 0.0936 0.0835 0.0396 
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Figure Legends 

 

Figure 1. Beeswarm plots of unmodified DNA signal intensity by genotype. Examples of (a) ASM-SNP - 

rs16835902 (C/G; chromosome 3) and (b) non-ASM-SNP - rs39704 (C/T; chromosome 3). Based on 

the sequences flanking the SNPs, the informative enzymes for rs16835902 and rs39704 were HpaII 

and HpyCH4IV, respectively. 

 

Figure 2. Overlap of identified ASM-SNPs among brain cohorts: controls, BPD, SCZ and the all brain 

sample. All brain= ASM-SNPs identified in all the brains; SCZ= ASM-SNPs identified in the brains of 

schizophrenia individuals; control= ASM-SNPs identified in the control brains; BPD= ASM-SNPs 

identified in the brains of bipolar disorder individuals. 

 

Figure 3. Distribution of ASM-SNPs in schizophrenia GWAS p-value bins. (a) ASM-SNPs detected in the 

brains of controls, SCZ and BPD patients are overrepresented in the sub-threshold p ≤ 0.1 SCZ GWAS 

SNP group. SCZ GWAS p-value bins are plotted on the x-axis, -log10 p-values are on the y-axis. (b) 

Further division of the ASM-SNPs in GWAS p ≤ 0.05 reveals the highest density of ASM-SNPs in the p ≤ 

0.01 sub-bin. 

Figure 4. The quantile-quantile plot shows ASM-SNPs and non-ASM-SNPs with a p ≤ 0.1 in the 52k SCZ 

GWAS. The observed quantiles were derived from the 81k SCZ GWAS p-values for the respective SNPs, 

while the expected quantiles were from a continuous uniform distribution of p-values. The steeper 

slope of the ASM-SNPs indicates that these SNPs have lower p-values in the 81k SCZ GWAS, where both 

the sample size and power is greater, compared to the non-ASM-SNPs. The plotted ASM-SNPs are those 

from all brains in the p ≤ 0.1 bin of the 52k SCZ GWAS (n = 1,376) and the plotted non-ASM-SNPs are 
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those in the 52k SCZ GWAS p ≤ 0.1 bin (n = 163,592 from the total of n = 1,252,902 SNPs tested in 52K 

SCZ GWAS).  

Figure 5. Distribution of -log10 p-values (corrected for multiple testing) for 4 lists of brain ASM-SNPs 

interrogated in 18 large GWAS. Only GWAS SNP p ≤ 0.1 bins are presented here. Sample size of each 

GWAS in thousands (k) is shown above each row of ASM-SNP p-values. 

Figure 6. Odds ratios for the enrichment of ASM-SNPs in the p ≤ 0.1 bin for various GWAS. The colored 

bars are those ASM-SNP lists that were significantly enriched in the GWAS p ≤ 0.1 bin after correction 

for multiple testing (p < 0.01).  
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