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Abstract  

In this communication, we developed a thermally stable, biocompatible and colonically-

degradable hydrogel-based device [Pectin-co-poly(MAA)] for oral delivery of 5-Flurouracil 

(5-FU) to treat colon cancer with minimal upper gastrointestinal invasion. Towards this end, 

ethylene glycol dimethacrylate (EGDMA) crosslinked hydrogels of pectin were synthesized. 

Methacrylic acid (MAA) was grafted to impart pH-responsive-character while benzoyl 

peroxide (BPO) was applied for simultaneous grafting and crosslinking polymerization. The 

hydrogels were characterized by FTIR, TGA, DSC and XRD. SEM micrographs were taken 

to analyze the surface morphology. Swelling behaviour was analyzed to assess better 

performance of biodegradable hydrogels for optimized loading and release of the drug 

targeted to colon. Gel fraction, swelling ratio, diffusion coefficient, drug loading and 

cumulative release increased with increase of pectin ratio and decreased on increase of MAA 

and EGDMA ratio. Strategically, hydrogels with higher amounts of pectin were prepared for 

complete degradation in colon. Our investigations indicate that Pectin-co-poly(MAA) 

hydrogel is a suitable delivery system developed for oral delivery of the drug targeted to 

colon.   

 

Keywords Biodegradable, Colon targeting, 5-Fluorouracil, Croslinking, Hydrogels, 
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Introduction 

 Hydrogels are high molecular weight, three-dimensional cross-linked polymeric networks 

composed of a wide variety of hydrophilic polymers. Cross-linked polymers are being 

investigated at tremendous rate for numerous applications in controlled release, sustained 

release, targeted drug-delivery, protective drug-release and tissue engineering.1-3 The 

hydrogel networks can be fabricated from a wide range of monomers, polymers (natural or 

synthetic origin), biodegradable, non-biodegradable or combinations of both. The resulting 

cross-linked polymeric systems impart extensive diversity in terms of bulk physical 

properties. However, crosslinked natural polymeric matrices are desirable being environment 

friendly.4 

 Pectin, a naturally occurring carbohydrate polymer derived from citrus sources. Pectin is 

chemically comprised of poly α 1–4-galacturonic acids having varying degree of methylation 

of carboxylic acid residues.5-7 Pectin shows excellent characteristics for the effective delivery 

of various agents. The promising properties of pectin include good gelling properties, 

stability in acidic conditions as well as at higher temperature, no toxicity, low production cost 

and easy availability.8-12  

 

A particular issue with 5-FU is the need for site specific delivery to the colon with little or 

no release of the drug in the upper gastro-intestinal tract (GIT). Pectin appears to be ideal in 

resolving this issue as it is stable at low pH and resistant to proteases and amylases that are 

active in upper GIT. Therefore, hydrogels based on pectin would retain their integrity in the 

upper GIT. Further, pectin is completely degraded by colonic microorganisms; thereby it can 

provide the required specific delivery in the colon. Keeping in view of these suitable 

properties of pectin, we selected the polymer for hydrogel synthesis for colonic delivery of 5-

FU.13-17   
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Natural polymers have good biocompatibility, biodegradability and have evident 

advantages over the synthetic polymers.18 However, natural polymers impart less mechanical 

strength to polymeric formulations. Pure pectin has poor capacity to hold the drug that causes 

premature release of drug.19 Higher amounts of pectin cannot be incorporated easily in 

dosage forms. Poor entrapment efficiency and low mechanical strength of pectin based 

formulations necessitate its chemical modifications.17  

Colon cancer is the fourth most commonly occurring among cancers.13 The 5-FU is 

commonly administered in colorectal cancer by intravenous bolus injection in standard 

regimen.20 Oral conventional delivery of 5-FU cannot be adopted due to its erratic absorption 

through GIT. Gastrointestinal absorption of 5-FU is rapid, yielding peak levels in the blood 

between 15 and 60 minutes after ingestion. However, there are high variations in plasma 

concentrations due to pre-systemic elimination. While intravenous delivery distributes 5-FU 

equally in all compartments of body. The plasma half-life is extremely short being in the 

range 8 to 20 minutes.21 5-FU has low lipid solubility but can cross the blood brain barrier.22 

From a patient compliance point of view, oral therapy, were it effective, is preferred.17, 23 5-

FU is a cytotoxic drug and intravenous therapy of this anticancer agent may cause serious 

side effects in various parts of body (where exposure to this drug would be inappropriate) 

other than the colon. Oral site specific delivery of 5-FU in colon cancer has the potential to 

minimize these complications.20, 24, 25  

Various approaches have been adopted to prevent unwanted effects by developing 

delivery systems and formulations that offer site specific delivery.13 Recently, stimuli 

sensitive (pH-sensitive) hydrogels prepared by synthetic polymers have been studied for 

colonic delivery of 5-FU.19, 26 Various other techniques (e.g. pH sensitive nanoparticles) have 

also been investigated for 5-FU targeting.27 But most of these studies have been conducted 
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without considering the GI factors (especially inter-individual variations) that might cause 

burst release of 5-FU in the upper GIT.17 

We present the development of stable hydrogels for site specific oral delivery for 5-FU 

using a more efficient methodology and a novel combination of natural biodegradable 

polymer, pectin. The current method is an enhancement of the previously reported methods 

of Bettini et al., (1995) and Sutar et al., (2008). 28, 29 The study presented here reports an 

efficient methodology for synthesis of colon specific biodegradable hydrogels consisting of a 

combination of pectin, MAA and EGDMA. Chemically crosslinked matrices show high and 

uniform swelling than radiation-induced crosslinking. 30 EGDMA showed excellent 

crosslinking agent between pectin and MAA. Based on physical characterization and drug 

release kinetics, the newly developed hydrogel system appeared effective for targeted oral 

delivery of 5-FU. 

Materials and Methods 

Chemicals 

5-Fluorouracil was obtained from Pharmedic Laboratories (Pvt.) Ltd. Lahore, Pakistan. 

Pectin (MW≈ 30000-100000), methacrylic acid, ethylene glycol dimethacrylate and benzoyl 

peroxide were purchased from Sigma Aldrich, UK., and sodium dihydrogen phosphate from 

Merck, Germany.  

Synthesis of Pectin-co-poly(MAA)  hydrogels  

The solution polymerization process was adopted and crosslinked hydrogels were formulated 

by varying pectin, MAA and EGDMA contents as shown in Table 1. A specific amount of 

pectin was weighed and dissolved in a small portion in water with continuous stirring. The 

temperature of reaction mixture was maintained at 40oC. Purging of pectin solution was 
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carried out for 30 minutes to remove dissolved oxygen. The benzoyl peroxide employed as a 

reaction initiator (1% of MAA) was dissolved in a weighed amount of MAA. This benzoyl 

peroxide-MAA mixture was slowly mixed into the pectin solution at 40oC. Finally, the 

crosslinking agent EGDMA was added with continuous stirring and the final volume made 

up to 100 g with water (Table 1). The reaction mixture was carefully transferred to glass 

tubes and placed in a water bath at 65oC for 12 hours. After this treatment, all tubes were 

cooled to room temperature and cylindrical firm hydrogels were drawn. These were cut into 

small disks 6 mm in thickness having same diameter and washed with ethanol-water (70:30) 

to remove unreacted monomers and catalyst. Fresh solvent was used until there was no 

difference in the pH of the washings and fresh solvent. Initially the disks were dried in 

laminar flow air for 24 hours and then in vacuum oven at 40oC for one week. 

FTIR 

FTIR spectra of the raw materials pectin, benzoyl peroxide and methacrylic acid were 

recorded. Samples were thoroughly ground and analyzed by attenuated total reflectance 

ATR-FTIR (Schimadzu, Germany) in the range of 4000-650 cm-1. All the hydrogel 

formulations were also characterized by FTIR. 

TGA  

Thermal analysis was performed using a thermo-gravimetric analyzer (TGA) and differential 

scanning calorimetry (DSC). TGA analysis was performed on the TGA module of TA 

instruments Q5000 series Thermal Analysis System (TA instruments, West Sussex, UK). A 

quantity between 0.5-5mg was placed in an open pan (platinum 100 µl) attached to a 

microbalance. The samples were heated at 20oC/min from 25-500oC under dry nitrogen with 

a flow rate of 10ml/min in standard mode with ramp test type. All the measurements were 

made in triplicate.  
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DSC 

DSC analysis was carried out using the DSC module of TA instruments Q2000 Series 

Thermal Analysis system (TA Instruments, West Sussex, UK). Indium (99%, melting point 

156.6) was used to calibrate the DSC and validated using a zinc standard with a melting point 

of 419.5oC. Samples of pure pectin and the various formulations (0.5-3mg) were precisely 

weighed into an aluminum pan onto which aluminum lid with a centrally pierced hole was 

crimped. The samples were then scanned under a stream of nitrogen gas from 25 – 200oC 

using a heating rate of 20oC/min. All samples were analyzed in triplicate. 

PXRD 

Powdered X-ray diffraction data were obtained using a Bruker D-8 powder diffractometer 

(Bruker, Kahlsruhl, Germany) at room temperature. Sample preparation involved filling a 

plastic sample holder with the powder of pure pectin and smoothing the surface with a glass 

slide. Samples were scanned over the range 5-50° 2θ at a rate of 1º 2θ/min using a copper Kα 

radiation source with a wavelength of 1.542Å and 1mm slits. All formulations were analyzed 

in triplicate. 

 

 

SEM 

The shape and surface morphology of hydrogels was investigated using scanning electron 

microscopy (SEM) by a Quanta 400 SEM (FEI Company, Cambridge, UK). Completely 

dried discs of hydrogels were cut to optimum sizes to fix on a double-adhesive tape stuck to 

an aluminum stub. The stubs were coated with gold to a thickness of ~300 Å under an argon 

atmosphere using a gold sputter module in a high-vacuum evaporator. The coated samples 

were randomly scanned and photomicrographs were recorded to reveal surface morphology. 
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Sol-gel ratio 

The extent of reactants consumed in the synthesis of Pectin-co-poly(MAA)  hydrogels was 

calculated by measuring sol and gel contents. 31 The sol content represents the soluble unreacted 

content of the polymerization reaction. To measure the sol content, the formed hydrogel were 

cut into 2 mm size slabs. The slabs were dried at 55oC to constant weight. The dried gel pieces 

were placed in a Soxhelt apparatus and extracted for twelve hours in boiling deionized water. 

The extracted gels were removed and dried to constant weight at 55°C. The sol and gel fraction 

was measured by Equation (1) and (2) respectively: 

              (1) 

Where  denotes the initial weight of dry gel before extraction and  indicates the weight of 

dry gel after extraction. 

                                       (2) 

Swellability of hydrogels 

The swelling properties of hydrogels were determined at 37 ◦C by immersing samples of 

known weight in 100 ml 0.5 M buffer solutions of pH 1.2 and 7.4. The samples were 

removed at specific intervals to determine the dynamic swelling, weighed after removing 

excess of water by blotting with tissue paper. The swelling studies were continued up to 

equilibrium weight. The degree of swelling and equilibrium water content were determined 

using Equation (3) and (4) respectively: 32 

    (3) 

  (4) 
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Where  indicates mass of swelling at predetermined time interval and  represents the 

weight of dry gel before initiation of swelling experiments. 

 

Diffusion coefficient 

Diffusivity across crosslinked hydrogels is an important physicochemical property and has 

applications in absorbance and controlled release of drugs at target area. Diffusivity 

represents the amount of mass transfer across unit area of matrix in unit time. 33 Swelling data 

was used to calculate diffusion coefficient (  by following Equation: 34 

   (5) 

where,  indicates the thickness of dry hydrogel slab before start of swelling experiment,  is 

the slope obtained by plotting initial 60% swelling ratio against time and  is the 

equilibrium swelling ratio of hydrogels. 

 

Drug loading 

5-FU was loaded in all hydrogel formulations by diffusion. The hydrogel slabs were 

allowed to swell completely until equilibrium in 100 ml 5-FU solution (1.0%) in 

phosphate buffer of pH 7.4. The pH 7.4 was selected in order to increase mesh size of 

crosslinked network and which ultimately enhances the entrapment of drug entrapment. 

28 All disks were completely washed with deionized distilled water to remove any 

remaining drug on the surface.35 
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Drug entrapment efficiency and release study 

Some Pectin-co-poly(MAA)  hydrogel disks loaded with drug were ground in a clean and 

dried pestle and mortar. Weighed quantity of this powder was placed in a phosphate buffer 

solution pH 7.4 for 30 minutes with periodic shaking and centrifuged at 3000 rpm. The 

supernatant layer was separated, filtered and assayed for 5-FU using UV-spectrophotometer 

at λmax266 nm. 

In-vitro drug release study was performed to determine the pH dependant delivery of 5-

FU from hydrogel network. Drug loaded disks were placed in 900 ml phosphate buffer 

solutions of pH 1.2 and 7.4 in a USP dissolution apparatus-II at 37 ± 0.5oC. A 10 ml volume 

of dissolution medium was periodically withdrawn and replaced with fresh buffer solution to 

maintain the sink conditions. The collected samples were then analysed at 266 nm using UV-

Vis-spectrophotometer. 5-FU release has been presented in Table 2. 

 

Biological Evaluation of 5-FU Loaded Hydrogels 

In-vivo evaluation was performed on rabbits to assess targeting properties of the developed 

formulations. Study was started after the approval of Pharmacy Research Ethics Committee 

(PREC). The selected animal models were kept in separation, properly tagged and grouped 

into two parts. 5-FU standard solution was administered to Group-A and Group-B received 

Pectin hydrogel samples with 50mg/kg dosing. Analyses were carried out to investigate the 

absorption level (through plasma drug concentrations) and drug amount in recovered 

hydrogels from rabbit intestine (assay of remaining drug amount in hydrogels). Samples were 

assayed through a newly developed and validated HPLC method for 5-FU, we have reported 

this method in our recent publication.36       
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Results and discussions 

FTIR 

FTIR spectra of pure pectin, MAA and all cross-linked Pectin-co-poly(MAA)  hydrogels 

taken to confirm the cross-linking between polymer (pectin) and monomers (MAA) are 

shown in Figure 1. The spectrum of pure pectin shows a peak at 3437 cm-1due to –OH 

stretching. The spectral peak at 2931 cm-1indicates –C–H stretching vibrations, while the 

peak at 1749 cm-1 suggests the presence of ˃C=O, those at 1628 cm-1 and 1444 cm-

1correspond to C=C and –CH2 stretching vibrations. 

The IR spectrum of methacrylic acid reveals various characteristic peaks, with the peak at 

2929 cm-1 being assigned to methyl C–H asymmetric stretching. Importantly the peak range 

1725-1700 cm-1 is assigned for carboxylic acid (1699 cm-1 indicate carboxylic acid) and the 

peak at 1633 cm-1 shows the C=C stretching vibrations. 

The FTIR spectrum of cross-linked Pectin-co-poly(MAA)  hydrogel shows a different 

peak intensity pattern from the spectra of pure pectin, MAA and EGDMA indicating 

development of new polymer. The peak range 3570-3200 cm-1 is assigned to –OH stretching, 

peaks at 3457 cm-1  and 3245 cm-1 indicate the hydrogen bonded –OH cm-1 stretching 

vibrations. 

 

TGA and DSC 

TGA analysis was performed on raw material and all formulations. MAA showed complete 

decomposition at 110oC and pure pectin at 240oC. However, the decomposition of the 

crosslinked polymer was observed above 400oC. The DSC thermograms of pectin, MAA and 

crosslinked Pectin-co-poly(MAA)  hydrogels are presented in Figures 2 and 3, respectively. 

DSC of pure monomer MAA showed an endothermic peak below 25oC for MAA and at 

130oC for pectin. The DSC thermogram of Pectin-co-poly(MAA)  hydrogel shows a small 
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peak at 100oC and then a large endothermic-peak at about 240oC. TGA and DSC 

characterization confirmed the formation of a new co-graft polymer. Crosslinked matrices of 

Pectin-co-poly(MAA)  revealed high thermal stability compared with their individual 

components. The DSC peaks at 100oC indicate the water loss from the matrices which is 

followed by decomposition at approximately 240oC. Clearly our method of hydrogel 

fabrication yields thermally stable crosslinked matrices of pectin. 

 

PXRD 

Powder x-ray diffraction was employed to study the crystallinity of pectin and the crosslinked 

pectin hydrogels. The diffraction patterns are presented in Figure 4. Pure pectin gives a 

different PXRD pattern compared to the crosslinked matrices confirming the formation of a 

new material. The PXRD pattern of Pectin-co-poly(MAA)  hydrogel indicates less crystalline 

structural characteristics than pure pectin. The decrease in crystallinity might occur due to 

incorporation of new bulkier groups within the pectin polymer by copolymerization. Addition 

of the groups decreases the intermolecular hydrogen bonding.29, 37  

 

Surface morphology of Pectin-co-poly(MAA)  hydrogels 

Surface morphology of crosslinked Pectin-co-poly(MAA)  hydrogels was studied by 

scanning electron microscopy. Dried hydrogel discs were observed for intact surface and 

some discs were cut to take images of cross-sectional morphology. 

SEM micrographs revealed different surface morphology for the hydrogels with higher 

concentration of MAA from that observed for hydrogels having high amount of pectin. The 

intact surface of dried discs containing high MAA contents showed a smooth surface and 

apparently less porous while hydrogels with high content of pectin showed horizontal 

grooves like longitudinal channels. High porosity was observed by cross-sectional view of 
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discs for hydrogels with high content of pectin. Hydrogels produce smooth and dense surface 

with MAA at higher ratio and higher amounts of pectin make highly porous surfaces. Some 

SEM micrographs have been shown in Figure 5 a, b, c, d. 

Gel fraction 

The gel fraction of the pectin-co-MAA polymer increased with increase of pectin, crosslinker 

and monomeric ratio. This trend is attributed to the fact that an increase in ratio of any of 

reactant in the feed mixture provides more active sites for free radical polymerization 

reaction. The velocity and extent of the reaction is based on the feed composition of hydrogel 

mixture. 

 

Swelling studies 

The results of swelling capabilities of the new gels are presented in Figure 6. All formulations 

of new copolymer showed pH-dependent swelling. The swelling index of hydrogels was very 

low at pH 1.2 than swelling at pH 7.4. The low swelling of gels is attributed to the presence 

of grafted carboxylic groups of MAA. At low pH, the carboxylic groups remain protonated 

and the network structure of the crosslinked polymer remains intact.29 The segmental chain 

mobility of gels is minimal at low pH. However, there was a high swelling index of hydrogels 

at pH 7.4. This is thought to be associated with high segmental mobility of the polymer 

chains and resulting increase in network mesh size. The pKa value of MAA is 4.5. On 

increase of pH above the pKa value of MAA, the grafted carboxylic groups deprotonate.38 

The deprotonated grafted carboxylic anions push each other resulting in extension of the 

crosslinked network. The pore size of the extended network is substantially increased due to 

which water enters rapidly into the gel leading to a high swelling index.39 Swelling kinetics 

showed a low swelling index with the increase of MAA ratio. The fact of low swelling with 

increase of MAA could be explained that higher cross linking between monomers and or 
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monomer with polymer (pectin) restricts swelling ability. High crosslinking between 

components increases the crosslinked density. High crosslinking density reduces the exposure 

and restricts swelling. However, rapid swelling of the new polymer at high pH is a desirable 

property which can be tuned to control drug release. The drug release from hydrogels is 

driven by the swelling capacity of hydrogels. At pH 1.2, the swelling index of gels is very 

low therefore; negligible amount of drug will be released at this pH. However high swelling 

index at pH 7.4 make the new polymeric gels suitable carriers for site specific release of 5-

FU in colon. 

With increase in the pectin ratio, the swelling index was increased. This can be attributed 

to the hydrophilic nature of the polymer which attracts and retains more water. The unreacted 

carboxylic and methoxyl groups of pectin may contribute to low swelling at pH 1.2 and high 

swelling index at pH 7.4. 

The swelling index was reduced with increase of EGDMA ratio. The decrease in swelling 

index with increase degree of crosslinking is associated with formation of more tight 

junctions or high crosslinking density. The segmental mobility of highly crosslinked 

polymeric chains is restricted which results in a low degree of swelling.40 The analysis of the 

effect of feed composition on swelling index provides a way to develop formulations with 

more suitable drug release properties. 

 

Diffusion coefficient 

The diffusion of water was dependent on polymeric, monomeric and crosslinking ratio of the 

hydrogels. The values of the diffusion coefficient also correlate with the swellability of gels. 

On increase in the polymeric ratio, there was an increase in diffusion coefficient. However, 

the diffusion coefficient decreased with an increased degree of crosslinking and monomeric 
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ratio. Similarly, there was a low swelling ratio and equilibrium swelling with an increase in 

the crosslinking ratio in feed mixture. 

 

Drug entrapment and release profile of 5-FU 

Drug entrapment of all prepared pectin-co-poly(MAA) hydrogels revealed high efficiency 

with higher swellability. Drug entrapment in hydrogels increased with increase of pectin but 

decreased on increase of MAA and EGDMA ratio. Pectin-co-poly(MAA) hydrogels showed 

58-60% drug release at pH 1.2 and more than 90% release at pH 7.4 after 12 hours 

dissolution experiments. Recent studies on targeted delivery of 5-FU reported the site-

specific drug carriers, through cross-linked and enteric coated microspheres, 41  controlled 

and pH sensitive microsphere blends. 42-43  The release profile of 5-FU is shown in Figure 7. 

The release profile was associated with swelling behaviour of hydrogels. Due to rapid and 

massive uptake of water, the rate and extent of drug release was high at pH 7.4. There was an 

increase in drug loading and release on increase of pectin ratio. However, 5-FU loading and 

release decreased on increase of MAA and EGDMA contents. The gel formulations which 

showed a low swelling ratio and correspondingly  low diffusion coefficient values also 

showed low drug entrapment and slow release of 5-FU. Influence of gel composition on the 

diffusion coefficient, gel content and drug loading is presented in Table 2. 

 

In-Vivo Studies 

A previously reported work has confirmed that a colon targeting of 5-FU prolongs the 

cytotoxic effect as compared to conventional immediate release systems. 44 5-FU-loaded 

hydrogels administered to rabbits and samples were collected up to 24 hours because limited 

number of samples can be collected from rabbits. Pectin hydrogels showed gradual increase 

in plasma concentration,  Tlast 24.0 hours is time at which last sample was  collected and Cmax 
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(210.219 ± 2.112 µg/ml) is maximum drug concentration that was found in 24 hour samples. 

Cmax of hydrogel was less than Cmax of oral solution, it can be expected that drug release could 

remain continue to last part of GIT. After 24 hours, rabbits were slaughtered and intestinal 

contents were removed and 5-FU concentration was assessed by HPLC method.36 The results 

showed that approximately 10-15 mg remaining amount of drug was found in total intestinal 

contents of studied rabbits. The estimation of remaining drug contents confirmed the slow 

release of drug from prepared hydrogels. The developed pectin based systems could 

effectively deliver the optimum concentration of 5-FU locally in colon part of the GIT. In-

vivo profiles of oral solution and hydrogels of 5-FU are presented in Figure 8 and 9. 

Conclusion 

Hydrogels offer the possibility of pH-selective release kinetics of loaded material which can 

be exploited for site specific drug delivery. We developed and characterised pectin-based 

hydrogels for the delivery of 5-FU to the colon. The material was designed with the aim to 

minimize exposure of anti-cancer drug in the upper GIT and maximize its concentration in 

cancerous colon. FTIR spectra and SEM micrographs confirmed the formation of highly 

crosslinked porous network structures. All fabricated hydrogels expressed good pH-

sensitivity required for site specific delivery of the drug. Swelling index and drug release 

were found to be dependent on the pH of external media. The diffusion coefficient, gel 

fraction, drug loading and cumulative release were dependent on hydrogel composition. DSC 

and XRD analysis revealed the development of a stable and less crystalline polymer. The 

drug release data shows that Pectin-co-poly(MAA)  hydrogels have a high potential for site 

specific delivery of 5-FU targeted to colon with minimum exposure of the upper 

gastrointestinal tract. 
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Table 1 Formulation contents of Pectin-co-poly(MAA) hydrogels 

Formulation Pectin 

(g/100 g) 

MAA 

(g/100 g) 

Pectin/MAA 

(Wt %) 

EGDMA 

(g/100 g) 

FM-1 0.60 30.0 1.96/98.04 0.2 

FM-2 0.60 40.0 1.48/98.52 0.2 

FM-3 0.60 50.0 1.19/98.81 0.2 

FP-1 0.20 35.0 0.57/99.43 0.2 

FP-2 0.80 35.0 2.23/97.77 0.2 

FP-3 1.00 35.0 2.78/97.22 0.2 

FE-1 0.60 35.0 1.68/98.32 0.1 

FE-2 0.60 35.0 1.68/98.32 0.2 

FE-3 0.60 35.0 1.68/98.32 0.3 

 

 

 

Table 2 Effect of reaction variables on diffusion coefficient ( ), gel fraction and drug loading 

Formulation Dc
 

107cm2sec-1 

Gel fraction 5FU loading 

mg/g of dry gel 

FM-1 8.32 93.34 127.7 

FM-2 6.24 93.78 84.05 

FM-3 5.37 95.37 57.53 

FP-1 6.35 91.21 68.99 

FP-2 7.11 93.45 65.92 

FP-3 7.78 94.10 64.22 

FE-1 11.56 92.63 96.44 

FE-2 9.74 94.58 89.23 

FE-3 8.42 95.33 77.79 
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Figure captions  

Fig. 1 FTIR spectra of pectin, MAA and Pectin-co-poly(MAA)  hydrogel 

Fig. 2 TGA curves of pectin, MAA and Pectin-co-poly(MAA)  hydrogel 

Fig. 3 DSC curves of pectin, MAA and Pectin-co-poly(MAA)  hydrogel 

Fig. 4 PXRD pattern of pectin and Pectin-co-poly(MAA) hydrogel 

Fig. 5 a, b, c, d SEM micrographs of intact and cross-section surfaces 

Fig. 6 Swelling ratio of Pectin-co-poly(MAA) hydrogels 

Fig. 7 5-FU release profile of FP-3 Pectin-co-poly(MAA) hydrogels 

Fig. 8 Plasma vs time plot of oral solution of 5-FU (Standard) 

Fig. 9 Plasma vs time plot of hydrogel formulation of 5-FU 
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Fig. 1 
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Fig. 2 

 

 

Fig. 3 
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Fig. 4 

 

 

Fig. 5 a, b, c, d 
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Fig. 6 

 

 

Fig. 7 
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Fig. 8 

 

 

Fig. 9 


