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Abstract—E-voting systems have emerged as a powerful tech-
nology for improving democracy by reducing election cost, in-
creasing voter participation, and even allowing voters to directly
verify the entire election procedure. Prior internet voting systems
have single points of failure, which may result in the compromise
of availability, voter secrecy, or integrity of the election results.

In this paper, we present the design, implementation, security
analysis, and evaluation of D-DEMOS, a complete e-voting system
that is distributed, privacy-preserving and end-to-end verifiable.
Our system includes a fully asynchronous vote collection subsys-
tem that provides immediate assurance to the voter her vote was
recorded as cast, without requiring cryptographic operations on
behalf of the voter. We also include a distributed, replicated and
fault-tolerant Bulletin Board component, that stores all necessary
election-related information, and allows any party to read and
verify the complete election process. Finally, we also incorporate
trustees, i.e., individuals who control election result production
while guaranteeing privacy and end-to-end-verifiability as long
as their strong majority is honest.

Our system is the first e-voting system whose voting operation
is human verifiable, i.e., a voter can vote over the web, even
when her web client stack is potentially unsafe, without sacrificing
her privacy, and still be assured her vote was recorded as cast.
Additionally, a voter can outsource election auditing to third
parties, still without sacrificing privacy. Finally, as the number
of auditors increases, the probability of election fraud going
undetected is diminished exponentially.

We provide a model and security analysis of the system. We
implement a prototype of the complete system, we measure its
performance experimentally, and we demonstrate its ability to
handle large-scale elections.

I. INTRODUCTION

E-voting systems have emerged as a powerful technology
to improve the election process. Kiosk-based e-voting systems,
e.g., [12], [15], [26], [13], [10], [23] allow the tally to be
produced faster, but require the voter’s physical presence at
the booth. Internet e-voting systems, e.g., [21], [8], [17], [31],
[27], [34], [12], [13], [34], [29], however, allow voters to cast
their votes remotely. Internet voting systems have the potential
to improve the democratic process by reducing election costs
and by increasing voter participation for social groups that
face considerable physical barriers and overseas voters. In
addition, several internet voting systems [8], [31], [34], [29]
allow voters and auditors to directly verify the integrity of the
entire election process, providing end-to-end verifiability. This
is a highly desired property that has emerged in the last decade,
where voters can be assured that no entities, even the election

authorities, have manipulated the election result. Despite their
potential, existing internet voting systems suffer from single
points of failure, which may result in the compromise of voter
secrecy, service availability, or integrity of the result [12], [15],
[26], [13], [10], [21], [8], [17], [31], [27], [34], [29].

In this paper, we present the design and prototype implemen-
tation of D-DEMOS, a distributed, end-to-end verifiable internet
voting system, with no single point of failure during the election
process (that is, besides setup). We set out to overcome two
major limitations in existing internet voting systems. The first,
is their dependency on centralized components. The second is
their requirement for the voter to run special software on their
devices, which processes cryptographic operations. Overcoming
the latter allows votes to be cast with a greater variety of client
devices, such as feature phones using SMS, or untrusted public
web terminals. Our design is inspired by the novel approach
proposed in [29], where the voters are used as a source of
randomness to challenge the zero-knowledge protocols, which
are used to enable end-to-end verifiability.

We design a distributed vote collection subsystem that is
able to collect votes from voters and assure them their vote
was recorded as cast, without requiring any cryptographic
operation from the client device. This allows voters to vote
via SMS, a simple console client over a telnet session, or
a public web terminal, while preserving their privacy. At
election end time, vote collectors agree on a single set of
votes asynchronously, and upload it to a second distributed
component, the Bulletin Board. This is a replicated service
that publishes its data immediately and makes it available to
the public forever. Our third distributed subsystem, trustees
are a set of persons entrusted with secret keys that can unlock
information from the bulletin board. We share these secret keys
among them, making sure that an honest majority is required
to uncover information from the BB. Trustees interact with the
BB once the votes are uploaded to it, to produce and publish
the final election tally.

The resulting voting system is end-to-end verifiable, by
the voters themselves, as well as third-party auditors; all
this while preserving voter privacy. A voter can provide an
auditor information from her ballot; the auditor can read
from the distributed BB and verify the complete process,
including the correctness of the election setup by election
authorities. Additionally, as the number of auditors increases,



the probability of election fraud going undetected diminishes
exponentially.

Finally, we implement a prototype of the complete D-
DEMOS voting system. We measure its performance experi-
mentally, under a variety of election settings, demonstrating
its ability to handle thousands of concurrent connections, and
thus manage large-scale elections.

To summarize, we make the following contributions:
• We present the world’s first complete, state-of-the-art, end-

to-end verifiable, distributed voting system with no single
point of failure besides setup.

• The system allows voters to verify their vote was tallied-
as-intended without the assistance of special software
or trusted devices, and external auditors to verify the
correctness of the election process. Additionally, the
system allows voters to delegate auditing to a third party
auditor, without sacrificing their privacy.

• We provide a model and a security analysis of our voting
system.

• We implement a prototype of the integrated system,
measure its performance and demonstrate its ability to
handle large scale elections.

II. RELATED WORK

Voting systems. Several end-to-end verifiable e-voting systems
have been introduced, e.g. the kiosk-based systems [15], [26],
[13], [10] and the internet voting systems [8], [31], [34], [29].
In all these works, the Bulletin Board (BB) is a single point
of failure and has to be trusted.

Dini presents a distributed e-voting system, which however
is not end-to-end verifiable [24]. In [23], there is a distributed
BB implementation, also handling vote collection, according
to the design of the vVote end-to-end verifiable e-voting
system [22], which in turn is an adaptation of the Prêt à
Voter e-voting system [15]. In [23], the proper operation of the
BB during ballot casting requires a trusted device for signature
verification. In contrast, our vote collection subsystem is done
so that correct execution of ballot casting can be “human
verifiable”, i.e., by simply checking the validity of the obtained
receipt. Additionally, our vote collection subsystem is fully
asynchronous, always deciding with exactly n�f inputs, while
in [23], the system uses a synchronous approach based on the
FloodSet algorithm from [32] to agree on a single version of
the state.

DEMOS [29] is an end-to-end verifiable e-voting system,
which introduces the novel idea of extracting the challenge of
the zero-knowledge proof protocols from the voters’ random
choices; we leverage this idea in our system too. However,
DEMOS uses a centralized Election Authority (EA), which
maintains all secrets throughout the entire election procedure,
collects votes, produces the result and commits to verification
data in the BB. Hence, the EA is a single point of failure,
and because it knows the voters’ votes, it is also a critical
privacy vulnerability. In this work, we address these issues
by introducing distributed components for vote collection
and result tabulation, and we do not assume any trusted

component during election. Additionally, DEMOS does not
provide any recorded-as-cast feedback to the voter, whereas
our system includes such a mechanism. Moreover, in our
design, the committed verification data in the BB support
auditing with asymptotically lower computational cost w.r.t.
the number of options, compared to DEMOS. Finally, the
zero-knowledge proofs in DEMOS have a large soundness
error which decreases the effectiveness of zero-knowledge
application, while in this work we obtain nearly optimal overall
zero-knowledge soundness.

Furthermore, none of the above works provide any perfor-
mance evaluation results.
State Machine Replication. Castro et al. [11] introduce a
practical Byzantine Fault Tolerant replicated state machine
protocol. In the last several years, several protocols for
Byzantine Fault Tolerant state machine replication have been
introduced to improve performance ([20], [30]), robustness
([9], [19]), or both ([18]). Our system does not use the state
machine replication approach, as it would be more costly.
Each of our vote collection nodes can validate the voter’s
requests on its own. In addition, we are able to process multiple
different voters’ requests concurrently, without enforcing the
total ordering inherent in replicated state machines. Finally,
we do not want voters to use special client-side software to
access our system.

III. SYSTEM DESCRIPTION

A. Problem definition and goals
We consider an election with a single question and m options,

for a voter population of size n, where voting takes place
between a certain begin and end time (the voting hours), and
each voter may select a single option.

Our major goals in designing our voting system are three.
First, it has to be end-to-end verifiable, so that anyone can
verify the complete election process. Additionally, voters should
be able to outsource auditing to third parties, without revealing
their voting choice. Second, it has to be fault-tolerant, so that
an attack on system availability and correctness is hard. Third,
voters should not have to trust the terminals they use to vote,
as they may be malicious; voters should be assured their vote
was recorded, without disclosing any information on how they
voted to the malicious entity controlling their device.

B. System overview
We employ an election setup component in our system,

which we call the Election Authority (EA), to alleviate the
voter from employing any cryptographic operations. The EA
is tasked to initialize all remaining system components, and
then gets destroyed to preserve privacy. The Vote Collection
(VC) subsystem collects the votes from the voters during
election hours, and assures them their vote was recorded-as-
cast. Our Bulletin Board (BB) subsystem, which is a public
repository of all election-related information, is used to hold all
ballots, votes, and the result, either in encrypted or plain form,
allowing any party to read from it and verify the complete
election process. The VC subsystem uploads all votes to BB
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at election end time. Finally, our design includes trustees,
who are persons entrusted with managing all actions needed
until result tabulation and publication, including all actions
supporting end-to-end verifiability. Trustees hold the keys to
uncover any information hidden in the BB, and we use threshold
cryptography to make sure a malicious minority cannot uncover
any secrets or corrupt the process.

Our system starts with the EA generating initialization data
for every component of our system. The EA encodes each
election option, and commits to it using a commitment scheme,
as described below. It encodes the i-th option as ~ei, a unit
vector where the i-th element is 1 and the remaining elements
are 0. The commitment of an option encoding is a vector
of (lifted) ElGamal ciphertexts [25] over elliptic curve, that
element-wise encrypts a unit vector. Note that this commitment
scheme is also additively homomorphic, i.e. the commitment
of ea + eb can be computed by component-wise multiplying
the corresponding commitments of ea and eb. The EA then
creates a votecode and a receipt for each option. Then, the
EA prepares one ballot for each voter, with two functionally
equivalent parts. Each part contains a list of options, along
with their corresponding vote codes and receipts. We consider
ballot distribution to be outside the scope of this project, but
we do assume ballots, after being produced by the EA, are
distributed in a secure manner to each voter; thus only each
voter knows the vote codes listed in her ballot. We make sure
vote codes are not stored in clear form anywhere besides the
voter’s ballot.

Our Vote Collection (VC) subsystem collects the votes from
the voters during election hours, by accepting up to one vote
code from each voter. Our EA initializes each VC node with
the vote codes and the receipts of the voters’ ballots. However,
it hides the vote codes, using a simple commitment scheme
based on symmetric encryption of the plaintext along with a
random salt value. This way, each VC node can verify if a
vote code is indeed part of a specific ballot, but cannot recover
any vote code until the voter actually chooses to disclose it.
Additionally, we secret-share each receipt across all VC-nodes
using an (N � f,N)-VSS (verifiable secret-sharing) scheme
with trusted dealer, making sure that a receipt can be recovered
and posted back to the voter only when a strong majority of
VC nodes participates successfully in our voting protocol. With
this design, our system adheres to the following contract with
the voters: Any honest voter who receives a valid receipt from
a Vote Collector node, is assured her vote will be published
on the BB, and thus included in the election tally.

The voter selects one part of her ballot at random, and posts
her selected vote code to one of the VC nodes. When she
receives a receipt, she compares it with the one on her ballot
corresponding to the selected vote code. If it matches, she
is assured her vote was recorded and will be included in the
election tally. The other part of her ballot, the one not used
for voting, will be used for auditing purposes. This design
is essential for verifiability, in the sense that the EA cannot
predict which part a voter may use, and the unused part will
betray a malicious EA with 1/2 probability per audited ballot.

Our second distributed subsystem is the Bulletin Board (BB),
which is a replicated service of isolated nodes. Each BB node
is initialized from the EA with vote codes and associated option
encodings in committed form (again, for vote code secrecy), and
each BB node provides public access to its stored information.
At election end time, VC nodes run our Vote Set Consensus
protocol, which guarantees all VC nodes agree on a single set
of voted vote codes. Then, VC nodes upload this set to each
BB node, which in turn publishes this set once enough VC
nodes provide the same set.

Our third distributed subsystem is a set of trustees, who are
persons entrusted with managing all actions needed until result
tabulation and publication, including all actions supporting end-
to-end verifiability. Secrets that may uncover information in the
BB are shared across trustees, making sure malicious trustees
under a certain threshold cannot disclose sensitive information.
We use Pedersen’s Verifiable linear Secret Sharing (VSS) [33]
to split the election data among the trustees. In a (k, n)-VSS,
at least k shares are required to reconstruct the original data,
and any collection of less than k shares leaks no information
about the original data. Moreover, Pedersen’s VSS is additively
homomorphic, i.e. one can compute the share of a + b by
adding the share of a and the share of b respectively. This
approach allows trustees to perform homomorphic “addition”
on the option-encodings of cast vote codes, and contribute
back a share of the opening of the homomorphic “total”. Once
enough trustees upload their shares of the “total”, the election
tally is uncovered and published at each BB node.

Note that, to ensure voter privacy, the system cannot reveal
the content inside an option encoding commitment at any point.
However, a malicious EA might put an arbitrary value (say
9000 votes for option 1) inside such a commitment, causing
an incorrect tally result. To prevent this, we utilize the Chaum-
Pedersen zero-knowledge proof [14], allowing the EA to show
that the content inside each commitment is a valid option
encoding, without revealing its actual content. Namely, the
prover uses Sigma OR proof to show that each ElGamal
ciphertext encrypts either 0 or 1, and the sum of all elements
in a vector is 1. Our zero knowledge proof is organized as
follows. First, the EA posts the initial part of the proofs on the
BB. During the election, each voter’s A/B part choice is viewed
as a source of randomness, 0/1, and all the voters’ coins are
collected and used as the challenge of our zero knowledge
proof. After that, the trustees will jointly produce the final part
of the proofs and post it on the BB before the opening of the
tally. Hence, everyone can verify those proofs on the BB. Due
to space, we omit the zero-knowledge proof components in
this paper and refer the interested reader to [14].

Our design allows any voter to read information from the
BB, combine it with her private ballot, and verify her ballot was
included in the tally. Additionally, any third-party auditor can
read the BB and verify the complete election process. As the
number of auditors increases, the probability of election fraud
going undetected diminishes exponentially. For example, even
if only 10 people audit, with each one having 1

2 probability
of detecting ballot fraud, the probability of ballot fraud going
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undetected is only 1
2

10
= 0.00097. Thus, even if the EA is

malicious and, e.g., tries to point all vote codes to a specific
option, this faulty setup will be detected because of the end-
to-end verifiability of the complete system.

C. System and threat model

We assume a fully connected network, where each node
can reach any other node with which it needs to communicate.
The network can drop, delay, duplicate, or deliver messages
out of order. However, we assume messages are eventually
delivered, provided the sender keeps retransmitting them. For
all nodes, we make no assumptions regarding processor speeds.
We assume the clocks of VC nodes are synchronized with real
time; this is needed simply to prohibit voters from casting votes
outside election hours. Besides this, we make no other timing
assumptions in our system. We assume the EA sets up the
election and is destroyed upon completion of the setup, as it
does not directly interact with the remaining components of the
system, thus reducing the attack surface for the privacy of the
voting system as a whole. We also assume initialization data for
every system component is relayed to it via untappable channels.
We assume the adversary does not have the computational
power to violate any underlying cryptographic assumptions.
To ensure liveness, we additionally assume the adversary
cannot delay communication between honest nodes above a
certain threshold. We place no bound on the number of faulty
nodes the adversary can coordinate, as long as the number of
malicious nodes of each subsystem is below its corresponding
fault threshold. We consider arbitrary (Byzantine) failures,
because we expect our system to be deployed across separate
administrative domains. Let Nv , Nb, and Nt be the number of
VC nodes, BB nodes, and trustees respectively. For each of the
subsystems, we have the following fault tolerance thresholds:

• The number of faulty VC nodes, fv , is strictly less than
1/3 of Nv .

• The number of faulty BB nodes, fb, is strictly less than
1/2 of Nb.

• For the trustees’ subsystem, we apply ht out-of Nt

verifiable secret sharing, where ht is the number of honest
trustees, thus we tolerate ft = Nt� ht malicious trustees.

D. Election Authority

EA produces the initialization data for each election entity
in the setup phase. To enhance the system robustness, we let
the EA generate all the public/private key pairs for all the
system components (except voters) without relying on external
PKI support. We use zero knowledge proofs to ensure the
correctness of all the initialization data produced by the EA.

Voter ballots. The EA generates one ballot ballot` for each
voter `, and assigns a unique 64-bit serial-no` to it. As shown
below, each ballot consists of two parts: Part A and Part B. Each
part contains a list of m hvote-code, option, receipti tuples, one
tuple for each election option. The EA generates the vote-code
as a 160-bit random number, unique within the ballot, and the
receipt as 64-bit random number.

serial-no`
Part A

vote-code`,1 option`,1 receipt`,1
. . . . . . . . .

vote-code`,m option`,m receipt`,m

Part B
vote-code`,1 option`,1 receipt`,1
. . . . . . . . .

vote-code`,m option`,m receipt`,m

BB initialization data. The initialization data for all BB nodes
is identical, and each BB node publishes its initialization data
immediately. The BB’s data is used to show the correspondence
between the vote codes and their associated cryptographic
payload. This payload comprises the committed option en-
codings, and their respective zero knowledge proofs of valid
encoding (first move of the prover), as described in section III-B.
However, the vote codes must be kept secret during the election,
to prevent the adversary from “stealing” the voters’ ballots
and using the stolen vote codes to vote. To achieve this, the
EA first randomly picks a 128-bit key, msk, and encrypts
each vote-code using AES-128-CBC with random initialization
vector (AES-128-CBC$) encryption, denoted as [vote-code]

msk

.
Each BB is given H

msk

 SHA256(msk, salt
msk

) and salt

msk

,
where salt

msk

is a fresh 64-bit random salt. Hence, each BB
node can be assured the key it reconstructs from VC key-
shares (see below) is indeed the key that was used to encrypt
these vote-codes. The rest of the BB initialization data is as
follows: for each serial-no`, and for each ballot part, there is a
shuffled list of

D
[vote-code`,⇡X

` (j)]msk

, payload`,⇡X
` (j)

E
tuples,

where ⇡X
` 2 Sm is a random permutation (X is A or B).

We shuffle the list of tuples of each part to ensure voter’s
privacy. This way, nobody can guess the voter’s choice from
the position of the cast vote-code in this list.

VC initialization data. The EA uses an (Nv � fv, Nv)-
VSS (Verifiable Secret-Sharing) scheme to split msk

and every receipt`,j , denoted as (kmskk1, . . . , kmskkNv )
and (kreceipt`,jk1, . . . , kreceipt`,jkNv ). For each
vote-code`,j in each ballot, the EA also computes
H`,j  SHA256(vote-code`,j , salt`,j), where salt`,j is
a 64-bit random number. H`,j allows each VC node to validate
a vote-code`,j individually (without network communication),
while still keeping the vote-code`,j secret. To preserve
voter privacy, these tuples are also shuffled using ⇡X

` . The
initialization data for V Ci is structured as below:

kmskki

serial-no`
Part A

(H
`,⇡A

`
(1)

, salt
`,⇡A

`
(1)

) kreceipt
`,⇡A

`
(1)

ki

. . . . . .
(H

`,⇡A
`

(m)
, salt

`,⇡A
`

(m)
) kreceipt

`,⇡A
`

(m)
ki

Part B
(H

`,⇡B
`

(1)
, salt

`,⇡B
`

(1)
) kreceipt

`,⇡B
`

(1)
ki

. . . . . .
(H

`,⇡B
`

(m)
, salt

`,⇡B
`

(m)
) kreceipt

`,⇡B
`

(m)
ki

Trustee initialization data. The EA uses (ht, Nt)-VSS to split
the opening of encoded option commitments Com(~ei), denoted
as (

⇥
~ei
⇤
1
, . . . ,

⇥
~ei
⇤
Nt

). The initialization data for Trusteei is
structured as below:
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serial-no`
Part A

Com(~e
⇡A
`

(i)
)


~e
⇡A
`

(i)

�

`
· · · · · ·

Part B

Com(~e
⇡B
`

(i)
)


~e
⇡B
`

(i)

�

`
· · · · · ·

Similarly, the state of zero knowledge proofs for ballot
correctness is shared among the trustees using (ht, Nt)-VSS.
Due to space limitation, we omit the detailed description here
and refer the reader to [14].

E. Vote Collectors

VC is a distributed system of Nv nodes, running our
voting and vote-set consensus protocols. VC nodes have
private and authenticated channels to each other, and a public
(unsecured) channel for voters. The voting protocol starts
when a voter submits a VOTEhserial-no, vote-codei message
to a VC node. We call this node the responder, as it is
responsible for delivering the receipt to the voter. The VC node
confirms the current system time is within the defined election
hours, and locates the ballot with the specified serial-no. It
also verifies this ballot has not been used for this election,
either with the same or a different vote code. Then, it
compares the vote-code against every hashed vote code in
each ballot line, until it locates the correct entry. At this point,
it multicasts an ENDORSEhserial-no, vote-codei message to
all VC nodes. Each VC node, after making sure it has not
endorsed another vote code for this ballot, responds with an
ENDORSEMENThserial-no, vote-code,sig

VC

i

i message, where
sig

VC

i

is a digital signature of the specific serial-no and vote-
code, with V Ci’s private key. The responder collects Nv � fv
valid signatures and forms a uniqueness certificate UCERT

for this ballot. It then obtains, from its local database, the
receipt-share corresponding to the specific vote-code. Then, it
marks the ballot as pending for the specific vote-code. Finally,
it multicasts a VOTE Phserial-no, vote-code, receipt-share,
UCERTi message to all VC nodes, disclosing its share of
the receipt. In case the located ballot is marked as voted for
the specific vote-code, the VC node sends the stored receipt to
the voter without any further interaction with other VC nodes.

Each VC node that receives a VOTE P message, first verifies
the validity of UCERT, and validates the received receipt-share
according to the verifiable secret sharing scheme used. Then, it
performs the same validations as the responder, and multicasts
another VOTE P message (only once), disclosing its share of
the receipt. When a node collects hv = Nv � fv valid shares,
it uses the verifiable secret sharing reconstruction algorithm
to reconstruct the receipt (the secret) and marks the ballot as
voted for the specific vote-code. Additionally, the responder
node sends this receipt back to the voter.

The formation of a valid UCERT gives our algorithms the
following guarantees:

a) No matter how many responders and vote codes are active
at the same time for the same ballot, if a UCERT is formed

for vote code vca, no other uniqueness certificate for any
vote code different than vca can be formed.

b) By verifying the UCERT before disclosing a VC node’s
receipt share, we guarantee the voter’s receipt cannot be
reconstructed unless a valid UCERT is present.

At election end time, each VC node stops processing EN-
DORSE, ENDORSEMENT, VOTE and VOTE P messages,
and follows the vote-set consensus protocol, by performing the
following steps for each registered ballot:
1) Send ANNOUNCEhserial-no, vote-code,UCERTi to all
nodes. The vote-code will be null if the node knows of no vote
code for this ballot.
2) Wait for Nv � fv such messages. If any of these messages
contains a valid vote code vca, accompanied by a valid UCERT,
change the local state immediately, by setting vca as the vote
code used for this ballot.
3) Participate in a Binary Consensus protocol, with the subject
“Is there a valid vote code for this ballot?”. Enter with an
opinion of 1, if a valid vote code is locally known, or a 0
otherwise.
4) If the result of Binary Consensus is 0, consider the ballot
not voted.
5) Else, if the result of Binary Consensus is 1, consider the
ballot voted. There are two sub-cases here:

a) If vote code vca, accompanied by a valid UCERT is
locally known, consider the ballot voted for vca.

b) If, however, vca is not known, send a RECOVER-
REQUESThserial-noi message to all VC nodes, wait for
the first valid RECOVER-RESPONSEhserial-no, vca,UCERTi
response, and update the local state accordingly.

Steps 1-2 ensure used vote codes are dispersed across nodes.
Recall our receipt generation requires Nv � fv shares to be
revealed by distinct VC nodes, of which at least Nv � 2fv
are honest. Note that any two Nv � fv subsets of Nv have
at least one honest node in common. Because of this, if a
receipt was generated, at least one honest node’s ANNOUNCE
will be processed by every honest node, and all honest VC
nodes will obtain the corresponding vote code in these two
steps; thus, they enter step 3 with an opinion of 1. In this case,
binary consensus is guaranteed to deliver 1 as the resulting
value (because all honest nodes share the same opinion), thus
safeguarding our contract against the voters. In any case, step
3 guarantees all VC nodes arrive at the same conclusion, on
whether this ballot is voted or not.

In the algorithm outlined above, the result from binary
consensus is translated from 0/1 to a status of “not-voted”
or a unique valid vote code, in steps 4-5. The 5b case of
this translation, in particular, requires additional justification.
Assume, for example, that a voter submitted a valid vote code
vca, but a receipt was not generated before election end time.
In this case, an honest vote collector node V Ci may not be
aware of vca at step 3 , as steps 1-2 do not make any guarantees
in this case. Thus, V Ci may rightfully enter consensus with a
value of 0. However, when honest nodes’ opinions are mixed,
the consensus algorithm may produce any result. In case the
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result is 1, V Ci will not possess the correct vote code vca,
and thus will not be able to translate the result properly. This
is what our recovery sub-protocol is designed for. V Ci will
issue a RECOVER-REQUEST multicast, and we claim that
another honest node, V Ch exists that possesses vca and replies
with it. The reason for the existence of an honest V Ch is
straightforward and stems from the properties of the binary
consensus problem definition. If all honest nodes enter binary
consensus with the same opinion a, the result of any consensus
algorithm is guaranteed to be a. Since we have an honest node
V Ci, that entered consensus with a value of 0, but a result
of 1 was produced, there has to exist another honest node
V Ch that entered consensus with an opinion of 1. Since V Ch

is honest, it must possess vca, along with the corresponding
UCERT (as no other vote code vcb can be active at the same
time for this ballot). Again, because V Ch is honest, it will
follow the protocol and reply with a well formed RECOVER-
REPLY. Additionally, the existence of UCERT guarantees that
any malicious replies can be safely identified and discarded.

At the end of this algorithm, each node submits the resulting
set of voted hserial-no, vote-codei tuples to each BB node,
which concludes its operation for the specific election.

F. Voter

We expect the voter, who has received a ballot from EA,
to know the URLs of at least f

v

+ 1 VC nodes. To vote, she
picks one part of the ballot at random, selects the vote code
representing her chosen option, and loops, selecting a VC node
at random and posting the vote code, until she receives a valid
receipt. After the election, the voter can verify two things from
the updated BB. First, she can verify her cast vote code is
included in the tally set. Second, she can verify that the unused
part of her ballot, as “opened” at the BB, matches the copy
she received before the election started. This step verifies that
the vote codes are associated with the expected options as
printed in the ballot. Finally, the voter can delegate both of
these checks to an auditor, without sacrificing her privacy; this
is because the cast vote code does not reveal her choice, and
because the unused part of the ballot is completely unrelated
to the used one.

G. Bulletin Board

A BB node is a public repository of election-specific
information. By definition, it can be read via a public and
anonymous channel. Writes, on the other hand, happen over
an authenticated channel, implemented with PKI originating
from the voting system. BB nodes are independent from each
other; a BB node never directly contacts another BB node.
Readers are expected to issue a read request to all BB nodes,
and trust the reply that comes from the majority. Writers are
also expected to write to all BB nodes; their submissions are
always verified, and explained in more detail below.

After the setup phase, each BB node publishes its initial-
ization data. During election hours, BB nodes remain inert.
After the voting phase, each BB node receives from each VC
node, the final vote-code set and the shares of msk. Once it

receives fv + 1 identical final vote code sets, it accepts and
publishes the final vote code set. Once it receives Nv � fv
valid key shares (again from VC nodes), it reconstructs the
msk, decrypts all the encrypted vote codes in its initialization
data, and publishes them.

At this point, the cryptographic payloads corresponding to
the cast vote codes are made available to the trustees. Trustees,
in turn, read from the BB subsystem, perform their individual
calculations and then write to the BBs; these writes are verified
by the trustees’ keys, generated by the EA. Once enough
trustees have posted valid data, the BB node combines them
and publishes the final election result.

We intentionally designed our BB nodes to be as simple
as possible for the reader, refraining from using a Replicated
State Machine, which would require readers to run algorithm-
specific software. The robustness of BB nodes comes from
controlling all write accesses to them. Writes from VC nodes
are verified against their honest majority threshold. Further
writes are allowed only from trustees, verified by their keys.

Finally, a reader of our BB nodes should post her read request
to all nodes, and accept what the majority responds with (fb+1
is enough). We acknowledge there might be temporary state
divergence (between BB nodes), between the time a writer
finishes updating one BB node, and until he updates another.
However, given our thresholds, this should be only momentary,
alleviated with simple retries. Thus, if there is no reply backed
by a clear majority, the reader should retry until there is one.

H. Trustees
After the end of election, each trustee fetches all the election

data from the BB subsystem and verifies the validity of the
election data. For each ballot, there are two possible valid
outcomes: i) one of the A/B parts are voted, ii) none of the A/B
parts are voted. If both A/B parts of a ballot are marked as voted,
then the ballot is considered as invalid and should be discarded.
Similar, trustees also discard those ballots where more than
maximum allowed commitments in an A/B part are marked as
voted. In case (i), for each encoded option commitment in the
unused part, Trustee` submits its corresponding share of the
opening of the commitment to the BB; for each encoded option
commitment in the voted part, Trustee` computes and posts the
share of the final message of the corresponding zero knowledge
proof, showing the validity of those commitments; meanwhile,
those commitments marked as voted are collected to a tally
set Etally. In case (ii), for each encoded option commitment
in both parts, Trustee` submits its corresponding share of the
opening of the commitment to the BB. Finally, denote D(`)

tally
as Trustee`’s set of shares of option encoding commitment
openings, corresponding to the commitments in Etally. Trustee`
computes the opening share for Esum as T` =

P
D2D(`)

tally
and

then submits T` to each BB node.

I. Auditors
Auditors are participants of our system who can verify the

election process. The role of the auditor can be assumed by
voters or any other party. After election end time, auditors
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read information from the BB and verify the correct execution
of the election, by verifying the following: a) within each
opened ballot, no two vote codes are the same; b) there are
no two submitted vote codes associated with any single ballot
part; c) within each ballot, no more than one part has been
used; d) all the openings of the commitments are valid; e) all
the zero-knowledge proofs that are associated with the used
ballot parts are completed and valid; In case they received
audit information (an unused ballot part and a cast vote code)
from voters who wish to delegate verification, they can also
verify: f) the submitted vote codes are consistent with the ones
received from the voters; g) the openings of the unused ballot
parts are consistent with the ones received from the voters.

IV. SECURITY OF D-DEMOS

In this section, we show that our e-voting system achieves
liveness and safety, as well as end-to-end verifiability and voter
privacy at the same level of [29]1. Due to space constraints,
we provide high-level overviews of our proof strategies, and
refer the reader to the extended version [16] for the full proofs.

We use m,n to denote the number of options and voters
respectively. We denote by � the cryptographic security
parameter and we write negl(�) to denote that a function is
negligible in �. We assume the following security guarantees
for the underlying cryptographic tools:

1) The probability that an adversary running in � steps forges
digital signatures is negl(�).

2) There exists a constant c < 1 s.t. the probability an
adversary running in O(2�

c

) steps breaks the hiding property
of the option-encoding commitments is negl(�).
Liveness. We prove the liveness that our system can guarantee
in the following theorem.

Theorem 1 (Liveness). Let � be an upper bound on the
communication delay and � be an upper bound on the
synchronization loss in all node’s clocks with respect to a
global clock. Let T

comp

be the worst-case running time of any
procedure run by the VC nodes and the voters during the voting
protocol. Then, every honest voter that is engaged in the voting
protocol at least (fv+1) ·

�
(2Nv+4)T

comp

+12�+6�
�

clock
steps before election end, will obtain a valid receipt.

Proof strategy overview. If an honest voter submits her vote
to an honest responder, then by the description of the VC nodes
in Section III-E and the bounds �,�, T

comp

, we can show that
the upper bound on the time required for the honest voter to
obtain her receipt is T

wait

:= (2Nv + 4)T
comp

+ 12� + 6�.
Thus, the voter after T

wait

steps, will blacklist this VC node
and submit the same vote to another randomly selected VC
node. By the VC fault tolerance threshold, the voter will run
into a honest responder after at most fv + 1 attempts.

Safety. Our safety theorem is stated in the form of a contract
adhered by the VC subsystem.

1In [29], the authors use the term voter privacy/receipt-freeness, but they
actually refer to the same property.

Theorem 2 (Safety). Any honest voter who receives a valid
receipt from a VC node, is assured her vote will be published
on the honest BB nodes and included in the election tally, with
probability at least 1� negl(�)� fv

2�64�fv
.

Proof strategy overview. Assume an adversary that attempts
to produce a valid receipt without interacting with the honest
VC nodes by either (i) forging digital signatures, hence
producing fake UCERT certificates during vote collection, or
(ii) guessing the randomly generated valid 64-bit receipt for
some honest voter. By the security of digital signatures, (i)
happens only with negl(�) probability. Further, since there are
at most fv malicious VC nodes, the adversary has at most
fv attempts (there are 2�64 � i choices left after i attempts)
to guess the receipt for each voter, thus (ii) happens with

probability no more than
fv�1X

i=0

1

2�64 � i
 fv

2�64 � fv
.

Now, let V be an honest voter that has obtained a receipt
reconstructed from a complete VC interaction. Then, by the
security arguments stated in Section III-E (steps 1-5), every
honest VC node will submit V ’s vote to each BB node by
including it in the set of voted tuples. By the fault tolerance
thresholds, the honest BB nodes will publish V ’s vote, while
the ht out-of Nt honest trustees will read V ’s vote from the
majority of BB nodes and include it in the election tally.

End-to-end verifiability. We model end-to-end verifiability by
modifying the framework introduced in [29] accordingly to
our setting. We require fault tolerance only for the BB nodes
and prove the end-to-end verifiability of D-DEMOS in the
following theorem.

Theorem 3 (End-to-end verifiability). Let ✓ be the number of
honest voters. Let A be an adversary that controls the EA, all
the VC nodes, all the trustee nodes and can statically corrupt
up to fb BB nodes. Then, if the honest voters and at least
one auditor perform verification, the probability that A causes
tally deviation d from the intended election result without being
detected, is no more than 2�✓ + 2�d.

Proof strategy overview. The proof follows the lines of [29,
Theorem 4]. Specifically, by the number of honest voters,
the entropy of the collected voters’ coins is at least ✓. As
in [29, Section 3.4], we can show that the verification of
the Chaum-Pedersen zero-knowledge proofs guarantees the
correctness of all the committed ballots in the BB, except
some probability error 2�✓. In case of all valid zero-knowledge
proofs, A may attack by pointing the honest voter to audit in
a BB location where the audit data is inconsistent with the
respective information in at least one part of the voter’s ballot.
As in [29, Theorem 4], we can show that every such single
attack has 1/2 success probability (the voter had chosen to vote
with the inconsistent ballot part) and in case of success, adds
1 to the tally deviation. Thus, in this case, the probability that
A causes tally deviation d is no more than 2�d.

Voter Privacy. Our definition of voter privacy is similar
to [29]. That is, an adversary instructs the honest voters to

7



vote according to either one of two alternative ways under
the restriction that election tally is the same for both ways.
The systems achieves voter privacy if the adversary cannot
distinguish which alternative was followed by the honest voters.
We require that the EA is destroyed after setup.

Theorem 4 (Voter Privacy). Let c, c0 be constants s.t. 0 < c0 <

c and n2(n+1)m · 2� = O(2�
c0
). Let A be an adversary that

controls all the VC nodes, up to fb BB nodes, up to ft trustees,
and up to � voters, observes the network during election and
obtains all the voters’ audit information. Then, A cannot break
voter privacy if the underlying commitment scheme is hiding
against all 2�

c

adversaries.

Proof strategy overview. The proof follows the lines of [29,
Theorem 5]. Due to full VC corruption, A learns all the vote-
codes. Even so, the audit information of every voter leaks
nothing about her vote, as each ballot part is independently and
randomly generated, and the voter could “lie” about her used
ballot part (i.e. switch the vote-code and option correspondence
in the used ballot part, so that the submitted vote-code appears
associated with the option in the alternative the voter did not
follow). Moreover, we can show that if A distinguishes the
alternative followed by honest voters, then we can construct an
algorithm B that invokes A and simulates an election execution
where it guesses (i) the corrupted voters’ coins (in 2� expected
attempts) and (ii) the election tally (in (n+ 1)m expected
attempts). Thus, B finishes a compete simulation with high
probability running in n2(n+ 1)m · 2� = O(2�

c0
) steps. By

exploiting the distinguishing advantage of A, B can break the
hiding property of the option-encoding commitment scheme
in O(2�

c0
) = o(2�

c

) steps, thus leading to contradiction.

V. IMPLEMENTATION AND EVALUATION

Implementation. We implement the Election Authority com-
ponent of our system as a standalone C++ application, and all
other components in Java. Whenever we store data structures
on disk, or transmit them over the wire, we use Google Protocol
Buffers [2] to encode and decode them efficiently. We use the
MIRACL library [4] for elliptic-curve cryptographic operations.
In all applications requiring a database, we use the PostgreSQL
relational database system [6].

We build an asynchronous communications stack (ACS) on
top of Java, using Netty [5] and the asynchronous PostgreSQL
driver from [1], using TLS based authenticated channels for
inter-node communication, and a public HTTP channel for
public access. This infrastructure uses connection-oriented
sockets, but allows the applications running on the upper
layers to operate in a message-oriented fashion. We use this
infrastructure to implement VC and BB nodes. We implement
Bracha’s Binary Consensus directly on top of the ACS, and we
use that to implement our Vote Set Consensus algorithm. We
introduce a version of Binary Consensus that operates in batches
of arbitrary size; this way, we achieve greater network efficiency.
We implement “verifiable secret sharing with honest dealer”,
by utilizing Shamir’s Secret Share library implementation [7],

and having the EA sign each share.
We implement a Mozilla Firefox extension which automates

the task of reading from the BB, by intercepting the initial read
request, replicating it to all BB nodes, capturing all replies,
and showing a single correct reply only when it comes from
the majority. For more details, see [16].
Evaluation. We experimentally evaluate the performance of
our voting system, focusing mostly on our vote collection
algorithm, which is the most performance critical part. We
conduct our experiments using a cluster of 12 machines,
connected over a Gigabit Ethernet switch. The first 4 are
equipped with Hexa-core Intel Xeon E5-2420 @ 1.90GHz,
16GB RAM, and one 1TB SATA disk, running CentOS 7
Linux, and we use them to run our VC nodes. The remaining
8 comprise dual Intel(R) Xeon(TM) CPUs @ 2.80GHz, with
4GB of main memory, and two 50GB disks, running CentOS
6 Linux, and we use them as clients.

We implement a multi-threaded voting client to simulate
concurrency. It starts the requested number of threads, each
of which loads its corresponding ballots from disk and waits
for a signal to start; from then on, the thread enters a loop
where it picks one VC node and vote code at random, requests
the voting page from the selected VC (HTTP GET), submits
its vote (HTTP POST), and waits for the reply (receipt). This
simulates multiple concurrent voters casting their votes in
parallel, and gives an understanding of the behavior of the
system under the corresponding load.

We employ the PostgreSQL RDBMS [6] to store all VC
initialization data from the EA. We start off by demonstrating
our system’s capability of handling large-scale elections. To this
end, we generate election data for referendums, i.e., m = 2,
and vary the total number of ballots n from 50 million to
250 million (note the 2012 US voting population size was
235 million). We fix the number of concurrent clients to 400
and cast a total of 200,000 ballots, which are enough for our
system to reach its steady-state operation. Figure 2a shows the
throughput of the system declines slowly, even with a five-fold
increase in the number of eligible voters.

In our second experiment, we explore the effect of m, i.e.,
the number of election options, on system performance. We
vary the number of options from m = 2 to m = 10. Each
election has a total of n = 200, 000 ballots which we spread
evenly across 400 concurrent clients. As illustrated in Figure 2b,
our vote collection protocol manages to deliver approximately
the same throughput regardless of the value of m. Notice that
the only extra overhead m induces during vote collection, is
the increase in the number of hash verifications during vote
code validation, as there are more vote codes per ballot.

Next, we evaluate the scalability of our vote collection pro-
tocol by varying the number of vote collectors and concurrent
clients. We eliminate the database, by caching the election data
in memory and servicing voters from the cache, to measure the
net communication and processing costs of our voting protocol.
We vary the number of VC nodes from 4 to 16, and distribute
them across the 4 physical machines. Note that, co-located
nodes are unable to produce vote receipts via local messages
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Figure 1. Latency (1a, 1d) and throughput graphs (1b, 1e) of the vote collection algorithm vs. the number of VC nodes. Figures (1c and 1f) illustrate
throughput versus the number of concurrent clients. First row illustrates LAN setting plots. Second row illustrates WAN setting plots. Election parameters are
n = 200,000 and m = 4.
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Figure 2. Throughput graphs of the vote collection phase versus the number of total election ballots n (2a) and the number of total election options m (2b). A
total of 200,000 ballots were cast by 400 concurrent clients on 4 VC nodes. Figure 2c illustrates the duration of all system phases. Results depicted are for 4
VCs, n = 200,000 and m = 4. All these plots are for disk based experiments.

only, since the Nv � fv threshold cannot be satisfied, i.e.,
cross-machine communication is still the dominant factor in
receipt generation. For election data, we use the dataset with
n = 200, 000 ballots and m = 4 options.

In Figures 1a and 1b, we plot the average response time
and throughput of our vote collection protocol, versus the
number of vote collectors, under various concurrent client
scenarios. Results illustrate an almost linear increase in the
client-perceived latency, for all concurrency scenarios, up to 13
VC nodes. From this point on, when four logical VC nodes are
placed on a single physical machine, we notice a non-linear

increase in latency. We attribute this to the overloading of the
memory bus, a resource shared among all processors of the
system, which services all (in-memory) database operations.

In terms of overall system throughput, however, the penalty
of tolerating extra failures, i.e., increasing the number of vote
collectors, manifests early on. We notice an almost 50% decline
in system throughput from 4 to 7 VC nodes. However, further
increases in the number of vote collectors lead to a much
smoother, linear decrease. We repeat the same experiment by
emulating a WAN environment using netem [28], a network
emulator for Linux. We inject a uniform latency of 25ms
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(typical for US coast-to-coast communication [3]) for each
network packet exchanged between vote collector nodes, and
present our results in Figures 1d and 1e. A simple comparison
between LAN and WAN plots illustrates our system manages to
deliver the same level of throughput and average response time,
regardless of the increased intra-VC communication latency.
Finally, in Figures 1c and 1f, we plot system throughput versus
the number of concurrent clients, in LAN and WAN settings
respectively. Results show our system has the nice property
of delivering nearly constant throughput, regardless of the
incoming request load, for a given number of VC nodes.

Finally, in Figure 2c, we illustrate a breakdown of the
duration of each phase of the complete voting system (D-
DEMOS), versus the total number of ballots cast. We assume
immediate phase succession, i.e., the vote collection phase
ends when all votes have been cast, at which point the vote
set consensus phase starts, and so on. The “Push to BB and
encrypted tally” phase is the time it takes for the vote collectors
to push the final vote code set to the BB nodes, including
all actions necessary by the BB to calculate and publish the
encrypted result. The “Publish result” phase is the time it takes
for Trustees to calculate and push their share of the opening
of the final tally to the BB, and for the BB to publish the final
tally. Note that, in most voting procedures, the vote collection
phase would in reality last several hours and even days as
stipulated by national law (see Estonia voting system). Thus,
looking only at the post-election phases of the system, we see
the time it takes to publish the tally on the BB is quite fast.

Overall, although we introduced Byzantine Fault Tolerance
across all phases of a voting system (besides setup), we
demonstrate it achieves high performance, enough to run real-
life elections of large electorate bodies.

VI. CONCLUSION

We have presented the world’s first complete, state-of-the-art,
end-to-end verifiable, distributed voting system with no single
point of failure besides setup. The system allows voters to
verify their vote was tallied-as-intended without the assistance
of special software or trusted devices, and external auditors to
verify the correctness of the election process. Additionally, the
system allows voters to delegate auditing to a third party auditor,
without sacrificing their privacy. We provided a model and
security analysis of our voting system. Finally, we implemented
a prototype of the integrated system, measured its performance
and demonstrated its ability to handle large scale elections.
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